Evaluating State Modeling Techniques in Alloy

ALLISON SULLIVAN, KAIYUAN WANG, and SARFRAZ KHURSHID, The University of Texas at
Austin, USA
DARKO MARINOV, University of Illinois at Urbana-Champaign, USA

Software models help develop higher quality systems. The declarative language Alloy and its accompanying automatic analyzer
embody a method for developing software models. Our focus in this paper is Alloy models of systems where different operations
may mutate the system state, e.g., addition of an element to a sorted container. Researchers have previously used two techniques
for modeling state and state mutation in Alloy, but these techniques have not been compared to each other. We propose a third
technique and evaluate all these three techniques that embody conceptually different modeling approaches. We use four core
subjects, which we model using each technique. Our primary goal is to quantitatively evaluate the techniques by considering
the runtime for solving the ensuing SAT formulas. We also discuss practical tradeoffs among the techniques.

Categories and Subject Descriptors: 1.6.4 [Simulation and Modeling] Model Validation and Analysis; D.2.5 [Software Engi-
neering] Testing and Debugging; D.2.4 [Software Engineering] Software/Program Verification

Additional Key Words and Phrases: Alloy, state modeling, SAT solving, empirical evaluation, predicate parameterization

1. INTRODUCTION

Building and analyzing software models plays an important role in developing higher quality software
systems. The Alloy tool-set — including the declarative language Alloy and its accompanying automatic
analysis engine called Alloy analyzer — embodies a method for developing software models [Jackson
2006]. The Alloy language is a relational, first-order logic with transitive closure that allows succinct
formulation of complex structural properties. The Alloy analyzer performs scope-bounded analysis of
Alloy formulas using off-the-shelf Boolean satisfiability (SAT) solvers. The analyzer can generate two
forms of valuations for the relations in the model: (1) instances, i.e., valuations such that the formu-
las hold; and (2) counterexamples, i.e., valuations such that the negation of the formulas holds. The
analyzer enables Alloy users to not only validate their models but also use the tool-set as a basis for
various forms of software analyses.

Our focus in this paper is Alloy models of systems where different operations may mutate the system
state, e.g., addition of an element to a sorted container. Researchers have used at least two techniques
for modeling state and state mutation in Alloy [Jackson and Vaziri 2000; Jackson and Fekete 2001;
Marinov and Khurshid 2001} Taghdiri 2003} [Frias et al. 2005]. One common technique, which we call
additional state type, is to introduce a set of state atoms and increase the arity of each relation to add a
new state type [Jackson and Fekete 2001; Taghdiri 2003;|Frias et al. 2005]. Another common technique,
which we call relation duplication, is to duplicate relations in the model such that one set of relations

This research was partially supported by the NSF Grant Nos. CNS-1239498, CCF-1319688, CCF-1409423, and CCF-1421503.
Authors’ addresses: Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid, Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin, Austin, TX 78712, USA; Darko Marinov, Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Email correspondence: khurshid@utexas.edu

Copyright ©by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac (ed.): Proceedings of the SQAMIA 2017: 6th Workshop on Software Quality, Analysis, Monitoring, Improvement,
and Applications, Belgrade, Serbia, 11-13.9.2017, Also published online by CEUR Workshop Proceedings (http://ceur-ws.org,
ISSN 1613-0073)

http://ceur-ws.org

16:2 o Allison Sullivan et al

represents one state, say pre-state, and another set identifies another state, say post-state [Jackson
and Vaziri 2000; Marinov and Khurshid 2001]. A shared intuition at the basis of these techniques is to
(explicitly or implicitly) create a representation of each desired state in the model, and write formulas
that constrain specific states individually, or sets of states collectively, e.g., to encode post-conditions
that relate pre- and post-states. Despite the common basis, these techniques are technically quite
different — not only in terms of syntactic and semantic representation but also in terms of the state
spaces that ensue for SAT exploration.

While state modeling techniques have allowed effective applications of Alloy in various domains —
including software design [Jackson and Fekete 2001; Taghdiri 2003; |Frias et al. 2005[], analysis [Jack-
son and Vaziri 2000; [Dennis et al. 2006; Milicevic et al. 2011; |Galeotti et al. 2013], testing [Marinov
and Khurshid 2001], and security [Kang et al. 2016] — these techniques have not been compared to
each other. We propose a third technique, called predicate parameterization, and compare all three
techniques that embody conceptually different modeling approaches. We use four core subjects that
we chose because they represent two broad classes of problems — two subjects are data structures
representative of many evaluations done with Alloy [Jackson and Vaziri 2000; Marinov and Khurshid
2001; Galeotti et al. 2013|] and two subjects are from the standard Alloy distribution. We are not aware
of any common benchmark set of Alloy models for evaluating performance of the Alloy analyzer. We
model each subject using each technique. We do not use more or bigger subjects because translating
each model from one technique to another currently requires a substantial manual effort. Our primary
goal is to quantitatively evaluate the techniques by considering the runtime for solving the ensuing
SAT formulas. (In other words, we do not consider the asymptotic algorithm complexity but the actual
practical performance.) We also discuss practical trade-offs among the techniques.

2. TECHNIQUES

This section describes the three state modeling techniques that we evaluate. We first introduce an illus-
trative example and some basic concepts of Alloy (Section [2.1). We then describe the three techniques
and illustrate them using our example (Section [2.2).

2.1 lllustrative example and Alloy basics

Consider modeling an acyclic, sorted, singly-linked list with unique elements in Alloy. The following
snippet declares the basic Alloy data-types:
sig List {
header: lone Node
¥
sig Node {
elem: Int,
link: lone Node
¥

The sig declaration introduces a set of atoms and optionally declare fields, i.e., relations. The field
header is a binary relation of type List x Node and represents the list’s first node; elem has type Node
x Int and represents the node’s integer (Int) element; and 1ink has type Node x Node and represents
the node’s next node. The keyword lone declares the binary relation to be a partial function, e.g., each
list has at most one header node, and each node has at most one next mode. By default, each binary
relation that is declared is a total function, e.g., each node contains exactly one integer element.

Consider expressing acyclicity. The following snippet is an Alloy predicate (pred), i.e., a named, pa-
rameterized formula that may be invoked elsewhere, which defines acyclicity using universal quantifi-
cation (all):

Evaluating State Modeling Techniques in Alloy . 16:3

pred Acyclic(l: List) {
all n: l.header.*link | n !in n."link

¥

The operator ‘.’ is relational composition; ‘#’ is reflexive transitive closure; and “’ is transitive closure.
Note that ‘#’ and ‘~’ are used as prefix not suffix operators. The (infix) operator ‘!in’ denotes that the
left-hand expression is not a subset of the right-hand expression. Note that this operator does not
denote just “not an element” because all Alloy expressions are semantically relations (even if of arity
only one, i.e., sets) and not scalar atoms [Jackson 2006]]. The expression 1.header.*1ink represents the
set of all nodes reachable from 1’s header along 1ink (including the header itself). The predicate encodes
that for any node n in the list, the set of nodes reachable from n does not contain n, hence no cycle.
The following predicate defines sortedness (with unique elements):

pred SortedUnique(l: List) {
all n: l.header.*link | some n.link => n.elem < n.link.elem

¥

The operator ‘=>’ is logical implication. The formula some n.link encodes that the expression n.link is
a non-empty set. The predicate encodes that for any node in the list, if the node has a next node, the
elements from the two nodes are in the ascending order; the operator ‘<’ is integer comparison.

The following Alloy snippet defines the predicate Rep0k that is a conjunction of Acyclic and SortedUnique,
and uses the run command to instruct the analyzer to create an instance in the scope of 1 list, 3 nodes,
and bit-width of 2 for integers:
pred RepOk(l: List) {

Acyclic[1]

SortedUnique[1]

¥
run RepOk for 1 List, 3 Node, 2 int

2.2 Additional state type

The most widely used technique for modeling state in Alloy is to introduce a new sig, commonly called
State, and add it to each relation, increasing the relation’s arity by one [Jackson and Fekete 2001}
Taghdiri 2003; |[Frias et al. 2005]. For example, the following snippet shows this technique applied to
the list declaration:

abstract sig State {}

sig List {
header: Node -> State
}
fact {
all 1: List | all s: State | lone 1. (header.s)
¥

State is an abstract sig, i.e., it contains only atoms that are strictly necessary for the constraint solved.
The symbol ‘->’ denotes the Cartesian product in expressions and adds arity in declarations. The field
header is now a ternary relation of type List x Node x State, which allows a list to have different nodes
as its header in different states. Note that the state need not be the last type; it can be in any position,
e.g., in the first position where the sig State would have other relations (such as header and 1ink) as its
fields. We use state in the last position because it allows us to preserve the declaration structure of the
original model. A fact in Alloy is a formula that must always hold. We use a fact to require each list to
have at most one header node in each state to conform to the partial function relation in the original
model (without state).

16:4 o Allison Sullivan et al

The following snippet shows how the predicate Acyclic can be written in the presence of state:

pred Acyclic(l: List, s: State) {
all n: 1.(header.s).*(link.s) | n !'in n."(1link.s)
}

Note the new state parameter s for which the predicate holds, and also the new composition of each
relation with a state to represent the field values in the desired state, e.g., 1. (header.s) is the header
of the list 1 in the state s.

Consider next modeling state mutation. This snippet defines removal of the first node from the list:
pred RemoveFirst(l: List, s: State, s’: State) {

s != s’ -- states are unique

RepOk[l, s] -- 1 satisfies RepOk in s

1.(header.s).*(link.s).(elem.s) - 1. (header.s).(elem.s) = 1l.(header.s’).*(link.s’).(elem.s’)

RepOk[1l, s’] -- 1 satisfies RepOk in s’
¥
run RemoveFirst for 2 State, 1 List, 3 Node, 2 Int

The predicate has two state parameters: s represents the pre-state, and s’ represents the post-state.
The operator ‘-’ is set difference. (The symbol ‘- -’ is used for comments.) The predicate encodes that
the two states are distinct; 1 satisfies RepOk in the pre-state; the set of elements in the pre-state minus
the header element in the pre-state is the set of elements in the post-state; and 1 satisfies Rep0k in the
post-state. Figure 1| graphically illustrates an instance for RemoveFirst.

List
($RemoveFirst_|}

header

List
($RemoveFirst_|)

link header

link link

(a) (b)

Fig. 1. Example RemoveFirst (a) pre-state and (b) post-state visualized using Alloy analyzer.

Consider next using the analyzer to check whether RemoveFirst has a specific property. The following
snippet uses an Alloy assertion (assert) to encode that RemoveFirst implies that the header element in
the post-state is the second element from the pre-state:
assert PartialCorrectnessOnce {

all disj s, s’: State | all 1: List |

RemoveFirst[l, s, s’] => 1. (header.s’).(elem.s’) = 1.(header.s).(link.s).(elem.s)

¥

check PartialCorrectnessOnce for 3

Evaluating State Modeling Techniques in Alloy . 16:5

The keyword disj requires s and s’ to be distinct. The command check instructs the analyzer to find
a counterexample to the named assertion, i.e., PartialCorrectnessOnce. However, the analyzer does not
find a counterexample for this command in this example for the given scope of 3. (There could exist a
counterexample in a larger scope.)

2.3 Relation duplication

Another technique for modeling state is to introduce a new copy of declared relations for each state
and to model mutation by defining constraints across the relations for different states [Jackson and
Vaziri 2000; Marinov and Khurshid 2001]. To illustrate, consider modeling pre-state and post-state for
RemoveFirst. (In general, there could be more than two states, and the relations would need to be copied
multiple times.) The following snippet shows this technique applied to the list declaration:

sig List {
header: lone Node, -- pre-state
header’: lone Node -- post-state
¥

The mutation of the original header field is now modeled by two relations: header that represents the
value in the pre-state, and
header’ that represents the value in the post-state.

Constraints on the relations are now written over appropriate groups of relations. The following
snippet shows how two predicates can be written to represent acyclicity for the two states:

pred Acyclic(l: List) { -- for pre-state
all n: l.header.*link | n !in n."link

}

pred Acyclic’(l: List) { -- for post-state
all n: l.header’.*link’ | n !in n."link’

¥

Acyclic represents acyclicity in the pre-state, and Acyclic’ represents acyclicity in the post-state. Note
that each predicate uses relations only from its corresponding state. Similar changes are made for
RepOk and RepOk’ (and SortedUnique and SortedUnique?).

Consider next modeling state mutation. This snippet defines RemoveFirst using this technique:
pred RemoveFirst(l: List) {

RepOk[1] -- RepOk in pre-state

1l.header.*link.elem - l.header.elem = l.header’.*link’.elem?’

RepOk’[1] -- RepOk in post-state
¥

run RemoveFirst for 1 List, 3 Node, 2 Int

Moreover, the following snippet defines the assertion PartialCorrectnessOnce using this technique:

assert PartialCorrectnessOnce {
all 1: List | RemoveFirst[1l] => 1l.header’.elem’ = l.header.link.elem
¥

check PartialCorrectnessOnce for 3

2.4 Parameterization

The third technique we evaluate removes all relation declarations from sig declarations, adds the
relations as parameters to all predicates, and adds a new predicate to express all the facts in the
model. For example, the declaration of the list signature becomes just the following:

16:6 . Allison Sullivan et al

sig List {}
The following snippet illustrates adding the relations as parameters to the acyclicity predicate:

pred Acyclic(l: List, header: List -> Node, elem: Node -> Int, link: Node -> Node) {
all n: l.header.*link | n !in n. link

}

Similar changes are made for RepOk (and SortedUnique).

In addition to changing all the existing predicates, a new predicate is added to encode all the facts
from the original model. The following snippet illustrates the new predicate, which should be appro-
priately invoked when commands are executed:
pred SigDeclFacts(header: List -> Node, elem: Node -> Int, link: Node -> Node) {

all 1: List | lone l.header

all n: Node | one n.elem and lone n.link

}

In Alloy, ‘one’ holds if its expression denotes a singleton set/relation, while ‘and’ is the usual conjunction,
expressed explicitly. (There is also an implicit conjunction among the formulas on different lines.)
Consider next modeling state mutation. This snippet defines RemoveFirst using this technique:

pred RemoveFirst(l: List, header: List -> Node, elem: Node -> Int, link: Node -> Node,
header’: List -> Node, elem’: Node -> Int, link’: Node -> Node) {

RepOk[1l, header, elem, link]
l.header.*link.elem - l.header.elem = l.header’.*link’.elem?’
RepOk[1l, header’, elem’, link’]

¥

pred RunRemoveFirst(l: List, header: List -> Node, elem: Node -> Int, link: Node -> Node,

header’: List -> Node, elem’: Node -> Int, link’: Node -> Node) {

SigDeclFacts[header, elem, link] and SigDeclFacts[header’, elem’, link’]
RemoveFirst[l, header, elem, link, header’, elem’, link’]

}

run RunRemoveFirst for 1 List, 3 Node, 2 Int

In addition to the list parameter, RemoveFirst has 6 relations as parameters: 3 for pre-state (header,
elem, and 1link) and 3 for post-state (header’, elem’, and 1ink’). To run RemoveFirst, a new predicate
RunRemoveFirst is introduced and run, which appropriately enforces the facts from the original model
(without state). This new predicate RunRemoveFirst is not expected to be invoked elsewhere (in another
predicate); its only purpose is to enable a run command that conforms to the semantics of facts in Alloy.

The following snippet defines the assertion PartialCorrectnessOnce using this technique:
assert PartialCorrectnessOnce {

all 1: List | all header: List -> Node | all elem: Node -> Int | all link: Node -> Node |

all header’: List -> Node | all elem’: Node -> Int | all link’: Node -> Node {
SigDeclFacts[header, elem, link] and SigDeclFacts[header’, elem’, link’] =>

RemoveFirst[1l, header, elem, link, header’, elem’, link’] => 1.header’.elem’ = 1l.header.link.elem }

}

check PartialCorrectnessOnce for 3

The assertion assumes the facts, once again to conform to the semantics of facts in Alloy.

3. EVALUATION

We use four core subjects — two data structures and two subjects from the standard Alloy distribution
— as base models, providing us 11 constraint-solving problems with different complexities to quantita-
tively compare the three techniques:

(1)

(2)

3

(4)

Evaluating State Modeling Techniques in Alloy . 16:7

Singly-linked list, our running example; we derive four problems: (a) create an instance for re-
moving the first element (RemoveFirst), our running example; (b) create an instance for removing
the first element twice (TwiceRemoveFirst), which requires three states (unlike our running example
that used only two states); (c) check that RemoveFirst implies that the header element in post-state
is the second element in the pre-state (PartialCorrectnessOnce); and (d) check that if a list has two
or more elements, removing the first element twice implies the number of nodes in the list reduces
by two (PartialCorrectnessTwice);

Binary search tree, we derive four problems: (a) create an instance for adding a given element to
the tree (4dd); (b) create an instance for removing a given element from the tree (Remove); (c) check
that adding an element that is not in the tree followed by removing the same element leaves the
set of elements originally in the tree unchanged (AddRemoveNoOp); and (d) check that two is the
difference in the number of nodes between (i) adding a new element to the tree versus (ii) removing
an existing element from the tree (AddRemoveComparison).

Farmer, the classic puzzle on crossing the river, which describes that a farmer wants to move
a fox, a chicken, and a bag of grain from one bank of a river to the other bank without losing
any of them. This model comes with the standard Alloy distribution, where it already has a State
signature that represents the object status for both river banks every time the farmer moves. The
state is the first type in the corresponding relations. The model includes two problems: (a) solve
the puzzle (solvePuzzle); and (b) check that no object is at more than one place at the same time
(NoQuantu.mejects).

Dijkstra, a model of Dijkstra’s mutual exclusion for processes, which is also in the standard Alloy
distribution; similar to Farmer, state is the first type in the relations used to model mutation. The
model includes three problems: (a) create an instance that shows a deadlock (Deadlock); (b) try to
find a deadlock instance where the process mutexes are grabbed and released based on the Dijkstra
algorithm (ShowDijkstra); and (c) directly check that the Dijkstra algorithm prevents deadlocks
(DijkstraPreventsDeadlocks).

Table I. State techniques comparison; P.V. and Cl. are primary variables and clauses, resp., in the SAT formula

Additional state type | Relation duplication Parameterization

Model Problem/Command =y "BV, T CL | Tims] | PV. | CL | Timsl | PV. | CL
RemoveFirst 102 59 2706 47 77 2104 18 53 1956
List TwigeRemoveFirst 83 89 4514 15 77 2846 24 77 2858
PartialCorrectnessOnce 13949 | 216 | 13709 11267 | 207 | 10298 2223 | 141 | 10001
PartialCorrectnessTwice 44555 | 219 | 18391 30535 | 207 | 14032 5563 | 207 | 14201
Add 27 81 3162 36 | 108 2441 23 75 1983
Tree Remove 8 81 3162 42 | 108 2441 15 75 1983
AddRemoveNoOp 31 | 262 | 13583 53 | 250 9313 22 | 250 9312
AddRemoveComparison 230366 | 278 | 13698 | 195216 | 266 9428 | 123419 | 266 9427
Farmer solvePuzzle . 29 66 2239 30 58 1850 27 66 2246
NoQuantumObjects 45 78 2441 23 62 2121 51 66 2321
Deadlock 134 | 260 826 61 | 255 592 49 | 255 605
Dijkstra | ShowDijkstra 87 47 1520 26 42 1491 13 42 1505
DijkstraPreventsDeadlocks 546 | 210 9498 392 | 205 9321 225 | 205 9322

Table |I| shows the experimental results. For each model, we list the executed commands. The scope
for List (resp., Tree) has values as shown in the example: 1 list (resp., 1 tree), 3 nodes, and bit-width
of 2 for integers. The scope for Farmer has 8 states and 4 fixed objects (Farmer + Fox + Chicken

16:8 . Allison Sullivan et al

+ Grain). The scope for Dijkstra has 5 State, 5 Process, 5 Mutex for Deadlock; 5 State, 2 Process, 2
Mutex for ShowDijkstra, and 5 State, 5 Process, 4 Mutex for DijkstraPreventsDeadlocks. We leave it as
future work to experiment with different scopes and models.

For each modeling technique, we tabulate time (in milliseconds) to solve the resulting SAT formula
(T'[ms]), the number of primary variables (P.V.), and the number of clauses (C!.) in the SAT formula. All
the experiments were run on an Intel Celeron CPU N3060 1.60GHz x 2 processor with 1.8GB of mem-
ory using Alloy 4 (http:/alloy.mit.edu/alloy/downloads/alloy4.jar). We initially tried to use Alloy 4.2,
the latest Alloy release, but encountered an anomalous behavior: our list and tree models using pa-
rameterization created SAT formulas with 0 primary variables and 0 clauses; we confirmed that this
is a bug in Alloy 4.2.

For the four problems where the solving time exceeds 500ms for any of the techniques, parameteriza-
tion provides the most efficient solving, followed by relation duplication, and then additional state type.
The performance difference is the greatest for PartialCorrectnessTwice in list, where parameterization
provides a speedup of 8X over additional state type. While the time for SAT solving is determined by the
complexity, not just the size, of the SAT formula, one reason for the performance difference can be the
size. For each of these four problems, the number of primary variables is the smallest for parameter-
ization, which is the same as the number for duplication with one exception (PartialCorrectnessOnce).
Moreover, the number of clauses for parameterization and duplication is quite close for these four
problems but noticeably smaller than the number for additional state type. Overall, parameterization
enables a tight encoding that leads to efficient analysis for these problems.

For the problems where the solving time is below 500ms for all techniques, the difference in time
among the techniques is not practically relevant, so any can be used for just one small problem. How-
ever, the techniques do differ, and more precise and extensive measurements would be needed to find
the best technique for analyzing a large number of small problems. In particular, it would be important
to understand the cases where parameterization is not the best technique.

Quantitatively, the models created using parameterization are the fastest to solve. Qualitatively,
however, the models created using additional state type are most readable due to two reasons: (1) state
can be conveniently referred to, e.g., a quantified formula can directly be written over the set of states;
and (2) the type declaration structure of the original model (without state) can be largely preserved.
The models with relation duplication are burdensome for (manual) maintenance because the predi-
cates have to exist in multiple copies (e.g., Acyclic and Acyclic’). The models with parameterization
require unwieldy predicate signatures because all predicates are parameterized; in addition, facts
need to be explicitly handled in a special way. We note that different techniques are best suited to
different purposes, e.g., additional state type for manual modeling, and relation duplication and pa-
rameterization for automated analyses where the models are mechanically generated. Indeed, future
work should consider automatic translations that map a model built using one technique to conform
to another technique for more efficient back-end analysis.

4. CONCLUSIONS

The Alloy software modeling tool-set has been effectively used in software design, analysis, and test-
ing. Our focus in this paper was on comparing Alloy modeling techniques for systems where different
operations may mutate the system state. Over the years, researchers have use at least two techniques
for modeling state and state mutation in Alloy, but these techniques were not previously compared to
each other. We proposed a third technique and evaluated all three techniques that embody different
modeling approaches. We used four core subjects, which we model using each technique. The results
show that the models created using the parameterization technique are the fastest to solve. However,
such models are hard to write manually and should be automatically derived from different models.

Evaluating State Modeling Techniques in Alloy . 16:9

REFERENCES

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular Verification of Code with SAT. In Proc. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 109-120.

Marecelo F. Frias, Juan P. Galeotti, Carlos G. Lépez Pombo, and Nazareno M. Aguirre. 2005. DynAlloy: Upgrading Alloy with
Actions. In Proc. 27th International Conference on Software Engineering (ICSE). 442-451.

Juan P. Galeotti, Nicolds Rosner, Carlos G. Lépez Pombo, and Marcelo F. Frias. 2013. TACO: Efficient SAT-Based Bounded
Verification Using Symmetry Breaking and Tight Bounds. IEEE Trans. Software Eng. 39, 9 (2013), 1283-1307.

Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The MIT Press.

Daniel Jackson and Alan Fekete. 2001. Lightweight Analysis of Object Interactions. In Proc. 4th International Symposium on
Theoretical Aspects of Computer Software (TACS). 492-513.

Daniel Jackson and Mandana Vaziri. 2000. Finding Bugs with a Constraint Solver. In Proc. ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). 14-25.

Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. 2016. Multi-representational Security Analysis. In Proc. 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE). 181-192.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for Automated Testing of Java Programs. In Proc.
16th IEEE International Conference on Automated Software Engineering (ASE). 22-31.

Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. 2011. Unifying Execution of Imperative and Declar-
ative Code. In Proc. 33rd International Conference on Software Engineering (ICSE). 511-520.

Mana Taghdiri. 2003. Lightweight Modelling and Automatic Analysis of Multicast Key Management Schemes. Master’s thesis.
Massachusetts Institute of Technology.

	Introduction
	Techniques
	Illustrative example and Alloy basics
	Additional state type
	Relation duplication
	Parameterization

	Evaluation
	Conclusions

