
Mining Container Image Repositories for Software
Configuration and Beyond∗

Tianyin Xu and Darko Marinov

University of Illinois at Urbana-Champaign

{tyxu,marinov}@illinois.edu

ABSTRACT
This paper introduces the idea of mining container image reposito-

ries for configuration and other deployment information of software

systems. Unlike traditional software repositories (e.g., source code

repositories and app stores), image repositories encapsulate the en-

tire execution ecosystem for running target software, including its

configurations, dependent libraries and components, and OS-level

utilities, which contributes to a wealth of data and information. We

showcase the opportunities based on concrete software engineering

tasks that can benefit from mining image repositories. To facilitate

future mining efforts, we summarize the challenges of analyzing

image repositories and the approaches that can address these chal-

lenges. We hope that this paper will stimulate exciting research

agenda of mining this emerging type of software repositories.

CCS CONCEPTS
• Software and its engineering→ Software libraries and reposi-

tories; Software post-development issues; Software configuration

management and version control systems;

KEYWORDS
Container; image; Docker; configuration; software repository

ACM Reference Format:
Tianyin Xu and Darko Marinov. 2018. Mining Container Image Repositories

for Software Configuration and Beyond. In ICSE-NIER’18: 40th International
Conference on Software Engineering: New Ideas and Emerging Results Track,
May 27-June 3, 2018, Gothenburg, Sweden.ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3183399.3183403

1 INTRODUCTION
Mining software repositories (MSR) has been proven to be an effec-

tive approach for discovering, characterizing, and understanding

software engineering practices, towards improving software pro-

ductivity and quality. ExistingMSR studies mostly focus on software
development by mining code repositories (including source code,

commit histories, bug reports, and documentation) [4, 5, 8] and soft-
ware release by mining app stores and package repositories [1, 3].

∗
An extended version can be found at [11].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE-NIER’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5662-6/18/05. . . $15.00

https://doi.org/10.1145/3183399.3183403

Table 1: A comparison of image versus code repositories.

Container image repo Source code repo

Usage system operation software development

User sysadmins and operators developers

Store Docker Hub, Docker Store, ... GitHub, Sourceforge, ...

Content executables + exec. context source code

Configuration customized default/customizable

Scope entire software stack specific project

Evolution different software versions source code changes

Few studies cover field configurations of software systems (e.g., for

deployment and orchestration). In fact, information of field config-

urations is highly desired, not only by operators and sysadmins to

learn best practices, but also by developers and DevOps engineers

to measure software’s usability and manageability.

One fundamental obstacle to the study of configurations lies in

the fact that traditional software repositories such as source code

repositories and app stores contain little information of how the

software is actually being used in the wild. Historically, studying

field configurations used ethnographic methods and manual data

collection from second-hand data sources [9]. For example, a study

of how software is configured in the field [9] took six person-month

to collect configuration files attached in issue reports on mailing

lists and online forums. However, this dataset, despite the only

one of its kind, is highly biased to misconfiguration cases and

is incomplete—it is hard to determine the values referencing to

execution context (e.g., environment variables and file content).

In this paper, we advocate that container image repositories, as

an emerging type of software repositories, provide a plethora of

opportunities to study configurations and other field operations for

a variety of software. Unlike source code repositories for software

development, container images are used for operations. A container

image is defined as a stand-alone, executable package of a piece of

software
1
that includes everything needed to run it: binary code,

configuration files, system libraries, language runtime, and man-

agement tools. Most of this information is not directly included in

traditional software repositories. Table 1 compares container image

repositories with traditional source code repositories.

Most importantly, the wide adoption of containerization tech-

niques drives the proliferation of image sharing. According to

Docker Hub’s statistics, it has hosted 100K+ public image reposito-

ries contributing to 900K+ images, serving 12+ billion image pulls

per week. Besides a small number of official image repositories from

certified software vendors (e.g., Apache, Oracle, and Red Hat), most

of the repositories are shared by individual users and organizations,

1
Containers are often designed for the microservice architecture in which each con-

tainer runs one software service, so each image has its target software.

https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/3183399.3183403

ICSE-NIER’18, May 27-June 3, 2018, Gothenburg, Sweden T. Xu and D. Marinov

containing various customization, integration, and orchestration,

to serve their own use cases. Therefore, these image repositories

form a massive information base of configuration and operation

practices for mining and analysis.

We present the opportunities andmethods for mining image repos-

itories based on our experience of working with image data. We fo-

cus on repositories of Docker-based container images (a.k.a., Docker
images), the de facto image format adopted in industry, and Docker

Hub as the current largest online registry service for public Docker
images. Our objective is to showcase the rich data and information

encoded in image repositories, and more importantly, describe how

several software engineering tasks—ranging from configuration

design to software orchestration to combinatorial testing—can po-

tentially benefit from or be enabled by mining these repositories

(cf. §3). To facilitate future mining efforts, we summarize the meth-

ods of mining image repositories (refer to [11] for the challenges

and limitations). We hope that this paper will stimulate exciting

research agenda of mining the emerging image repositories.

2 IMAGE REPOSITORIES
This section goes over several preliminaries of container images

and their repositories from the perspective of mining and analysis,

which establishes the context necessary to understand the technical

content presented in the subsequent sections.

Image organization. In essence, an image is a filesystem-level

snapshot that includes all the files needed for launching a running

system instance (i.e., a container). For Docker, images are organized

as a series of layers stacking on top of one another. Each layer is

created by a build instruction specified in the image’s Dockerfile

(i.e., Docker’s build file for specifying the instructions that can be

executed to assemble an image, similar to Makefile for building an

executable from source code). Each layer consists of the filesystem

diff (files added or deleted) introduced by executing that instruc-

tion on the layer below it. Stacking all the layers comprises the

unified view of the image. Note that layers (identified by unique

LayerIDs) can be shared across multiple images, e.g., one can create

a new image by adding new files onto the ubuntu image, and the

new image shares all the layers of ubuntu.
An image can be pulled from and pushed to registry services

such as Docker Hub. The image’s metadata and Dockerfile can be

fetched through the inspect command or the Docker’s REST APIs.

Image repositories. An image repository onDocker Hub contains

multiple images with different tags (typically used for annotating

versions). An image on Docker Hub is identified by the repository

name and the tag, for example, ubuntu:16.04 refers to the image

with the tag 16.04 in the ubuntu repository. All the tags, together

with other metadata of the repositories (e.g., description, maintainer,

community rating and comments, and update time) can be queried

through the Docker’s REST APIs.

Image repositories can be searched based on keywords. Although

Docker Hub does not provide the entire list of image repositories,

Shu et al. [7] show that a dictionary-based searchmethod can collect

the vast majority of public repositories on Docker Hub.

Containers. Containers are runtime instances launched by docker
run images. A container’s flat filesystem differs from the original

image which is organized in layers. Moreover, the container creates

(virtual) files for device drivers and procfs (/dev and /proc) based
on the host OS, which are not included in images. Also, containers

typically execute initial instruction (specified in Dockerfiles) to run

the target software, which creates new files (e.g., logs and traces).

3 OPPORTUNITIES
This section showcases the research opportunities for software

engineering enabled by the unique data encoded in container image

repositories. Note that container images are supposed to run out of

the box, without the need of additional configuration efforts—the

data in image repositories are working samples rather than demos.

Creating a feedback loop for configuration design. One key

aspect of configuration design is the trade-off between flexibility

(configurability) and complexity (usability), which should be care-

fully madewith a user-centric design philosophy, as configuration is

essentially an interface for users to control and customize software

behavior [9]. Feedback loops should be created to help developers

understand how their software is configured in the wild, in order

to tune the usability accordingly.

Furthermore, as shown in prior work [13], configuration require-

ments can change over time—a correct configuration value in an old

version could be obsolete or become invalid (producing undesired

behavior) after software upgrade. Understanding the characteristics

of configuration changes through software evolution is critical to

software configuration design and maintenance.

Historically, attacking the above problems is difficult, especially

for open-source software projects, due to the lack of publicly avail-

able datasets [12]. Unlike source code for which there are many

open-source online repositories (e.g., GitHub), software configura-

tions are independently maintained by sysadmins and operators

who have no incentives to share their settings. Some companies do

collect customers’ configuration values, but few of them are willing

to open such data to public as configuration settings often contain

sensitive, confidential information. Therefore, existing studies on

field configurations are either by the companies (which are specific

to one or two products), or based on tedious, time-consuming data

collection effort (as discussed in §1).

With container image repositories, the usage statistics of config-

uration parameters can be collected by analyzing the configuration

files in the image repositories built for the same piece of software.

For popular software (e.g., those studied in [9]), there are typically

thousands of image repositories made for different use cases and

scenarios, containing a diverse set of configuration settings.
2
More-

over, as image repositories contain different versions of the target

software and the configurations working for each version, mining

these repositories enables the opportunities to understand software

configuration with software evolution in depth.

Modeling cross-component configuration dependencies. Mis-

configurations across multiple software stacks or components are

among the most urgent but thorny problems in software reliabil-

ity [12]. One fundamental obstacle in dealing with these miscon-

figurations lies in the challenges of understanding and modeling

2
As a comparison, mysqld and httpd studied in [9] have 9133 and 2006 image reposi-

tories (which contain the corresponding configuration files with different versions of

the software) on Docker Hub, respectively, while the dataset in [9] only contains 823

and 311 configuration files of these two software projects, respectively.

Mining Container Image Repositories for Software Configuration and Beyond ICSE-NIER’18, May 27-June 3, 2018, Gothenburg, Sweden

dependencies of configurations across components. Existing studies

attempt to understand cross-component dependencies based on

user-reported issues posted on mailing lists and online forums [6].

However, the user-generated data cannot help understand the un-

known unknowns or model the complete dependency information,

not to mention the tremendous overhead of collect them.

Mining image repositories provides opportunities of unraveling

such information, as images encapsulate the complete environment

for running target software from the OS kernel to user-level appli-

cations. Many images are built for system infrastructure made up of

different components (each as a microservice) that have been con-

figured to work together. Therefore, images provide an open dataset

of rich, extensive, and concrete configuration values recorded in

configuration files, databases, and system environment. Unlike a

second-hand dataset in which configuration values are treated as

isolated string literals, image repositories associate these values

with their context, including the executable code, resources/entities

referenced by these values, and dependent software components.

Discovering software orchestration. Unlike source code repos-
itories dedicated for a specific piece of software, image repositories

often serve as building blocks for large-scale, complex systems

composed of multiple software components. These software com-

ponents can either be packed into a single image (e.g., the image

wordpress:php7.1-apache as a web stack), or form distributed

systems running on top of multiple images maintained in sepa-

rate repositories (e.g., the Hadoop-based data processing frame-

work published by uhopper that is composed by hadoop-namenode,
hadoop-datanode, hadoop-spark, and other hadoop-* reposito-

ries). Therefore, image repositories are great resources for studying

how different software components (and their versions) are glued

together and orchestrated as a service. Such study can not only

reveal the glue logic planned by software developers, but also po-

tentially discover spontaneous use cases invented by power users.

Note that for the case of multiple images, it takes additional effort

to collect orchestration information of these images, as each image

by itself does not explicitly specify the other images it connects to.

One data source are “compose files” used by docker composewhich
specify how multiple containers are orchestrated from images.

Improving combinatorial testing and tuning. Mining image

repositories can be used to understand common combinations and

value distributions of binaries and configurations, in order to help

test prioritization, performance tuning, and/or security auditing.

Testing of configurable software (e.g., a software product line,

SPL) requires not only executing the software for certain inputs

but also applying these inputs with various combinations of fea-

tures. One key challenge is to select the subset of combinations that

are representative and cover typical use cases, as testing all possi-

ble combinations is not feasible (e.g., an SPL with 10 configurable

features can have more than 2
10

distinct configurations). While

combinatorial methods can explore various combinations of con-

figurations, they are still quite costly, and may focus on irrelevant

combinations rarely used in practice. Mining image repositories

can discover combinations that are actually used, allowing both

speeding up testing and finding bugs for relevant configurations.

While combinatorial testing for functional correctness requires

checking all combinations that arise in practice, performance tuning

can be biased toward the most frequent configuration settings to

optimize expected runtime (over the distribution of configurations).

Understanding how the software is actually used can also help

developers better tune the performance of the software by focusing

on common systems environment and configuration settings.

Using images as test beds for software engineering tools. Im-

age repositories can serve as real-world test beds for research tools,

including misconfiguration detection, binary analysis for malware

detection, portability testing, performance auto-tuning, etc. Taking

misconfiguration detection as an example, existing research efforts

mostly evaluate the proposed methods and tools on self-injected

errors or a small set of known misconfigurations [10]. However, it

is hard to measure the actual benefits in large-scale real-world de-

ployments. Image repositories can be used to quantitatively answer

such questions, as they form a diverse, comprehensive dataset of

real-world configurations and their context. We envision such test

beds to be built on top of existing image repositories.

4 MINING METHODS
This section describes the methods for analyzing container image

repositories, including the process and techniques for addressing

the challenges derived from the characteristics of images [11].

Stream-based mining. Due to the large sizes of image reposito-

ries [11], image repositories mining needs to adopt the stream-based

process if it cannot afford mirroring all the repositories locally. A

stream-based method extracts the target information continuously

after images are loaded into memory/disks, and then removes these

images to make space [7]. This can be done by either static or
dynamic method based on whether to run the images:

• static methods analyze the tar archive of an image saved on

local storage. As introduced in §2, an image is organized as a

series of layers in the form of filesystem diffs, which can be

composed to create a unified filesystem hierarchy. The files of

interest can be extracted;

• dynamicmethods first launch containers from the target images

and then collect information of interest by invoking mining

and analysis code inside the containers (which requires to copy
the code into the container’s filesystem and copy the analysis
results from the container out to the host). The code has the

capability to invoke the commands/utilities in the container.

In comparison, static methods are more lightweight (without

the need to run containers); they are also conceptually simpler as

all information is encoded in the files inside tar archives and can

be analyzed through a uniform file-based processing framework.

Dynamic methods can precisely capture runtime information, with

the cost of complexity due to the heterogeneity of containers.

Downloading imageswith shared layers. Images are organized

in the granularity of layers (cf. §2). Each layer of an image is pulled

down separately, and stored in the host machine. If multiple images

share the same layers (e.g., built upon the same OS image), these

layers only need to be downloaded once. As a result, downloading

images with shared layers in batches can save significant storage

and downloading overhead, compared with treating each image

independently. Typically, images from the same repositories share

common layers and can be batched together, as they likely share

ICSE-NIER’18, May 27-June 3, 2018, Gothenburg, Sweden T. Xu and D. Marinov

20 40 60 80 100
% unique layers/files

0

20

40

60

80

100

CD
F

(%
)

layers
files

Figure 1: % unique layers (files)
among all layers (files) in each
official image repository.

0 20 40 60 80 100
% layers/files found (repeated)

0

20

40

60

80

100

CD
F

(%
)

files
layers

Figure 2: % files (layers) needed
to analyzewith official images as
the knowledge base.

many base layers. Figure 1 shows the percentage of unique layers

across all the layers in each official repository on Docker Hub (there

are 143 official repositories)—batching the downloads can save 35+%

layers for 50+% repositories. A more sophisticated approach is to

leverage the FROM instruction in Dockerfile that specifies the base

image, from which the target images were built.

Layer-based analysis. Similar to downloading, the image min-

ing/analysis should be designed and implemented based on layers.

Layers that have been processed should be recorded to avoid re-

peated computing effort. To illustrate the efficacy of layer-based

analysis, we pull the 143 official image repositories from Docker

Hub, and record the MD5 checksum of every file in each layer in a

database (serving as the knowledge base). Then, we randomly sam-

ple 100 image repositories from Docker Hub and select the latest
image in each repository. Figure 2 shows the files with MD5 found

in the knowledge base—on average, 83.4% of the files hit a small

base of 143 official repositories, even though the coverage of exact

layers (based on LayerIDs) is much lower. The main reason of such

significant coverage of files is that most files in an image come

from the OS and libraries. As there are limited OS distributions and

library versions, layer-based mining can lead to significant savings.

Selective mining. Not every image in a repository is worth min-

ing for a specific software engineering task. For example, many

images are for the same application binaries and configurations,

but wrapped around different OS distributions or libraries. If the

information of interest lies in the application itself, only one of the

images needs to be downloaded and analyzed.
3

Leveraging Dockerfile. A Dockerfile records how an image is

created (cf. §2). The Dockerfile of an image can be fetched through

Docker’s REST API if available. A lot of information of images can

be collected and inferred by analyzing Dockerfiles, without the

need to download and mine the images. Unfortunately, as reported

in [2], many Dockerfiles are not reproducible due to missing version

pinning—34% of Dockerfiles were not able to build the images.

5 RELATEDWORK
Prior studies on Docker images mostly focus on analyzing Dock-

erfiles as a special type of code [2] and the security implications

of adopting Docker images [7]. Differently, our focus is not about

3
Specifically, Alpine Linux is the OS distribution officially adopted by Docker since

2016, which is an order of magnitude smaller than ubuntu (the previous default).

Therefore, images based on Alpine are often the choice for downloading and analysis.

how they were created and how secure to deploy them, but about

the data and information that can be distilled from the images for

the good and evil of software engineering research.

Prior studies on mining software repositories mainly focus on

source code repositories (including version-control systems and

bug databases), archived communications, and app stores [1, 3–5, 8].

With the wide adoption of containerization techniques, container

images have become emerging data which encode information un-

available in traditional software repositories. This paper advocates

opportunities of mining container image repositories, as a special

type of software repositories, to compliment prior work.

Besides Docker images, virtual machine (VM) images are also

available online, such as AMI (Amazon Machine Images) used for

deploying VMs on Amazon EC2. On the other hand, AMIs do not

have the same level of popularity as Docker Hub. Moreover, AMIs

do not have the notion of “repositories” but are traditional disk

images which contain less semantic information.

6 CONCLUDING REMARKS
In this paper, we advocate for mining container image repositories,

as a special and emerging type of software repositories, for under-

standing configurations and use cases of software systems. The

motivation derives from the observation that few existing studies

have paid attention to container image repositories, or have ex-

plored the unique, rich data and information which is not available

in traditional software repositories. To stimulate future research,

we have discussed the opportunities of mining container image

repositories, followed by the mining methods. We hope that im-

age repositories mining can fill the gap between in-house software

development and the operations of software systems.

Acknowledgement. We thank the anonymous reviewers of ICSE

NIER for their valuable comments that help improve the presen-

tation. Darko Marinov’s group is supported by NSF grants CCF-

1409423, CCF-1421503, CNS-1646305, and CNS-1740916.

REFERENCES
[1] Abate, P., Cosmo, R. D., Gesbert, L., Fessant, F. L., Treinen, R., and Zacchiroli,

S. Mining Component Repositories for Installability Issues. In MSR’15.
[2] Cito, J., Schermann, G., Wittern, J. E., Leitner, P., Zumberi, S., and Gall,

H. C. An Empirical Analysis of the Docker Container Ecosystem on GitHub. In

MSR’17.
[3] Harman, M., Jia, Y., and Zhang, Y. App Store Mining and Analysis: MSR for

App Stores. In MSR’12.
[4] Hassan, A. The Road Ahead for Mining Software Repositories. In 2008 Frontiers

of Software Maintenance.
[5] Nagappan, N., Zimmermann, T., and Zeller, A. Guest Editors’ Introduction:

Mining Software Archives. IEEE Software 26, 1 (January 2009), 24–25.

[6] Sayagh, M., Kerzazi, N., and Adams, B. On Cross-stack Configuration Errors.

In ICSE’17.
[7] Shu, R., Gu, X., and Enck, W. A Study of Security Vulnerabilities on Docker

Hub. In CODASPY’16.
[8] Xie, T., Thummalapenta, S., Lo, D., and Liu, C. Data Mining for Software

Engineering. IEEE Computer 42, 8 (August 2009), 55–62.
[9] Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., and Talwadker, R. Hey, YouHave

Given Me Too Many Knobs! Understanding and Dealing with Over-Designed

Configuration in System Software. In ESEC/FSE’15.
[10] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S. Early

Detection of Configuration Errors to Reduce Failure Damage. In OSDI’16.
[11] Xu, T., and Marinov, D. Mining Container Image Repositories for Software

Configuration and Beyond. arXiv:1802.03558.
[12] Xu, T., and Zhou, Y. Systems Approaches to Tackling Configuration Errors: A

Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).

[13] Zhang, S., and Ernst, M. D. Which Configuration Option Should I Change? In

ICSE’14.

	Abstract
	1 Introduction
	2 Image Repositories
	3 Opportunities
	4 Mining Methods
	5 Related Work
	6 Concluding Remarks
	References

