
Credible Compilation

by

Darko Marinov

Submitted to the Department of Eletrial Engineering and Computer

Siene

in partial ful�llment of the requirements for the degree of

Master of Siene

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2000

 Massahusetts Institute of Tehnology 2000. All rights reserved.

Author .

Department of Eletrial Engineering and Computer Siene

September 5, 2000

Certi�ed by. .

Martin C. Rinard

Assoiate Professor

Thesis Supervisor

Aepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

Credible Compilation

by

Darko Marinov

Submitted to the Department of Eletrial Engineering and Computer Siene

on September 5, 2000, in partial ful�llment of the

requirements for the degree of

Master of Siene

Abstrat

This thesis desribes a theoretial framework for building ompilers that generate

formal guarantees that they work orretly. Traditional ompilers provide no suh

guarantees|given an original soure program, a traditional ompiler generates only

a transformed exeutable program. The only way to investigate the orretness of a

ompilation is to run the transformed program on some sample inputs. Even if the

transformed program generates expeted results for these inputs, it does not ensure

that the transformed program is indeed equivalent to the original program for all

inputs.

Most previous researh on ompiler orretness foused on developing ompilers

that are guaranteed to orretly translate every original program. It is extremely

diÆult, however, to verify that a omplex ode, whih implements a ompiler, is

orret. Therefore, a novel approah was proposed: instead of verifying a ompiler,

verify the result of eah single ompilation. We require the ompiler to generate a

transformed program and some additional information that enables a simple veri�er

to hek the ompilation. We all this approah redible ompilation.

This thesis presents a formal framework for the redible ompilation of imperative

programming languages. Eah transformation generates, in addition to a transformed

program, a set of standard invariants and ontexts, whih the ompiler uses to prove

that its analysis results are orret, and a set of simulation invariants and ontexts,

whih the ompiler uses to prove that the transformed program is equivalent to the

original program. The ompiler has also to generate a proof for all the invariants

and ontexts. We desribe in detail the struture of a veri�er that heks the om-

piler results. The veri�er �rst uses standard and simulation veri�ation-ondition

generators to symbolially exeute the original and transformed programs and gen-

erate a veri�ation ondition. The veri�er then uses a proof heker to verify that

the supplied proof indeed proves that veri�ation ondition. If the proof fails, the

partiular ompilation is potentially not orret. Our framework supports numerous

intraproedural transformations and some interproedural transformations.

Thesis Supervisor: Martin C. Rinard

Title: Assoiate Professor

2

Aknowledgments

Many people have helped me, diretly or indiretly, to omplete this work. With

the previous sentene, I started the aknowledgments in my Bahelor's thesis. I then

expliitly aknowledged only the people who helped me diretly. It is now the perfet

opportunity to orret the error I made.

First of all, I would like to thank my family|my sister Marina, my mother Ivanka,

and my father Slobodan|for all they have done for me in my life. Their love and

are for me were always enormous, and I an never repay them. I also appreiate that

my parents let me make my own areer deisions throughout my life.

I would like to thank my advisor, Martin Rinard, for all the personal and tehnial

help he has provided to me during the last two years. I was fortunate that Martin,

the \big boss," was with me in the numerous problemati situations I enountered.

His are for students is truly exeptional, and if it were not for him, I would not be

typing this now. I espeially appreiate that Martin still believes in me, and I hope

to justify that belief one day.

I would like to thank the present graduate students in Martin's group: Maria-

Cristina Marinesu, Radu Rugin�a, C. Sott Ananian, Brian Demsky, Alexandru

S�alianu, Karen Zee, and Viktor Kun�ak. As a group, \Martin's kids" made my

life at MIT a muh nier experiene. Eah of them also helped me in various ways

during my staying here. Maria, my \dearest oÆe-mate," has been like my sister

ever sine I ame to MIT. Radu, the \little boss," had enough patiene to teah me

program analyses. He and Viktor also provided valuable omments on the thesis.

Alex helped me with ourse work while I was working on the thesis. Sott helped

me make my working environment muh more pleasant. Brian and Karen helped me

orret English in the thesis. I also thank Rahel Allen for helping me with English

grammar. All the errors (or is it \all errors"?) remaining in the text are my fault.

I would like to thank Konstantinos Arkoudas, the author of the Athena logial

framework. Kostas helped me understand Athena and use it to implement a prototype

redible ompiler that I have not had time to desribe in the thesis. I also thank

George Neula for a disussion about proof arrying ode.

I would like to thank my olleague and roommate Sarfraz Khurshid for many life

lessons he indiretly taught me. Finally, I would like to thank Jonathan Babb for

sharing his ideas and disussing life issues with a junior graduate student like me.

3

Contents

1 Introdution 7

1.1 Traditional Compilation . 7

1.2 Credible Compilation . 8

1.3 Non-Credible Compilation Example 9

2 Overview 13

2.1 Transformation Corretness . 13

2.2 Credible Compiler Struture . 15

2.2.1 Credible Compiler Veri�er . 17

2.3 Summary . 19

2.3.1 Sope . 20

2.3.2 Contributions . 23

3 Example 24

3.1 Compiler Analysis . 26

3.1.1 Standard Veri�ation-Condition Generator 27

3.2 Compiler Transformation . 29

3.2.1 Simulation Veri�ation-Condition Generator 31

4 Basi Framework 38

4.1 Basi Language . 38

4.1.1 BL Syntax . 39

4.1.2 BL Semantis . 41

4.2 Basi Logi . 49

4.2.1 Syntax of Logi Formulas . 49

4.2.2 Relationship between Program and Logi Expressions 51

4.2.3 Semantis of Logi Formulas 53

4.2.4 Proof Rules for Logi Formulas 54

4.3 Compiler Analyses . 54

4.3.1 Standard Contexts and Standard Invariants 56

4.3.2 Analysis Corretness . 58

4.3.3 Standard Veri�ation-Condition Generator 59

4.4 Compiler Transformations . 62

4.4.1 Simulation Contexts and Simulation Invariants 62

4.4.2 Transformation Corretness 64

4

4.4.3 Simulation Veri�ation-Condition Generator 66

5 Soundness Proofs 75

5.1 Soundness of Standard Veri�ation-Condition Generator 77

5.1.1 Standard Indution Hypothesis 79

5.1.2 Standard Base Case . 80

5.1.3 Standard Indution Step . 80

5.2 Soundness of Simulation Veri�ation-Condition Generator 85

5.2.1 Simulation Indution Hypothesis 89

5.2.2 Simulation Base Case . 90

5.2.3 Simulation Indution Step . 92

5.2.4 Termination Simulation . 100

6 Extensions and Limitations 104

6.1 Language Extensions . 105

6.1.1 Pointers . 105

6.1.2 Arrays . 116

6.1.3 Error States . 117

6.1.4 Side E�ets . 118

6.1.5 Computed Jumps . 119

6.2 Invariant Extensions . 120

6.2.1 Loop Constants . 121

6.2.2 Starting States in Formulas 122

6.2.3 Formula Extensions . 124

6.2.4 Flow-Insensitive Analyses . 125

6.3 Limitations . 127

7 Related Work 129

8 Conlusions and Future Work 133

5

List of Figures

1-1 Non-Credible Compilation Example Program 10

2-1 Struture of a Traditional Compiler 15

2-2 Struture of a Credible Compiler . 16

2-3 Veri�er for a Credible Compiler . 18

3-1 Example Program Fragment . 24

3-2 Original Proedure . 25

3-3 Proedure After Constant Propagation 25

4-1 Abstrat Syntax of BL . 40

4-2 BL Expression Evaluation . 44

4-3 BL Operational Semantis Rewrite Rules 45

4-4 Abstrat Syntax of the Logi Formulas 50

4-5 Funtions for Translating Program Expressions to Logi Expressions 52

4-6 Semanti Domains for Logi Formulas 53

4-7 Signatures of the Valuation Funtions 54

4-8 Valuation Funtions for Expressions and Validity of Formulas 55

4-9 Veri�ation-Condition Generator for Standard Invariants 60

4-10 Translation Funtions for Veri�ation-Condition Generators 62

4-11 Simulation Veri�ation-Condition Generator, Part 1 68

4-12 Simulation Veri�ation-Condition Generator, Part 2 69

6-1 Extensions to the Abstrat Syntax of BL 106

6-2 Extensions to the BL Expression Evaluation 107

6-3 Extensions to the BL Operational Semantis Rewrite Rules 108

6-4 Extensions to the Abstrat Syntax of the Logi Formulas 109

6-5 Extensions to the Funtions for Translating Program Expressions to

Logi Expressions . 111

6-6 Valuation Funtions for Expressions and Validity of Formulas 112

6-7 Changes to the Helper Funtions for Veri�ation-Condition Generators 115

6-8 Extensions to the Veri�ation-Condition Generator for BL 122

6

Chapter 1

Introdution

Compilers translate programs from one language to another. Typially, a ompiler

takes an input program written in a high-level programming language and generates

an output program in a target mahine language. A ompiler usually onsists of a

front end, whih translates the soure program to some intermediate representation,

a middle end, whih transforms the program so that it exeutes more eÆiently, and

a bak end, whih translates the program from the intermediate representation to the

mahine language.

In most modern ompilers, the middle end is strutured as a sequene of optimiza-

tion passes. Eah optimization pass transforms the input program to an equivalent

output program that is expeted to exeute faster or require less memory. It is well

known that the optimizations are rarely optimal by any measure. We therefore all

the optimization passes transformations. We distinguish transformations from trans-

lations. We use the term translations to refer to ompiler phases, suh as parsing or

ode generation, that translate the program from one representation to an essentially

di�erent representation.

1

1.1 Traditional Compilation

Traditional ompilers o�er no formal guarantees that they operate orretly. Even the

most reliable ompilers an fail to ompile a program orretly. The main problem

with traditional ompilers is that they fail silently; the ompiled program is produed

in a highly enoded form suitable for mahine exeution and not designed to be read

by programmers. The only reasonable way a programmer an observe an inorret

ompilation is by exeuting the ompiled program and observing an inorret exeu-

tion. Exeutions are usually inorret beause of errors in the soure program, and

the programmer �rst inspets the soure program. When the error is due to the om-

piler, it takes signi�antly more time and e�ort to disover that the error is atually

not in the soure program.

1

In many ompilers, low-level optimizations suh as register alloation take plae in the bak end.

It is possible to perform these optimizations without signi�antly hanging the program representa-

tion. We therefore view even these low-level optimizations as transformations, not translations.

7

Additionally, the exeution of the program depends on its input data, and the

programmer an test the program only for some sample input data. If the exeution

is orret for those input data, it does not guarantee that the ompiled program is

orret for all input data. Furthermore, ompiling the same soure program with

di�erent optimizations produes, in general, di�erent ompiled programs. If one of

those programs is tested and found orret, there is no guarantee that all of them

are orret. Any ompiler optimization may potentially introdue an error in the

ompiled program, and the programmer has to test eah ompiled program.

Compiler failures are terrible for programmers, but in pratie, programmers infre-

quently enounter ompiler errors. Prodution-quality ompilers are among the most

reliable software produts and almost never inorretly ompile a program. However,

produing an extremely reliable ompiler requires a large development time. The re-

sult is that industry ompilers are almost always many years old. They lag behind the

advanes in programming languages, ompiler researh, and omputer arhiteture.

Compiler maintainers rarely and slowly add new transformations to optimizing om-

pilers. The reason is that a transformation an be added to traditional ompilers only

when it is orretly implemented to work for all input programs. A ompiler trans-

formation usually requires a omplex implementation that is extremely diÆult to

formally verify using standard program veri�ation tehniques. Therefore, ompiler

developers only test the implementation for some large lass of input programs and

add the transformation to the ompiler when they believe that it is working orretly.

1.2 Credible Compilation

This thesis presents a fundamentally di�erent approah to building optimizing om-

pilers: implement ompiler transformations whih, given an input program, generate

an output program and some additional information, inluding a mahine-veri�able

proof, that the output program is equivalent to the input program. After eah trans-

formation, an automated veri�er heks whether the supplied proof indeed guarantees

that the transformed output program is equivalent to the given input program. If the

proof fails, the transformed program is potentially not equivalent, and the ompiler

should not use this transformation for this input program. The ompiler may still be

able, though, to ompile this input program to the �nal mahine form by omitting

this transformation, and this transformation may work orretly for other input pro-

grams. Thus, at eah pass the veri�er heks only one partiular transformation for

one partiular input program and either aepts or rejets the output program. We

all this approah redible ompilation.

We next briey mention the results on whih we diretly build our work. Martin

Rinard [41℄ introdued the name redible ompiler and desribed basi tehniques for

building a ompiler that generates equivalene proofs. We advane these previous

tehniques and this thesis presents a more elaborate theoretial framework for red-

ible ompilation. This framework supports redible ompiler transformations, and

not translations. Rinard [41℄ also briey desribes redible ode generation. In prin-

iple, the approah of generating equivalene proofs for eah single ompiler run and

8

heking them automatially an be used for building a whole ompiler, inluding

the translations from one representation to another. The idea of redible transla-

tions appeared �rst in papers by Cimatti et al. [12℄ and Pnueli et al. [40℄. These two

papers onsider simple programs, onsisting of only one loop, and non-optimizing

translations, whereas our work onsiders more omplex programs and ompiler opti-

mizations. We review the related work in detail in Chapter 7.

We next present the motivation for our work. Credible ompilation would provide

many pratial bene�ts ompared to traditional ompilation. Sine a transformation

has to produe a proof that it operated orretly, the ompilation failures are not

silent any more. It is immediately visible when a transformation operates inorretly.

This gives the programmer a muh higher level of on�dene in the ompiler and

saves the programmer time beause she never mistakes a ompiler bug for a bug in

her own program.

Sine redible transformations need to produe a proof, an implementation of

a redible transformation is somewhat more omplex than an implementation of a

traditional transformation. Nevertheless, redible ompilation would make ompiler

development faster, beause it is easier to �nd and eliminate ompiler errors. It

would also allow adding new transformations into the ompilers more aggressively;

ompiler developers ould add a transformation even when the implementation is not

orret for all possible input programs. There is no need to verify and trust the

implementation of a transformation. It is only an implementation of a veri�er for a

redible ompiler that needs to be trusted, and the veri�er is muh simpler to build

than ompiler transformations.

1.3 Non-Credible Compilation Example

In this setion we try to larify two ommon misunderstandings about redible om-

pilation. The �rst misunderstanding is that the added omplexity of redible ompi-

lation is unneessary beause traditional ompilers are extremely reliable. We address

this misunderstanding by presenting an example program that exposes a bug in an

existing industrial-strength ompiler. The seond misunderstanding is that people do

not learly distinguish safety proofs of the output program from equivalene proofs

that involve both the input program and the output program. We address this misun-

derstanding by presenting an example of a safe output program that does not preserve

the semantis of the input program.

Figure 1-1 shows our example C program. The ompiler is the Sun Mirosystems

C ompiler, version WorkShop Compilers 4.2 30 Ot 1996 C 4.2.

2

This ompiler

is over three years old, but it is still the default C ompiler on the main server of the

Computer Arhiteture Group at MIT.

The program ontains three loops of the form:

for (i = 0; i < 10; i++) *p = (*p) + i;

2

We have reported the bug, but it had already been observed earlier and orreted in the next

versions.

9

We wrote the loop body in a verbose mode

3

to point out that we do not use any

potentially unsafe pointer arithmeti operation. All the loop does is add the numbers

1 to 10 to the variable pointed to by the pointer p. In the three loops we vary where

p an point to.

#inlude <stdio.h>

int i, j, x;

void main() {

int *p;

p = &x; /* p->x */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

p = &i; /* p->i */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

j = i;

if (x > 0) p = &i; else p = &x; /* p->x or p->i; atually p->i */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

printf("i=%2d, j=%2d, x=%2d\n", i, j, x);

}

Figure 1-1: Non-Credible Compilation Example Program

If the ompiler detets that p an point to only one variable, say x, within the

loop, it an replae the dereferening *p with the diret referening of that variable:

for (i = 0; i < 10; i++) x = x + i;

This transformation generates an equivalent program even when p an point only to

the loop index variable i.

Even when the ompiler annot detet where p exatly points to, but p does not

hange within the loop

4

, the ompiler may still be able to optimize the program. The

ompiler an hoist dereferening, whih is invariant, out of the loop by using a new

temporary variable t:

t = *p; for (i = 0; i < 10; i++) t = t + i; *p = t;

However, the question is: are the two loops equivalent in all ases? The answer is:

no; if p an point to i, the transformed loop does not produe the same result as the

original loop. This is exatly what the example program exploits. In the �rst loop,

3

In C, it would be usually written just as *p+=i.

4

In C, it is possible to make, using type-unsafe asting, a pointer that points to itself and writing

to *p would hange p itself in that ase.

10

p points to x, in the seond loop p points to i, but in the third loop p is written so

that it may point to either i or x, although it atually always points to i.

We �rst ompiled the program without any optimizations. Running the resulting

exeutable gives the expeted output:

i=15, j=15, x=45

We then ompiled the program with a high optimization level (-xO4). Running the

resulting exeutable now gives a di�erent output:

i=45, j=15, x=45

We looked at the assembly ode generated by the ompiler to �nd the ause for the

di�erent outputs. As expeted, the reason is that the ompiler aggressively applied

dereferene hoisting in the third loop. In the �rst and the seond loop, the ompiler

orretly found that p an point only to x, respetively i, and replaed *p with x,

respetively i. However, in the third loop, the ompiler failed to �nd that p an

point only to i. Even worse, the ompiler inorretly assumed that p annot point

to i, and performed the transformation with a new temporary variable as desribed

above. This example shows that even a prodution-quality ompilers an inorretly

optimize a program.

We next point out the di�erene between a ompiler that generates equivalene

proofs for the input program and the output program and a ompiler that generates

proofs only about the properties of the output program. One suh property is safety, in

partiular type and memory safety, of the output program. Some researh ompilers,

suh as Neula and Lee's Touhstone [38℄ and Morrisett et al.'s Poporn [31℄, generate

an evidene of the safety of the ompiled program. These ompilers are useful in

situations where ode onsumers, who run the ompiled programs, do not trust ode

produers, who produe these ompiled programs. Code produers an use these

ompilers to ompile the original programs and to obtain the evidene together with

the ompiled program. Code onsumers an then reeive the ompiled program and

the evidene from untrusted soures, for example, by downloading the program from

the Internet. Before running the program, the ode onsumer an use the evidene

to verify the safety of the program. But, the fat that the ompiler has generated

the orret evidene of the safety of the ompiled program does not imply that the

ompiler has generated a ompiled program that is equivalent to the original program.

For instane, in the presented example, heking only the type safety would not

detet the ompiler bug.

5

The reason is that the inorret transformation does not

violate type safety. Both the loop with *p and the inorretly transformed loop

with t type-hek|type is preserved, but the values are hanged. Therefore, even a

ompiler that uses strongly typed intermediate representation ould make the same

error. Further, a ompiler that generates evidene of the safety of the transformed

5

The full C language is not type-safe, but observe that the example program does not use any

low-level, unsafe C features, suh as arbitrary pointer arithmeti or type asts. Hene, this example

an be regarded as a program in a type-safe subset of C.

11

program ould generate orret evidene for the inorretly transformed program. In

ontrast, a ompiler that generates equivalene proofs ould not generate a orret

proof for the inorretly transformed program. In onlusion, ompilers that generate

guarantees only about the transformed program are good for sending the transformed

program to ode onsumers. However, suh ompilers are not good enough for ode

produers; ode produers need redible ompilers.

12

Chapter 2

Overview

In this hapter we present in more detail the struture of a redible ompiler. The

main idea of redible ompilation is that the ompiler generates a proof that it or-

retly transformed the input program. We �rst de�ne when a ompiler transformation

is orret. We next desribe the organization of a redible ompiler and what exatly

the ompiler has to prove. Finally, we summarize the results of our work.

2.1 Transformation Corretness

In this setion we de�ne more preisely our requirement for a orret transformation.

So far we have used the intuitive notion of the equivalene between the output program

and the input program. We �rst argue that the requirement that the programs be

equivalent is too strong for transforming non-deterministi programs. We then de�ne

our requirement for a orret transformation to be that the output program simulates

the input program.

Usually, a transformation is de�ned to be orret if it preserves the meaning of

the program, as de�ned by the semantis of the language. Informally, a transfor-

mation is onsidered orret if the transformed program is semantially equivalent

to the original program|for all possible inputs, the two programs, given the same

input, produe the same output. What is onsidered as input and output depends

on the semantis of the programs. We disuss several examples, and additionally the

requirements that ould be imposed on a ompiler:

� If the programs are non-deterministi, then the original program ould itself

generate, for the same input, di�erent results in di�erent exeutions. We ould

then require the transformed program to be able to also generate all those

results, or only some of them.

� The original program may not terminate for some input. We ould require the

transformed program also not to terminate for that input. Conversely, we ould

require the transformed program to terminate whenever the original program

terminates.

13

� The original program may end up in an error state for some input (e.g., beause

of the resoure bound violation when the program exeutes on a real mahine).

We ould require the transformed program to also end up in the error state.

Conversely, we ould require the transformed program to end up in the error

state only if the original program ends up in the error state.

� The output of a program, or more preisely, the observable e�ets of a program

exeution, may inlude more than the �nal state. We ould require the ompiler

to preserve all the observable e�ets, or only some of them.

Clearly, the orretness riterion should speify that the transformed program

an generate only the results that the original program an generate. However, we

do not require the transformed program to be able to generate all the results that

the original program may generate. This allows the transformed program to have less

non-determinism than the original program. The reason is that the ompiler trans-

formations bring the program loser to the �nal exeutable form, and the programs

exeute mostly on deterministi mahines. Therefore, the ompiler need not preserve

the non-determinism that might be present in the original program.

We speify our requirement using the notion of simulation. Informally, program

P

1

simulates program P

2

if P

1

an generate only the results that P

2

generates. More

preisely, for all exeutions of P

1

, there exists an exeution of P

2

whih generates the

same output (for the same input). Additionally, if P

1

may not terminate (i.e., P

1

has

an in�nite exeution) for some input, then P

2

also may not terminate for that input.

We require the ompiler to generate a transformed program that simulates the original

program. We give a formal de�nition of simulation in Setion 4.4. Our framework

an easily support a stronger notion of orretness, namely bi-simulation. Programs

P

1

and P

2

bi-simulate eah other if P

1

simulates P

2

and, onversely, P

2

simulates P

1

.

We ould require the ompiler to prove that the transformed program bi-simulates

the original program by proving both that the transformed program simulates the

original program and that the original program simulates the transformed program.

In general, simulation is not a symmetri relationship between programs. If P

1

simulates P

2

, then P

2

may generate more results than P

1

, and therefore P

2

need not

simulate P

1

. This means that when P

1

simulates P

2

, the two programs need not be

equivalent in the sense that they an generate the same set of results. However, if

programs are deterministi, they an generate only one result. Therefore, when the

transformed program simulates the original program that is deterministi, the two

programs are equivalent.

1

In our basi framework, presented in Chapter 4, we onsider

almost deterministi programs. We all the programs almost deterministi beause

the result of a program exeution may depend on the unknown values of uninitialized

loal variables, although we onsider a language without non-deterministi onstruts.

Therefore, we will sometimes use the term equivalene, instead of simulation, to refer

to the orretness requirement.

1

Observe that P

1

and P

2

are equivalent if P

1

bi-simulates P

2

.

14

2.2 Credible Compiler Struture

In this setion we �rst ompare the general strutures of a traditional ompiler and a

redible ompiler. The main di�erene is that a redible ompiler has a veri�er that

heks the results of the ompiler. The veri�er uses some additional information that

the ompiler generates beside the output program. We briey disuss the additional

information, and we desribe the general struture of the veri�er.

Figure 2-1 shows the simpli�ed struture of a traditional optimizing ompiler.

First, the front end translates the input program from the soure language to the

intermediate representation. Next, the transformations, whih inlude the optimiza-

tions and the bak end passes that are not highly mahine dependent, transform the

program within the intermediate representation. Finally, the ode generator pro-

dues the mahine ode. Clearly, for a ompilation to be orret, all passes need to

be orret and to produe an output program that simulates the input program. In

traditional ompilation there is no heking of the results generated by any of the

passes; they are all blindly trusted to be orret.

Language

Soure Front

End Representation

Intermediate Mahine

Code

Code

Generator

Transformations

Figure 2-1: Struture of a Traditional Compiler

Figure 2-2 shows the simpli�ed struture of a redible ompiler. It di�ers from a

traditional ompiler in that there is heking of the results generated by the transfor-

mation passes. Sine the transformations are not blindly trusted, we represent them

as a \blak box" in the �gure. After eah transformation, the veri�er heks that

the output program simulates the input program. To hek the simulation of the

two programs, the veri�er uses the additional information that the transformation

generates beside the output program. We �rst argue why it is neessary that the

transformations generate some additional information, and then we desribe how the

veri�er uses that information for heking.

At �rst glane, it seems possible that a transformation need only generate the out-

put program, and the veri�er an hek the simulation of the two programs. However,

15

Veri�er

Language

Soure Front

End Representation

Intermediate Mahine

Code

Code

Generator

Additional

Information

Transformations

Yes/No

Output Program

Input Program

Figure 2-2: Struture of a Credible Compiler

diretly building suh a powerful veri�er for arbitrary programs in suÆiently expres-

sive languages is not a good idea. First, from theory we know that it is undeidable

to determine the equivalene/simulation of two arbitrary programs. Hene, a veri�er

for the general ase annot be built. In pratie, it is possible to build a big veri�er

that would hek the results of ommon ompiler transformations. However, building

a big veri�er whih is itself not veri�ed only shifts the possibility of introduing er-

rors from the ompiler implementation to the veri�er implementation. Additionally,

suh a veri�er may need to be modi�ed eah time a new transformation is added

to the ompiler. Therefore, redible ompiler transformations need to generate some

additional information that allows their results to be heked with a relatively simple

veri�er. We explain later what we mean by relatively simple.

We next present the additional information that a redible ompiler transforma-

tion generates. Coneptually, the ompiler generates a set of ontexts and a proof

that those ontexts hold. A ompiler usually applies a transformation in two steps:

� In the analysis step, the ompiler analyzes the input program to determine the

properties relevant for the transformation.

� In the transformation step, the ompiler hanges the input program, taking into

aount the results of the analysis, and generates an output program.

Our approah to redible ompilation supports this two-step organization. For eah

step, a redible ompiler generates a set of ontexts:

� Standard ontexts express properties of only one program. The ompiler uses

the standard ontexts to represent the analysis results.

� Simulation ontexts express the orrespondene between two programs. The

ompiler uses simulation ontexts to represent the simulation relationships be-

tween the input and output programs.

16

Eah ontext ontains a set of invariants. (Contexts also ontain some other addi-

tional information, whih we present later in the text.) More preisely, eah standard

ontext ontains a set of standard invariants and eah simulation ontext ontains

a set of simulation invariants. (We introdue several other onepts that have both

standard and simulation form; we omit standard and simulation when it is lear from

the ontext or when we refer to both.)

The standard and simulation invariants are formulas in a logi. (We present in

Setion 4.2 the details of the logi that we use, whih is an extension of �rst-order

prediate logi.) If all the invariants hold, then all the ontexts hold, and the output

program simulates the input program. The veri�er does not try to prove that the

ontexts hold. Instead, the input to the veri�er onsists of the two programs, the

ontexts, and additionally a proof that those ontexts hold for those programs. The

veri�er only heks that the proof indeed shows that the ontexts hold.

Both the ontexts and the proof are oneptually generated by the ompiler. In

pratie, a redible ompiler onsists of two parts: a part that atually performs the

transformations and generates the output program and the ontexts and a part that

proves that the ontexts hold. We all the latter part the proof generator. We use this

term, instead of the ommon theorem prover, to point out that a redible ompiler

does not use a general purpose theorem prover but a very speialized one.

2.2.1 Credible Compiler Veri�er

We next desribe the organization of a veri�er for a redible ompiler and what

exatly the proof generator has to prove. Figure 2-3 shows the detailed struture of

the redible ompiler transformations. The module that performs the transformations

and the proof generator are shown as \blak boxes" beause they an be implemented

in any arbitrary way. They are not trusted, but the veri�er heks their results.

The veri�er, however, needs to be trusted. The veri�er onsists of two parts: the

veri�ation-ondition generator and the atual proof heker. Before we proeed to

desribe the veri�er parts, we explain what a relatively simple veri�er means. On

the one hand, the proof heker, and thus the veri�er, annot be too simple sine

the expeted proofs are non-trivial. On the other hand, the veri�er should still be

simpler to implement and verify, using standard program veri�ation tehniques, than

the ompiler transformations.

The veri�ation-ondition generator (VCG) for a redible ompiler onsists of two

parts. We all them the standard veri�ation-ondition generator (StdVCG) and the

simulation veri�ation-ondition generator (SimVCG). The StdVCG takes as input

one program at a time (be it ompiler input or output) and standard ontexts for

that program. We postpone the details of how the StdVCG works for the example

in Setion 3.1.1 and we give the full algorithm in Setion 4.3.3. SuÆe to say that

the StdVCG symbolially exeutes the given program. The output of the StdVCG is

the standard veri�ation ondition (StdVC) for the given program and its standard

ontexts. The StdVC is a logi formula whose validity implies that the given ontexts

hold for the given program. Namely, the results of the ompiler analysis are orret

if the StdVC is valid.

17

Sim VCG

Std VCG

VCG

Program

Output

Program

Input

Transformations

Invariants

VC

Yes/No

Proof Cheker

Proof

Veri�er

Compiler

Proof Generator

Figure 2-3: Veri�er for a Credible Compiler

The SimVCG takes as input two programs (both the ompiler input and output

programs) and simulation ontexts for them. Again, we postpone the details of how

the SimVCG works for the example in Setion 3.2.1 and we give the full algorithm in

Setion 4.4.3. SuÆe to say that the SimVCG symbolially exeutes both given pro-

grams. The output of the SimVCG is the simulation veri�ation ondition (SimVC)

for the given two programs and their simulation ontexts. The SimVC is a logi

formula whose validity implies that the given ontexts hold for the given program.

Namely, the result of the ompiler transformation is orret (i.e., the output program

simulates the input program) if the SimVC is valid.

The veri�er for a redible ompiler works as follows. It �rst takes the ompiler

input and output programs and attahed ontexts, and uses the VCG to generate

the standard and simulation veri�ation onditions for those programs. We all the

onjuntion of those veri�ation onditions the veri�ation ondition (VC) for those

two programs. The VCG does not prove that the VC is valid. The VCG only performs

syntati (and stati semanti) heks on the programs and the ontexts; the VCG

rejets the programs if the ompiler output is ill-formed. The veri�er next uses the

proof heker to verify that the proof provided by the proof generator atually proves

the partiular VC. If the proof heker rejets the proof, the ompiler onsiders the

transformed program to be inorret and ontinues transforming the input program.

Otherwise, the transformed program simulates the input program, and the ompiler

ontinues transforming further the transformed program.

18

2.3 Summary

In this setion we �rst briey present the previously published results on redible

ompilation [41, 42℄. The initial work on redible ompilation did not use VCG. We

desribe how using VCG in the veri�er redues the size of the proofs that the ompiler

needs to generate. We next present the sope of this thesis and we �nally list the

ontributions of the thesis.

Rinard [41℄ desribes the basi tehniques for building redible ompilers. The

main idea is that the ompiler generates a set of standard and simulation invari-

ants together with the output program. The ompiler then proves that it orretly

transformed the input program by proving that these invariants hold for the input

and output programs. Rinard devised a set of rules for proving that standard and

simulation invariants hold for two programs.

The rules for standard invariants use a variation of the Floyd-Hoare rules [16,23℄

for proving properties about one program. These rules propagate an invariant bak-

ward (opposite to the ow of ontrol) through the program until another invariant is

reahed, at whih point the ompiler should prove that the reahed invariant implies

the propagated invariant. The rules for simulation invariants work in a oneptu-

ally similar way. However, those rules propagate simulation invariants through both

programs. To the best of our knowledge, the simulation invariants and related rules

were �rst introdued for proving ompiler optimizations orret in [41℄. The simula-

tion invariants are similar to the (bi-)simulation relations in onurreny theory, but

the tehniques and appliations used in that ontext are ompletely di�erent. An

overview of onurreny theory an be found in the artile by Milner [30℄.

The initial work on redible ompilation presented the rules for standard and

simulation invariants as proof rules in a logi. The rules were derived from the

struture of the programs, and therefore involved syntati elements, for instane:

a program ontains a partiular statement. In general, it is possible to enode the

proofs diretly using those rules, without using a VCG in the veri�er. However, using

a VCG dramatially dereases the size of the proofs. The reason is that the VCG

performs syntati heks on the programs and the invariants while generating the

VC. The ompiler an enode the proofs of VC using rules whih do not inlude

(many) syntati elements from programs. The drawbak of using a VCG is that the

veri�er, whose implementation needs to be trusted, gets larger.

We used the original rules for invariants as a guidane for making VCG, in parti-

ular the algorithm for the SimVCG. As desribed, the original rules for the simulation

invariants did not give a preise algorithm for their appliation; they are just proof

rules. This is somewhat analogous to type reonstrution|the typing rules provide

a way to hek the well-typedness of a program given the types of variables, but the

rules do not provide a diret way to ome up with those types when they are not

given. However, an algorithm for type reonstrution infers those types, whereas the

algorithm for the SimVCG does not try to infer any properties. The SimVCG simply

requires the ompiler to provide more additional information.

Our approah to using the VCG is motivated by Neula's PhD thesis [35℄. In fat,

the original inentive ame through personal ommuniation with George Neula at

19

the PLDI '99 onferene. Neula attributes the veri�ation-ondition generation to

Floyd and King; the term \veri�ation ondition" is itself introdued by Floyd [16℄,

and the onept of veri�ation-ondition generation is explained by King [27℄. Those

veri�ation-ondition generators are for only one program, or, in terms of redible

ompilation, they are standard veri�ation-ondition generators, whereas our VCG

also inludes a SimVCG. Reently, Neula [36℄ presented his work on veri�ation of

ompiler transformations whih uses a strategy similar to SimVCG. We ompare that

work to ours in Chapter 7, after we desribe the details of our approah.

2.3.1 Sope

This thesis desribes a theoretial framework for redible ompilation. We next list

questions that arise in the ontext of redible ompilation and we explain how we

address those questions in this thesis. We also briey present our initial experiene

with a small prototype of a redible ompiler.

� What is the language that is ompiled?

We present a framework for ompiling imperative programming languages. The

intermediate representation that we use an be onsidered as a subset of the

C programming language [26℄. The introdutory paper on redible ompila-

tion [41℄ desribed a framework for a rather simple language: the programs

onsisted of only one proedure and operated only on simple integer variables.

Rinard and Marinov [42℄ then extended the language with C-like pointers.

In the basi framework, presented in Chapter 4, we extend the initial language

for redible ompilers with proedures

2

. Adding proedures to the language is

important beause it makes the language more realisti. In our basi language

we onsider the simple semantis of programs that exeute on an idealized ab-

strat mahine without error states. The state of an exeution is observed only

at the end of the exeution, if the program terminates at all. In Chapter 6 we

disuss how to extend the basi framework to handle other ommon onstruts

of imperative programming languages. We point out that the framework whih

we present an formally handle only a subset of a C-like language. The main

obstale for a formal treatment of the full C language is the semantis of \un-

de�ned" C onstruts, suh as out-of-bound array aesses. We also disuss in

Chapter 6 some limitations of our urrent framework.

� What transformations are supported by the framework?

We say that a framework supports a transformation if that framework allows the

ompiler to prove that the results of that transformation are orret. Clearly,

a framework whih supports more transformations is preferable to a framework

2

We use the term proedure to refer to subprograms beause, for simpliity, we onsider only

the subprogram alls whih are statements, and not expressions. The proedures do not return a

result diretly, but they an modify the memory state. We use the term funtion to refer to the

meta-language objets.

20

whih supports fewer transformations. Due to fundamental undeidability on-

straints, we annot hope to develop a general framework whih would allow

the ompiler to automatially prove that all possible transformations are or-

ret. However, we want to develop a framework that allows the ompiler to

prove at least that the results of \standard transformations" are orret. The

term \standard transformations" loosely refers to the ommon transformations

performed by industry quality optimizing ompilers.

The framework that we present supports numerous \standard" intraproedural

transformations, ranging from onstant propagation to indution variable elim-

ination to loop unrolling. Although it is presumptuous to say that a framework

supports all transformations, we are not aware of any \standard" transforma-

tion that is not supported. The framework also supports some interproedural

analyses and whole program transformations.

In general, the ompiler an transform any number of proedures to generate the

transformed program. Our framework is designed so that the ompiler proves

the simulation relationships between pairs of proedures. To prove that the

transformed program simulates the original program, the ompiler then has to

prove that the starting proedure

3

of the transformed program simulates the

starting proedure of the original program.

The use of multiple standard ontexts allows the ompiler to prove orret even

the results of some ontext-sensitive interproedural analyses. (We desribe the

onept of standard ontexts through the example in Setion 3.1, and we formal-

ize standard ontexts in Setion 4.3.) The use of simulation ontexts allows the

ompiler to prove orret the results of some interproedural transformations,

suh as proedure speialization. (We introdue the onept of simulation on-

texts through the example in Setion 3.2, and we formalize simulation ontexts

in Setion 4.4.) Simulation ontexts also support reordering aesses to global

variables aross the proedure alls.

The framework, however, does not support proedure inlining and related trans-

formations that hange the struture of the all graph. The \ulprit" is the

simulation veri�ation-ondition generator. It operates on two proedures at a

time and requires that whenever the transformed proedure reahes a all site,

the original proedure also reahes a all site. (We present details on this later in

the text.) Sine proedure inlining is an important optimization, we an extend

the framework to support it by adding a speialized part to the veri�er that

separately heks only inlining. In priniple, support for any transformation

an be added as a speialized hek for that transformation. However, doing so

for every transformation would make the veri�er prohibitively large, as large as

the ompiler itself.

� Can the ompiler transformations generate the invariants (and other required

3

The starting proedure for a program is the proedure where the exeution of the program starts;

in C, the starting proedure is alled main.

21

additional information, exept for the proof)?

The ompiler an generate the standard invariants simply by generating the

formulas that represent the ompiler analysis results. It is only that the language

used for formulas should be expressive enough so that the ompiler an indeed

represent its results. The ompiler is also able to automatially generate the

simulation invariants, beause intuitively the ompiler \knows" how it performs

the transformation and whih entities in the output program orrespond to

whih entities in the input program.

The approah in whih the ompiler generates some additional information is

also explained by Morrisett et al. [32℄, who redit Neula and Lee [34,37℄. They

used the approah to build their ompilers, Touhstone [38℄ and Poporn [31℄.

However, both of these ompilers prove only the properties of the output pro-

gram, more preisely the type safety of the output program. In terms of redible

ompilation, the additional information that those ompilers generate is only a

set of standard invariants. In ontrast, redible ompilers also generate a set of

simulation invariants. The simulation invariants are ruial for the onept of

redible ompilation beause they allow the ompiler to prove that the output

program simulates the input program.

� Can the proof generator automatially generate a proof?

The proof generator that aompanies a redible ompiler generates proofs for

the standard and simulation veri�ation onditions. The main requirement for

the proof generator is that it needs to be fully automati. For eah ompiler

transformation and analysis, there needs to be a deision proedure that an

prove the SimVC and StdVC, respetively, generated for every possible input

program. Note that the ompiler developer an determine the general struture

of the veri�ation onditions for eah transformation and analysis. Namely,

eah VC is a formula that depends on the invariants (and on the VCG). From

the plaement of the invariants and the general struture of their formulas, it

is possible to �nd the general struture of the VC.

We believe that it is possible to develop a deision proedure that an prove all

veri�ation onditions of the partiular general struture. The reason is that

the ompiler developer knows why a transformation is orret, and potentially

has a meta-proof that shows the transformation to be orret for all input

programs. Developing a deision proedure is then a matter of translating the

meta-proof into an algorithm that generates a proof for eah possible instane

of veri�ation onditions. The omplexity of the deision proedures depends

on the partiular transformations. The whole proof generator, whih ombines

the deision proedures, needs only to be as powerful as the transformations

whose results it needs to prove.

For example, onsider a proof generator that needs to prove the results of on-

stant propagation, onstant folding, and algebrai simpli�ations. The proof

generator for onstant propagation requires only a relatively simple deision

22

proedure that uses a few logi rules, suh as the ongruene rule for equality,

and does not need to \know" anything about the numbers. The proof gener-

ator for onstant folding needs a more sophistiated deision proedure that

uses arithmeti rules. Further, the proof generator for algebrai simpli�ations

needs an even more sophistiated deision proedure that uses algebrai rules.

However, this does not imply that every new transformation requires a new

deision proedure. Many ompiler transformations may have the same general

struture of the veri�ation onditions and an thus share the same deision

proedure. For instane, the explained proof generator ould prove the results

of opy propagation and even ommon subexpression elimination. We do not

onsider the proof generator further in this thesis.

An implementation of a redible ompiler an answer the last two of the listed

questions: is it possible for a redible omplier to generate the required additional

information and to automatially prove the veri�ation onditions. Additional prag-

mati issues in the ontext of redible ompilation are the diÆulty of generating

the proofs, the size of the generated proofs, and the diÆulty of heking the proofs.

To explore these issues, we have started developing a prototype of a redible om-

piler. We have implemented a small system for the language without proedures, but

with pointers. We have used the Java programming language [8℄ for implementing a

ow-sensitive pointer analysis and onstant propagation analysis/transformation.

For proof representation and veri�ation we use Athena [5,6℄, a denotational proof

language [7℄ developed by Kostas Arkoudas at MIT. Athena is a exible logial frame-

work that allows a ompat, proedural representation of proofs. This makes it possi-

ble to balane the division of labor between the proof generator and the proof heker,

while retaining the full soundness guarantee. It also simpli�es the onstrution of the

ompiler by simplifying the proof generator and allowing the ompiler developer to

easily generate proofs. Based on our initial positive experiene with Athena, we be-

lieve that a key enabling feature to obtaining reasonable proof sizes and ompiler

omplexity is the use of suh a exible logial framework. We do not present the

prototype implementation in this thesis.

2.3.2 Contributions

The main ontribution of the previously published work on redible ompilation [41,

42℄ is introdution of a theoretial framework in whih a ompiler, using simulation

invariants, an prove that it orretly transformed an input program. The ontribu-

tions of this thesis to the existing work on redible ompilation are the following:

� We extend the language for redible ompilers with proedures.

� We use standard ontexts and we introdue simulation ontexts that allow the

ompiler to prove that the results of interproedural analyses and transforma-

tions are orret.

� We present an algorithm for the veri�ation-ondition generator, in partiular

for the simulation veri�ation-ondition generator.

23

Chapter 3

Example

In this hapter we give an example of a redible ompiler transformation. We ex-

plain what the ompiler generates and how a veri�ation ondition-generator (VCG)

generates a veri�ation ondition (VC). The ompiler proves that it orretly per-

formed the transformation by supplying a proof that the VC is valid. For larity of

presentation, we use a simple program fragment given in Figure 3-1. The fragment

presents a proedure p in a program with a global variable g. Proedure p has two

loal variables i and . We show a simple transformation on this example proedure,

namely onstant propagation. The example is written in C, but at the present time

we an handle only a small subset of a C-like language within the redible ompilation

framework. On the other hand, our framework supports many other transformations

that hange the proedure struture in more omplex ways. More examples an be

found in [42℄.

int g;

void p() {

int i, ;

i = 0;

 = 3;

do {

g = 2 * i;

q();

i = i + ;

} while (i < 24);

}

Figure 3-1: Example Program Fragment

We use an intermediate representation based on ontrol ow graphs. Figure 3-2

shows the graph for the example proedure. The graph ontains several nodes, eah

with a unique label. Most of the nodes have syntax and semantis as in C. For

example, the node with label 3 assigns the value of the expression 2*i to variable

g. Node 4 is a proedure all node. Control ows from this node to the beginning

of the alled proedure q. When (and if) the alled proedure returns, the exeution

24

ontinues from the next node. Node 6 is a onditional branh node. If the value of

variable i is less than 24, the ontrol ows to node 3; otherwise, the ontrol ows to

the proedure return node 7.

1: i = 0

2: = 3

3: g = 2*i

4: q()

5: i = i+

6: br (i<24) 3

7: ret

1: i = 0

2: = 3

3: g = 2*i

4: q()

5: i = i+3

6: br (i<24) 3

7: ret

Figure 3-2: Original Proedure

Figure 3-3: Proedure After Constant

Propagation

Figure 3-3 shows the graph after onstant propagation. To perform suh an opti-

mization, the ompiler �rst analyzes the ode to disover ertain properties. In our

example, the ompiler disovers that the variable always has value 3 before the node

with label 5 exeutes. The ompiler next performs the transformation of the ode.

In our example, the ompiler propagates the de�nition of variable at node 2 to the

use of the same variable at node 5. In addition to generating the transformed ode,

a redible ompiler also generates standard and simulation invariants. The standard

invariants are used to prove that the analysis results are orret, and those results,

together with the simulation invariants, are used to prove that the transformation

is orret. We next desribe the invariants that the ompiler may generate in this

example, and how VCG uses the invariants to generate VC.

25

3.1 Compiler Analysis

After performing an analysis, the ompiler presents its results in the form of stan-

dard invariants. The invariants are assertions about the program state at di�erent

program points. In the language that we onsider, an invariant is a relationship be-

tween variables at di�erent nodes in the ontrol ow graph. The ompiler laims

the relationship to be true whenever ontrol reahes the orresponding node. The

veri�er uses the standard veri�ation-ondition generator (StdVCG) to generate the

standard veri�ation ondition (StdVC) for the assertions. If the ompiler an prove

the StdVC, then the laimed assertions always hold; they are indeed invariants, and

thus the results are orret.

Eah standard invariant onsists of a formula

1

and the label of a node in the

ontrol ow graph. The main invariant in our running example is that the value of

the variable is always 3 at the node with label 5. We use the formula = 3 to

represent the prediate on , and we denote the whole invariant as 5:inv = 3.

The ompiler usually generates several invariants to represent the analysis results

at di�erent nodes. The ompiler may also need to generate additional invariants to

be able to prove the results. The reason is that the StdVCG requires at least one

invariant for eah loop in the proedure. Otherwise, the StdVCG annot generate the

StdVC and marks the ompiler output as inorret. In this example, the invariant

5:inv = 3 is suÆient for the StdVCG to generate the StdVC. For expository

purposes, we onsider two invariants: 3:inv = 3 and 5:inv = 3.

We next desribe how the ompiler presents the summary results for a proedure

in the form of standard ontexts. The StdVCG uses standard ontexts at all sites.

A (standard) ontext for a proedure is a pair onsisting of a standard input ontext

and a standard output ontext :

2

� a (standard) input ontext is a formula that an ontain only the global program

variables and the proedure parameters; it represents a relationship between the

values of these variables that the ompiler assumes to hold at the beginning of

the proedure;

� a (standard) output ontext is a formula that an ontain only the global pro-

gram variables; it represents a relationship between the values of these variables

that the ompiler laims to hold at the end of the proedure.

1

Formulas are prediates from the logi that we present in detail in Setion 4.2. We use a

slightly di�erent syntax for the logi formulas than for the program expressions; in partiular, we

use typewriter font for the program syntax entities, suh as variables or labels.

2

In program veri�ation, a standard ontext is traditionally alled a proedure spei�ation and it

onsists of a proedure preondition and a proedure postondition. A preondition for a proedure

is formally a prediate on the program state at the beginning of the proedure. We all suh a

prediate a standard input ontext beause a redible ompiler proves the orretness of program

analysis results, and the prediate represents the (program) ontext whih the ompiler assumes at

the beginning of the proedure. A postondition for a proedure is, in general, a relationship between

the program states at the beginning and at the end of the proedure. We all suh a relationship

a standard output ontext, and we use, in our basi framework, a simpli�ed version in whih the

relationship is only unary on the state at the end of the proedure.

26

The ompiler proves that the results (invariants and the output ontext) for a given

ontext are valid assuming that the input ontext holds. The ompiler may generate

many ontexts for the same proedure. This allows the ompiler to prove that the

results of ontext-sensitive interproedural analyses are orret.

In our example, the analysis of the proedure p does not assume any initial values

for variables; the results hold for all input ontexts, and the analysis does not generate

any result for the output ontext. Hene, both input and output ontexts are simply

true; we will use true

p

in

and true

p

out

to point out whih formula we refer to. In this

example, for the all to proedure q we also take both input and output ontexts to

be true, in notation true

q

in

and true

q

out

. The reason is that the analysis of p does

not require any result from q, exept that q does not modify the loal variable of

p. The semantis of our language guarantees that the allee annot aess the loal

variables of the aller. Proedure q may still modify the global variable g.

In our example, all of the formulas for the ontexts are simply true. In general,

the proedure input and output ontext an be arbitrary formulas that inlude the

global variables and the parameters of the proedure. For instane, the ompiler

might express that when g is even before the all to proedure q, then g is 0 after

the all. The input ontext would be g%2 = 0 and the output ontext g = 0. The

ompiler would need to prove that this ontext indeed holds for proedure q.

3.1.1 Standard Veri�ation-Condition Generator

We next illustrate how the StdVCG uses the standard invariants and ontexts to

generate the StdVC for our example. The StdVCG symbolially exeutes the whole

proedure in the same diretion in whih the ontrol ows through the proedure

graph. The symboli exeution uses a symboli state that maps eah program variable

to an expression representing the (symboli) value of that variable. The StdVCG

propagates the symboli state from a proedure node to all its immediate suessors.

The StdVCG splits the exeution at branh nodes into two independent paths. The

e�et of eah node is modeled by appropriately hanging the symboli state and/or

generating a part of StdVC.

When the symboli exeution reahes an invariant for the �rst time, the StdVCG

generates the part of StdVC that requires the invariant to hold in the urrent state.

The StdVCG then generates the invariant as a hypothesis for proving the rest of the

proedure. The exeution �nishes when it reahes an invariant for the seond time,

or when it gets to a return node. At return nodes, the StdVCG adds the standard

output ontext to the StdVC. The StdVC is a formula in the logi whih we present

in Setion 4.2. In our logi formulas we distinguish the program variables from the

variables introdued in the formulas by quanti�ation. We all the latter variables

logi variables. (Not related to the logi variables used in logi programming.)

In our running example, the symboli exeution proeeds in the following steps:

� The exeution starts from node 1 and a fresh symboli state. All program

variables are mapped to fresh logi variables that symbolially represent the

(unknown) values of the program variables at the beginning of the proedure. In

27

this ase, for the program variables i, , and g, we use the logi variables i

1

,

1

,

and g

1

, respetively. We use supersripts to distinguish di�erent logi variables

that represent the values of the same program variable at di�erent program

points. (The numbers in the supersripts are not related to proedure labels.)

These symboli values represent all possible onrete values of the variables,

and therefore the StdVCG generates a StdVC that universally quanti�es over

these logi variables. The analysis results should hold for all the initial values

that satisfy the standard input ontext. In this example, it is just true

p

in

, so

the StdVC starts as: 8i

1

: 8

1

: 8g

1

: true

p

in

) : : :, and the rest of the symboli

exeution generates the rest of the StdVC. We abbreviate several onseutive

universal quanti�ations to: 8i

1

;

1

; g

1

: true

p

in

) : : :.

� The exeution of an assignment node does not generate any part of the StdVC;

the StdVCG only modi�es the symboli state: node 1 assigns the expression 1

to i, and node 2 assigns the expression 3 to .

� The exeution next reahes the invariant 3:inv = 3 for the �rst time. The

StdVCG substitutes the program variables ourring in the formula of the in-

variant (only in this ase) with the symboli values of those variables in the

urrent state (3 in this ase) and generates the substituted formula as part of

the StdVC. Intuitively, this part requires that the invariant holds in the base

ase of the indution. The StdVCG then generates a fresh symboli state and

substitutes the program variables in the invariant with fresh logi variables.

The substituted invariant beomes the assumption used in the StdVC for prov-

ing the rest of the proedure. This part an be regarded as an indutive step;

the StdVCG uses a fresh state beause the invariant has to hold for all sues-

sive exeutions that reah this node. Therefore, the StdVC is extended with:

: : : 3 = 3 ^ 8i

2

;

2

; g

2

:

2

= 3) : : :.

� The exeution ontinues at node 3 whih modi�es the symboli state by map-

ping g to 2 � i

2

. The exeution next reahes node 4 whih is a all node. At

all sites, the StdVCG performs an operation similar to the operation for the

invariants. The StdVCG uses the urrent symboli state to substitute the appro-

priate expressions for the global variables and the proedure parameters of the

allee in the input ontext of the allee. In our example, this simply generates

true

q

in

. Next, the StdVCG generates a new symboli state, but replaing only

the symboli values of the global program variables with fresh logi variables (g

beomes g

3

); loal proedure variables do not hange (i and remain i

2

and

2

,

respetively). The StdVCG then substitutes the program variables ourring in

the output ontext of the allee with fresh logi variables from the new symboli

state. In our example, it again generates just true

q

out

, and thus the exeution

of this node extends the StdVC with: : : : true

q

in

^ 8g

3

: true

q

out

) : : :.

� The exeution reahes the other invariant 5:inv = 3, and the StdVCG does

the same as for the �rst invariant. The di�erene is that the symboli value

28

of is

2

(and not 3) at this point. Thus,

2

appears in the StdVC: : : :

2

=

3 ^ 8i

3

;

3

; g

4

:

3

= 3) : : :.

� The next node is the assignment node 5, and the symboli state before this

node maps i to i

3

, and to

3

. After the node exeutes, i gets mapped to the

expression i

3

+

3

.

� The onditional branh node 6 splits the exeution in two branhes:

{ For the true branh, the StdVCG adds the branh ondition (after appro-

priate substitutions) as the assumption to the StdVC and the exeution

ontinues at node 3. At this point, the invariant 3:inv = 3 is reahed

again. The substitution of the invariant is performed as before, and it is

added to the StdVC. However, the exeution of this branh �nishes here

beause the invariant is reahed for the seond time.

{ For the false branh, the StdVCG adds the negation of the branh ondition

(after appropriate substitutions) as the assumption to the StdVC and the

exeution ontinues at node 7. This is the return node, so the StdVCG

performs the appropriate substitution on the standard output ontext and

adds it to the StdVC. The exeution �nishes at the return node.

Finally, the whole StdVC for this example of a standard ontext is:

8i

1

;

1

; g

1

: true

p

in

)

3 = 3 ^ 8i

2

;

2

; g

2

:

2

= 3)

true

q

in

^ 8g

3

: true

q

out

)

2

= 3 ^ 8i

3

;

3

; g

4

:

3

= 3)

(i

3

+

3

< 24)

3

= 3) ^

(:(i

3

+

3

< 24)) true

p

out

):

The ompiler has to prove that this StdVC holds to show that the analysis results are

orret. The ompiler generates a proof using the proof rules for the logi presented

in Setion 4.2.

3.2 Compiler Transformation

In this setion we desribe the simulation invariants that the ompiler generates to

prove that the transformed proedure p simulates the original proedure with the

same name p. To avoid repeating transformed and original, we use subsript 1 for

the entities from the transformed proedure (program), and subsript 2 for the en-

tities from the original proedure (program). Therefore, we desribe the simulation

invariants for proving that p

1

simulates p

2

. The ompiler generates the simulation

invariants together with the transformed program and the standard invariants.

3

3

Note, however, that the reasons for generating the standard invariants di�er slightly from the

reasons for generating the simulation invariants. Namely, the standard invariants both represent the

29

The simulation invariants represent a orrespondene between the states of the

two programs at partiular program points. Eah simulation invariant onsists of a

formula that represents a relationship between the variables from the two programs

and two labels of nodes in proedures p

1

and p

2

. For example, the ompiler might

express that variable g

1

at node 3

1

has the same value as variable g

2

at node 3

2

.

We denote suh relationship as 3

1

,3

2

:sim-inv g

1

= g

2

. Simpli�ed, this simulation

invariant holds if for all exeutions of p

1

that reah 3

1

, there exists an exeution of p

2

that reahes 3

2

suh that g

1

= g

2

holds. We de�ne preisely when a set of simulation

invariants hold for some proedures later in the text.

In our example, we use the simulation invariant that additionally laims that i

1

has the same value as i

2

: 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

. The ompiler usually

needs to generate a set of simulation invariants. This is analogous to the standard

invariants, where the StdVCG exeutes one proedure to generate the StdVC; for

the simulation invariants, the SimVCG exeutes both proedures to generate the

SimVC. There should be enough simulation invariants for the SimVCG to perform

the exeutions. Otherwise, the SimVCG marks the ompiler output as inorret. In

our running example, the simulation invariant 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

is

suÆient

4

for generating a SimVC and we will use only that one invariant.

We next desribe how the ompiler presents the summary results for the simulation

of two proedures in the form of simulation ontexts. As eah standard ontext is

a pair of a standard input ontext and a standard output ontext, eah simulation

ontext is a pair of a simulation input ontext and a simulation output ontext :

� a simulation input ontext represents a relationship that the ompiler assumes

to hold between the states of the two programs at the beginning of the two

proedures;

� a simulation output ontext represents a relationship that the ompiler laims

to hold between the states of the two programs at the end of the two proedures.

As for the standard ontexts and standard invariants, the ompiler proves that the

simulation invariants hold for a partiular simulation ontext.

The ompiler is free to hoose arbitrary simulation ontexts for any pair of proe-

dures within two programs as long as it an prove that those ontexts hold. The only

requirement is that the ompiler has to prove that the transformed program simu-

lates the original program by proving that the starting proedure of the transformed

program simulates the starting proedure of the original program for the simulation

ontext whih onsists of:

� the simulation input ontext that states that the global variables of the two

programs and the parameters of the respetive starting proedures have the

same values, and

(analysis) results and are used by the StdVCG to generate the StdVC to prove those results. On

the other hand, the simulation invariants are not a result by themselves, but a means for generating

the SimVC to prove simulation relationships.

4

Atually, it is possible to generate a provable SimVC using only 3

1

,3

2

:sim-inv i

1

= i

2

.

30

� the simulation output ontext that states that the global variables of the two

programs have the same values.

Intuitively, this way the ompiler proves that the two programs generate the same

output, given that they have the same input.

In our example, suppose that p is the starting proedure of the two programs and

g is the only global variable in the two programs. Then, the ompiler has to prove the

simulation ontext for proedures p

1

and p

2

with input formula g

1

= g

2

and output

formula g

1

= g

2

. Additionally, proedure p alls proedure q, or, in general, p

1

alls

q

1

, and p

2

alls q

2

. The ompiler needs to use some simulation ontext to represent

the e�et of those alls on the global variables g

1

and g

2

.

We assume that for the pair q

1

and q

2

, the ompiler also uses the simulation

ontext with both input and output ontexts being g

1

= g

2

.

5

The ompiler ould

ome up with this ontext in several ways. For example, proedures q

1

and q

2

an

be idential proedures, i.e., proedure q from the program where the ompiler has

optimized p, if the ompiler has not transformed q. Alternatively, q

2

an be generated

by the ompiler by transforming q

1

. In this ase the ompiler would need to prove

that the simulation ontext it laims for q

1

and q

2

indeed holds. Finally, alls to q

1

and q

2

might be alls to the same library proedure.

3.2.1 Simulation Veri�ation-Condition Generator

We next illustrate how the SimVCG uses the simulation invariants and ontexts to

generate the SimVC in our example. The SimVCG onurrently exeutes both pro-

edures p

1

and p

2

. The exeutions are symboli and similar to the symboli exeution

that the StdVCG performs. For eah proedure, the SimVCG uses a symboli state

that maps variables from that proedure to symboli expressions representing the val-

ues of the variables. The SimVCG propagates the symboli states through the nodes

of the respetive proedures and appropriately hanges the symboli states and/or

generates a part of SimVC. The SimVCG exeutes the nodes from p

1

and p

2

inde-

pendently, exept for pairs of nodes that are related, suh as all nodes, return nodes,

or simulation invariants. The SimVCG needs to simultaneously exeute the related

nodes. Also, the SimVCG needs to interleave the exeutions of other nodes from p

1

and p

2

.

We allow the ompiler to speify an arbitrary interleaving of the exeutions of p

1

and p

2

. An interleaving is desribed with a sequene of ations that the ompiler

generates in addition to a set of simulation invariants. The SimVCG starts the

exeutions of p

1

and p

2

from the beginning nodes and then onseutively uses the

ations from the sequene to determine whih node(s) to exeute next. For example,

the ation exeute

1

instruts the SimVCG to exeute a node from p

1

. We next

explain the ation exeute

2

B, where B is a boolean value; this ation is used for

onditional branh nodes of p

2

. We disuss other ations in detail later in the text.

5

The simulation ontexts that the ompiler generates need not be only the equality of the two

program states. For instane, even in this example, the ompiler an generate the simulation input

ontext just true and prove that the simulation output ontext g

1

= g

2

holds.

31

While exeuting the proedures, the SimVCG enounters the branh nodes. There

are two possible paths from a branh node. For proedure p

1

, there is an impliit

universal quanti�ation over the ontrol paths|eah simulation invariant must hold

for all paths in p

1

that lead to that simulation invariant. The SimVCG therefore splits

the exeution at branh nodes of p

1

into two independent exeutions. For proedure

p

2

, there is an impliit existential quanti�ation over the ontrol paths|for eah

simulation invariant in p

1

, there exists a path in p

2

that leads to a orresponding

simulation invariant. The SimVCG therefore follows only one path after a branh

node of p

2

. (the SimVCG ould follow both paths, but that would make the SimVC

unneessarily long.) The SimVCG does not try to determine by itself whih path

to follow. Instead, the ompiler needs to generate the ation exeute

2

B, whih

instruts the SimVCG to exeute the branh node and to follow the branh B (taken

or not-taken).

In this example, we assume that the ation sequene is suh that the SimVCG

interleaves the exeutions of p

1

and p

2

using the following strategy:

� �rst, exeute proedure p

1

until it gets to one of the simulation invariants,

proedure all nodes, or return nodes;

� then, exeute proedure p

2

until it gets to one of the simulation invariants,

proedure all nodes, or return nodes;

� �nally, exeute simultaneously the related nodes from p

1

and p

2

and ontinue

the exeution again from p

1

unless the exeutions �nish.

The SimVCG �nishes the exeutions when a simulation invariant is reahed for

the seond time, or when both proedures get to return nodes. At return nodes,

the SimVCG also adds the simulation output ontext to the SimVC. When both

exeutions reah a simulation invariant for the �rst time, the SimVCG generates the

part of SimVC that requires the invariant to hold in the urrent states. The SimVCG

then generates the invariant as a hypothesis and ontinues exeuting the rest of the

proedures. When both exeutions reah a all site, the SimVCG uses the simulation

ontext of the allees to generate a part of SimVC and then ontinues the exeutions.

Note that the ations determine only when, and not how, the SimVCG exeutes

partiular nodes.

In our running example, the symboli exeutions proeed in the following steps:

� The exeutions start from nodes 1

1

and 1

2

with fresh symboli states for both

proedures. All program variables are mapped to fresh logi variables that sym-

bolially represent the values of the program variables at the beginning of the

proedure. In this ase we use the logi variables i

1

1

,

1

1

, and g

1

1

for the pro-

gram variables i

1

,

1

, and g

1

, and i

1

2

,

1

2

, and g

1

2

for the program variables i

2

,

2

, and g

2

. These symboli values represent all possible onrete values of the

variables. The SimVCG generates a SimVC that universally quanti�es over the

logi variables representing all program variables from program 1. However, for

the variables from program 2, the SimVCG universally quanti�es only the logi

32

variables representing values of global variables in program 2 and proedure pa-

rameters of p

2

, but the SimVCG only existentially quanti�es the logi variables

representing loal variables of p

2

whih are not parameters of p

2

. We explain

later why the SimVCG existentially quanti�es the values of loal variables of

p

2

.

The SimVCG starts generating the SimVC for a simulation ontext by substi-

tuting the logi variables for the appropriate program variables in the simulation

input ontext of that ontext. In this example, the simulation input ontext

is g

1

= g

2

and the substitution gives g

1

1

= g

1

2

. Thus, the SimVC starts as:

8g

1

1

; i

1

1

;

1

1

; g

1

2

: 9i

1

2

;

1

2

: g

1

1

= g

1

2

) : : :, and the rest of the symboli exeutions

generate the rest of the SimVC.

� The SimVCG �rst exeutes nodes 1

1

and 2

1

from proedure p

1

, modifying its

symboli state. Node 1

1

assigns the expression 1 to i

1

, and node 2

1

assigns the

expression 3 to

1

. The exeution of this path reahes a simulation invariant.

The SimVCG next exeutes p

2

, and nodes 1

2

and 2

2

modify the symboli state

of p

2

.

� The exeutions reah the simulation invariant 3

1

,3

2

:sim-inv g

1

= g

2

^i

1

= i

2

for the �rst time. The SimVCG substitutes the program variables ourring in

the formula of the invariant (g

1

, g

2

, i

1

, and i

2

in this ase) with the symboli

values of those variables in their respetive states (g

1

1

, g

1

2

, 0, and 0 in this ase)

and generates the substituted formula as the part of SimVC. Similar to the part

of StdVC, this part intuitively requires that the invariant holds in the base ase

of indution. The SimVCG then generates a fresh symboli state and substitutes

the program variables in the invariant with fresh logi variables. The substituted

invariant beomes the assumption used in the SimVC for proving the rest of

the simulation. This part an be regarded as an indutive step; the SimVCG

uses a fresh state beause the invariant has to hold for all suessive exeutions

that reah this node. This means that the SimVCG now universally quanti�es

over all logi variables in both proedures. Thus, the SimVC is extended with:

: : : g

1

1

= g

1

2

^ 0 = 0 ^ 8g

2

1

; i

2

1

;

2

1

; g

2

2

; i

2

2

;

2

2

: g

2

1

= g

2

2

^ i

2

1

= i

2

2

) : : :.

� The ompiler an use the analysis results to prove the transformation orret.

In this example, the ompiler spei�es with the ation use-analysis

2

that it

uses the standard invariant 3:inv = 3 from p

2

.

6

The SimVCG adds the

invariant (after the appropriate substitution) as an assumption to the SimVC

and extends it with:

2

2

= 3) : : :.

� The exeution of p

1

ontinues at node 3

1

whih modi�es the symboli state of

p

1

, and then the exeution reahes node 4

1

whih is a all node. The exeution

of p

2

ontinues at node 3

2

. Both exeutions are now at all sites, and the

SimVCG performs a similar operation as the StdVCG. The SimVCG uses the

6

The original proedure is p

2

beause we are showing that p

1

, the transformed proedure, simu-

lates p

2

.

33

urrent symboli states to substitute the appropriate expressions for the global

variables and the proedure parameters of the allees in the simulation input

ontext of the allees. In our example, this generates 2 � i

2

1

= 2 � i

2

2

. Next, the

SimVCG generates for eah proedure a new symboli state, but replaing only

the symboli values of the global program variables with fresh logi variables;

loal proedure variables do not hange. Then, the SimVCG substitutes the

program variables ourring in the simulation output ontext of the allees

with the fresh logi variables from the new symboli states. In our example,

g

3

1

= g

3

2

. The exeution of all nodes extends the SimVC with: : : : 2 � i

2

1

=

2 � i

2

2

^ 8g

3

1

; g

3

2

: g

3

1

= g

3

2

) : : :.

� The next node is the assignment node 5

1

, and the exeution modi�es the sym-

boli state by mapping i

1

to i

2

1

+ 3. The global exeution reahes branh node

6

1

and splits into two paths:

{ For the true branh, the SimVCG adds the branh ondition (after appro-

priate substitutions) as the assumption to the SimVC and the ontrol ows

to node 3

1

. At this point, an invariant is reahed. The SimVCG next exe-

utes node 5

2

and reahes branh node 6

2

. At this point, the SimVCG uses

additional information provided by the ompiler to deide whih branh to

take. In this ase, the SimVCG also follows the true branh and adds the

branh ondition (after appropriate substitutions) as the part of SimVC.

The di�erene is that this part is not used as an assumption, but as a

onsequene. The reason is that for eah path in p

1

, there should be one

appropriate path in p

2

, but the ompiler has to prove that this appropriate

path is indeed taken. At this point, both programs reah, for the seond

time, the invariant 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

. The substitution of

the invariant is performed as before, and it is added to the SimVC. The

exeutions �nish here beause the invariant is reahed for the seond time.

{ For the false branh, the SimVCG adds the negation of the branh on-

dition (after appropriate substitutions) as the assumption to the SimVC

and the exeution of p

1

ontinues at node 7

1

. This is a return node, so the

SimVCG ontinues exeuting p

2

. After the SimVCG exeutes node 5

2

, it

again reahes branh node 6

2

. In this ase, the SimVCG takes the false

branh of that node, and adds the negation of the branh ondition (after

appropriate substitutions) to the SimVC. At this point, both proedures

are at return nodes. The SimVCG performs the appropriate substitution

on the simulation output ontext and adds it to the SimVC. The exeution

of this path �nishes at return nodes.

34

Finally, the whole SimVC for this example of a simulation ontext is:

8g

1

1

; i

1

1

;

1

1

; g

1

2

: 9i

1

2

;

1

2

: g

1

1

= g

1

2

)

g

1

1

= g

1

2

^ 0 = 0 ^ 8g

2

1

; i

2

1

;

2

1

; g

2

2

; i

2

2

;

2

2

: g

2

1

= g

2

2

^ i

2

1

= i

2

2

)

2

2

= 3)

2 � i

2

1

= 2 � i

2

2

^ 8g

3

1

; g

3

2

: g

3

1

= g

3

2

)

(i

2

1

+ 3 < 24) i

2

2

+

2

2

< 24 ^ g

3

1

= g

3

2

^ i

2

1

= i

2

2

) ^

(:(i

2

1

+ 3 < 24)) :(i

2

2

+

2

2

< 24) ^ g

3

1

= g

3

2

):

In this example, we have not desribed all the details of the atual SimVCG

(presented in Setion 4.4). The atual SimVCG expets the ompiler to provide some

more additional information and, for this example of a simulation ontext, the atual

SimVCG generates a di�erent, but equivalent, SimVC. We next illustrate some more

details and show the atual SimVC.

Additional Information for Simulation Veri�ation-Condition Generator

We next disuss some additional information that the SimVCG requires the ompiler

to generate and we show how the SimVCG uses that information to generate the

SimVC. We present two extensions to the SimVCG presented so far, and we also

desribe the ations for the SimVCG in more detail.

The �rst extension to the presented SimVCG regards generating related symboli

states for the two proedures. In the example, we have used the simulation invariant

3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

that asserts that the values of g

1

and i

1

are the

same as the values of g

2

and i

2

, respetively. In general, simulation invariants mostly

assert that the variables from one program have the same values as the orresponding

variables from the other program. Instead of using two di�erent fresh logi variables,

say x

1

and x

2

, for those two program variables, the atual SimVCG uses the same logi

variable for both program variables in their respetive symboli states. That way the

SimVCG does not need to generate x

1

= x

2

) : : : in the SimVC. Additionally, when

substituting the program variables in the invariants with the logi expressions, the

SimVCG heks (syntati) equality of the logi expressions, and does not generate

them if they are equal. These hanges result in a muh shorter SimVC. (We present

all the details of related symboli states in Setion 4.4.)

The seond extension to the presented SimVCG regards the existentially quanti�ed

logi variables representing loal variables of p

1

. We �rst explain why the SimVCG

does not universally quantify those variables. Reall �rst that the StdVCG starts the

symboli exeution with a fresh symboli state, whih maps all program variables to

fresh logi variables, and that the StdVCG universally quanti�es all those logi vari-

ables in the resulting StdVC. The SimVCG similarly starts the symboli exeutions

with fresh symboli states for both proedures. The state for p

1

maps variables from

program 1 to fresh logi variables, and the state for p

2

maps variables from program 2

to fresh logi variables. However, the SimVCG does not universally quantify all these

variables in the SimVC. The reason is that, in general, the resulting SimVC would

not hold and thus would not be provable, although p

1

simulates p

2

. The problem is

that uninitialized loal variables lead to the non-determinism in the following sense:

35

di�erent exeutions of a program may generate di�erent results for the same input,

where we regard as program input only the values of the global variables (and the

proedure parameters) at the start of the exeution.

7

Consider, for instane, two idential proedures without parameters that only set

global variable g to the value of (uninitialized) loal variable l and return. We would

like to have a framework in whih we an prove that one of those proedures simulates

the other. (Although the equivalene of two programs is undeidable in general, we

want at least to be able to prove that two idential proedures are equivalent, no

matter what they do!) If we used a SimVCG that universally quanti�es over all

logi variables, we would obtain as SimVC (for the ontext stating that g

1

is the

same as g

2

at the end of the proedures) 8l

1

1

; l

1

2

: l

1

1

= l

1

2

, whih learly does not hold.

Therefore, we require that the SimVC be universally quanti�ed over all logi variables

representing possible inputs to the proedures (i.e., global variables and parameters).

But, for loal variables, we require only that for all possible initial values of the loal

variables of p

1

, there exist some initial values of the loal variables of p

2

suh that

the SimVC holds. In the ase of the fg = l;retg proedures, it gives 8l

1

1

: 9l

1

2

: l

1

1

= l

1

2

,

whih learly holds.

The atual SimVCG requires the ompiler to provide the initial expressions for

the loal variables of p

2

. These expressions are usually just equalities of the loal

variables of p

2

with the orresponding loal variables in p

1

. (We present all the details

in Setion 4.4.) In the initial symboli state for p

2

, the SimVCG then maps the loal

variables of p

2

to the expressions provided by the ompiler. Therefore, the SimVCG

does not introdue fresh logi variables for the initial values of the loal variables of

p

2

, and the generated SimVC has no existential quanti�ation. This makes it easier

for the proof generator to prove the SimVC.

The atual SimVCG, whih uses related symboli states and logi expressions for

the initial values of loal variables of p

2

, generates, for the previous example of a

simulation ontext, the following SimVC:

8

8g

1

1

; i

1

1

;

1

1

: true)

true ^ 8g

2

; i

2

;

2

1

;

1

2

: true)

1

2

= 3)

true ^ 8g

3

: true)

(i

2

+ 3 < 24) i

2

+

1

2

< 24 ^ true) ^

(:(i

2

+ 3 < 24)) :(i

2

+

1

2

< 24) ^ true):

We next desribe the ations for the SimVCG in more detail. We �rst explain why

the ompiler generates ations. As mentioned, the ompiler uses a sequene of ations

to guide the SimVCG in performing the symboli exeutions of proedures. This is

di�erent from the StdVCG, whih has a �xed struture in its symboli exeution.

7

Sine the programs have no non-deterministi onstruts, the result of an exeution is determined

by the state of the (whole) memory in whih the program starts the exeutions. But, onsidering

as program input also the values of the uninitialized loal variables would disallow many ompiler

transformations, e.g., the ompiler ould not add temporary variables.

8

In pratie, the SimVCG does not even generate \true" in \true) F", \true ^ F", or

\F ^ true".

36

Namely, the StdVCG starts the exeution from the beginning of the proedure, and

the exeution proeeds sequentially until one of the following is reahed: a branh

node, a standard invariant, a all node, or a return node. At branh nodes, the

exeution splits into two paths and eah of them follows the same algorithm. When

a standard invariant is reahed, depending on whether it is the �rst time it is reahed

or not, the exeution either proeeds from the next node or �nishes. When a all

node is reahed, a standard ontext is used for generating a part of StdVC, and the

exeution always ontinues from the next node. Finally, the exeution always �nishes

at a return node.

The SimVCG di�ers from the StdVCG in that the SimVCG exeutes two proe-

dures, and has to interleave the symboli exeutions of the nodes from those proe-

dures. It is possible to use a �xed struture for this interleaving; in partiular, the

SimVCG ould follow the general strategy that we desribed in the example: �rst

exeute p

1

until a \swith" node, then exeute p

2

until the orresponding node, and

then exeute two nodes simultaneously. However, there are pairs of proedures for

whih following this �xed struture would generate unneessarily long SimVCs. We

therefore allow the ompiler to desribe an arbitrary interleaving. Note that it is not

neessary that the ompiler itself generate all the steps desribing the interleaving.

The ompiler an generate only the set of simulation invariants and potentially some

guidelines for the interleaving, and a di�erent module, following those guidelines, an

generate the full sequene of the interleaving steps.

We next present the ations that the SimVCG performs while generating the

SimVC in our example of a simulation ontext. We represent the ations in the

following way: ex

1

and ex

2

instrut the SimVCG to exeute nodes from p

1

and p

2

,

respetively; ex-b instruts the SimVCG to exeute nodes from both proedures;

and an

2

instruts the SimVCG to inlude the results of the analysis of p

2

. The full

sequene of ations is:

ex

1

; ex

1

; ex

2

; ex

2

; ex-b; an

2

; ex

1

; ex

2

; ex-b; ex

1

; ex

1

; ex

2

; ex

2

T; ex-b; ex

2

; ex

2

F; ex-b:

Reall that the SimVCG splits the exeution of p

1

at branh nodes. In this example,

the last ex

1

ation in the sequene instruts the SimVCG to exeute a branh node.

The next three ations in the sequene|ex

2

; ex

2

T; ex-b|orrespond to one path of

the exeution, and the last three ations|ex

2

; ex

2

F; ex-b|orrespond to another

path. We an therefore represent the sequene of ations as an ation tree:

ex

2

; ex

2

F; ex-b

ex

1

; ex

1

; ex

2

; ex

2

; ex-b; an

2

; ex

1

; ex

2

; ex-b; ex

1

; ex

1

ex

2

; ex

2

T; ex-b

�

�

The ation tree desribes the interleaving of the symboli exeutions of p

1

and p

2

.

Note that we an make an ation tree from a sequene of ations by knowing the ow

graphs of the proedures and the plaement of simulation invariants. We use ations

trees in the presentation of the atual SimVCG in Setion 4.4.

37

Chapter 4

Basi Framework

In this hapter we desribe a formal framework for redible ompilation. We �rst

de�ne a language for whih we build the basi framework. For larity of presentation,

we use a simple language that we all the basi language (BL). In Chapter 6 we

desribe some extensions to BL and how to handle them in the framework. We also

present some limitations of the urrent redible ompilation framework.

We �rst de�ne the syntax and semantis of BL in Setion 4.1. We next de�ne

syntax and semantis of the logi formulas for redible ompilation in Setion 4.2.

The logi that we use is a �rst-order prediate logi with simple integer variables

and an extension for referring to program variables within the formulas. The logi

formulas are used for two purposes: for representing the (standard and simulation)

invariants and for representing the veri�ation onditions.

In Setion 4.3 we desribe the standard ontexts in detail and formally de�ne when

the standard ontexts hold for some program. We also present how the standard

veri�ation-ondition generator uses the standard ontexts to generate the standard

veri�ation ondition. In Setion 4.4 we desribe the simulation ontexts in detail and

formally de�ne when one BL program simulates another. We also present how the

simulation veri�ation-ondition generator uses the simulation ontexts to generate

the simulation veri�ation ondition.

The notation that we use for the meta-language mostly follows the notation from

the unpublished textbook used in the MIT Programming Languages ourse [46℄. In-

stead of using the juxtaposition fs to denote the appliation of a funtion f to an

element s, we use the more traditional notation f(s). We will also use ommon in-

�x notation for standard binary funtions. We explain other abbreviations as we

introdue them.

4.1 Basi Language

In this setion we �rst de�ne the syntax of BL and then its formal operational se-

mantis. We make a number of simpli�ations in designing BL; we present some

alternatives later in the text.

BL is a toy imperative language that desribes a ompiler intermediate represen-

38

tation based on ontrol ow graphs. BL an be regarded as a small subset of the

C programming language [26℄. However, BL is not a high-level language for writing

soure programs. We disuss redible ompiler translations, in partiular translation

from a soure language to an intermediate representation, in Setion 6.3. BL is not

a low-level language, either. More spei�ally, variables have symboli names, and

programs do not operate only with registers and memory as in an assembly language.

(In Setion 6.1.1 we show how to model registers with variables with speial names

and memory aesses with pointer aesses.)

4.1.1 BL Syntax

Figure 4-1 shows the abstrat syntax of BL. The main syntati elements are pro-

grams, proedures, nodes, and expressions. Eah program Q onsists of a sequene of

delarations of global variables and a sequene of proedures. Eah proedure P on-

sists of a sequene of formal parameters, a sequene of delarations, and a sequene

of nodes. In the abstrat grammar we use x

�

to denote a possibly empty sequene

and x

+

to denote a sequene with at least one element. In the onrete grammar we

use \;" or \," for sequening. Thus, a more onrete way to desribe a proedure is:

P � pro I(I

1

, : : : ,I

n

) D

1

; : : : ;D

m

fN

1

; : : : ;N

k

g:
We use \�" to denote syntati

equality.

Eah node N has a unique label L for identi�ation. There are four groups of

nodes, and their informal semantis is the following:

� An assignment node I=E evaluates the expression E, assigns its value to I, and

the exeution ontinues at the next node.

� A branh node br(E)L

0

evaluates the expression E and if it is true, the exeu-

tion ontinues at the node with label L

0

; otherwise, the exeution ontinues at

the next node.

� A return node ret �nishes the exeution of the urrent proedure and the

exeution ontinues in the proedure that alled this proedure; if there is no

suh proedure, then the program terminates.

� A all node I(E

1

, : : : ,E

n

) evaluates the expressions E

1

to E

n

, passes their

values as atual parameters to proedure I, and the exeution ontinues at the

�rst node of proedure I.

Expressions are onstruted from variables, integer and boolean onstants, and

operators. We use expressions without side e�ets to simplify the presentation. Thus,

proedure alls are not expressions, but statements; proedures do not return a result,

but they an hange the global variables. We onsider expressions with side e�ets

in Setion 6.1.4. Delarations of BL program variables have no types. We assume

that programs operate on integers. We adopt the C onvention for boolean values: a

non-zero integer represents true, and zero is false. We present some extensions to the

language in Setion 6.1.

39

Syntati Domains :

Q 2 Program

P 2 Proedure

D 2 Delaration

N 2 Node

L 2 Label

E 2 Expression

I 2 Identi�er

U 2 Unary-operator = f!; -g

O 2 Binary-operator = f+; -; *; /; %g [f==; !=; >; <; >=; <=g [f&&; ||g

B 2 Boolean-literal = fTRUE; FALSEg

Z 2 Integer-literal = f: : : ; -2; -1; 0; 1; 2; : : :g

Prodution Rules :

E � Z [Integer Literal℄

j B [Boolean Literal℄

j I [Variable Referene℄

j E

1

O E

2

[Binary Operator℄

j U E

1

[Unary Operator℄

L � I [Textual Label℄

j Z [Numerial Label℄

N � L:I=E [Assignment Node℄

j L:br(E)L

0

[Branh Node℄

j L:ret [Return Node℄

j L:I(E

�

) [Call Node℄

D � I [Impliit Size℄

P � pro I(I

�

) D

�

fN

+

g [Proedure℄

Q � prog D

�

P

+

[Program℄

Figure 4-1: Abstrat Syntax of BL

40

We introdue some additional notation and desribe semanti heks for BL pro-

grams. We write P 2 Q to denote that proedure P is in program Q and N 2 P

to denote that node N is in proedure P . We write P (L) for the node with label L

in proedure P . We require that target labels of all branhes in P be labels of some

nodes in P . For a node with label L in proedure P , the label of the next node is

denoted L +

P

1. This is the label of the node following L in the stati sequene of

nodes, not neessarily in the exeution. There is exatly one next node for eah node

exept the last node. We require that the last node be a return node. We write the

label of the starting node of proedure P as start-label(P) or P

0

.

Eah proedure P � pro I(I

�

) D

�

fN

+

g has three sets of variables in the sope;

we denote these sets as: loals(P) for the loal variables of P (variables in D

�

),

params(P) for the parameters of P (variables I

�

), and globals(P) (or globals(Q)) for

the global variables of the program Q that ontains P . We require that params(P)\

loals(P) = fg. We use vars(P) = params(P)[loals(P)[globals(P) for the set of all

variables in the sope of P . Therefore, loals(P)[params(P) is a set of all non-global

variables of P and vars(P) � loals(P) is a set of all non-loal variables of P . We

require that all variables used in a proedure/program be delared. Also, we require

that proedures in all all nodes be proedure (not variable) identi�ers and that the

number of atual parameters be the same as the number of formal parameters.

4.1.2 BL Semantis

In this setion we present the formal semantis of BL. We use a strutured operational

semantis whih is formally a �ve-tuple hC;!;F ; I;Oi. C is a set of on�gurations

that represent the state of a mahine exeuting a BL program. ! is a relation

desribing transitions between on�gurations. F is a set of �nal on�gurations in

whih a program an �nish its exeution. I is an input funtion that maps a program

and its input data to an initial on�guration. O is an output funtion that maps a

�nal on�guration to a program's output.

Before we de�ne C, we introdue some additional domains:

V 2 Value = Integer-literal

Address = Integer-literal

m 2Memory = Address! Value

p 2 Allo-Pointer = Address

One-Environment = Identi�er* Address

a 2 Environment = One-Environment�One-Environment

h 2 History = (Label� Proedure � Environment)

�

:

The Value domain represents the values to whih BL expressions an evaluate; BL

programs operate on integers. The values of program variables are stored in a mem-

ory. Memory loations have addresses from the domain Address. The Allo-Pointer

domain represents the values of the (stak) pointer used for memory alloation. The

domain Memory ontains funtions that map addresses to values stored at those ad-

dresses. The domain One-Environment ontains funtions that map variable names

41

to the memory addresses where values of those variables are stored. We use a pair of

environments to represent separately the environments for global and loal variables.

We will use supersripts g and l to refer to the global and loal parts; for example,

a

g

denotes the �rst omponent of pair a, and a

l

denotes the seond omponent.

Elements of the History domain basially represent (ontrol) staks. They are

sequenes of triples. Eah triple onsists of the information neessary to resume the

exeution after a proedure all returns: the label of the next node to be exeuted

after the return, the proedure in whih that node is, and the environment for that

proedure. Data staks, namely the values of the loal variables and proedure pa-

rameters, are stored in memory.

We next de�ne on�gurations of BL operational semantis. They are six-tuples

onsisting of the label of the node to exeute, the urrent state of the memory, the

environment for the urrent sope, the value of the stak pointer, the history of

proedure alls, and the urrent proedure:

C = Label�Memory� Environment� Allo-Pointer� History� Proedure:

To be even more preise, we should inlude in the on�gurations the program that is

exeuting. However, the program does not hange during the exeution, and we omit

it. Also, during the exeution of a �xed proedure ativation, the stak pointer, the

history, and the proedure do not hange

1

exept at all sites, and we abbreviate the

on�gurations to triples hL;m; ai.

We next explain the stak alloation in BL. The basi funtion that alloates spae

for a loal variable I is:

allo

l

(hm; a; pi; I) = hm; ha

g

; a

l

[I 7! p℄i; p+ 1i:

This funtion only extends the loal environment and inrements the stak pointer;

the memory remains the same. To initialize the value of the loal variable we addi-

tionally hange the memory loation:

allo-init

l

(hm; a; pi; I; Z) = hm[p 7! Z℄; ha

g

; a

l

[I 7! p℄i; p+ 1i:

We also de�ne an analogous funtion for initializing a global variable:

allo-init

g

(hm; a; pi; I; Z) = hm[p 7! Z℄; ha

g

[I 7! p℄; a

l

i; p+ 1i:

We will use these funtions for sequenes of variables (and their initial values when

appropriate). In partiular, funtion allo-loals is a map of allo

l

over a sequene I

�

:

allo-loals(hm; a; pi; [℄) = hm; a; pi

allo-loals(hm; a; pi; I:I

�

) = allo-loals(allo

l

(hm; a; pi; I); I

�

):

Similarly, allo-params(hm; a; pi; I

�

; Z

�

) and allo-params(hm; a; pi; I

�

; Z

�

) are maps

1

Environment a also does not hange, but it is used for evaluating expressions.

42

of allo-init

l

and allo-init

g

, respetively.

The stak dealloation in BL does not hange the stak pointer; the funtions that

dealloate spae simply return their input p:

deallo-loals(p;D

�

) = p

deallo-params(p; I

�

) = p:

We explain later why we do not derease the value of p.

We next present how a program starts and �nishes its exeution. We also present

what is input and output data for a program. To start a program exeution, we need

to give two sequenes of values: one for the global variables of the program and one

for the atual parameters of the starting proedure. The input funtion I maps a

program and two sequenes to an initial on�guration:

I(Q;Z

�

g

; Z

�

p

) =

mathing Q� prog D

�

P

+

[℄

let hm

s

; p

s

i be random-memory() in

let a

s

be empty-environment() in

let hm

g

; a

g

; p

g

i be allo-globals(hm

s

; a

s

; p

s

i; D

�

; Z

�

g

) in

let P be head(P

+

) in

mathing P � pro I(I

�

) D

�

fN

+

g [℄

let hm

p

; a

p

; p

p

i be allo-params(hm

g

; a

g

; p

g

i; I

�

; Z

�

p

) in

let hm; a; pi be allo-loals(hm

g

; a

g

; p

g

i; D

�

) in

hP

0

; m; a; p; [℄; P i

endmathing

endmathing:

The initial state of the memory, before the exeution starts, is ompletely arbitrary,

and the environment is empty. The funtion allo-globals �rst reates an environment

for the global variables and initializes the memory loations for those variables. Next,

the starting proedure P of the program is obtained. Spae for the parameters of P

is alloated in memory, and those loations are initialized to the input values. Spae

is also alloated for the loal variables of P , but those loations are not initialized.

Exeution starts with the �rst node in P and an empty history.

The program �nishes its exeution when the starting proedure gets to the return

node. At that point, the history is empty. The output of the program is only the

sequene of values of its global variables, not the state of the whole memory:

F = fhL;m; a; p; [℄; P ijP (L) � L:retg

O(hL;m; a; p; [℄; P i; Q) =mathing Q� prog D

�

P

+

[℄

extrat-output(m; ha

g

; empty-environment()i; D

�

)

endmathing;

where

extrat-output(m; a; [℄) = [℄

extrat-output(m; a; I:I

�

) = m(a(I)):extrat-output(m; a; I

�

):

43

The value of variable I in memory m and environment a is denoted m(a(I)). We

use a(I) to denote the address of the variable I in the environment a: if I is in the

domain of a

l

, then a(I) = a

l

(I); otherwise, a(I) = a

g

(I).

We use notation m(a(E)) to denote the value of expression E in memory m and

environment a. Figure 4-2 de�nes the value of BL expressions. The de�nition uses

the helper funtion al-value. This funtion takes a syntati representation of the

operator and operands, and returns an integer literal whih is the result of applying

that operator to those operands. The operations give the same results as in C, exept

for division and modulo operations. We de�ne that they evaluate to 0 if their seond

operand is 0. This way expression evaluation annot end up in an error state. We

disuss the absene of error states after presenting ompletely the semantis of BL

programs.

m(a(Z)) = Z

m(a(TRUE)) = 1

m(a(FALSE)) = 0

m(a(E

1

O E

2

)) = al-value(O;m(a(E

1

)); m(a(E

2

)))

m(a(U E)) = al-value(U;m(a(E)))

Figure 4-2: BL Expression Evaluation

Figure 4-3 de�nes the rewrite rules for BL. We present a high-level operational

semantis [4℄, without speifying the details of expression evaluation

2

on a mahine

that is exeuting the programs. Instead, in eah step the mahine evaluates all the

expressions ourring in the urrent node and makes a transition to the next node.

The rule for I=E evaluates the expression, updates the memory, and the exeu-

tion ontinues at the next node. The rules for br(E)L

0

evaluate the ondition, and

depending on its truth value, the exeution ontinues at the next node or the node

with label L

0

. The exeution of I(E

�

) �rst evaluates the values of parameters. Next,

it alloates spae in memory for the parameters and initializes them with the values.

Finally, it alloates spae for loal variables of I and the exeution ontinues from

the �rst node of I. The rule for ret dealloates the spae for loal variables and

parameters, and the exeution ontinues in the aller, at the node after the all.

We now disuss the stak dealloation. We use dealloate funtions that do not

hange the stak pointer p; they simply return p

0

that has the same value as p. This

may look surprising, sine the expeted behavior would be that the dealloate fun-

tions derease p (opposite of the alloate funtions). We do not hange p beause we

model loal variables that have arbitrary initial values for every all. If we dereased

p, the initial values of loal variables would be the �nal values of loal variables in pre-

vious alls. We want to eliminate suh dependenies in the language for two reasons:

they do not formalize properly the intuitive notion of uninitialized loal variables and

they make ompiler transformations more diÆult.

2

This is easy to do beause expressions have no side e�ets.

44

hL;m; a; p; h; P i ! hL+

P

1; m[V 7! V

0

℄; a; p; h; P i
[assign℄

where P (L) � L:I=E

and V � a(I) and V

0

� m(a(E))

hL;m; a; p; h; P i ! hL

0

; m; a; p; h; P i
[branh-true℄

where P (L) � L:br(E)L

0

and m(a(E)) 6� 0

hL;m; a; p; h; P i ! hL+

P

1; m; a; p; h; P i
[branh-false℄

where P (L) � L:br(E)L

0

and m(a(E)) � 0

hL;m; a; p; h; P i ! hstart-label(P

0

); m

0

; a

0

; p

0

; hL+

P

1; P; ai:h; P

0

i

[all℄

where P (L) � L:I(E

�

)

and P

0

� pro I(I

�

) D

�

fN

+

g

and V

�

� m(a(E

�

))

and hm

0

; a

0

; p

0

i = allo-loals(allo-params(hm; a; pi; I

�

; V

�

); D

�

)

hL;m; a; p; hL

0

; P

0

; a

0

i:h; P i ! hL

0

; m; a

0

; p

0

; h; P

0

i
[return℄

where P (L) � L:ret

and P � pro I(I

�

) D

�

fN

+

g

and p

0

= deallo-params(deallo-loals(p;D

�

); I

�

)

Figure 4-3: BL Operational Semantis Rewrite Rules

45

We allow programs that read uninitialized loal variables.

3

However, suh a pro-

gram an generate di�erent results in di�erent exeutions, depending on the state

of the memory at the beginning of the exeution. As we pointed out, the exeution

starts with a ompletely arbitrary memory. That is why we all BL programs almost

deterministi|the output is determined uniquely by the input and the initial state

of the memory, but that state is arbitrary. For example, onsider a simple program

that has only one global variable and only one parameterless proedure. Further, let

the proedure set the global variable to an unknown value of a loal variable. This

program an generate any output, no matter what the value of the global variable at

the beginning is.

We next argue that not dereasing the stak pointer p in the dealloate funtions

does not a�et \well-behaved" programs. We all a program \well-behaved" if it

does not read uninitialized variables, and its output is therefore determined solely

by its input. Consider the exeution of BL programs on a realisti mahine that

would derease p on a return from a allee. The exeution of a BL program on suh

mahine would generate one of the results that the exeutions of the same program

an generate on a mahine that does not derease p. If a program an generate only

one result (for a given input) on a mahine that does not derease p, then the program

generates the same result on the mahine that dereases p. Therefore, not dereasing

p does not a�et the result of the \well-behaved" programs as they an generate only

one result.

For the original programs that are not \well-behaved" and read uninitialized vari-

ables, we ould de�ne the result to be \unde�ned." We ould then allow the ompiler

to generate any transformed program; however, we do not do that. We require, in-

stead, the ompiler to generate a transformed program that an generate only the

results that the original program an generate. We present details later in the text.

Finally, we point out that BL semantis has no error states. There are no stuk

on�gurations: eah on�guration is either �nal and the exeution �nishes, or the

exeution an make a transition from the on�guration to its suessor. BL programs

thus either generate a regular output or do not terminate. This is a simpli�ation

that we make in the basi framework. We onsider extending the semantis with error

states in Setion 6.1.3.

Partial Exeutions

We next de�ne partial exeutions of BL programs and proedures using the rewrite

rules for BL. We also de�ne quanti�ation of partial exeutions, whih we use to

speify the ompiler requirements.

De�nition 1 A partial exeution of a program Q is a sequene of on�gurations

hP

0

; m; a; p; [℄; P i ! : : :! hL;m

0

; a

0

; p

0

; h; P

0

i suh that:

� the �rst on�guration is the initial on�guration for an exeution of Q: the ur-

rent proedure P is the starting proedure of Q, the urrent label P

0

is the label

3

It is undeidable in general to hek if a BL program reads an uninitialized loal variable.

46

of the starting node of P , the history is empty, and m, a, and p are, respetively,

the memory, the environment, and the stak pointer at the beginning of P ; and

� eah suessor on�guration is obtained from the preeding on�guration by a

rewrite rule.

The on�gurations in a partial exeution of a program an have di�erent urrent

proedures. The urrent proedure hanges between two onseutive on�gurations

when a all node or a return node is exeuted. More preisely, a proedure an all

itself, and it is the ativation of the proedure that hanges. Eah on�guration in a

partial exeution of a program belongs to some proedure ativation. All on�gura-

tions that belong to a �xed proedure ativation form a sequene of on�gurations,

whih is a subsequene (not neessarily onseutive) of the sequene of on�gura-

tions for the partial exeution of the program. We usually refer to a sequene of

on�gurations that belong to a �xed proedure ativation as a partial exeution of a

proedure.

De�nition 2 A partial exeution of (an ativation) of a proedure P is a sequene

of on�gurations hP

0

; m

0

; a; p

0

; h; P i

+

! : : :

+

! hL;m; a; p; h; P i suh that:

� the �rst on�guration onsists of the label of the starting node of P , the starting

memory m

0

at the entry of the proedure, the environment a for the partiular

proedure ativation, and the stak pointer p

0

and the history h at the entry of

the proedure; and

� eah suessor on�guration is obtained from the preeding on�guration:

{ if the preeding on�guration is not a all node, the suessor is obtained

by one rewrite rule, and

{ if the preeding on�guration is a all node, the suessor is obtained by

several rewrite rules, none of whih is a return from a on�guration with

history h; and

� all on�gurations have the same environment a, history h, and proedure P .

We usually refer only to the �rst and the last on�guration in a sequene representing a

partial exeution. Therefore, we denote a partial exeution as hP

0

; m

0

; a; p

0

; h; P i

+

9 9 K

hL;m; a; p; h; P i. We next desribe another abbreviation that we use.

Proedure P an all other proedures during an exeution. The environment,

a history, and urrent proedure temporarily hange at a all site, but are restored

after the alled proedure returns. (Therefore, h and P are the same for all on�g-

urations in a partial exeution of an ativation, but h and P an be the same even

for di�erent ativations.) On the other hand, the memory is not restored, and for

BL programs, the stak pointer is also not restored: p is inreased at all sites, but

not dereased on returns. The expression evaluation, however, does not depend on

the stak pointer. Therefore, during the exeution of a �xed proedure ativation, we

47

abbreviate the on�gurations hL;m; a; p; h; P i to triples hL;m; ai, and we represent

a partial exeution of an ativation of a proedure P as hP

0

; m

0

; ai

+

9 9 KhL;m; ai.

We next explain quanti�ation of partial exeutions. We use the terms \for all

partial exeutions" and \there exists a partial exeution" to speify the orret-

ness requirements for ompiler analyses (Setion 4.3.2) and ompiler transforma-

tions (Setion 4.4.2). We �rst introdue quanti�ation of starting on�gurations

hP

0

; m

0

; a; p

0

; h; P i for an ativation of a proedure P � pro I(I

�

) D

�

fN

+

g.

Any p

0

is possible at the beginning of any P . Let p

0

= p

0

� jloals(P)j and p

00

=

p

0

� jparams(P)j, i.e., p

0

is the value of the stak pointer before the alloation of the

loal variables of P and p

00

is the value of the stak pointer before the alloation of

the parameters of P . We say that environment a and history h are possible for p

0

and P if:

� loal environment a

l

maps I

�

to addresses from p

00

to p

0

� 1 and a

l

maps D

�

to

addresses from p

0

to p

0

� 1, and

� global environment a

g

is the same for all environments in h = hL

0

; P

0

; a

0

i

�

and

a

g

maps the global variables of the program that P is in to addresses less than

some p

g

, and

� if h = hL

0

; P

0

; a

0

i:h

0

, then there exists some p

00

� p

00

suh that a

0

and h

0

are

possible for p

00

and P

0

; otherwise if h = [℄, then p

g

� p

00

.

Basially, an environment and a history are possible for a proedure if they represent

a possible stak state.

We de�ne the quanti�ation of starting on�gurations based on memory m

0

:

� \for all starting on�gurations of P" means: for all p

0

, and for all a and h

possible for that p

0

, and for all m

0

; and

� \there exists a starting on�guration of P" means: for all p

0

, and for all a and

h possible for that p

0

, and for all values of m

0

loations with addresses less than

p

0

(the loations \below" the loal variables of P), there exist some values of

other m

0

loations (the loations for the loal variables of P and \above" the

loal variables).

Finally, we de�ne the quanti�ation of partial exeutions:

� \for all partial exeutions hP

0

; m

0

; ai

+

9 9 KhL;m; ai" means:

{ for all starting on�gurations of P , and

{ for all sequenes of on�gurations from hP

0

; m

0

; ai to hL;m; ai suh that

eah on�guration is the suessor of the preeding on�guration;

� \there exists a partial exeution hP

0

; m

0

; ai

+

9 9 KhL;m; ai" means:

{ there exists a starting on�guration of P , and

{ there exists a sequene of on�gurations from hP

0

; m

0

; ai to hL;m; ai suh

that eah on�guration is the suessor of the preeding on�guration.

48

4.2 Basi Logi

This setion presents the logi for redible ompilation for the basi language (BL)

introdued in the previous setion. We use �rst-order prediate logi with simple

integer variables [4℄. In logi formulas, there needs to be a way to refer to the variables

from both the original program and the ompiler transformed program. To this end,

we add speial onstrutors to logi expressions. We desribe in detail the relationship

between the program and logi expressions. We �nally de�ne semantis of the logi

formulas, and disuss briey proof rules for those formulas.

4.2.1 Syntax of Logi Formulas

Figure 4-4 shows the syntax of the logi formulas.

4

We use the meta-variable F for

the elements of the syntati domain of the logi formulas. The formulas onsists

of boolean expressions G

b

and logial operators onneting them. The formulas an

also be universally or existentially quanti�ed; in the basi logi, only integer logi

variables an be quanti�ed.

Boolean expressions are onstruted from boolean onstants, operators that take

either boolean or integer expressions and produe boolean expressions, and the integer

to boolean onversion funtion. i2b(G

i

) ould be also written as G

i

6= 0. Integer

expressions are onstruted from integer onstants, integer variables, operators that

produe integer results, and the boolean to integer onversion funtion. b2i(G

b

)

represents the funtion that takes a boolean value, and if it is true, returns 1, otherwise

0.

There are two groups of variables in the logi formulas: logi variables, for whih

we use the meta-variable x, and program variables, for whih we use the meta-variable

I. We use the integer expression onstrutors H(I) to denote values of program

variables. We introdued these speial onstrutors for two reasons.

First, H(I) onstrutors provide a way to refer, within a logi formula, to the

program variables not visible in the lexial sope of the part of the program enlosing

the formula. For example, onsider a program Q that has a global variable named

v and a proedure P that itself has a loal variable named v. Referring to v within

P aesses the loal variable; there is no way to aess the global v. In the formulas

in P , the ompiler might also need to refer to the global v. That is the intended

meaning of the onstrutors glob (to denote the global variables) and lo (to denote

the loal variables).

5

(We also use lo to denote the proedure parameters. Unless

noted otherwise, we always treat the proedure parameters in the same way as the

loal variables.) For example, the formula lo(v) = glob(v) denotes that the loal

v has the same value as the global v; depending on the values of the two di�erent

variables (with the same name), the formula an be true or false.

4

We use di�erent notation for logi expressions (ommon mathematial symbols in a proportional

font) than for program expressions (ommon programming languages symbols in a �xed-width font).

5

Another way to make a distintion between the variables would be to require disjoint sets of

names for the global and loal variables.

49

Syntati Domains :

F 2 Formula

G

b

2 Boolean-expression

G

i

2 Integer-expression

H 2 Program-variable = flo; globg [flo

1

; glob

1

; lo

2

; glob

2

g

I 2 Identi�er

x 2 Logi-identi�er

O

a

2 Arithmeti-operator = f+;�; �; =;%g

O

l

2 Logial-operator = f^;_;);,g

O

r

2 Relational-operator = f=; 6=; >;<;�;�g

Z 2 Integer-onstant = f: : : ;�2;�1; 0; 1; 2; : : :g

Prodution Rules :

G

i

� Z [Integer Constant℄

j x [Logi Variable℄

j H(I) [Program Variable℄

j G

i

1

O

a

G

i

2

[Arithmeti Operator℄

j �G

i

1

[Unary Minus℄

j b2i(G

b

) [Boolean Conversion℄

G

b

� true [Constant True℄

j false [Constant False℄

j G

b

1

O

l

G

b

2

[Logial Operator℄

j :G

b

1

[Negation℄

j G

i

1

O

r

G

i

2

[Relational Operator℄

j i2b(G

i

) [Integer Conversion℄

F �G

b

[Boolean Expressions℄

j F

1

O

l

F

2

[Logial Operator℄

j :F

0

[Negation℄

j 8x: F

0

[Universal Quanti�ation℄

j 9x: F

0

[Existential Quanti�ation℄

Figure 4-4: Abstrat Syntax of the Logi Formulas

50

The seond reason for introduing H(I) onstrutors is for the formulas that de-

sribe a orrespondene between two programs. Suh a formula refers to the variables

from both programs.

6

We use the onstrutors with indies to denote the program

variables: lo

1

and glob

1

for the variables from program 1 and lo

2

and glob

2

for

the variables from program 2. Although the syntax for formulas allows ombining

onstrutors lo and glob with lo

1

, glob

1

, lo

2

, and glob

2

, we use those two

groups exlusively. There are two groups of formulas: formulas that desribe prop-

erties of only one program and formulas that desribe orrespondenes between two

programs. The formulas from the �rst group an ontain only the onstrutors lo

and glob without indies, and the formulas from the seond group an ontain only

the onstrutors with indies.

The majority of the formulas that desribe orrespondenes between two pro-

grams are onjuntions stating that some variables from one proedure/program have

the same values as the orresponding variables from the other proedure/program.

We introdue a speial form for suh formulas. We use meta-variable J for the

pairs onsisting of a logi formula and a sequene of pairs of program variables:

F,(H

1

(I

1

),H

2

(I

2

))

�

. Suh a pair represents onjuntion F ^

V

H

1

(I

1

) = H

2

(I

2

),

where

V

ranges over the pairs of variables in the sequene. We require that a variable

an appear in only one pair of variables, i.e., in the sequene of the �rst omponents

H

1

(I

1

)

�

, all the variables have to be di�erent, and in the sequene of the seond

omponents H

2

(I

2

)

�

, all the variables have to be di�erent. We write var-pairs(J) for

the set of pairs of variables from formula J .

We introdue one notational onvention for referring to the entities from two

programs Q

1

and Q

2

. We use index

1=2

to mean \1 and 2, respetively." For exam-

ple, we say \variables H

1=2

(I

1=2

) from programs Q

1=2

" to mean \variables H

1

(I

1

)

and H

2

(I

2

) from program Q

1

and program Q

2

, respetively." We also write only

\variables H

1

(I

1

) and H

2

(I

2

) from programs Q

1

and Q

2

" referring to the respetive

entities, without mentioning it expliitly.

4.2.2 Relationship between Program and Logi Expressions

We next desribe the relationship between expressions in BL programs and expres-

sions in the logi formulas. The program and logi expressions have a similar stru-

ture. The main di�erene is in the way of referring to the program variables. In

programs, the variables are referred to simply by their name. In logi expressions,

program variables are referred to by using expression onstrutors from H. In logi

expressions, there are also logi variables introdued by quanti�ation of logi formu-

las. These variables are referred to simply by their name. Another di�erene between

program and logi expressions is typing. Whereas program expressions are untyped

(all expressions have integer type), logi expressions have types and they an be either

integer or boolean.

6

Again, one way to make a distintion between the variables would be to require that the two

programs use di�erent names for the variables. Although this might be aeptable for global and

loal variables within one program, it is less aeptable for variables from two programs.

51

We introdue funtions for translating expressions from program form to logi

form. Figure 4-5 shows the de�nition of the translation funtions. These funtions

use a symboli environment e in translation. The symboli environment e is similar

to the environment a used in the operational semantis. However, e does not map

variable names to the memory addresses, but to the appropriate logi expressions

for those variables. For example, a symboli environment for one program maps the

variables in the following way: for eah loal variable I

l

, e(I

l

) = lo(I

l

), and for eah

global variable I

g

, e(I

g

) = glob(I

g

).

translate(E; e) = to-type(translate-type(E; e); int)

translate-bool(E; e) = to-type(translate-type(E; e); bool)

translate-seq(E:E

�

; e) = translate(E; e):translate-seq(E

�

; e)

translate-seq([℄; e) = [℄

translate-type(Z; e) = hZ; inti

translate-type(TRUE; e) = htrue; booli

translate-type(FALSE; e) = hfalse; booli

translate-type(I; e) = he(I); inti

translate-type(-E

1

; e) =

let G be to-type(translate-type(E

1

; e); int) in h�G; inti

translate-type(!E

1

; e) =

let G be to-type(translate-type(E

1

; e); bool) in h:G; booli

translate-type(E

1

O E

2

; e) =

let O

x

be translate-op(O) in

let G

1

be to-type(translate-type(E

1

; e); op1-type(O

x

)) in

let G

2

be to-type(translate-type(E

2

; e); op2-type(O

x

)) in

hG

1

O

x

G

2

; ret-type(O

x

)i

to-type(hG; inti; int) = G

to-type(hG; inti; bool) = b2i(G)

to-type(hG; booli; int) = i2b(G)

to-type(hG; booli; bool) = G

Figure 4-5: Funtions for Translating Program Expressions to Logi Expressions

When translating a program expression, we need to obtain either an integer

logi expression or a boolean logi expression. The funtion translate, given pro-

gram expression E and symboli environment e, returns an integer logi expres-

sion G

i

representing E. For example, if the variable v is loal in the environ-

ment e, then the expression v+1 would be translated to lo(v) + 1. The funtion

translate-bool produes a boolean logi expression G

b

. In the example, the result

would be translate-bool(v+1; e) = i2b(lo(v) + 1). Finally, translate-seq is used

for translating a sequene of program expressions into a sequene of integer logi

expressions.

We next desribe substitutions for the de�ned logi formulas. The speial on-

52

strutors for program variables do not hange the way free and bound variables are

de�ned for the logi expressions. In partiular, program variables are always free,

whereas logi variables follow the standard rules for bound variables. We use the

ommon notation F [G=x℄ to denote the substitution of the expression G for the logi

variable x in formula F . This substitution follows the usual rules of renaming bound

variables. We use F [G=H(I)℄ to denote the substitution of the expression G for the

program variable I in formula F . For example, glob(v) = lo(v)[0=glob(v)℄ �

0 = lo(v) and glob(v) = lo(v)[0=lo(v)℄ � glob(v) = 0.

We also de�ne a multiple substitution of logi expressions for program variables in

a formula. Veri�ation-ondition generators symbolially exeute BL programs and

perform multiple substitutions on invariants to produe veri�ation onditions. A

symboli exeution uses a symboli state, whih is a mapping from program variables

(a set of H(I)) to logi expressions (a set of G

i

). For a symboli state s, we denote

by subst(F; s) the logi formula obtained by substituting the logi expressions from

s for the appropriate program variables in F . For example, if s maps glob(v) to 0,

and lo(v) to 1, then subst(glob(v) = lo(v); s) gives 0 = 1.

4.2.3 Semantis of Logi Formulas

We next de�ne the semantis of the logi formulas. The semantis onsists of a set of

semanti domains and a set of valuation funtions. Figure 4-6 presents the semanti

domains that we use. The basi semanti domains Int and Bool are the usual integer

numbers and truth values. We use the domain One-Context to represent a pair

of an environment and a memory. These pairs are used to de�ne the meaning of

program variables. As explained, there are two groups of logi formulas: formulas

with variables from only one program and formulas with variables from two programs.

For the �rst group, we use a ontext that onsists of one environment-memory pair,

and for the seond group, we use two suh pairs. The same meta-variable ranges

over both groups of ontexts. When we want to speify a ontext, we abbreviate

hm; ai to m; a and hhm

1

; a

1

i; hm

2

; a

2

ii to m

1

; a

1

; m

2

; a

2

.

z 2 Int = f: : : ;�2;�1; 0; 1; 2; : : :g

b 2 Bool = ftrue; falseg

One-Context = Memory� Environment

 2 Context = One-Context +One-Context � One-Context

Figure 4-6: Semanti Domains for Logi Formulas

Figure 4-7 presents the signatures of the valuation funtions used in the semantis.

Z maps integer onstants used in the syntati representation of the logi formulas to

the integer numbers used in the semanti domain. The valuation funtions O

a

, O

r

,

and O

l

map the syntati representation of operators to their semanti equivalents.

The funtions G

i

, G

b

, and F are used for the meaning of the expressions and formulas

in the logi. We de�ne the meaning only of the expressions and formulas with no free

logi variables. (The program variables are always free, and they get their meaning

53

from the ontext.) We write G

i

[[G

i

℄℄ to denote the value of integer expression G

i

in

ontext . Similarly, we write F [[F ℄℄ to denote the value of formula F in ontext .

We are mostly interested in the valid formulas, and we abbreviate F [[F ℄℄ = true to

 j= F and say that formula F holds in ontext .

Z : Integer-onstant! Int

O

a

: Arithmeti-operator! Int ! Int ! Int

O

r

: Relational-operator! Int ! Int ! Bool

O

l

: Logial-operator! Bool ! Bool ! Bool

G

i

: Integer-expression! Context ! Int

G

b

: Boolean-expression! Context ! Bool

F : Formula! Context ! Bool

Figure 4-7: Signatures of the Valuation Funtions

Figure 4-8 presents the valuation funtions for integer and boolean expressions

and validity of logi formulas. These funtions de�ne the meaning for all expressions

and formulas with no free logi variables. (To obtain total meaning funtions, we

assign 0 as the meaning of operations not de�ned on integers, suh as division by

0.) Bound logi variables are substituted with integers, as shown in the meaning of

quanti�ed formulas.

7

Program variables get their meaning from the ontext. There

are two groups of ontexts and two groups of formulas. Formulas have a meaning

only for the appropriate ontexts. Figure 4-8 shows the valuation funtions for all

meaningful ombinations. If a formula F holds in all meaningful ontexts, we write

j= F .

4.2.4 Proof Rules for Logi Formulas

We need a set of proof rules for proving the validity of logi formulas. We do not

speify the exat set of rules, but we assume the existene of rules for proving the

formulas of the presented �rst-order prediate logi with integer variables. This set

inludes the standard rules for introdution and elimination of logial operators in

the natural dedution style, the reexivity and the ongruene rules for the equality,

and a group of rules for integer arithmeti. We write ` F to denote that formula

F with no free (logi) variables is provable using those rules. The proof system is

required to be sound, namely for all F , if ` F , then j= F .

4.3 Compiler Analyses

In this setion we present the veri�ation of the results generated by a redible om-

piler analysis. The ompiler expresses the analysis results in the form of standard

7

The substitution is used in a slightly informal way; we would atually need to substitute Z, or

use a ontext for logi formulas, whih we want to avoid for simpliity of presentation.

54

G

i

[[Z℄℄ = Z[[Z℄℄

G

i

[[G

i

1

O

a

G

i

2

℄℄ = G

i

[[G

i

1

℄℄ O

a

[[O

a

℄℄ G

i

[[G

i

2

℄℄

G

i

[[�G

i

1

℄℄ = �G

i

[[G

i

1

℄℄

G

i

[[b2i(G

b

)℄℄ = if G

b

[[G

b

℄℄ then 1 else 0 �

G

b

[[true℄℄ = true

G

b

[[false℄℄ = false

G

b

[[G

b

1

O

l

G

b

2

℄℄ = G

b

[[G

b

1

℄℄ O

l

[[O

l

℄℄ G

b

[[G

b

2

℄℄

G

b

[[:G

b

1

℄℄ = :G

b

[[G

b

1

℄℄

G

b

[[G

i

1

O

r

G

i

2

℄℄ = G

i

[[G

i

1

℄℄ O

r

[[O

r

℄℄ G

i

[[G

i

2

℄℄

G

b

[[i2b(G

i

)℄℄ = G

b

[[G

i

6= 0℄℄

 j= G

b

i� G

b

[[G

b

℄℄ = true

 j= F

1

^ F

2

i� j= F

1

and j= F

2

 j= F

1

_ F

2

i� j= F

1

or j= F

2

 j= F

1

) F

2

i� j= F

1

implies j= F

2

 j= F

1

, F

2

i� j= F

1

) F

2

and j= F

2

) F

1

 j= :F

1

i� not j= F

1

 j= 8x: F

0

i� j= F

0

[z=x℄ for all z 2 Int

 j= 9x: F

0

i� j= F

0

[z=x℄ for some z 2 Int

G

i

[[lo(I)℄℄ hm; ai = m(a

l

(I))

G

i

[[glob(I)℄℄ hm; ai = m(a

g

(I))

G

i

[[lo

1

(I)℄℄ hm

1

; a

1

; m

2

; a

2

i = m

1

(a

l

1

(I))

G

i

[[glob

1

(I)℄℄ hm

1

; a

1

; m

2

; a

2

i = m

1

(a

g

1

(I))

G

i

[[lo

2

(I)℄℄ hm

1

; a

1

; m

2

; a

2

i = m

2

(a

l

2

(I))

G

i

[[glob

2

(I)℄℄ hm

1

; a

1

; m

2

; a

2

i = m

2

(a

g

2

(I))

Figure 4-8: Valuation Funtions for Expressions and Validity of Formulas

55

ontexts. We �rst desribe standard ontexts and then formally de�ne when they are

orret. We �nally present the standard veri�ation-ondition generator (StdVCG).

The veri�er for the ompiler uses the StdVCG to generate a standard veri�ation

ondition (StdVC) for a set of standard ontexts. To prove that the analysis results

are indeed orret, the ompiler needs to prove that the StdVC holds.

4.3.1 Standard Contexts and Standard Invariants

We next desribe the form in whih the ompiler presents analysis results. To allow

separate ompilation of proedures, we need support for modularity. It is usually

obtained using proedure spei�ations, eah of whih onsists of two formulas: a

preondition formula and a postondition formula. A preondition for a proedure P

desribes what P is allowed to assume at its entry, and a postondition for a proedure

P desribes what P must preserve at its exit. We all a formula at the entry of a

proedure a standard input ontext. It desribes the ontext in whih the proedure

is alled; we write F

in

for suh formulas. We all a formula at the exit of a proedure

a standard output ontext. It desribes the return ontext of the proedure; we write

F

out

for suh formulas. We refer to a pair of a standard input ontext and a standard

output ontext as a standard ontext.

Both groups of formulas F

in

and F

out

represent properties of only one program.

Therefore, they an ontain only lo and glob logi expression onstrutors. Further,

the variables that appear in F

in

for proedure P an be only the global variables of

the program that ontains P and the formal parameters of P , i.e., vars(P)�loals(P).

In F

out

, only the global variables of the program, i.e., globals(P), an appear.

The ompiler may generate several ontexts for the same proedure. This allows

the ompiler to express the results of ontext-sensitive interproedural analyses. For

eah ontext of a proedure, the ompiler generates a set of standard invariants. A

standard invariant onsists of a logi formula and a label. The formula represents an

expression that the ompiler laims to be true whenever the exeution reahes the

program point represented by the label. There should be at least one invariant in

eah loop to ensure that the StdVCG, whih symbolially exeutes the proedure,

terminates. One way to guarantee this is to plae an invariant at every bakward

branh in the proedure. We do not expliitly require this plaement, but we require

that there be enough invariants.

We represent a standard invariant syntatially as L:inv F ; meta-variable T

ranges over standard invariants. For eah ontext the ompiler generates at least F

in

,

F

out

, and a sequene T

�

. These are the analysis results that the ompiler needs to

prove. The ompiler also needs to generate more information to guide the StdVCG

in generating the StdVC. For eah ontext, the ompiler generates a sequene K

�

.

This sequene represents the indies of the allee ontexts that the ompiler used at

eah all site in the analysis of the urrent ontext. We present more details after

introduing some additional notation.

56

For proedure P for whih the ompiler generates n ontexts, we write:

P � pro I(I

�

) D

�

fN

+

g

std-invariants F

in

1

F

out

1

T

�

1

K

�

1

F

in

2

F

out

2

T

�

2

K

�

2

.

.

.

F

in

n

F

out

n

T

�

n

K

�

n

:

We de�ne several funtions for standard ontexts: ontexts(P) returns the set of

ontext indies for proedure P (in the general ase, it is f1 : : : ng), in-ontext(P; k)

returns the formula for the input ontext k of P (F

in

k

), out-ontext(P; k) returns the

formula for the output ontext k of P (F

out

k

), ontext(P; k) returns a pair of input and

output ontexts. Also, the funtion std-invariant(P; k; L) returns the formula F from

the standard invariant

8

T � L:inv F from ontext k of P . (We often use, instead

of proedures, proedure identi�ers as funtion arguments, e.g., ontexts(I) returns

a set of ontext indies for proedure named I.)

We next explain why we require the ompiler to generate the sequene K

�

. Eah

K � L:Z onsists of the label L of a all node L:I(E

�

) from P and an integer

literal Z that represents the index of the allee ontext for that all site. We write

ontext-index(L;K

�

) for the ontext index Z of label L in K

�

. The StdVCG uses

ontext(I; Z) at all site L to generate the StdVC. In general, the StdVCG annot

determine whih allee ontext the ompiler used at the all site (if the ompiler

generated several allee ontexts). The StdVCG ould generate a StdVC that inludes

all allee ontexts (either ontext 1 is used, or ontext 2, or up to the total number of

allee ontexts), but the resulting StdVC would be prohibitively long. Therefore, we

simply require the ompiler to generate more additional information whih represents

whih ontext the analysis used at eah all site.

The ompiler may use di�erent ontexts of the same allee proedure at di�erent

all sites. We illustrate this situation using an example. Suppose that the ompiler

analyzes some proedure p that has two alls to another proedure q. Suppose that

q has one formal parameter i, and that the atual parameter of q is 0 for the �rst

all, and 1 for the seond all. Additionally, the ompiler performs a ontext-sensitive

interproedural analysis and separately analyzes q for these two input ontexts. Fur-

ther, assume that these input ontexts have di�erent output ontexts. For instane,

a global variable g is 3 at the end of an exeution of q in the �rst ontext, and it is

8 in the seond ontext. In this example, the ompiler would generate two ontexts

for proedure q: F

in

1

� lo(i) = 0, F

out

1

� glob(g) = 3, and F

in

2

� lo(i) = 1,

F

out

2

� glob(g) = 8. In K

�

for p, the ompiler would represent that it used the �rst

ontext for the �rst all, and the seond ontext for the seond all.

The ompiler need not perform a ontext-sensitive analysis. It an perform a

ontext-insensitive analysis and generate only one ontext for eah proedure. For

instane, in the previous example of proedure q, the ompiler ould generate the

8

If there are many invariants with the same label, std-invariant returns the onjuntion of all the

formulas.

57

following ontext: F

in

� lo(i) = 0 _ lo(i) = 1 and F

out

� glob(g) = 3 _

glob(g) = 8. K

�

would in this ase represent that at both all sites the same ontext

of q is used. Finally, the ompiler need not perform an interproedural analysis at

all. It an always use for any proedure a ontext that represents that for all possible

inputs to the proedure (F

in

� true), the output an be anything (F

out

� true).

This orresponds to an intraproedural analysis, whih (in terms of dataow analyses)

kills all the information at all sites.

4.3.2 Analysis Corretness

We next disuss the notion of orret ompiler analysis results. Most ompiler anal-

yses generate results that satisfy only partial orretness|a result is guaranteed to

be orret if the program exeution reahes the point of the result, but the program

exeution is not guaranteed to reah that point. Therefore, we require the ompiler

to prove that the generated standard invariants are only partially orret.

Formally, we �rst de�ne when the standard invariants are orret for a standard

ontext.

De�nition 3 A standard ontext k holds for a proedure P in a program Q, in no-

tation j= std-invs(k; P;Q), i� for all partial exeutions hP

0

; m

0

; ai

+

9 9 KhL;m; ai of

P for whih m

0

; a j= F

in

k

, the following is satis�ed:

� for all L

0

:inv F from T

�

k

, if L � L

0

, then m; a j= F ; and

� for all L

0

:ret from P , if L � L

0

, then m; a j= F

out

k

.

In other words, if the input ontext holds at the beginning of an exeution, then

eah invariant should hold when the exeution reahes it and the output ontext

should hold when the exeution reahes a return node. We extend the de�nition to

proedures and programs.

De�nition 4 Standard invariants are orret (hold) for a proedure P 2 Q, in nota-

tion j= std-invs(P;Q), i� all ontexts k of P hold.

De�nition 5 Standard invariants are orret (hold) for a program Q, in notation

j= std-invs(Q), i� standard invariants hold for all proedures P 2 Q.

The ompiler does not prove diretly that j= std-invs(Q). Instead, the veri�er

uses the StdVCG to generate the StdVC for the invariants of all ontexts of all

proedures in program Q. We write F

v

Q

for the logi formula representing the StdVC

of program Q. We present a sound StdVCG suh that the validity of F

v

Q

implies that

the invariants of Q are orret, i.e., if j= F

v

Q

, then j= std-invs(Q). (We show in

Setion 5.1 that the StdVCG is sound.) The ompiler generates a proof ` F

v

Q

using

the proof rules from the logi. By the soundness of the proof rules, if ` F

v

Q

, then

j= F

v

Q

. Therefore, the ompiler atually proves that the StdVC holds for program

Q, whih then implies that all the standard invariants for program Q hold, and the

ompiler analysis results are thus orret.

58

4.3.3 Standard Veri�ation-Condition Generator

We next present the algorithm for generating standard veri�ation onditions. The

StdVCG generates the StdVC for a program Q and a set of standard ontexts for

proedures in Q by symbolially exeuting eah of those ontexts. We �rst explain

how those parts of the StdVC for eah ontext ombine in the whole StdVC. We then

desribe the algorithm that onsists of two phases: the initial phase and the main

phase.

Figure 4-9 shows the algorithm that generates F

v

k;P;Q

, a part of the StdVC for one

ontext k 2 ontexts(P) = f1 : : : ng of proedure P 2 Q. The onjuntion of the

veri�ation onditions for all ontexts of proedure P is the veri�ation ondition for

that proedure, and the onjuntion of the veri�ation onditions for all proedures

of program Q is the veri�ation ondition for that program:

F

v

P;Q

=

V

k2f1:::ng

F

v

k;P;Q

and F

v

Q

=

V

P2Q

F

v

P;Q

:

The StdVC for a program is the whole F

v

Q

; we also refer to F

v

k;P;Q

as StdVC.

The StdVCG generates F

v

k;P;Q

by symbolially exeuting the ontext k of proedure

P . We �rst desribe the initial phase of the StdVCG, whih prepares the proedure for

the exeution, and then the main phase of the StdVCG, whih performs the exeution

using the main funtion Std.

In the initial phase, the StdVCG �rst uses the helper funtion merge-invariants

to merge the invariants T

�

k

into the proedure P , generating proedure P

0

. The

invariants in T

�

k

have the same labels as nodes in P ; merge-invariants makes the labels

unique and inserts the invariants in front of the appropriate nodes.

9

We assume that

the funtion merge-invariants also heks that there are enough invariants so that

the symboli exeution terminates.

10

If there are not enough invariants, the results

are marked as inorret. The StdVCG next reates a symboli environment e for

proedure P 2 Q. This environment maps eah loal variable I

l

of P to the logi

expression lo(I

l

) and eah global variable I

g

of Q to the logi expression glob(I

g

).

The StdVCG then reates a fresh symboli state s

0

that maps all variables from the

environment e to fresh logi variables. The sequene of all these fresh logi variables

is in x

�

, and F

v

k;P;Q

is universally quanti�ed over x

�

.

Standard Veri�ation-Condition Generator Main Funtion

The funtion Std performs the symboli exeution of proedure P

0

. This funtion

takes three arguments: the label L of the urrent node to exeute, the symboli state

s, and the set i of already (symbolially) exeuted standard invariants.

The exeution starts from the �rst node of proedure P with a fresh state and

9

The hange is done so that the branhes to a node in P are now branhes to the �rst invariant

in front of that node in P

0

.

10

We use this organization only for an easier explanation of the StdVCG; in pratie, the heks

are done during the symboli exeution. The StdVCG keeps trak of the nodes already symbolially

exeuted on eah path, and if a node is reahed twie, there is a loop without invariant.

59

P � pro I(I

�

) D

�

fN

+

g

std-invariants (F

in

F

out

T

�

K

�

)

�

F

v

k;P;Q

=

let P

0

be merge-invariants(T

�

k

; P) in

let e be sym-environment(P;Q) in

let hs

0

; x

�

i be fresh-sym-state(e) in

letre Std be �L s i:

mathing P

0

(L)

� L:I=E [℄

let s

0

be translate-assign(I; E; s; e) in

Std(L+

P

0

1; s

0

; i)

� L:br(E)L

0

[℄

let G be translate-branh(E; s; e) in

(G) Std(L

0

; s; i)) ^

(:G) Std(L +

P

0

1; s; i))

� L:ret [℄

subst(F

out

k

; s)

� L:I(E

�

) [℄

let G

�

be translate-all(E

�

; s; e) in

let k

0

be ontext-index(L;K

�

k

) in

let hF

in

; F

out

i be ontext(I; k

0

) in

let hs

0

; x

�

i be fresh-globals(s) in

subst(F

in

; set-params(I; G

�

; s)) ^

8x

�

: subst(F

out

; s

0

)) Std(L +

P

0

1; s

0

; i)

� L:inv F [℄

if member-�rst(L; i) then

subst(F; s)

else

let hs

0

; x

�

i be fresh-sym-state(e) in

subst(F; s) ^

8x

�

: subst(F; s

0

)) Std(L+

P

0

1; s

0

; union(hL; s

0

i; i))

�

endmathing in

8x

�

: subst(F

in

k

; s

0

)) Std(start-label(P

0

); s

0

; fg)

Figure 4-9: Veri�ation-Condition Generator for Standard Invariants

60

the empty set of invariants. This exeution generates a part of F

v

k;P;Q

that aptures

the orretness of all the invariants and the output ontext of ontext k. Sine the

invariants and the output ontext are required to be orret only for the appropriate

input ontext, the whole F

v

k;P;Q

is an impliation|input ontext, substituted in the

initial state, implies the result of the exeution starting from that initial state.

We next desribe how the algorithm exeutes eah group of nodes. (Figure 4-10

shows the helper funtions that the algorithm uses during the exeution.)

N1. The exeution of an assignment node I=E hanges the symboli state using the

funtion translate-assign. This funtion hanges only the symboli expression

representing the value of variable I; the rest of the state is unhanged. The

exeution proeeds from the assignment node to the next node.

N2. The exeution of a branh node br(E)L

0

�rst translates the branh ondition

E using the funtion translate-branh. After that, the exeution splits into two

branhes generating the appropriate ondition on eah branh.

N3. The exeution of a return node ret generates the formula representing the

output ontext in the urrent state and �nishes this branh of the exeution.

N4. The exeution of a all node I(E

�

) is more involved. The StdVCG �rst reates

expressions G

�

that symbolially represent the values of the atual parameters

at the all site. These expressions will be replaed with the formal parameters

in the allee input ontext. The StdVCG next deides, based on the sequene

K

�

k

, whih allee ontext k

0

to use for this all. The StdVCG generates the

part of F

v

k;P;Q

that requires the input ontext F

in

for ontext k

0

of I to hold for

this all. This is done using the funtion set-params, whih extends s with the

mapping from the formal parameters of proedure I to the expressions G

�

.

The all to proedure I an hange the global variables in an arbitrary way.

Therefore, the StdVCG reates a state s

0

in whih all global variables from s

are mapped to fresh logi variables x

�

, while all loal variables from s remain

the same as before the all. The StdVCG next generates the part of F

v

k;P;Q

that requires the output ontext F

out

for ontext k

0

of I to hold in state s

0

.

The symboli exeution ontinues with the state s

0

from the node after the all

node.

N5. The exeution of a standard invariant L:inv F depends on whether the invari-

ant has been already exeuted or not.

N5.1. If the label L is in i (more preisely, in the �rst omponent of one of the

pairs in i), the invariant is reahed for the seond time during this branh

of the exeution. The StdVCG substitutes the urrent symboli state in

the invariant, generates the resulting formula as a part of F

v

k;P;Q

that needs

to be proven, and the exeution of this branh �nishes.

N5.2. If label L is not in i, then the invariant is reahed for the �rst time. The

StdVCG similarly substitutes the urrent symboli state in the invariant

61

and generates the resulting formula as a part of F

v

k;P;Q

that needs to be

proven, but ontinues the exeution. The exeution ontinues from the

node after the invariant with a fresh symboli state s

0

and the pair hL; s

0

i

added to the set of exeuted invariants. (For this StdVCG, i an be a set

of labels only; we add the states tehnially to prove the soundness of the

StdVCG.) The rest of this exeution an assume that the invariant holds

in state s

0

.

translate-assign(I; E; s; e) = s[translate(I; e) 7! subst(translate(E; e); s)℄

translate-branh(E; s; e) = subst(translate-bool(E; e); s)

translate-all(E

�

; s; e) = subst-seq(translate-seq(E

�

; e); s)

Figure 4-10: Translation Funtions for Veri�ation-Condition Generators

4.4 Compiler Transformations

In this setion we present the veri�ation of the results generated by a redible om-

piler transformation. After performing the transformation on an original program,

the ompiler generates a transformed program and additional information in the form

of simulation ontexts. We �rst desribe simulation ontexts and then formally de�ne

the simulation of BL programs. We all the two programs Q

1

and Q

2

, and we speify

when Q

1

simulates Q

2

. (Depending on the required (bi-)simulation orrespondene,

programsQ

1

andQ

2

an be the transformed and original programs and/or the original

and transformed programs.) We �nally present the simulation veri�ation-ondition

generator (SimVCG). The veri�er uses SimVCG to generate a simulation veri�ation

ondition (StdVC) for a set of simulation ontexts. To prove that Q

1

simulates Q

2

,

the ompiler needs to prove that the SimVC holds.

4.4.1 Simulation Contexts and Simulation Invariants

We next desribe the additional information that the ompiler transformation gener-

ates beside the transformed program. Similarly as the ompiler generates a standard

ontext to summarize the analysis results for a proedure, the ompiler generates a

simulation ontext to represent a simulation relationship between a pair of proedures.

A simulation ontext onsists of two formulas that we all a simulation input ontext

and a simulation output ontext. Simulation input ontexts represent the orrespon-

dene between the states of the two programs at the entries of the two proedures.

Simulation output ontexts represent the orrespondene between the states of the

two programs at the exits of the two proedures.

Both simulation input and output ontexts are formulas representing orrespon-

dene between two programs. Therefore, they an ontain only the indexed on-

strutors H for aessing program variables in logi expressions (lo

1

, glob

1

, lo

2

,

62

glob

2

). We write J

in

and J

out

for the simulation input and output ontext, respe-

tively. (Reall that we use J for formulas that expliitly represent pairs of vari-

ables that have the same value.) For proedures P

1

and P

2

, only the variables from

globals(P

1

)[params(P

1

)[globals(P

2

)[params(P

2

) an appear in J

in

, and only the

variables from globals(P

1

) [globals(P

2

) an appear in J

out

.

The ompiler may generate several simulation ontexts involving the same pro-

edure or pair of proedures. (This allows, for instane, the ompiler to express the

results of proedure speializations.) For eah simulation ontext, the ompiler gen-

erates a set of simulation invariants that represent relationships between the two

programs. A simulation invariant onsists of a logi formula and two labels, one from

eah program. We represent a simulation invariant syntatially as L

1

,L

2

:sim-inv J ,

where the �rst label L

1

is a label from P

1

and the seond label L

2

is a label from P

2

;

meta-variable S ranges over simulation invariants.

The set of simulation invariants S

�

for one simulation ontext may ontain several

invariants with the same �rst label, e.g., L

1

,L

0

2

:sim-inv J

0

, or the same seond label,

e.g., L

0

1

,L

2

:sim-inv J

0

.

11

We denote by set-sim-inv(L

1

; S

�

) the set of the simulation

invariants whose �rst label is L

1

. Informally, a set of simulation invariants for P

1

and

P

2

holds if for all partial exeutions of P

1

that reah label L

1

of one of the invariants

from the set, there exists a partial exeution of P

2

that reahes label L

2

of one of the

invariants L

1

,L

2

:sim-inv J 2 set-sim-inv(L

1

; S

�

), suh that formula J holds for the

states of the two proedures. We formalize this in Setion 4.4.2.

Similar to the plaement of standard invariants for the StdVCG, there should be

enough simulation invariants so that the SimVCG an exeute both proedures to

generate the SimVC. These exeutions require that for eah path in P

1

, there exist an

appropriate path in P

2

. Therefore, there should be at least one simulation invariant

in eah loop in P

1

. We do not require any partiular plaement of these invariants.

Additionally, for eah path from one invariant to another in P

1

, there should be a

path between the orresponding points in P

2

. The plaement of these invariants

depends on the hange that the transformation performs on the ontrol ow graph of

the proedure.

We have presented so far the formulas J

in

and J

out

and a sequene S

�

that the

ompiler needs to generate for eah simulation ontext. Analogous to the standard

ontexts, the ompiler also needs to generate whih simulation ontexts the SimVCG

should use for alls. We represent this as a sequene K

�

where eah K � L

1

,L

2

:Z

onsists of the labels L

1

and L

2

(of all nodes L

1

:I

1

(E

�

1

) from P

1

and L

2

:I

2

(E

�

2

)

from P

2

) and an integer literal Z that represents the simulation ontext index for

proedures I

1

and I

2

. We write sim-ontext-index(L

1

; L

2

; K

�

) for the ontext index

Z of labels L

1

and L

2

in K

�

. We next present the other additional information that

the veri�er requires the ompiler to generate for eah simulation ontext.

The ompiler may use the analysis results to perform the transformation. For

di�erent simulation ontexts, the ompiler may use di�erent analysis results. The

ompiler represents the analysis results as standard ontexts. Sine there an be

11

In general, there an be even many invariants with both labels being the same, e.g.,

L

1

,L

2

:sim-inv J

0

, but they an be replaed with: L

1

,L

2

:sim-inv J ^ J

0

.

63

many standard ontexts, the ompiler needs to represent, for eah simulation ontext,

whih standard ontexts it uses for the two proedures. The ompiler represents these

ontexts by their indies, as integer literals Z

1

and Z

2

.

The ompiler also generates the expressions for the initial values of loal vari-

ables of P

2

. The StdVCG and the SimVCG introdue fresh logi variables during

the symboli exeutions that generate veri�ation-ondition formulas. The StdVCG

always universally quanti�es the formulas over the new logi variables. We showed in

Setion 3.2.1 that the SimVCG needs to existentially quantify over the logi variables

that represent the initial values of the variables from loals(P

2

). To avoid existential

quanti�ation in the SimVC, we require the ompiler to generate, for eah simulation

ontext, a sequene of integer logi expressions G

�

that represent the initial values

of loal variables of P

2

. These expressions an ontain global variables from both

programs, proedure parameters from both proedures, and loal variables from P

1

.

Usually, the expression for a loal variable from P

2

is that the initial value is the same

as the initial value of the orresponding loal variable from P

1

, or that the initial value

an be anything, e.g., the onstant 0.

Finally, the ompiler generates, for eah ontext, a sequene of ations A

�

to

guide the SimVCG in generating the SimVC. We present the ations in detail later

in the text. In summary, for proedures P

1

and P

2

for whih the ompiler generates

n simulation ontexts, we write:

P

1

� pro I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants J

in

1

J

out

1

S

�

1

K

�

1

Z

1

1

Z

2

1

G

�

1

A

�

1

J

in

2

J

out

2

S

�

2

K

�

2

Z

1

2

Z

2

2

G

�

2

A

�

2

.

.

.

J

in

n

J

out

n

S

�

n

K

�

n

Z

1

n

Z

2

n

G

�

n

A

�

n

:

We de�ne several funtions for simulation ontexts: sim-ontexts(P

1

; P

2

) returns a

set of simulation ontext indies for proedures P

1

and P

2

(in the general ase,

it is f1 : : : ng), sim-in-ontext(P

1

; P

2

; k) returns the formula for the simulation in-

put ontext k of proedures P

1

and P

2

(J

in

k

), sim-out-ontext(P

1

; P

2

; k) returns the

formula for the simulation output ontext k of proedures P

1

and P

2

(J

out

k

), and

sim-ontext(P

1

; P

2

; k) returns a pair of simulation input and output ontexts.

4.4.2 Transformation Corretness

We disussed the notion of orret ompiler transformations in Setion 2.1. We require

the ompiler to generate a transformed program that simulates the original program.

This means that the transformed program is Q

1

, and the original program is Q

2

.

Informally, Q

1

simulates Q

2

if Q

1

an generate only the results that Q

2

an generate.

The result of a BL program exeution is the values of the global variables at the end

of the starting proedure. Therefore, we require the two programs to have the same

number of global variables, and we additionally require orresponding global variables

to have the same name.

64

We next de�ne formally when one BL program simulates another. We �rst de�ne

the notion of simulation for a simulation ontext.

De�nition 6 A proedure P

1

2 Q

1

simulates a proedure P

2

2 Q

2

for a simulation

ontext k, in notation P

1

; Q

1

�

k

P

2

; Q

2

, i� for all partial exeutions hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i of P

1

, there exists a partial exeution

12

hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

suh that if m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the following is satis�ed:

� for all L

0

1

,L

0

2

:sim-inv J

0

from S

�

k

, if L

1

� L

0

1

, then there exists L

1

,L

00

2

:sim-inv J

from set-sim-inv(L

1

; S

�

k

) suh that L

2

� L

00

2

and m

1

; a

1

; m

2

; a

2

j= J ; and

� if P

1

(L

1

) � L

1

:ret, then P

2

(L

2

) � L

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the partial exeution of P

1

does not terminate, then the partial exeution of

P

2

also does not terminate.

We extend the de�nition to proedures and programs.

De�nition 7 A proedure P

1

2 Q

1

simulates a proedure P

2

2 Q

2

, in notation

P

1

; Q

1

� P

2

; Q

2

, i� for all simulation ontexts k 2 sim-ontexts(P

1

; P

2

), P

1

; Q

1

�

k

P

2

; Q

2

.

De�nition 8 A program Q

1

simulates a program Q

2

, in notation Q

1

�Q

2

i�:

� for all pairs of proedures P

1

2 Q

1

and P

2

2 Q

2

for whih there are simulation

ontexts, P

1

; Q

1

� P

2

; Q

2

; and

� one of the simulation ontexts for the starting proedures for programs Q

1

and

Q

2

is the following:

{ the simulation input ontext states that the two programs start with the

same input at the beginning:

J

in

�

^

glob

1

(I

g

) = glob

2

(I

g

) ^

^

lo

1

(I

p

1

) = lo

2

(I

p

2

)

for all global variables I

g

from Q

1

(and Q

2

) and for all parameters I

p

1

of

the starting proedure of Q

1

and their orresponding parameters

13

I

p

2

of the

starting proedure of Q

2

,

14

and

12

The exat order of quanti�ations in the de�nition is: for all a

1

possible at the start of P

1

, for

all m

0

1

, for all a

2

possible at the start of P

2

, and for all values of m

0

2

loations \below" the loal

variables of P

2

, there exist some values of the other m

0

2

loations suh that if m

0

1

; a

1

;m

0

2

; a

2

j= J

in

k

,

then for all hL

1

;m

1

; a

1

i in the exeution sequene of P

1

, there exists a orresponding hL

2

;m

2

; a

2

i in

the exeution sequene of P

2

.

13

Sine the values for the parameters of the starting proedures are supplied to the programs,

we require the starting proedures to have the same number of parameters, but orresponding

parameters need not have the same name. In general, two proedures need not even have the same

number of parameters when there is a simulation ontext for those proedures.

14

Additionally, the requirement for the simulation input ontext of the starting proedures implies

that the simulation holds for all possible input values beause the standard ontexts Z

1

and Z

2

, for

this simulation ontext, need to have their input ontexts true.

65

{ the simulation output ontext states that the two programs generate the

same output at the end:

J

out

�

^

glob

1

(I

g

) = glob

2

(I

g

)

for all global variables I

g

from Q

1

(and Q

2

).

This de�nition for Q

1

� Q

2

formalizes the intuitive notion of the simulation|

program Q

1

simulates program Q

2

if Q

2

an generate the same output data as Q

1

generates, provided that the two programs have the same input data. The simulation

also requires termination simulation|Q

2

does not terminate ifQ

1

does not terminate.

The de�nition forQ

1

�Q

2

(more spei�ally, P

1

; Q

1

�

k

P

2

; Q

2

) additionally requires the

simulation invariants to hold. Finally, the way that the SimVCG generates the SimVC

also requires that the exeution of Q

2

reahes a all site whenever the exeution of

Q

1

reahes a all site.

Analogous to the ompiler analysis results and j= std-invs(Q), the ompiler does

not prove diretly that Q

1

� Q

2

. Instead, the veri�er uses the SimVCG to generate

the SimVC for the simulation invariants of all simulation ontexts of all proedures in

programs Q

1

and Q

2

. We write F

v

Q

1

;Q

2

for the logi formula representing the SimVC

of programs Q

1

and Q

2

. We design a sound SimVCG suh that the validity of F

v

Q

1

;Q

2

implies that Q

1

simulates Q

2

, i.e., if j= F

v

Q

1

;Q

2

, then Q

1

� Q

2

. (More preisely, the

standard veri�ation onditions for Q

1

and Q

2

also need to hold: if j= F

v

Q

1

;Q

2

and

j= F

v

Q

1

and j= F

v

Q

2

, then Q

1

�Q

2

. We show in Setion 5.2 that the SimVCG is sound.)

The ompiler generates a proof ` F

v

Q

1

;Q

2

using the proof rules from the logi. By the

soundness of the proof rules, if ` F

v

Q

1

;Q

2

, then j= F

v

Q

1

;Q

2

. Therefore, the ompiler

atually proves that the SimVC holds for programs Q

1

and Q

2

; that implies that

program Q

1

simulates program Q

2

, and therefore Q

1

an generate only the results

that Q

2

an generate.

4.4.3 Simulation Veri�ation-Condition Generator

We next present the algorithm for generating simulation veri�ation onditions. The

SimVCG generates the SimVC for two programs Q

1

and Q

2

and a set of simulation

ontexts for proedures in Q

1

and Q

2

by symbolially exeuting eah of those sim-

ulation ontexts. We �rst explain how those parts of the SimVC for eah ontext

ombine in the whole SimVC. We then desribe the algorithm that onsists of two

phases: the initial phase and the main phase.

Figures 4-11 and 4-12 show the algorithm that generates F

v

k;P

1

;Q

2

;P

2

;Q

2

, a part of

SimVC, for one simulation ontext k 2 sim-ontexts(P

1

; P

2

) = f1 : : : ng of proedures

P

1

2 Q

1

and P

2

2 Q

2

. Similar to the standard ontexts, the onjuntion of the

veri�ation onditions for all simulation ontexts of proedures P

1

and P

2

is the

veri�ation ondition for those proedures, and the onjuntion of the veri�ation

onditions for all pairs of proedures (for whih there is a simulation ontext) of

programs Q

1

and Q

2

is the veri�ation ondition for those programs:

F

v

P

1

;Q

1

;P

2

;Q

2

=

V

k2f1:::ng

F

v

k;P

1

;Q

1

;P

2

;Q

2

and F

v

Q

1

;Q

2

=

V

P

1

2Q

1

;P

2

2Q

2

F

v

P

1

;Q

1

;P

2

;Q

2

:

66

The SimVC for two programs is the whole F

v

Q

1

;Q

2

; we also refer to F

v

k;P

1

;Q

2

;P

2

;Q

2

as

SimVC.

The SimVCG generates F

v

k;P

1

;Q

1

;P

2

;Q

2

by symbolially exeuting the simulation

ontext k for proedures P

1

and P

2

. We �rst desribe the initial phase of the SimVCG,

whih prepares the proedures for the exeutions, and then the main phase of the

SimVCG, whih performs the exeutions using the main funtion Sim.

In the initial phase, the SimVCG �rst uses the funtion merge-sim-invariants to

merge the simulation invariants S

�

k

into proedures P

1=2

generating proedures P

0

1=2

.

This is similar to the way in whih the StdVCG merges the standard invariants,

but there are several di�erenes. Merging the simulation invariant L

1

,L

2

:sim-inv J

in P

1

only adds the node

15

L

1

:sim-inv that represents that there is a simulation

invariant at L

1

. In P

2

, merging adds the node L

2

:sim-inv J,L

1

to reord the atual

formula of the invariant. The reason for this is that there an be many invariants for

the same node L

1

in P

1

, and they all share the same L

1

:sim-inv node. We all eah

of the nodes L

1

:sim-inv and L

2

:sim-inv J,L

1

a half of the simulation invariant.

We explained in Setion 3.2.1 the most notable di�erene between the StdVCG

and the SimVCG|the SimVCG uses a sequene of ations to guide the symboli ex-

eutions, whereas the StdVCG has a �xed struture of the symboli exeution. After

the funtion merge-sim-invariants generates P

0

1=2

, the SimVCG applies the funtion

ation-tree to A

�

k

to obtain an ation tree t

0

. The ation tree ontains the whole

step-by-step desription for the interleaving of the symboli exeutions of P

0

1=2

. We

desribe ation trees and all ations later in the text.

The SimVCG next applies the funtion hek-std-ontexts. This funtion returns

the indies Z

1

k

of P

1

and Z

2

k

of P

2

after heking that those indies are orret for the

standard ontexts of P

1

and P

2

. The standard invariants from standard ontexts k

1

and k

2

an be used in the simulation ontext k.

The SimVCG next reates symboli environments e

1=2

for proedures P

1=2

2 Q

1=2

.

These environments map loal variables I

l

of their respetive proedures to logi

expressions lo

1=2

(I

l

) and global variables I

g

of their respetive programs to logi

expressions glob

1=2

(I

g

). The SimVCG next reates the initial symboli states s

0

1

and

s

0

2

for the two proedures using the following algorithm:

� �rst reate s

0

1

that maps all variables from vars(P

1

) to fresh logi variables and

put those logi variables in x

�

;

� then reate s

0

2

that maps all variables from vars(P

2

)� loals(P

2

) to the following

logi variables:

{ if variable I

2

appears in some pair H

1

(I

1

),H

2

(I

2

) in var-pairs(J

in

k

), map

H

2

(I

2

) in s

0

2

to the logi variable that H

1

(I

1

) is mapped to in s

0

1

, and

{ if variable I

2

does not appear in any pair in var-pairs(J

in

k

), map H

2

(I

2

) in

s

0

2

to a fresh logi variable, and add that logi variable to x

�

;

15

A label renaming is also performed to make all the labels unique.

67

P

1

� pro I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants (J

in

J

out

S

�

K

�

Z

1

Z

2

G

�

A

�

)

�

F

v

k;P

1

;Q

1

;P

2

;Q

2

=

let hP

0

1

; P

0

2

i be merge-sim-invariants(S

�

k

; P

1

; P

2

) in

let t

0

be ation-tree(A

�

k

; P

0

1

; P

0

2

) in

let hk

1

; k

2

i be hek-std-ontexts(P

1

; Z

1

k

; P

2

; Z

2

k

) in

let he

1

; e

2

i be sim-sym-environments(P

1

; Q

1

; P

2

; Q

2

) in

let hs

0

1

; s

0

2

; x

�

i be initial-sim-sym-states(e

1

; e

2

; J

in

k

; P

2

; G

�

k

) in

letre Sim be �L

1

s

1

L

2

s

2

i t:

mathing root(t)

� exeute

1

[℄

mathing P

0

1

(L

1

)

� L

1

:I=E [℄

let s

0

be translate-assign(I; E; s

1

; e

1

) in

Sim(L

1

+

P

0

1

1; s

0

; L

2

; s

2

; i; left(t))

� L

1

:br(E)L

0

[℄

let G be translate-branh(E; s

1

; e

1

) in

(G) Sim(L

0

; s

1

; L

2

; s

2

; i; left(t))) ^

(:G) Sim(L

1

+

P

0

1

1; s

1

; L

2

; s

2

; i; right(t)))

endmathing

� exeute

2

B [℄

mathing P

0

2

(L

2

)

� L

2

:I=E [℄

let s

0

be translate-assign(I; E; s

2

; e

2

) in

Sim(L

2

; s

1

; L

2

+

P

0

2

1; s

0

; i; left(t))

� L

2

:br(E)L

0

[℄

let G be translate-branh(E; s

2

; e

2

) in

if B � true then

G ^ Sim(L

1

; s

1

; L

0

; s

2

; i; left(t))

else

:G ^ Sim(L

1

; s

1

; L

2

+

P

0

2

1; s

2

; i; left(t))

�

� L

2

:sim-inv J,L

1

[℄

Sim(L

1

; s

1

; L

2

+

P

0

2

1; s

2

; i; left(t))

endmathing

� : : : ontinued in Figure 4-12

endmathing in

8x

�

: subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(start-label(P

0

1

); s

0

1

; start-label(P

0

2

); s

0

2

; fg; t

0

) ^

subst(in-ontext(P

1

; k

1

); s

0

1

) ^ subst(in-ontext(P

2

; k

2

); s

0

2

)

Figure 4-11: Simulation Veri�ation-Condition Generator, Part 1

68

letre Sim be �L

1

s

1

L

2

s

2

i t:

mathing root(t)

� : : : ontinued from Figure 4-11

� stop [℄

false

� split F [℄

let F

0

be subst(F; s

1

) in

(F

0

) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))) ^

(:F

0

) Sim(L

1

; s

1

; L

2

; s

2

; i; right(t)))

� use-analysis

1

[℄

subst(std-invariant(P

1

; k

1

; L

1

); s

1

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))

� use-analysis

2

[℄

subst(std-invariant(P

2

; k

2

; L

2

); s

2

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))

� exeute-both [℄

mathing P

0

2

(L

2

)

� L

2

:ret [℄

subst-sim(J

out

k

; s

1

; s

2

)

� L

2

:I

2

(E

�

2

) [℄

let G

�

2

be translate-all(E

�

2

; s

2

; e

2

) in

mathing P

0

1

(L

1

)

� L

1

:I

1

(E

�

1

) [℄

let G

�

1

be translate-all(E

�

1

; s

1

; e

1

) in

let k

0

be sim-ontext-index(L

1

; L

2

; K

�

k

) in

let hJ

in

; J

out

i be sim-ontext(I

1

; I

2

; k

0

) in

let hs

0

1

; s

0

2

; x

�

i be fresh-sim-globals(s

1

; s

2

; J

out

) in

subst-sim(J

in

; set-params(I

1

; G

�

1

; s

1

);

set-params(I

2

; G

�

2

; s

2

)) ^

8x

�

: subst-sim(J

out

; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))

endmathing

� L

2

:sim-inv J,L

1

[℄

if member-�rst(hL

1

; L

2

i; i) then

subst-sim(J; s

1

; s

2

)

else

let hs

0

1

; s

0

2

; x

�

i be fresh-sim-sym-states(s

1

; s

2

; J) in

subst-sim(J; s

1

; s

2

) ^

8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

;

union(hhL

1

; L

2

i; hs

1

; s

2

i; left(t)i; i); left(t))

�

endmathing

endmathing in

Figure 4-12: Simulation Veri�ation-Condition Generator, Part 2

69

� �nally map the loal variables of P

2

in s

0

2

to the logi expressions obtained by

substituting the program variables appearing in G

�

k

with the appropriate logi

variables from s

0

1

and s

0

2

.

The sequene of all fresh logi variables is in x

�

, and F

v

k;P

1

;Q

1

;P

2

;Q

2

is universally

quanti�ed over all those variables.

The algorithm for the SimVCG uses the funtion subst-sim to perform substi-

tutions. For a formula J � F,(H

1

(I

1

),H

2

(I

2

))

�

and symboli states s

1

and s

2

,

subst-sim(J; s

1

; s

2

) does the following:

� substitute all program variables in formula F using the mappings s

1=2

; all the

result F

0

� subst(subst(F; s

1

); s

2

), and

� for all pairs H

1

(I

1

),H

2

(I

2

) from var-pairs(J), hek if the logi expressions

G

1=2

to whih s

1=2

map H

1=2

(I

1=2

) are syntatially idential, and:

{ if the expressions are idential, do not add anything to F

0

for this pair; or

{ if the expressions are not idential, add G

1

= G

2

as a onjunt to F

0

, and

� �nally return the whole onjuntion F

0

.

This way the SimVCG performs several rules from the logi, most notably the on-

gruene rule for equality, whih results in a muh shorter SimVC.

Simulation Veri�ation-Condition Generator Main Funtion

The funtion Sim performs the symboli exeutions of proedures P

0

1

and P

0

2

. This

funtion takes six arguments: the label L

1

of the urrent node to exeute in P

0

1

, the

symboli state s

1

of P

0

1

, the label L

2

of the urrent node to exeute in P

0

2

, the symboli

state s

2

of P

0

2

, the set i of already (symbolially) exeuted simulation invariants, and

the ation tree t.

The exeutions start from the �rst nodes of proedures P

1

and P

2

with the reated

initial symboli states, the empty set of invariants, and t

0

obtained from A

�

k

. The

exeutions generate a part of F

v

k;P

1

;Q

1

;P

2

;Q

2

that aptures the orretness of all simu-

lation invariants and the simulation output ontext of ontext k. Sine the invariants

and the output ontext are required to be orret only for the appropriate input on-

text, the whole F

v

k;P

1

;Q

1

;P

2

;Q

2

is an impliation|the input ontext, substituted in the

initial states

16

, implies the result of the exeutions starting from the initial states.

Additionally, we require the simulation input ontext to imply the input ontexts for

standard ontexts k

1

for P

1

and k

2

for P

2

.

We next desribe how Sim uses the ation tree t. At eah step, Sim performs the

ation from the root of the ation tree. We write root(t) for the ation from the root.

At the branh nodes in P

0

1

, Sim splits the exeution into two paths. That is where

16

The input ontext J

in

k

is substituted in s

0

1

and s

0

2

using the funtion subst-sim. For the initial

states, all pairs of variables that appear in J

in

k

have the same value, and their equality is not added

to F

v

k;P

1

;Q

1

;P

2

;Q

2

, but it is still represented within the symboli states.

70

Sim uses the subtrees of the ation tree to ontinue the exeutions of the two paths.

We write left(t) and right(t) for the left and right subtree, respetively. For most

other ations, Sim does not require t to be a tree, but only a list. In those ases, Sim

ontinues the exeution with all the ations but the root. We also write left(t) for

that list of ations. All the funtions that operate on a tree t generate an error if t

does not have the appropriate form.

17

Finally, we desribe how Sim performs eah group of ations from the root of the

ation tree t.

A1. The ation exeute

1

exeutes the urrent node in P

0

1

. This ation an be used

only when the urrent node is an assignment node or a onditional branh node.

(Otherwise, mathing fails and the SimVCG signals an error.) The SimVCG

exeutes assignment and branh nodes similarly as the StdVCG does.

A1.1. The exeution of an assignment node hanges the state s

1

and the exeution

ontinues from the next node in P

0

1

.

A1.2. The exeution of a branh node splits the exeution of P

0

1

into two branhes

and eah of them generates an impliation with the appropriate ondition.

These onditions represent formulas that hold when the partiular branh

is taken.

A2. The ation exeute

2

exeutes the urrent node in P

0

2

. This ation an be used

when the urrent node in P

0

2

is an assignment node, a onditional branh node,

or a half of a simulation invariant.

A2.1. The exeution of an assignment node hanges the state s

2

and proeeds

from the next node in P

0

2

, analogously as the exeution for exeute

1

.

A2.2. The exeution of a branh node in P

0

2

is di�erent than the exeution in P

0

1

.

Sine the simulation ondition requires for all paths in P

0

1

that there exist

a orresponding path in P

0

2

, only one branh is taken in P

0

2

. The ation

represents with B the branh that the SimVCG should take. Further, the

branh onditions of P

0

1

are used as assumptions in the SimVC, whereas

the branh onditions of P

0

2

are used as onlusions|the ompiler needs

to prove, when P

0

1

takes some branhes, that P

0

2

indeed takes the branhes

that the ompiler laims P

0

2

takes.

A2.3. The exeution of half of a simulation invariant only moves past the invari-

ant. This is sound beause the exeution of P

0

2

has to reah any half of a

simulation invariant in P

0

2

(orresponding to the half in P

0

1

); it need not be

the �rst half that the exeution gets to.

17

We use ation trees only tehnially to prove that the SimVCG is sound. In pratie, the

SimVCG uses a mutable list l that is initialized to A

�

k

. At eah step, instead of root(t), the SimVCG

applies head!(l) that returns the head of the list and sets the list to the tail. If the list is empty,

head!() generates an error; the SimVCG always terminates beause the list is �nite.

71

A3. The ation stop an be used at any point; it generates false as a part of

SimVC that needs to be proven and �nishes the exeution. In general, false

an be proven only if it is implied by false. Therefore, the ompiler uses this

ation only when it knows that the path taken by the symboli exeution of P

0

1

is not possible during the onrete exeution of P

1

. For example, the path that

branhes from L

1

:br(FALSE)L

0

to L

0

during the symboli exeution is atually

never taken. (The ompiler usually does not need to use stop to prove that the

transformed program simulates original program. However, if we also required

the other simulation diretion, the ompiler would have to use stop when the

ompiler, for example, eliminated a branh that annot be taken.)

A4. The ation split an also be used at any point. The ompiler uses split F to

instrut the SimVCG to split the exeution of P

0

1

into two paths, although there

are no onditional branh nodes. (The SimVCG otherwise splits the exeution

of P

0

1

only at onditional branh nodes.) Both paths ontinue from the next

node, but one of them has the ondition F and the other has the negation

of F (with proper substitutions). For example, the ompiler uses this to prove

that L

1

:z=x*y;L: simulates L

2

:br(y==0)L

0

;z=x*y;br(TRUE)L;L

0

:z=0;L:: If

x and y are the same in both programs before these sequenes, then z is the

same after the sequenes. The ompiler would use split lo

1

(y) = 0 to reate

two paths of exeution of P

0

1

, eah of whih implies the orresponding path in

the longer program sequene P

0

2

. (The ompiler uses split, in general, when it

merges two branhes into one.)

A5. The ations use-analysis

1

and use-analysis

2

inlude the results of ompiler

analyses of proedures P

1

and P

2

in the SimVC. This an be done at any point

at whih there is a standard invariant in ontext k

1

(for P

1

) or k

2

(for P

2

).

(Note that the program variables in the standard invariants are represented

with H onstrutors without indies, whereas states s

1

and s

2

map variables

with indies. Therefore, to be preise, we should replae H

1=2

for H in the

invariants before the substitution.)

A6. The ation exeute-both simultaneously exeutes a node from eah proedure.

The two nodes an be both return nodes, both all nodes, or both halves of some

simulation invariant.

A6.1. If both nodes are return nodes, the SimVCG adds to the SimVC the sim-

ulation output ontext substituted into the urrent symboli states of the

two proedures.

A6.2. If both nodes are all nodes, the proess is more involved, but similar

to the generation of the StdVC. The SimVCG �rst reates G

�

1

and G

�

2

that symbolially represent the atual parameters of allees at the all

sites. These expressions will be replaed for the formal parameters in the

simulation input ontext of the two allees. The SimVCG next deides,

based on the sequene K

�

k

, whih simulation ontext k

0

to use for these

all nodes. Next, the SimVCG generates a part of SimVC that requires

72

the simulation input ontext J

in

for ontext k

0

of I

1

and I

2

to hold for

these alls. The funtion set-params extends the mappings s

1=2

with the

mappings from the formal parameters of proedures I

1=2

to expressions

G

�

1=2

.

Callees an arbitrarily hange the global variables of the programs. There-

fore, the SimVCG reates new states s

0

1

and s

0

2

to represent the states of the

programs after the alls. This is done using the funtion fresh-sim-sym-states,

whih �rst maps all global variables from s

1

to fresh logi variables, and

then, based on the pairs of variables in J

out

, maps global variables from

s

2

to either the appropriate logi variables in s

1

or to fresh logi variables.

The sequene of all the introdued logi variables is returned in x

�

. All

the loal variables in s

1

and s

2

remain the same as they were before the

all. Finally, the SimVCG generates a part of the SimVC that requires the

simulation output ontext J

out

for ontext k

0

of proedures I

1=2

to hold in

states s

0

1=2

, and the symboli exeution ontinues from the nodes after the

all nodes.

Observe that the part of the SimVC generated for all nodes requires only

that the simulation input ontext k

0

for proedures I

1=2

hold. That simu-

lation ontext is valid only for some standard ontexts for I

1=2

. However,

the SimVC does not expliitly require those standard ontexts to hold at

every all site. Instead, the SimVC requires the simulation input ontext

to imply the standard ontexts in whih the simulation ontext is valid.

This is inluded in the SimVC only one for eah simulation ontext, as

shown at the bottom of Figure 4-11. Similarly, the SimVC for all nodes

does not inlude the output ontexts of the standard ontexts, but those

relationships are represented in the simulation output ontext.

A6.3. If both nodes are halves of a simulation invariant, the exeution depends

on whether the invariant has been already exeuted during this branh of

the exeution.

A6.3.1. If the pair of labels hL

1

; L

2

i is in i (more preisely, in the �rst ompo-

nent of one of the triples in i), the simulation invariant has been al-

ready exeuted. The SimVCG substitutes the urrent symboli states

s

1

and s

2

in the invariant formula J . The resulting formula is gener-

ated as the part of SimVC that needs to be proven, and the exeutions

of these paths �nish.

A6.3.2. If the pair of labels hL

1

; L

2

i is not in i, then the simulation invariant

is reahed for the �rst time. The SimVCG similarly substitutes the

urrent symboli states in the invariant and generates the resulting

formula as the part of SimVC that needs to be proven. The exeu-

tions do not �nish, though, but move past the invariant halves in P

0

1

(the node L

1

:sim-inv) and P

0

2

(the node L

2

:sim-inv J,L

1

). The ex-

eutions ontinue with fresh symboli states s

0

1=2

, reated with respet

to J , and the triple hhL

1

; L

2

i; hs

0

1

; s

0

2

i; ti added to the set of exeuted

invariants. (For this SimVCG, i an be a set of label pairs hL

1

; L

2

i

73

only; we add the states and the ation tree tehnially to prove the

soundness of the SimVCG.) The rest of the exeutions an assume

that the invariant holds in states s

0

1=2

.

74

Chapter 5

Soundness Proofs

In this hapter we prove the soundness of the standard veri�ation-ondition generator

(StdVCG) and the simulation veri�ation-ondition generator (SimVCG) presented

in Chapter 4. The StdVCG generates a standard veri�ation ondition (StdVC) for a

program Q and a set of standard ontexts for Q; the StdVCG is sound if the validity

of the StdVC implies that those ontexts indeed hold for program Q. The SimVCG

generates a simulation veri�ation ondition (SimVC) for a pair of programs Q

1

and

Q

2

and a set of simulation ontexts for those programs; the SimVCG is sound if the

validity of the SimVC implies that Q

1

simulates Q

2

. Our proof of the soundness of the

StdVCG follows a proof by Neula [35, Appendix A℄, and our proof of the soundness

of the SimVCG ombines the tehniques from the proof by Neula and a proof by

Rinard [41℄.

Before presenting the soundness proofs, we introdue some additional notation and

present lemmas that we will use in the proofs. For the brevity of the presentation, we

will onsider logi expressions without the onstrutors H. Eah program variable I is

represented in logi expressions simply by its name I. We assume that loal and global

variables have di�erent names. Symboli exeution of a proedure P uses a symboli

state s that maps all program variables from P to logi expressions. We represent

a symboli state as fI

�

7! G

�

g; usually, the logi expressions are just logi variables

and s = fI

�

7! x

�

g. The notation with sequenes represents a mapping between

orresponding elements: s = fI

(1)

7! x

(1)

; : : : ; I

(n)

7! x

(n)

g, where x

(n)

denotes the

n-th element of sequene x

�

. We denote by subst(F; s) the logi formula obtained

by substituting the logi expressions from s for the appropriate program variables in

formula F . For a variable I that ours in s, we write s(I) for the logial expression

orresponding to I.

In the ourse of the proofs, we show properties of partial exeutions of proedures.

Reall that hP

0

; m

0

; ai

+

9 9 KhL;m; ai represents a partial exeution of an ativation of

proedure P , and we therefore use the abbreviated form hL;m; ai of on�gurations

hL;m; a; p; h; P i. We refer to the exeution of BL programs on a mahine with on�g-

urations hL;m; ai (hL;m; a; p; h; P i) as the onrete exeution, to distinguish it from

the symboli exeution. The onrete exeution operates on the onrete state, whih

onsists of the memory m and the environment a, whereas the symboli exeution

operates on the symboli state s.

75

Eah symboli state s orresponds to a set of the onrete states m; a. A sym-

boli state s = fI

�

7! G

�

g maps program variables to logi expressions, whereas

an environment a maps the variables to the addresses, and a memory m maps the

addresses to the onrete values from the Value domain so that m(a(I)) = Z. The

logi expressions G

�

in the symboli state s inlude logi variables. Let all those vari-

ables be from a set/sequene x

�

. In the proofs, we use substitutions that map logi

variables to integer values. We represent a substitution that maps the logi variables

x

�

to some onrete values Z

�

as fx

�

7! Z

�

g; eah suh substitution spei�es one

partiular mapping from s to m; a.

We use the meta-variable � to represent substitutions. We denote by �

0

[fx

�

7!

Z

�

g the union of a substitution �

0

(whih does not map any variable from some x

�

) and

a mapping from x

�

to Z

�

. We denote with �(F) the formula obtained by substituting

the integer values from � for the appropriate logi variables in F . We usually apply a

substitution � for logi variables after substituting the program variables in a formula

F with the logi expressions from a symboli state s: �(subst(F; s)). We say that a

symboli state s and a onrete state m; a oinide (with respet to a substitution �)

for some variables I

�

if j= �(s(I)) = m(a(I)) for all variables I from I

�

.

We use several lemmas to prove the main soundness theorems. The �rst two

lemmas (for one program or for two programs) assert that if the symboli states

oinide with the onrete states for all program variables in a formula, then the

formula is valid in the symboli states if and only if it is valid in the onrete states.

(We break eah equivalene into two impliations for easier referral later in the text.)

We omit the details of the proofs of the lemmas.

Lemma 1 (Standard Congruene) Let P be any proedure and F be any formula with

program variables from I

�

� vars(P). Let m and a be any memory and environment

for P . Let the symboli state be s � fI

�

7! G

�

g, and let x

�

be all logi variables that

our in G

�

. If a substitution � � fx

�

7! Z

�

g is suh that j= �(s(I)) = m(a(I)) for

all I that our in F , then:

if m; a j= F , then j= �(subst(F; s)) (5.1)

and

if j= �(subst(F; s)), then m; a j= F : (5.2)

Proof: Strutural indution on the formula F (atually the formula subst(F; s)).

Lemma 2 (Simulation Congruene) Let P

1

and P

2

be any pair of proedures and J

be any formula with program variables from I

�

1

� vars(P

1

) and I

�

2

� vars(P

2

). Let

m

1=2

and a

1=2

be any memory and environment for P

1=2

. Let the symboli states be

s

1=2

� fI

�

1=2

7! G

�

1=2

g, and let x

�

be all logi variables that our in G

�

1

or G

�

2

. If a

substitution � � fx

�

7! Z

�

g is suh that j= � (s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

that our in J , then:

if m

1

; a

1

; m

2

; a

2

j= J , then j= �(subst-sim(J; s

1

; s

2

)) (5.3)

and

if j= �(subst-sim(J; s

1

; s

2

)), then m

1

; a

1

; m

2

; a

2

j= J: (5.4)

76

Proof: Strutural indution on the formula J (atually subst-sim(J; s

1

; s

2

)).

The next three lemmas (for assignment, branh, and all nodes) assert that the

translation funtions for program expressions (Figure 4-5) are orret with respet to

expression evaluation (Figure 4-2). The proofs of all three lemmas are by strutural

indution on the partiular expressions. We omit the details of these proofs.

Lemma 3 (Assignment Translation) Let P be any proedure and E be any expression

that an our in an assignment node in that proedure. Let e and s be, respetively,

the symboli environment and a symboli state for a symboli exeution of P . Let

a and m be, respetively, an environment and a memory for a onrete exeution of

P . If a substitution � is suh that j= � (s(I)) = m(a(I)) for all I 2 vars(P), then

j= �(subst(translate(E; e); s)) = m(a(E)).

Proof: Strutural indution on the expression E.

Lemma 4 (Branh Translation) Let P be any proedure and E be any expression

that an our in a branh node in that proedure. Let e and s be, respetively, the

symboli environment and a symboli state for a symboli exeution of P . Let a and

m be, respetively, an environment and a memory for a onrete exeution of P . If a

substitution � is suh that j= �(s(I)) = m(a(I)) for all I 2 vars(P), then m(a(E)) 6� 0

if and only if j= �(translate-branh(E; s; e)).

Proof: Strutural indution on the expression E.

Lemma 5 (Call Translation) Let P be any proedure and E

�

be any sequene of

expressions that an our in a all node in that proedure. Let e and s be, respetively,

the symboli environment and a symboli state for a symboli exeution of P . Let

a and m be, respetively, an environment and a memory for a onrete exeution

of P . If a substitution � is suh that j= � (s(I)) = m(a(I)) for all I 2 vars(P),

then j= �(G

(n)

) = m(a(E

(n)

)) for eah E

(n)

from the sequene E

�

and the respetive

expression G

(n)

from the sequene G

�

= translate-all(E

�

; s; e).

Proof: Indution on the length of the sequene E

�

and appliation of Lemma 3 for

eah of those expressions.

5.1 Soundness of Standard Veri�ation-Condition

Generator

In this setion we prove that the standard veri�ation-ondition generator (presented

in Setion 4.3) is sound: for every program Q and every set of standard ontexts

(invariants) for Q, if the standard veri�ation ondition for that program and those

ontexts is valid, then those standard ontexts indeed hold for that program; in nota-

tion: if j= F

v

Q

, then j= std-invs(Q). By the de�nition (page 58), j= std-invs(Q)

if j= std-invs(P;Q) for all proedures P 2 Q. Further, j= std-invs(P;Q) if

j= std-invs(k; P;Q) for all standard ontexts k of P . We therefore prove the stan-

dard soundness theorem as follows.

77

Theorem 1 (Standard Soundness) If j= F

v

Q

, then j= std-invs(k; P;Q) for all on-

texts k of all proedures P 2 Q.

Proof: Pik any proedure P 2 Q and any ontext k of P :

P � pro I(I

�

) D

�

fN

+

g

std-invariants (F

in

F

out

T

�

K

�

)

�

:

Sine j= F

v

Q

and F

v

Q

=

V

P2Q

F

v

P;Q

, by the de�nition of onjuntion (Figure 4-8),

we get j= F

v

P;Q

. Further, F

v

P;Q

=

V

k2f1:::ng

F

v

k;P;Q

, for ontexts(P) = f1 : : : ng, and

therefore j= F

v

k;P;Q

, i.e., the standard veri�ation ondition for the ontext k of P

holds. From the algorithm for F

v

k;P;Q

and Std (Figure 4-9), we have:

j= 8x

�

: subst(F

in

k

; s

0

)) Std(start-label(P

0

); s

0

; fg); (5.5)

where s

0

= fI

�

7! x

�

g for all I 2 vars(P) and s

0

is the starting symboli state for the

symboli exeution of P

0

= merge-invariants(k; P). The symboli exeution uses a

symboli environment e that maps program variables to logi expressions representing

those variables.

We need to show that for all partial exeutions hP

0

; m

0

; ai

+

9 9 KhL;m; ai of P for

whih m

0

; a j= F

in

k

, the following is satis�ed:

� for all L

0

:inv F from T

�

k

, if L � L

0

, then m; a j= F ; and

� for all L

0

:ret from P , if L � L

0

, then m; a j= F

out

k

.

The proof is by indution on the length of the partial exeution of P . We prove the

indution using an indution hypothesis that we all the standard indution hypoth-

esis (StdIH). The StdIH relates a on�guration hL;m; ai of the onrete exeution of

P to the parameters of the symboli exeution Std(L

0

; s; i) of P

0

. We �rst informally

desribe a relationship between eah program point L of the onrete exeution and

a orresponding program point L

0

of the symboli exeution. We then formally state

the StdIH and prove the base ase and the indution step. The proof proeeds by

an indution on the struture of the symboli exeution of P

0

orresponding to the

onrete exeution of P .

The orrespondene between the symboli exeution of P

0

and the onrete exeu-

tion of P is as follows. Eah node (with label) L

0

from P

0

has a unique orresponding

node (with label) L from P . The nodes in P

0

are obtained by adding the standard

invariants to the nodes from P . Eah node from P

0

that is not an invariant orre-

sponds to the appropriate original node from P . Eah standard invariant L:inv F

from T

�

k

is added to P

0

in front of the node with label L, with a proper label renam-

ing. We say that an invariant L:inv F orresponds to the node with label L from

P . (The merging of the invariants only adds new nodes, and the program variables

do not hange: vars(P) = vars(P

0

).) Conversely, eah node from P has one or more

orresponding nodes from P

0

: the opy of the original node and, in general, a set of

invariant nodes

1

that preede the opy of the original node. Therefore, eah onrete

1

In pratie, there is at most one standard invariant for any node.

78

exeution of a node from P has a orresponding sequene in the symboli exeution

of P

0

|this sequene onsists of the symboli exeution of the orresponding nodes

from P

0

.

5.1.1 Standard Indution Hypothesis

The standard indution hypothesis (StdIH) relates a on�guration hL;m; ai of the

partial exeution hP

0

; m

0

; ai

+

9 9 K hL;m; ai of proedure P to the parameters of the

symboli exeution Std(L

0

; s; i) of P

0

started with the symboli state s

0

. Formally,

the StdIH is a relation with ten arguments StdIH(L;m; a; L

0

; s; i; �; P;m

0

; s

0

), where

� is a mapping from logi variables to values. We will abbreviate the StdIH to seven

arguments StdIH(L;m; a; L

0

; s; i; �), beause the proedure and the starting states do

not hange for a �xed proedure ativation. We de�ne that the StdIH holds if the

following is satis�ed:

StdIH1. the standard veri�ation ondition is valid: j= �(Std(L

0

; s; i)), and

StdIH2. the symboli state and the onrete state oinide for all I 2 vars(P): j=

� (s(I)) = m(a(I)), and

StdIH3. the substitution � is orret with respet to i: either

StdIH3.1. i = fg and for the initial symboli state s

0

= fI

�

7! x

�

g:

StdIH3.1.1. all logi variables are in the substitution, i.e., � � fx

�

7! Z

�

g, and

StdIH3.1.2. j= �(s

0

(I)) = m

0

(a(I)) for all I 2 vars(P); or

StdIH3.2. i = i

1

[fhL

00

; s

0

ig, where s

0

= fI

�

7! x

�

g for some x

�

, and

StdIH3.2.1. P

0

(L

00

) � L

00

:inv F , and

StdIH3.2.2. � = �

1

[fx

�

7! Z

�

g, and

StdIH3.2.3. x

�

are fresh variables, i.e., for all x from x

�

, x 62 �

1

[i

1

, and

StdIH3.2.4. j= �

1

(8x

�

: subst(F; s

0

)) Std(L

00

+

P

0

1; s

0

; i)), and

StdIH3.2.5. �

1

is orret with respet to i

1

, as de�ned by StdIH3.

We now prove that for all hL;m; ai in hP

0

; m

0

; ai

+

9 9 K hL;m; ai of P , where

m

0

; a j= F

in

k

, and for all L

0

2 P

0

orresponding to L 2 P , there exist a symboli

state s, a set of symbolially exeuted invariants i, and a substitution � suh that

StdIH(L;m; a; L

0

; s; i; �) holds. We also show that this implies that the standard

invariants and the output ontext of the ontext k hold:

� if P

0

(L

0

) � L

0

:inv F , then m; a j= F ; and

� if P

0

(L

0

) � L

0

:ret, then m; a j= F

out

k

.

79

5.1.2 Standard Base Case

The initial on�guration for the onrete exeution of P is hP

0

; m

0

; ai, where m

0

; a j=

F

in

k

. The symboli exeution starts with L

0

� start-label(P

0

), s = s

0

= fI

�

7! x

�

g,

where x

�

are fresh variables, and i = fg. We need to show that there exists a substi-

tution � suh that StdIH(P

0

; m

0

; a; L

0

; s

0

; fg; �) holds. Let � =

S

fs(I) 7! m

0

(a(I))g,

where

S

ranges over all I 2 vars(P), i.e., � = fx

�

7! m

0

(a(I

�

))g. This hoie imme-

diately implies StdIH2 and StdIH3 (part StdIH3.1). We next prove that StdIH1 also

holds.

From 5.5, we have j= 8x

�

: subst(F

in

k

; s

0

)) Std(L

0

; s

0

; fg). Using the de�nition of

universal quanti�ation (Figure 4-8), we obtain j= � (subst(F

in

k

; s

0

)) Std(L

0

; s

0

; fg)).

By the de�nition of impliation, this simpli�es to: if j= � (subst(F

in

k

; s

0

)), then

j= � (Std(L

0

; s

0

; fg)). Sine StdIH2 holds, we an apply the Standard Congruene

Lemma, impliation 5.1, and from m

0

; a j= F

in

k

, we have j= � (subst(F

in

k

; s

0

)). There-

fore, j= � (Std(L

0

; s

0

; fg)), i.e., j= � (Std(L

0

; s; i)), whih is StdIH1.

5.1.3 Standard Indution Step

The onrete exeution of the node at label L in P has a orresponding sequene in

the symboli exeution of P

0

. The node at L

0

in P

0

orresponds to the node at L

in P . We do a ase analysis of the last node, at L

0

, exeuted during the symboli

exeution of P

0

. We show that if the StdIH holds before the last node is exeuted,

then the StdIH also holds after the node is exeuted.

N1. The last node is an assignment node: P

0

(L

0

) � L

0

:I=E. Before this node

is exeuted, from the indution hypothesis, there exist s, i, and � suh that

StdIH(L;m; a; L

0

; s; i; �) holds. When the node is exeuted, the onrete exe-

ution makes a transition hL;m; ai ! hL +

P

1; m

0

; ai, where m

0

= m[a(I) 7!

m(a(E))℄. The symboli exeution ontinues at the next node Std(L

0

+

P

0

1; s

0

; i)

with the new symboli state s

0

= s[I 7! subst(translate(E; e); s)℄. We need to

show that StdIH holds in the new states. We use the same substitution � to

prove that StdIH(L+

P

1; m

0

; a; L

0

+

P

0

1; s

0

; i; �) holds.

StdIH3 holds in the new states beause StdIH3 holds in the previous states,

and � and i do not hange. That StdIH1 holds in the new states, namely

j= � (Std(L

0

+

P

0

1; s

0

; i)), is also easy to prove: it follows from StdIH1 of the

indution hypothesis, namely j= �(Std(L

0

; s; i)), beause � does not hange

and the symboli exeutions before and after the assignment node generate

the same veri�ation ondition. To prove StdIH2 in the new states, namely

j= � (s

0

(I

0

)) = m

0

(a(I

0

)) for all I

0

2 vars(P), we analyze two ases.

First, for all variables I

0

di�erent than I, the symboli state and the memory

do not hange, i.e., for all I

0

6� I, s

0

(I

0

) � s(I) and m

0

(a(I

0

)) � m(a(I)).

Therefore, for those variables, j= �(s

0

(I

0

)) = m

0

(a(I

0

)) follows from StdIH2 of

the indution hypothesis. Seond, for I

0

� I, to show j= �(s

0

(I

0

)) = m

0

(a(I

0

)),

we need to show j= � (subst(translate(E; e); s)) = m(a(E)). The equality holds

by Lemma 3 beause j= �(s(I)) = m(a(I)) for all I 2 vars(P), by StdIH2 of

80

the indution hypothesis. Therefore, StdIH2 also holds in the new states for all

variables.

N2. The last node is a onditional branh node: P

0

(L

0

) � L

0

:br(E)L

00

. There

are two paths from this node, and the onrete exeution takes only one of

them depending on the value of the branh ondition. However, the symboli

exeution takes both paths, and from StdIH1 of the indution hypothesis, we

have:

j= �((G) Std(L

00

; s; i)) ^ (:G) Std(L

0

+

P

0

1; s; i))); (5.6)

where G = translate-branh(E; s; e).

We next show that StdIH holds after the branh node when the branh is

taken during the onrete exeution; the ase when the branh is not taken is

analogous. The branh is taken, and the onrete exeution makes a transition

hL;m; ai ! hL

00

; m; ai, ifm(a(E)) 6� 0. We use the same substitution � from the

indution hypothesis to show that StdIH holds after the branh is taken. Sine

m(a(E)) 6� 0 and, by StdIH2 of the indution hypothesis, j= �(s(I)) = m(a(I))

for all I 2 vars(P), we have, by Lemma 4, j= � (G).

From 5.6 and the de�nition of onjuntion (Figure 4-8), we obtain that both

j= � (G) Std(L

00

; s; i)) and j= � (:G) Std(L

0

+

P

0

1; s; i)). From the former we

further obtain: if j= �(G), then j= �(Std(L

00

; s; i)). Therefore, when the branh

is taken, then j= �(Std(L

00

; s; i)) whih is StdIH1 in the new states. StdIH2 and

StdIH3 in the new states trivially follow from the indution hypothesis beause

m, s, i, and � remain the same.

N3. The last node is a return node: P

0

(L

0

) � L

0

:ret. It is the �nal node in the

onrete exeution of a proedure ativation, and therefore we do not show that

StdIH holds after the return node. We still need to show that the standard

output ontext holds at the return node. From StdIH1 of the indution hy-

pothesis, there exists � suh that j= �(Std(L

0

; s; i)), i.e., j= � (subst(F

out

k

; s)).

Sine StdIH2 of the indution hypothesis holds, by the Congruene Lemma 5.2,

we obtain m; a j= F

out

k

.

N4. The last node is a proedure all node: P

0

(L

0

) � L

0

:I(E

�

). Let the allee

proedure be P

00

� pro I(I

�

) D

�

fN

+

g. The onrete exeution makes a

transition to the �rst node of P

00

, alloating memory for the parameters and

loal variables of P

00

:

hm

in

; a

in

; p

in

i = allo-loals(allo-params(hm; a; pi; I

�

; m(a(E

�

))); D

�

):

When and if the exeution of P

00

returns, the onrete exeution ontinues

from hP (L+

P

1); m

0

; ai, where m

0

is the memory after the all. For all non-

global variables of P , the values remain the same: m

0

(a(I)) = m(a(I)) for all

I 2 loals(P) [params(P).

The symboli exeution ontinues, after the return node, with the new symboli

state s

0

= s[I

�

7! x

�

℄ for all I

�

2 globals(P), where x

�

are fresh logi variables.

81

From StdIH1 of the indution hypothesis, there is a substitution � suh that:

j= � (subst(F

in

; set-params(I; G

�

; s))) (5.7)

and

j= � (8x

�

: subst(F

out

; s

0

)) Std(L

0

+

P

0

1; s

0

; i)); (5.8)

where G

�

= translate-all(E

�

; s; e), and hF

in

; F

out

i is one of the ontexts of

proedure P

00

. We use s

in

to denote the symboli state for the formula F

in

:

s

in

= set-params(I; G

�

; s) = s[I

�

7! G

�

℄ for parameters I

�

of proedure I=P

00

.

We need to show that the StdIH holds after the all. We use the substitution

�

0

= � [fx

�

7! m

0

(a(I

�

))g to show that StdIH(L +

P

1; m

0

; a; L

0

+

P

0

1; s

0

; i; �

0

)

holds.

StdIH3 is easy to prove: from StdIH3 of the indution hypothesis, � is orret

with respet to i. After the symboli exeution of the all node, i remains the

same and � � �

0

. Therefore, �

0

is orret with respet to i. To show StdIH2, we

analyze two ases. First, for all non-global variables I 2 loals(P)[params(P),

the following holds: j= �

0

(s

0

(I)) = �

0

(s(I)) = �(s

0

(I)) = m(a(I)) = m

0

(a(I)).

Seond, for all global variables I 2 globals(P), from the hoie of �

0

immediately

follows: j= �

0

(s

0

(I)) = m

0

(a(I)). Therefore, j= �

0

(s

0

(I)) = m

0

(a(I)) for all

I 2 vars(P). We still need to prove that StdIH1 holds in the new states.

We �rst show that j= � (s

in

(I)) = m

in

(a

in

(I)) for all variables I 2 globals(P

00

)[

params(P

00

) that an our in F

in

. We analyze two ases: I 2 globals(P

00

)

and I 2 params(P

00

). First, for all global variables I, s

in

(I) � s(I) and

m

in

(a

in

(I)) = m(a(I)). From StdIH2 of the indution hypothesis, j= � (s(I)) =

m(a(I)) for all I 2 vars(P). Sine P and P

00

have the same global variables,

j= � (s

in

(I)) = m

in

(a

in

(I)) for all those global variables. Seond, for eah pa-

rameter I

(n)

from the sequene I

�

, s

in

(I

(n)

) � G

(n)

, where G

(n)

is the respetive

expression from the sequene G

�

= translate-all(E

�

; s; e). By Lemma 5, j=

�(G

(n)

) = m(a(E

(n)

)), sine j= �(s(I)) = m(a(I)) for all I 2 vars(P), by StdIH2

of the indution hypothesis. Further, m

in

(a

in

(I

(n)

)) � m(a(E

(n)

)) by the de�-

nition of the allo-params funtion (Setion 4.1.2). Therefore, j= �(s

in

(I

(n)

)) =

m

in

(a

in

(I

(n)

)) for all parameters of P

00

, and thus j= �(s

in

(I)) = m

in

(a

in

(I)) for

all variables I that an our in F

in

.

We next show that m

0

; a j= F

out

. From 5.7, we have j= � (subst(F

in

; s

in

)).

Sine j= �(s

in

(I)) = m

in

(a

in

(I)) for all variables I that an our in F

in

, by

the Congruene Lemma 5.2, we obtain m

in

; a

in

j= F

in

. This means that the

input ontext F

in

holds at the beginning of P

00

. For every ontext k

00

of every

proedure P

00

in Q, if the input ontext holds at the beginning of an ativation

of P

00

, then the output ontext holds at the end of that ativation. (Note that it

appears that we assume the atual statement that we try to establish, namely

j= std-invs(Q). We show later how to orret this apparent error.) Therefore,

m

out

; a

out

j= F

out

, where m

out

is the memory at the end of the ativation of P

00

,

and a

out

= a

in

is the environment for the partiular ativation of P

00

. Memory

m

out

= m

0

beause the onrete exeution of the return node in P

00

does not

82

hange the memory. Additionally, the environments a

in

for P

00

and a for P map

the global variables to the same addresses. Sine F

out

an ontain only global

variables, we have m

0

; a j= F

out

.

Finally, we show that j= �

0

(Std(L

0

+

P

0

1; s

0

; i)). From 5.8 and the hoie

of �

0

, we have j= �

0

(subst(F

out

; s

0

)) Std(L

0

+

P

0

1; s

0

; i)). We have already

proven that StdIH2 holds in the new states: j= �

0

(s

0

(I)) = m

0

(a(I)) for all

I 2 vars(P). From m

0

; a j= F

out

, we obtain, by the Congruene Lemma 5.1,

that j= �

0

(subst(F

out

; s

0

)). Therefore, j= �

0

(Std(L

0

+

P

0

1; s

0

; i)), whih is StdIH1

in the new states. This onludes the proof that the exeution of any all node

preserves the StdIH.

We next show how to orret the apparent error that we used j= std-invs(Q)

to prove j= std-invs(Q). More preisely, while proving j= std-invs(k; P;Q),

we assumed, at all sites in P , that j= std-invs(k

00

; P

00

; Q) for all ontexts

k

00

of all proedures P

00

. If the proedure P is reursive, we annot make suh

an assumption. The orret proof of all nodes requires, besides the indution

on the length of the partial exeution of P , an additional indution on the

height of the proedure all tree. A proedure all tree is a direted tree whose

nodes represent ativations of proedures alled during a (onrete) program

exeution, and whose edges represent all relationships|there is an edge from

one ativation to another if the former alls the latter. The root of the whole all

tree for a program exeution is the initial ativation of the starting proedure of

the program. Eah ativation is also the root of a subtree of alls made starting

from that ativation.

We next desribe only informally how the indution on the height of the pro-

edure all tree would proeed. The indution hypothesis would state that

j= std-invs(k; P;Q) for all ativations (of all ontexts k of all proedures

P) whose subtrees have height n. The base ase onsiders ativations whih

make no alls. (The proof for this ase is by indution on the length of

the partial exeution without all nodes.) The indution step assumes that

j= std-invs(k; P;Q) for all ativations whose subtrees have height at most n,

and derives that j= std-invs(k; P;Q) for all ativations whose subtrees have

height at most n + 1. (The proof for this ase is again by indution on the

length of the partial exeution, and the hypothesis for height at most n is used

for all nodes.) This indution would orret the proof.

Observe that this indution proeeds from the leaves of the tree toward the root.

Therefore, if a tree has �nite height, then learly j= std-invs(k; P;Q) for all a-

tivations. However, even if a tree has in�nite height, still j= std-invs(k; P;Q)

for all ativations. The reason is that we require partial orretness|the out-

put ontexts should hold only if the exeution reahes a return node. When a

subtree of the all tree has in�nite height, it means that the ativation of the

root of that subtree never terminates. Sine the exeution of that ativation

does not reah a return node, any result for the output ontext is allowed. For

example, onsider a parameterless proedure that has only a reursive all to

83

the same proedure and a return node. For this proedure, the ontext with

F

in

� true and F

out

� false holds beause no exeution an reah the return

node. Otherwise, the output ontext false does not hold for any onrete state,

and would not be orret/provable if an exeution ould reah the return node.

N5. The last node is an invariant: P

0

(L

0

) � L

0

:inv F . There are two ases de-

pending on whether the invariant has been already symbolially exeuted or

not:

N5.1. The invariant L

0

:inv F is exeuted for the �rst time, i.e., hL

0

; s

0

i 62 i for

any s

0

. From StdIH1 of the indution hypothesis, there is a substitution �

suh that:

j= � (subst(F; s)) (5.9)

and

j= � (8x

�

: subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i

0

)); (5.10)

where s

0

= fI

�

7! x

�

g is a fresh symboli state with fresh logi variables

x

�

for all I 2 vars(P) and i

0

= hL

0

; s

0

i [i.

From StdIH2 of the indution hypothesis, j= � (s(I)) = m(a(I)) for all

I 2 vars(P). We an therefore apply the Congruene Lemma 5.2, and

from 5.9, we obtain m; a j= F , whih is one of the requirements for j=

std-invs(k; P;Q). We need additionally to show that StdIH holds after

the symboli exeution of the invariant. (There is no onrete exeution of

the invariants|the invariants only orrespond to ertain program points

and desribe the program state at those points.) We use the substitution

�

0

= � [fx

�

7! m

0

(a(I

�

))g to show that StdIH(L;m; a; L

0

+

P

0

1; s

0

; i

0

; �

0

)

holds after the invariant.

StdIH2 is trivial to prove; from the hoie of �

0

: j= �

0

(s

0

(I)) = m(a(I)) for

all I 2 vars(P). Sine StdIH2 holds, and alsom; a j= F , by the Congruene

Lemma 5.1, we have j= �

0

(subst(F; s

0

)). Further, from 5.10 and the hoie

of �

0

, we have:

j= �

0

(subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i

0

)); (5.11)

whih means that j= �

0

(Std(L

0

+

P

0

1; s

0

; i

0

)) if j= �

0

(subst(F; s

0

)). Therefore,

j= �

0

(Std(L

0

+

P

0

1; s

0

; i

0

)), whih is StdIH1. We need still to prove StdIH3,

i.e., that �

0

is orret with respet to i

0

. We prove that StdIH3.2 holds.

StdIH3.2.1{StdIH3.2.3 follow from the hoie of �

0

. StdIH3.2.4 holds be-

ause of 5.10 (�

1

is �). StdIH3.2.5 follows from StdIH3 of the indution

hypothesis.

N5.2. The invariant L

0

:inv F has been previously exeuted, i.e., hL

0

; s

0

i 2 i for

some symboli state s

0

. From StdIH1 of the indution hypothesis, there is

a substitution � suh that j= �(subst(F; s)). From StdIH2 of the indution

hypothesis, j= � (s(I)) = m(a(I)) for all I 2 vars(P). We an therefore

84

apply the Congruene Lemma 5.2 to obtain m; a j= F , whih is one of the

requirements for j= std-invs(k; P;Q). We need additionally to show that

StdIH holds after the invariant. We show that there exists �

0

suh that

StdIH(L;m; a; L

0

+

P

0

1; s

0

; i; �

0

) holds.

From hL

0

; s

0

i 2 i, we have that i = fhL

0

; s

0

ig [i

1

, where s

0

= fI

�

7! x

�

g

for all I 2 vars(P). From StdIH3.2.2 of the indution hypothesis, we know

that � = �

1

[fx

�

7! Z

�

g for some �

1

suh that by StdIH3.2.3, none of x

from x

�

is in �

1

. Therefore, we an use �

0

= �

1

[fx

�

7! m(a(I

�

))g, and we

prove that StdIH holds for that �

0

.

StdIH2, namely j= �

0

(s

0

(I)) = m(a(I)) for all I 2 vars(P), follows diretly

from the hoie of �

0

. StdIH3 follows from StdIH3 of the indution hypoth-

esis. We need still to show that StdIH1 holds: j= �

0

(Std(L

0

+

P

0

1; s

0

; i)).

From StdIH3.2.4 of the indution hypothesis, we have:

j= �

1

(8x

�

: subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i)): (5.12)

Further, by the de�nition of universal quanti�ation, we get:

j= �

0

(subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i)): (5.13)

As we have already shown that StdIH2 holds and m; a j= F , by the Con-

gruene Lemma 5.1, we obtain j= �

0

(subst(F; s

0

)). Therefore, from 5.13,

we �nally have that j= �

0

(Std(L

0

+

P

0

1; s

0

; i)).

5.2 Soundness of Simulation Veri�ation-Condition

Generator

In this setion we prove that the simulation veri�ation-ondition generator (presented

in Setion 4.4) is sound: for every pair of programs Q

1

and Q

2

and every set of

simulation ontexts for those programs, if the simulation veri�ation ondition for

those programs and those ontexts is valid, then Q

1

simulates Q

2

; in notation: if

j= F

v

Q

1

;Q

2

, then Q

1

� Q

2

. (More preisely, we also need the standard veri�ation

onditions for programs Q

1

and Q

2

to be valid: if j= F

v

Q

1

;Q

2

and j= F

v

Q

1

and j= F

v

Q

2

,

then Q

1

�Q

2

.) By the de�nition (page 65), Q

1

�Q

2

if:

� P

1

; Q

1

� P

2

; Q

2

for all pairs of proedures P

1

2 Q

1

and P

2

2 Q

2

for whih there

are simulation ontexts, and

� one of the simulation ontexts for the starting proedures for programs Q

1

and

Q

2

requires that the two programs generate the same output given that they

start with the same input.

Further, P

1

; Q

1

� P

2

; Q

2

if P

1

; Q

1

�

k

P

2

; Q

2

for all ontexts k 2 sim-ontexts(P

1

; P

2

).

We therefore prove the simulation soundness theorem as follows.

85

Theorem 2 (Simulation Soundness) If j= F

v

Q

1

;Q

2

and j= F

v

Q

1

and j= F

v

Q

2

, then

P

1

; Q

1

�

k

P

2

; Q

2

for all simulation ontexts k of all pairs of proedures P

1

2 Q

1

and P

2

2 Q

2

.

Proof: Pik any pair of proedures P

1

2 Q

1

and P

2

2 Q

2

, for whih there is a

simulation ontext, and pik any simulation ontext k of P

1

and P

2

:

P

1

� pro I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants (J

in

J

out

S

�

K

�

Z

1

Z

2

G

�

A

�

)

�

:

Sine j= F

v

Q

1

;Q

2

and F

v

Q

1

;Q

2

=

V

P

1

2Q

1

;P

2

2Q

2

F

v

P

1

;Q

1

;P

2

;Q

2

, by the de�nition of on-

juntion (Figure 4-8), we get j= F

v

P

1

;Q

1

;P

2

;Q

2

. Further, by the de�nition, F

v

P

1

;Q

1

;P

2

;Q

2

=

V

k2f1:::ng

F

v

k;P

1

;Q

1

;P

2

;Q

2

, for sim-ontexts(P

1

; P

2

) = f1 : : : ng, and thus j= F

v

k;P

1

;Q

1

;P

2

;Q

2

,

i.e., the simulation veri�ation ondition for the ontext k of P

1

and P

2

holds. From

the algorithm for F

v

k;P

1

;Q

1

;P

2

;Q

2

and Sim (Figure 4-11), we have:

j= 8x

�

: subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(start-label(P

0

1

); s

0

1

; start-label(P

0

2

); s

0

2

; fg; t

0

) ^

subst(in-ontext(P

1

; k

1

); s

0

1

) ^ subst(in-ontext(P

2

; k

2

); s

0

2

);

(5.14)

where: s

0

1

= fI

�

1

7! x

�

1

g for all I

1

2 vars(P

1

), s

0

2

= fI

�

2

7! G

�

g for all I

2

2 vars(P

2

),

s

0

1

and s

0

2

are the starting symboli states for the symboli exeutions of proedures

hP

0

1

; P

0

2

i = merge-sim-invariants(k; P

1

; P

2

), and t

0

= ation-tree(A

�

k

; P

0

1

; P

0

2

) is the a-

tion tree for the interleaving of the symboli exeutions of P

0

1

and P

0

2

. The symboli

exeutions use symboli environments e

1=2

that map program variables from proe-

dures P

1=2

to logi expressions representing those variables.

2

We use a variable name

with an index to represent whih program the variable is from.

The starting symboli expressions G

�

for s

0

2

are reated in the following way:

� for eah I

2

2 vars(P

2

)� loals(P

2

):

{ if hI

1

; I

2

i 2 var-pairs(J

in

k

) for some I

1

, then I

2

is mapped to s

1

(I

1

); other-

wise,

{ I

2

is mapped to a fresh variable x

2

, and the sequene of all suh fresh

variables, x

�

2

, onatenated to x

�

1

gives x

�

; and

� for eah I

2

2 loals(P

2

), the symboli expression for I

2

is obtained by substitut-

ing x

�

for the appropriate program variables in expressions G

�

k

provided by the

ompiler transformation.

2

In general, e

1=2

maps eah I

l

2 loals(P

1=2

) [params(P

1=2

) to logi expression lo

1=2

(I

l

) and

eah I

g

2 globals(P

1=2

) to logi expression glob

1=2

(I

g

). For the brevity of the proof presentation,

we use logi expressions without the speial onstrutors H . Therefore, e

1=2

is the identity: it maps

eah variable I

1=2

2 vars(P

1=2

) to itself. We assume that the variable names in two proedures are

di�erent: vars(P

1

) \ vars(P

2

) = fg.

86

The ompiler transformation also provides indies for standard ontexts of pro-

edures: k

1

of P

1

and k

2

of P

2

. By assumption, the standard veri�ation onditions

for programs Q

1

and Q

2

are valid: j= F

v

Q

1

and j= F

v

Q

2

. Therefore, by Theorem 1, all

standard ontexts of all proedures from programs Q

1

and Q

2

hold. In partiular,

ontexts k

1

of P

1

and k

2

of P

2

hold:

j= std-invs(k

1

; P

1

; Q

1

) (5.15)

and

j= std-invs(k

2

; P

2

; Q

2

): (5.16)

We need to show that for all partial exeutions hP

0

1

; m

0

1

; a

1

i

+

9 9 K hL

1

; m

1

; a

1

i of

P

1

, there exists a partial exeution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i of P

2

suh that if

m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the following is satis�ed:

� for all L

0

1

,L

0

2

:sim-inv J

0

from S

�

k

, if L

1

� L

0

1

, then there exists L

1

,L

00

2

:sim-inv J

from set-sim-inv(L

1

; S

�

k

) suh that L

2

� L

00

2

and m

1

; a

1

; m

2

; a

2

j= J ; and

� if P

1

(L

1

) � L

1

:ret, then P

2

(L

2

) � L

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the partial exeution of P

1

does not terminate, then the partial exeution of

P

2

also does not terminate.

The proof is by indution on the length of the partial exeution of P

1

. We prove

the indution using an indution hypothesis that we all the simulation indution

hypothesis (SimIH). The SimIH relates on�gurations hL

1

; m

1

; a

1

i and hL

2

; m

2

; a

2

i of

the onrete exeutions of P

1

and P

2

to the parameters of the symboli exeutions

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) of P

0

1

and P

0

2

. Similar to the standard indution hypothesis, the

simulation indution hypothesis relates the program points L

1=2

of the onrete exeu-

tions to the program points L

0

1=2

of the symboli exeutions. Additionally, the SimIH

inludes an ation tree t that guides the symboli exeutions. We �rst desribe the

orrespondene between the ations of the tree and the onrete exeutions. We next

desribe how the SimIH uses a substitution � to relate the onrete states m

1=2

; a

1=2

to the symboli states s

1=2

. We then present a lemma that shows ertain substitutions

to be well-de�ned for symboli states that are related by a formula J . Finally, we

state the SimIH and prove the base ase and the indution step.

The orrespondene between the nodes of P

0

1=2

and the nodes of P

1=2

is as follows.

Eah node (with label) L

0

from either P

0

1

or P

0

2

has a unique orresponding node (with

label) L from the respetive P

1

or P

2

. The nodes in P

0

1=2

are obtained by merging the

halves of simulation invariants to the nodes from P

1=2

. Eah node from P

0

1=2

that is

not a half of an invariant orresponds to the appropriate original node from P

1=2

. For

eah simulation invariant L

1

,L

2

:sim-inv J from S

�

k

, the node L

1

:sim-inv is added

to P

0

1

in front of the node with label L

1

and the node L

2

:sim-inv J,L

1

is added to

P

0

2

in front of the node with label L

2

, as explained in the initial phase of the SimVCG

(page 67). The nodes L

1

:sim-inv and L

2

:sim-inv J,L

1

represent two halves of a

simulation invariant.

87

Similar to the standard invariants, eah node from P

1=2

has one or more orre-

sponding nodes from P

0

1=2

: the opy of the original node and, in general, a set of halves

of simulation invariants that preede the opy of the original node.

3

The soundness

proof for the standard invariants is, oneptually, by an indution on the length of the

onrete exeution of the proedure. Tehnially, we do an indution on all possible

symboli exeutions (orresponding to the onrete exeution) that implies the indu-

tion on the length of the onrete exeution. Similarly, the soundness proof for the

simulation invariants is, oneptually, by an indution on the length of the onrete

exeution of P

1

. We atually do an indution on all possible symboli exeutions of

P

0

1

and P

0

2

orresponding to the onrete exeution of P

1

.

The ation tree t guides the interleaving of the symboli exeutions of P

0

1

and P

0

2

.

Eah onrete exeution of a node L

1

from P

1

has a orresponding sequene of ations

from the tree. This sequene ends with the ation that exeutes in P

0

1

the opy of the

node L

1

; depending on the node, the ation an be either exeute

1

or exeute-both.

The sequene starts with the ation that immediately follows the end of the previous

sequene, exept that the sequene for the �rst node starts with the �rst ation of the

tree. We show in the indution step that any sequene orresponding to the onrete

exeution of a node preserves the simulation indution hypothesis.

More preisely, we onsider only orret sequenes of ations, i.e., orret ation

trees. An ation tree t is orret with respet to L

0

1

, L

0

2

, and i if the appliation

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) does not generate an error. In general, an error ours if there

are not enough ations in the tree (i.e., t is empty when Sim performs root(t)), or

the root ation is not allowed for the nodes L

0

1

and/or L

0

2

(e.g., exeute-both for a

return and a branh node). The SimVCG invokes the funtion Sim with the initial

tree t

0

and we know that it generates a SimVC, and not an error, sine we also know

that the SimVC is valid. Thus, t

0

is orret for the respetive starting labels. In

the base ase of the indution, we also use the tree t

0

. If a tree is orret before

some ation, then the appropriate subtrees are orret for the exeutions after the

ation. In the indution step, we onsider the same subtrees as the funtion Sim, and

therefore the subtrees are orret for the respetive exeutions. Whenever we write

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) in the rest of the proof, we understand that it is for a orret t.

We next show the orrespondene between the symboli states s

1=2

and the on-

rete states m

1=2

; a

1=2

. Eah of the symboli states s

1=2

= fI

�

1=2

7! G

�

1=2

g orresponds

to a set of the onrete states m

1=2

; a

1=2

. We an speify one suh orrespondene

with a substitution � = fx

�

7! Z

�

g, where x

�

are all logi variables in the expres-

sions G

�

1=2

. The SimIH uses � suh that the symboli states and the onrete states

oinide: j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 vars(P

1=2

). In general, there

are symboli and onrete states for whih no suh � exists, even if s

1

= fI

�

1

7! x

�

1

g

for all I

1

2 vars(P

1

) and some sequene x

�

1

of di�erent logi variables. (If s

1

an be

arbitrary, then there is no � , e.g., for s

1

= fI

1

7! x

1

; I

0

7! x

1

g and m

1

; a

1

suh that

m

1

(a

1

(I

1

)) 6= m

1

(a

1

(I

0

)).) We next show that a substitution � exists for all states

that satisfy ertain onditions.

3

Reall that in P

0

1

, there is at most one L

1

:sim-inv before any original node beause the simu-

lation invariants with the same �rst label share that node.

88

Lemma 6 (Well-De�ned Substitution) Let J be any formula for two programs (a

simulation invariant, a simulation input ontext, or a simulation output ontext),

and let m

1

; a

1

; m

2

; a

2

be any onrete states suh that m

1

; a

1

; m

2

; a

2

j= J . Let s

1

=

fI

�

1

7! x

�

1

g for all I

1

2 vars(P

1

) and some sequene x

�

1

of di�erent logi variables.

Let s

2

= fI

�

2

7! G

�

g for all I

1

2 vars(P

1

), where G

�

are any expressions suh that:

for any variable I and any variable I

0

6� I that an our in J (all variables, non-

loal variables, or global variables, depending on J), s

2

(I) is a logi variable and

s

2

(I) 6� s

2

(I

0

). Let x

�

2

be all logi variables that are images, in s

2

, of variables that

an our in J . (Note that some variables from x

�

2

may be idential to some variables

from x

�

1

.) Let x

�

= x

�

1

[x

�

2

be a sequene of all unique variables from x

�

1

and x

�

2

.

If s

1

(I

1

) � s

2

(I

2

) for all hI

1

; I

2

i 2 var-pairs(J), i.e., the symboli states s

1=2

are

related by (the pairs of variables in) J , then there exists a substitution � = fx

�

1

7!

m

1

(a

1

(I

�

1

))g [fx

�

2

7! m

2

(a

2

(I

�

2

))g, denoted as fx

�

7! m

1=2

(a

1=2

(I

�

1=2

))g, suh that:

j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

that an our in J .

Proof: We give only an outline of the proof. The main result to show is that the

substitution � is well-de�ned: for eah x from x

�

, there exists a unique Z suh that

�(x) = Z. Let �

1

= fx

�

1

7! m

1

(a

1

(I

�

1

))g and �

2

= fx

�

2

7! m

2

(a

2

(I

�

2

))g. We have that

� = �

1

[�

2

, and we need to show that �

1

(x) = �

2

(x) for all variables x that are both

in x

1

and x

2

. It is easy to show that those logi variables are images, in s

1=2

, of the

program variables that appear in var-pairs(J). Further, it is easy to show, by the

de�nition of onjuntion, that m

1

(a

1

(I

1

)) = m

2

(a

2

(I

2

)) for all hI

1

; I

2

i 2 var-pairs(J)

follows from m

1

; a

1

; m

2

; a

2

j= J . This onludes the proof of the lemma.

5.2.1 Simulation Indution Hypothesis

The simulation indution hypothesis (SimIH) relates on�gurations hL

1

; m

1

; a

1

i and

hL

2

; m

2

; a

2

i of the partial exeutions hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i and hP

0

2

; m

0

2

; a

2

i

+

9 9 K

hL

2

; m

2

; a

2

i of proedures P

1

and P

2

to the parameters of the symboli exeutions

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) of P

0

1

and P

0

2

started with the symboli states s

0

1

and s

0

2

. For-

mally, the SimIH is a relation with many arguments:

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �; P

1

; m

0

1

; s

0

1

; P

2

; m

0

2

; s

0

2

);

where � is a mapping from logi variables to values. We will abbreviate the SimIH

to SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �), beause the proedures and the

starting states do not hange for a �xed pair of proedure ativations. We de�ne that

the SimIH holds if the following is satis�ed:

SimIH1. the simulation veri�ation ondition holds: j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t)), and

SimIH2. the symboli states and the onrete states oinide:

SimIH2.1. for all I

1

2 vars(P

1

): j= � (s

1

(I

1

)) = m

1

(a

1

(I

1

)), and

SimIH2.2. for all I

2

2 vars(P

2

): j= � (s

2

(I

2

)) = m

2

(a

2

(I

2

)); and

89

SimIH3. the substitution � is orret with respet to i: either

SimIH3.1. i = fg and for the initial symboli states s

0

1

= fI

�

1

7! x

�

1

g and s

0

2

=

fI

�

2

7! G

�

g, where x

�

are all variables that our in x

�

1

or G

�

:

SimIH3.1.1. all logi variables are in the substitution, i.e., � � fx

�

7! Z

�

g, and

SimIH3.1.2. j= � (s

0

1

(I

1

)) = m

0

1

(a

1

(I

1

)) for all I

1

2 vars(P

1

), and

SimIH3.1.3. j= � (s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)) for all I

2

2 vars(P

2

); or

SimIH3.2. i = i

1

[fhhL

00

1

; L

00

2

i; hs

0

1

; s

0

2

i; t

0

ig, where s

0

1

= fI

�

1

7! x

�

1

g and s

0

2

= fI

�

2

7!

x

�

2

g for some x

�

= x

�

1

[x

�

2

, and

SimIH3.2.1. P

0

1

(L

00

1

) � L

00

1

:sim-inv and P

0

2

(L

00

2

) � L

00

2

:sim-inv J,L

00

1

, and

SimIH3.2.2. � = �

1

[fx

�

7! Z

�

g, and

SimIH3.2.3. x

�

are fresh variables, i.e., for all x from x

�

, x 62 �

1

[i

1

, and

SimIH3.2.4. j= �

1

(8x

�

: subst-sim(J; s

0

1

; s

0

2

)) Sim(L

00

1

+

P

0

1

1; s

0

1

; L

00

2

+

P

0

2

1; s

0

2

; i; t

0

)),

and

SimIH3.2.5. �

1

is orret with respet to i

1

, as de�ned by SimIH3.

We now prove that for all on�gurations hL

1

; m

1

; a

1

i in sequenes hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i of P

1

, there exists a on�guration hL

2

; m

2

; a

2

i in a sequene hP

0

2

; m

0

2

; a

2

i

+

9 9 K

hL

2

; m

2

; a

2

i of P

2

, where m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, suh that for all L

0

1

2 P

0

1

orresponding

to L

1

2 P

1

, there exists a label L

0

2

2 P

0

2

orresponding to L

2

2 P

2

, and there exist sym-

boli states s

1

and s

2

, a set of symbolially exeuted simulation invariants i, an ation

tree t, and a substitution � for whih SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �)

holds. We also show that this implies that the simulation invariants and the simula-

tion output ontext of the ontext k hold, as well as that the termination simulation

is satis�ed:

� if P

0

1

(L

0

1

) � L

0

1

:sim-inv, then P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

0

1

and m

1

; a

1

; m

2

; a

2

j=

J ; and

� if P

0

1

(L

0

1

) � L

0

1

:ret, then P

0

2

(L

0

2

) � L

0

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the exeution of P

1

does not terminate, then the exeution of P

2

also does

not terminate.

5.2.2 Simulation Base Case

The initial on�gurations for the onrete exeutions of P

1

and P

2

are hP

0

1

; m

0

1

; a

1

i and

hP

0

2

; m

0

2

; a

2

i, where m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

. (Reall that by the simulation requirement,

the memory m

0

1

for the exeution of P

1

is universally quanti�ed, whereas the memory

m

0

2

for the exeution of P

2

is existentially quanti�ed.) The symboli exeutions start

with L

0

1

� start-label(P

0

1

), s

1

= s

0

1

= fI

�

1

7! x

�

1

g, L

0

2

� start-label(P

0

2

), s

2

= s

0

2

=

fI

�

2

7! G

�

g, i = fg, and t = t

0

. Let x

�

be all logi variables that our in x

�

1

or G

�

.

We need to show that there exists a substitution � for all variables in x

�

suh that

SimIH(P

0

1

; m

0

1

; a

1

; P

0

2

; m

0

2

; a

2

; L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

; �) holds.

90

By the Well-De�ned Substitution Lemma, we know that there exists � = fx

�

7!

m

0

1=2

(a

1=2

(I

�

1=2

))g suh that j= � (s

0

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 vars(P

1=2

)�

loals(P

1=2

). We �rst show that for this � , SimIH2 holds. SimIH3 (part SimIH3.1)

then trivially follows from SimIH2. To onlude the proof that SimIH holds, we

then show that SimIH1 holds. Finally, we show also that the standard invariants

of standard ontexts k

1=2

of P

1=2

hold during the onrete exeutions started with

m

0

1=2

; a

1=2

.

SimIH2.1 holds from the hoie of � . To prove SimIH2.2, we still need to prove

that j= �(s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)) for all I

2

2 loals(P

2

). More preisely, sine m

0

2

is

existentially quanti�ed, we need to show that there exist values m

0

2

(a

2

(I

2

)) for all

I

2

2 loals(P

2

) suh that j= �(s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)). From the algorithm that reates

the starting symboli expressions G

�

(page 86), we have that for all I

2

2 loals(P

2

),

s

0

2

(I

2

) � subst-sim(G

k

; s

0

1

; s

0

2

) for the appropriate G

k

, whih annot ontain loal

variables of P

2

. Therefore, we an hoose m

0

2

(a

2

(I

2

)) = G

i

[[� (s

0

2

(I

2

))℄℄ m

0

1

; a

1

; m

0

2

; a

2

for all I

2

2 loals(P

2

), sine the evaluation G

i

does not require the values of loal

variables of P

2

. This hoie implies diretly that SimIH2.2 holds. Note that at this

point, we speify the values of memory loations of m

0

2

only for the loal variables of

P

2

. Beause of the existential quanti�ation of m

0

2

, we an still speify the values of

the loations \above" the loations for the loal variables; we use this for all nodes.

We next prove that SimIH1 holds. From 5.14, we obtain:

j= � (subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

) ^

subst(in-ontext(P

1

; k

1

); s

0

1

) ^ subst(in-ontext(P

2

; k

2

); s

0

2

)):

This further simpli�es to: if j= �(subst-sim(J

in

k

; s

0

1

; s

0

2

)), then

j= � (Sim(L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

)) (5.17)

and

j= � (subst(in-ontext(P

1

; k

1

); s

0

1

)) (5.18)

and

j= � (subst(in-ontext(P

2

; k

2

); s

0

2

)): (5.19)

Sine SimIH2 holds, we an apply the Simulation Congruene Lemma, diretion 5.3,

and from m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, we have j= � (subst-sim(J

in

k

; s

0

1

; s

0

2

)). Therefore, 5.17

also holds, i.e., j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t)) whih is SimIH1.

Additionally, 5.18 and 5.19 hold. We next prove that the standard invariants of

ontext k

1

hold during the onrete exeution of P

1

started with m

0

1

; a

1

; by anal-

ogy, the standard invariants of ontext k

2

also hold. From 5.15, we know that the

ontext k

1

holds. Therefore, if we prove that the standard input ontext F

in

k

1

=

in-ontext(P

1

; k

1

) holds for m

0

1

; a

1

, then all standard invariants of k

1

hold. From

SimIH2.1, we have that j= � (s

0

1

(I

1

)) = m

0

1

(a

1

(I

1

)) for all variables I

1

that an our

in F

in

k

1

. Therefore, we an apply the Standard Congruene Lemma 5.2, and from 5.18,

we obtain m

0

1

; a

1

j= F

in

k

1

, whih onludes the proof.

91

5.2.3 Simulation Indution Step

The onrete exeution of the node at label L

1

in P

1

has a orresponding sequene of

ations from the ation tree t. We show that any suh sequene of ations preserves

the SimIH. At eah step, the SimVCG performs the ation from the root of the tree.

We do a ase analysis of the last ation performed during the symboli exeutions of

proedures P

0

1=2

. We show that if the SimIH holds before the root ation from the

tree t is performed, then the SimIH also holds after the ation is performed.

A1. The last ation is exeute

1

, whih symbolially exeutes an assignment node

or a branh node from P

0

1

.

A1.1. The node is an assignment node: P

0

1

(L

0

1

) � L

0

1

:I=E. Before this node

is exeuted, from the indution hypothesis, there exist s

1

, s

2

, i, t, and

� suh that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds. When

the node is exeuted, the onrete exeution of P

1

makes a transition

hL

1

; m

1

; ai ! hL

1

+

P

1

1; m

0

1

; ai, where m

0

1

= m

1

[a

1

(I) 7! m

1

(a

1

(E))℄. The

symboli exeution ontinues at the next node Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

; s

0

2

; i; t)

with the new symboli state s

0

1

= s

1

[I 7! subst(translate(E; e

1

); s

1

)℄. We

need to show that SimIH holds in the new states. We use the same � to

prove that SimIH(L

1

+

P

1

1; m

0

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

; s

2

; i; left(t); �)

holds.

SimIH1 and SimIH3 follow diretly from the indution hypothesis beause

� and i do not hange, and the symboli exeutions before and after the

assignment node generate the same veri�ation ondition. We need to

prove that SimIH2 holds. SimIH2.2 follows diretly from SimIH2.2 of the

indution hypothesis beause � , s

2

, and m

2

do not hange. The proof

that SimIH2.1 holds is analogous to the proof for assignment nodes for the

StdVC (page 80): we analyze two ases, I

0

6� I and I

0

� I, and we use

Lemma 3 in the latter ase. We omit the details of the proof.

A1.2. The node is a branh node: P

0

1

(L

0

1

) � L

0

1

:br(E)L

00

. There are two paths

from this node, and the onrete exeution of P

1

takes only one of them

depending on the value of the branh ondition. However, the symboli

exeution takes both paths, and from SimIH1 of the indution hypothesis,

we have:

j= �((G) Sim(L

00

; s

1

; L

0

2

; s

2

; i; left(t))) ^

(:G) Sim(L

0

1

+

P

0

1

1; s

1

; L

0

2

; s

2

; i; right(t))));

(5.20)

where G = translate-branh(E; s

1

; e

1

).

From the indution hypothesis, there exists a substitution � suh that

SimIH holds before the branh node. The proof that SimIH holds after

the branh node is analogous to the proof for branh nodes for the StdVC

(page 81). We give an outline of the proof for the ase when the branh is

taken. We show that SimIH(L

00

; m

1

; a

1

; L

2

; m

2

; a

2

; L

00

; s

1

; L

0

2

; s

2

; i; left(t); �)

holds after the branh is taken. SimIH2 and SimIH3 follow diretly from

92

the indution hypothesis beause m

1

, s

1

, m

2

, s

2

, i, and � remain the same.

SimIH1, namely j= �(Sim(L

00

; s

1

; L

0

2

; s

2

; i; left(t))), follows from 5.20, by

the de�nitions of onjuntion and impliation and by Lemma 4.

A2. The last ation is exeute

2

B, whih either symbolially exeutes an assignment

node or a branh node from P

0

2

or moves past a simulation invariant from P

0

2

.

A2.1. The node is an assignment node: P

0

2

(L

0

2

) � L

0

2

:I=E. The proof that SimIH

holds after the exeutions of an assignment node in P

0

2

and P

2

is analogous

to the proof that SimIH holds after the exeutions of an assignment node

in P

0

1

and P

1

(page 92).

A2.2. The node is a branh node: P

0

2

(L

0

2

) � L

0

2

:br(E)L

00

. The symboli exeu-

tion of a branh node in P

0

2

di�ers from the symboli exeution of a branh

node in P

0

1

. In P

0

1

, the symboli exeution splits at a branh node and

follows both paths. In P

0

2

, the symboli exeution follows only one path,

either branh-taken or branh-not-taken, depending on B. We prove that

the orresponding onrete exeution also takes the same path. We give a

proof that these exeutions preserve the SimIH for the branh-taken ase;

the branh-not-taken ase is analogous. From the indution hypothesis,

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds (for some values of

the existentially quanti�ed arguments) before the node is exeuted. We

show that SimIH(L

1

; m

1

; a

1

; L

00

; m

2

; a

2

; L

0

1

; s

1

; L

00

; s

2

; i; left(t); �) holds after

the node is exeuted.

SimIH2 and SimIH3 are trivial to prove. We show that SimIH1 holds.

From the indution hypothesis,

j= � (G ^ Sim(L

1

; s

1

; L

00

; s

2

; i; left(t))); (5.21)

where G = translate-branh(E; s

2

; e

2

). From 5.21, we have j= � (G). Fur-

ther, by Lemma 4, m

2

(a

2

(E)) 6� 0 whih proves that the onrete exeu-

tion of P

2

makes the branh-taken transition: hL

2

; m

2

; a

2

i ! hL

00

; m

2

; a

2

i.

From 5.21, we also obtain j= �(Sim(L

1

; s

1

; L

00

; s

2

; i; left(t))) whih is SimIH1.

A2.3. The node is a half of a simulation invariant: P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

00

1

.

From the indution hypothesis, we know that there exists a symboli exeu-

tion of P

0

2

suh that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds.

The symboli exeution of the half of an invariant only moves past it.

We prove that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

+

P

0

2

1; s

2

; i; left(t); �)

holds. Sine the states and the substitution do not hange, SimIH2 and

SimIH3 follow diretly from their ounterparts in the indution hypothesis.

SimIH1 also follows from SimIH1 of the indution hypothesis beause the

symboli exeutions before and after the half of an invariant generate the

same simulation veri�ation ondition.

A3. The last ation is stop, whih �nishes the symboli exeutions. We need to

prove that if SimIH holds before stop, then SimIH holds after stop. We

93

show that this impliation is valid by showing that SimIH annot hold for any

substitution � before this ation. By ontradition, assume that there exists

a substitution � (as well as the other arguments of the indution hypothe-

sis relation) suh that SimIH holds before stop. Sine the exeution of stop

generates false, we obtain, from SimIH1, j= � (false). For all substitutions

�(false) � false, and we have j= false whih annot hold, by the de�nition

of the valuation funtion for false (Figure 4-8). Hene, SimIH does not hold

before ation stop. (This means that stop annot be used on some path during

a symboli exeution of P

0

1

if that path is possible during a onrete exeution of

P

1

. If a path is not possible during any onrete exeution, stop an be used.)

A4. The last ation is split F , whih splits the symboli exeution of P

0

1

into two

paths. This ation an be used at any point in the symboli exeution. Before

the ation, from the indution hypothesis, there exist s

1

, s

2

, i, t, and � suh

that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds. From SimIH1 of the

indution hypothesis, the following holds:

j= �((F

0

) Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; left(t))) ^

(:F

0

) Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; right(t))));

(5.22)

where F

0

= subst(F; s

1

).

We next show that SimIH holds after the ation if m

1

; a

1

j= F ; the ase when

m

1

; a

1

j= :F is analogous. (Note that by the de�nition of valuation funtions,

either F or :F holds for anym

1

; a

1

.) The proof is similar to the proof for branh

nodes. We use the same s

1

, s

2

, i, and � from the indution hypothesis and

t

0

= left(t) to show that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t

0

; �) holds.

SimIH2 and SimIH3 follow diretly from their ounterparts in the indution

hypothesis. For SimIH1, we need to show j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; left(t))).

From 5.22, we have that SimIH1 holds if j= � (F

0

). Further, j= � (F

0

) from

the assumption m

1

; a

1

j= F , by the Standard Congruene Lemma 5.1, sine

j= � (s

1

(I

1

)) = m

1

(a

1

(I

1

)) for all I

1

2 vars(P

1

) from SimIH2.1 of the indution

hypothesis. This onludes the proof of this ase.

A5. The last ation is use-analysis

1

or use-analysis

2

, whih inludes a stan-

dard invariant in the simulation veri�ation ondition. From the indution hy-

pothesis, there is t suh that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �)

holds before the ation. We prove that SimIH holds for t

0

= left(t) after

use-analysis

1

; the proof for use-analysis

2

is analogous. SimIH2 and SimIH3

follow diretly from the indution hypothesis. To prove SimIH1, let F be

the formula from the standard invariant at L

1

in the ontext k

1

of P

1

: F =

std-invariant(P

1

; k

1

; L

1

). From SimIH1 of the indution hypothesis, we have

j= �(subst(F; s

1

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))): (5.23)

We have proven in the simulation base ase (Setion 5.2.2) that all standard

invariants of ontext k

1

hold during the onrete exeution of P

1

, and therefore

94

m

1

; a

1

j= F . Sine SimIH2.1 holds, we an apply the Standard Congruene

Lemma 5.1 to obtain: j= �(subst(F; s

1

)). From 5.23, we then have that SimIH1

holds: j= �(Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))).

A6. The last ation is exeute-both, whih symbolially exeutes a node from both

P

0

1

and P

0

2

. The two nodes an be both return nodes, or both all nodes, or

both halves of some simulation invariant.

A6.1. The nodes are return nodes: P

0

1

(L

0

1

) � L

0

1

:ret and P

0

2

(L

0

2

) � L

0

2

:ret.

These nodes are the last nodes in the onrete exeutions of proedure a-

tivations, and therefore we do not show that SimIH holds after the return

nodes. We still need to show that the simulation output ontext holds

whenever the proedures reah return nodes. From SimIH1 of the indu-

tion hypothesis, j= � (subst-sim(J

out

k

; s

1

; s

2

)) for some � . Sine SimIH2

holds for the same � , by the Simulation Congruene Lemma 5.4, we obtain

m

1

; a

1

; m

2

; a

2

j= J

out

k

.

A6.2. The nodes are all nodes: P

0

1

(L

0

1

) � L

0

1

:I

1

(E

�

2

) and P

0

2

(L

0

2

) � L

0

2

:I

2

(E

�

2

).

Let the allee proedures be P

00

1

� pro I

1

(I

�

1

) D

�

1

fN

+

1

g and P

00

2

�

pro I

2

(I

�

2

) D

�

2

fN

+

2

g. The onrete exeutions make transitions to the

�rst nodes of P

00

1=2

, alloating memory for the parameters and loal vari-

ables of P

00

1=2

:

hm

in

1=2

; a

in

1=2

; p

in

1=2

i =

allo-loals(allo-params(hm

1=2

; a

1=2

; p

1=2

i; I

�

1=2

; m

1=2

(a

1=2

(E

�

1=2

))); D

�

1=2

):

When and if the exeutions of P

00

1=2

return, the onrete exeutions on-

tinue from hP

1=2

(L

1=2

+

P

1=2

1); m

0

1=2

; a

1=2

i, where the memories after the

alls satisfy: m

0

1=2

(a

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 loals(P

1=2

)[

params(P

1=2

). (We show later that the exeutions of P

00

1=2

either both re-

turn or both do not return.)

Let k

00

= sim-ontext-index(L

1

; L

2

; K

�

k

) be the index of the simulation on-

text for the all nodes at L

1=2

, and let hJ

in

; J

out

i = sim-ontext(I

1

; I

2

; k

00

)

be the input and output ontexts for the simulation ontext k

00

of pro-

edures I

1=2

, i.e., P

1=2

. The symboli exeutions ontinue, after the re-

turn nodes, with the new symboli states: s

0

1=2

= s

1=2

[I

�

1=2

7! x

�

1=2

℄ for

all I

�

1=2

2 globals(P

1=2

), where x

�

= x

�

1

[x

�

2

are fresh logi variables.

(Some variables in x

�

1

an be the same as some variables in x

�

2

sine

hs

0

1

; s

0

2

; x

�

i = fresh-sim-globals(s

1

; s

2

; J

out

).)

From SimIH1 of the indution hypothesis, there is a substitution � suh

that:

j= � (subst-sim(J

in

; set-params(I

1

; G

�

1

; s

1

);

set-params(I

2

; G

�

2

; s

2

))) (5.24)

and

95

j= � (8x

�

: subst-sim(J

out

; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))); (5.25)

where G

�

1=2

= translate-all(E

�

1=2

; s

1=2

; e

1=2

). We use s

in

1=2

to denote the

symboli states for the formula J

in

: s

in

1=2

= set-params(I

1=2

; G

�

1=2

; s

1=2

) =

s

1=2

[I

�

1=2

7! G

�

1=2

℄ for parameters I

�

1=2

of proedures I

1=2

. To prove that

SimIH holds after the alls, we use the substitution �

0

= � [fx

�

7!

m

0

1=2

(a

1=2

(I

�

1=2

))g. (We show later that we an make suh a substitution.)

We prove that the following relation holds:

SimIH(L

1

+

P

1

1; m

0

1

; a

1

; L

2

+

P

2

1; m

0

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; left(t); �

0

):

The proof is similar to the proof for all nodes for the StdVC (page 81).

SimIH3 follows from SimIH3 of the indution hypothesis beause � � �

0

and i does not hange after all nodes. We need to prove that SimIH1 and

SimIH2 also hold. We prove �rst that the simulation input ontext J

in

holds, next that the simulation output ontext J

out

holds, and then that

SimIH2 holds

4

and �nally that SimIH1 holds.

We �rst observe that j= �(s

in

1=2

(I

1=2

)) = m

in

1=2

(a

in

1=2

(I

1=2

)) for all variables

I

1=2

2 globals(P

00

1=2

) [params(P

00

1=2

) that an our in J

in

. The proof that

the states s

in

1=2

and m

in

1=2

; a

in

1=2

oinide for all variables in J

in

is analogous

(for eah proedure) to the proof for the StdVC (page 82), and we do

not repeat it here. From 5.24, we have j= �(subst-sim(J

in

; s

in

1

; s

in

2

). Sine

j= �(s

in

1=2

(I

1=2

)) = m

in

1=2

(a

in

1=2

(I

1=2

)) for all variables I

1=2

in J

in

, by the Sim-

ulation Congruene Lemma 5.4, we obtain m

in

1

; a

in

1

; m

in

2

; a

in

2

j= J

in

. This

means that the simulation input ontext J

in

holds at the beginning of P

00

1

and P

00

2

.

For every simulation ontext k

00

of every pair of proedures P

00

1=2

in Q

1=2

, if

the simulation input ontext holds at the beginning of ativations of P

00

1=2

,

then the simulation output ontext holds at the end of the ativations.

Similarly to the proof for the StdVC, the proof for SimVC is informal at

this point and it appears that we assume assumption the atual statement

that we try to establish, namely Q

1

� Q

2

. We do not present a full proof

that would require an indution on the height of the proedure all trees

of programs Q

1=2

. (Note that the two programs have isomorphi all trees

beause of the simultaneous exeution of the all and return nodes.) We

show later that if the ativation of P

00

1

does not terminate, then there exists

an ativation of P

00

2

that also does not terminate. We additionally disuss

the existential quanti�ation of the exeutions of P

00

2

after we �nish the

proof that SimIH holds.

Sine J

in

holds at the beginning of P

00

1=2

, then, for all exeutions of P

00

1

,

4

For the StdVC we an prove that SimIH2 holds even before we prove that the standard output

ontext holds beause the substitution �

0

does not depend on the output ontext.

96

there is an exeution of P

00

2

suh that m

0

1

; a

in

1

; m

0

2

; a

in

2

j= J

out

, where m

0

1=2

are the memories at the end of the ativations of P

00

1=2

, and a

in

1=2

are the

environments for those ativations. Additionally, the environments a

in

1=2

for

P

00

1=2

and a

1=2

for P

1=2

map the global variables to the same addresses. Sine

J

out

an ontain only the global variables, we have m

0

1

; a

1

; m

0

2

; a

2

j= J

out

.

By the Well-De�ned Substitution Lemma, we an then make substitution

fx

�

7! m

0

1=2

(a

1=2

(I

�

1=2

))g and, for that substitution, j= �

0

(s

1=2

(I

1=2

)) =

m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 globals(P

1=2

). To prove that SimIH2 holds,

we need also to prove that j= �

0

(s

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2

loals(P

1=2

) [params(P

1=2

). It holds by the following: j= �

0

(s

0

1=2

(I

1=2

)) =

�

0

(s

1=2

(I

1=2

)) = � (s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) beause

the exeutions of P

00

1=2

annot hange loal variables of P

1=2

. We next prove

that SimIH1 holds.

Sine SimIH2 holds, and m

0

1

; a

1

; m

0

2

; a

2

j= J

out

, by the Simulation Congru-

ene Lemma 5.3, we have j= �

0

(subst-sim(J

out

; s

0

1

; s

0

2

)). Further, from 5.25

and the hoie of �

0

, we have:

j= �

0

(subst-sim(J

out

; s

0

1

; s

0

2

)) Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t)));

and therefore j= �

0

(Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))), whih is SimIH1.

This onludes the proof that the exeutions of all nodes preserve the

SimIH.

We now disuss the quanti�ation of the exeutions of P

00

1=2

and the termi-

nation simulation between those exeutions. In the proof for all nodes,

we assume that for the exeutions of P

00

1=2

, J

out

holds at the end if J

in

holds

at the beginning. Spei�ally, we use that for all initial values for the loal

variables of P

00

1

, there exist some initial values for the loal variables of

P

00

2

suh that J

out

holds at the end. We need to show that we an indeed

hoose these initial values for the appropriate loations in the memory m

in

2

at the beginning of P

00

2

, i.e., those initial values are not already spei�ed

or universally quanti�ed. We next give an outline of the proof for this.

We �rst reall that the memory and the stak pointer at the beginning

of P

2

are m

0

2

and p

0

2

. From the simulation requirement, we an hoose

the values of memory loations for the loal variables of m

0

2

and also for

all loations with addresses greater than p

0

2

. In the simulation base ase

(Setion 5.2.2), we have hosen the values for the loal variables of P

2

. We

now prove by indution that we an hoose the values of loal variables for

all alls in the all tree starting from P

2

. The indution hypothesis is: if the

urrent memory is m

2

and the stak pointer is p

2

, then we an hoose the

values of loations in m

2

with addresses greater than p

2

. This apparently

holds before the �rst all in P

2

. For a all to any P

00

2

, the memory and the

stak pointer after the all are:

hm

in

2

; a

in

2

; p

in

2

i = allo-loals(allo-params(hm

2

; a

2

; p

2

i; I

�

2

; m(a(E

�

2

))); D

�

2

);

97

with the loal variables of P

00

2

being alloated in m

in

2

at addresses greater

than p

2

and less than p

in

2

. By the indution hypothesis, we an hoose

the initial values for those variables. Further, we an hoose the initial

values for all loations with addresses greater than p

in

2

. Sine the value of

the stak pointer does not derease after the returns, it follows indutively

that we an hoose the initial values for the loal variables for all alls from

P

00

2

and also for all alls from P

2

after P

00

2

returns.

Finally, we disuss the termination simulation of the exeutions of P

00

1=2

:

if P

00

1

does not terminate, then P

00

2

does not terminate either. A partial

exeution of a proedure terminates if it reahes a return node. In the

above proof that all nodes preserve the SimIH, we have used the following:

for every exeution of P

00

1

that terminates, there exists an exeution of P

00

2

that also terminates suh that J

out

holds at the end of the exeutions if J

in

holds at the beginning. We explained informally that this an be proven by

an indution on the height of the proedure all trees of programsQ

1=2

. For

every exeution of Q

1

, with an arbitrary all tree, there exists an exeution

of Q

2

with an isomorphi all tree beause whenever the exeution of Q

1

reahes a all node or a return node, there exists an exeution of Q

2

that

reahes, respetively, a all node or a return node. We have not shown,

however, what happens if Q

1

(P

00

1

) does not terminate. We next show that

then exists an exeution of Q

2

(P

00

2

) that also does not terminate.

A program does not terminate if it has an in�nite partial exeution (a

partial exeution of in�nite length). A partial exeution of a program is

in�nite in one of the following two ases: the exeution has a all tree

of in�nite height (in�nite reursion) or the exeution alls a proedure

whih has an in�nite partial exeution (in�nite loop). We analyze the

ase of an in�nite loop in Setion 5.2.4. (We postpone the analysis until

we omplete the proof for the simulation indution step, inluding the

ase for simulation invariants.) We next analyze informally the ase of an

in�nite reursion.

If the exeution of Q

1

has a all tree of in�nite height, then there exists an

exeution of Q

2

that has a all tree of in�nite height. The same relation

holds for the subtrees of these all trees: if the subtree (of the all tree for

Q

1

) whose root is the ativation of P

00

1

has in�nite height, then there exists

an ativation of P

00

2

whih is the root of a subtree (of the all tree for Q

2

)

that has in�nite height. Therefore, the termination simulation is satis�ed

in the ase of an in�nite reursion. In this ase, any simulation output

ontext is allowed. For example, it is possible to prove that the ontext

with J

in

� true and J

out

� false holds for proedures:

pro I

1

() fg=1;I

1

();ret;g pro I

2

() fg=2;I

2

();ret;g

It is also possible to prove that the global variables g have the same value

at the end of the proedures I

1=2

. The reason is that simulation output

ontext is required to hold only if the exeutions of I

1=2

reah the return

98

nodes.

A6.3. The nodes are two halves of a simulation invariant: P

0

1

(L

0

1

) � L

0

1

:sim-inv

and P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

0

1

. There are two ases depending on

whether the simulation invariant L

1

,L

2

:sim-inv J has been already sym-

bolially exeuted or not.

A6.3.1. The simulation invariant is symbolially exeuted for the �rst time if

hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

i 62 i for any s

0

1

, s

0

2

, and t

0

. From SimIH1 of the

indution hypothesis, there is a substitution � suh that:

j= �(subst-sim(J; s

1

; s

2

)) (5.26)

and

j= �(8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t)));(5.27)

where hs

0

1

; s

0

2

; x

�

i = fresh-sim-sym-states(s

1

; s

2

; J), i.e., for all I

1=2

2

vars(P

1=2

), the states s

0

1=2

= fI

�

1=2

7! x

�

1=2

g for some fresh logi vari-

ables x

�

= x

�

1

[x

�

2

and i

0

= hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; left(t)i [i.

From SimIH2 of the indution hypothesis, for all I

1=2

2 vars(P

1=2

):

j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)). We an therefore apply the Simula-

tion Congruene Lemma 5.4, and from 5.26 we obtainm

1

; a

1

; m

2

; a

2

j=

J , whih is one of the requirements for P

1

; Q

1

�

k

P

2

; Q

2

. We need ad-

ditionally to show that SimIH holds after the symboli exeution of

the invariant. By the Well-De�ned Substitution Lemma, we an make

the substitution �

0

= � [fx

�

7! m

0

1=2

(a

1=2

(I

�

1=2

))g. We use it to show

that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t); �

0

)

holds after the invariant.

SimIH2 follows from the hoie of �

0

. Sine SimIH2 holds, and we have

proven m

1

; a

1

; m

2

; a

2

j= J , by the Simulation Congruene Lemma 5.3,

we have j= �

0

(subst-sim(J; s

0

1

; s

0

2

)). Further, from 5.27 and the hoie

of �

0

, we obtain j= �

0

(Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t))); whih

is SimIH1. We need still to prove SimIH3, i.e., that �

0

is orret with

respet to i

0

. We prove that SimIH3.2 holds. SimIH3.2.1{SimIH3.2.3

hold by the hoie of �

0

. SimIH3.2.4 holds beause of 5.27 (�

1

is �).

SimIH3.2.5 follows from SimIH3 of the indution hypothesis.

A6.3.2. The simulation invariant has been previously symbolially exeuted

if hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

i 2 i for some symboli states s

0

1=2

and some

ation tree t

0

. From SimIH1 of the indution hypothesis, there is a

substitution � suh that j= � (subst-sim(J; s

1

; s

2

)). Sine SimIH2 of

the indution hypothesis holds, we an apply the Simulation Congru-

ene Lemma 5.4 to obtain m

1

; a

1

; m

2

; a

2

j= J , whih is one of the

requirements for P

1

; Q

1

�

k

P

2

; Q

2

. We additionally show that SimIH

holds after the invariant by showing that there exists �

0

suh that

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

; �

0

) holds.

Sine the invariant has been exeuted, i = fhhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

ig[i

1

,

99

where s

0

1=2

= fI

�

1=2

7! x

1=2

g for some x

�

= x

�

1

[x

�

2

and t

0

is the ation

tree for the symboli exeution after the invariant. From SimIH3.2.2

of the indution hypothesis, we know that � = �

1

[fx

�

7! Z

�

g for some

�

1

suh that, from SimIH3.2.3, none of x from x

�

is in �

1

. Therefore,

we an remap x

�

, and by the Well-De�ned Substitution Lemma, we

an make �

0

= �

1

[fx

�

7! m

1=2

(a

1=2

(I

�

1=2

))g. We prove that SimIH

holds for that �

0

.

SimIH2 follows from the hoie of �

0

. SimIH3 follows from SimIH3

of the indution hypothesis. We next show that SimIH1 also holds.

From SimIH3.2.4 of the indution hypothesis, we have:

j= � (8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

)); (5.28)

As we have already shown that SimIH2 holds and m

1

; a

1

; m

2

; a

2

j= J ,

we obtain j= �

0

(subst-sim(J; s

0

1

; s

0

2

)) by the Simulation Congruene

Lemma 5.3. Therefore, from 5.28, we �nally have that j= �

0

(Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

)).

This onludes the proof for the simulation invariants and the whole simulation

indution step. We next point out an important property of the symboli exeution

of simulation invariants. Observe that the symboli exeution of an invariant moves

past the halves of the invariant both in P

0

1

and P

0

2

. In P

0

1

, the node after the half

of an invariant has to be a non-invariant node. Therefore, between two onseutive

exeutions of an invariant from P

0

1

, at least one non-invariant node is exeuted. (The

symboli exeution of suh a node orresponds diretly to the onrete exeution of

the same node.)

Whenever a half of an invariant from P

0

1

is exeuted, a half of an invariant from P

0

2

is also exeuted. In P

0

2

, there an be many halves of invariants in front of some non-

invariant node. Therefore, several onseutive exeutions of nodes from P

0

2

an exeute

halves of invariants. However, there are �nitely many halves of invariants in P

0

2

, and

after �nitely many exeutions of invariants, a non-invariant node has to be exeuted.

We an formalize this reasoning to prove that for the onseutive onrete exeutions

of P

1

that reah a simulation invariant, the length of the orresponding onrete

exeutions of P

2

does not derease, and, in fat, inreases after a �nite number of

exeutions. We use this property in the proof of the termination simulation.

5.2.4 Termination Simulation

In this setion we omplete the proof that the validity of the simulation veri�ation

ondition for two programs Q

1

and Q

2

, i.e., j= F

v

Q

1

;Q

2

, implies the termination simu-

lation of those programs. More spei�ally, we prove that for any simulation ontext

k for proedures P

1=2

of programs Q

1=2

, P

1

may not terminate only if P

2

may not

terminate.

An ativation of a proedure does not terminate if the ativation either ontains

100

an in�nite loop or alls another ativation that does not terminate. (Note that the

ativation an all, within the loop, other ativations that terminate.) If the alled

ativation does not terminate, it an be again beause of an in�nite loop or a all

that does not terminate. Eventually, either some ativation in the all tree has an

in�nite loop or the all tree has in�nite height.

We have argued in the proof for all nodes (page 98) that if an exeution of P

1

has a all tree of in�nite height, then there is an exeution of P

2

that also has a all

tree of in�nite height. Therefore, we analyze only the ase of an in�nite loop in this

setion. An ativation of a proedure has an in�nite loop if the partial exeution of

that ativation has in�nite length.

5

We prove the termination simulation theorem as

follows.

Theorem 3 (Termination Simulation) Assume that j= F

v

Q

1

;Q

2

for two programs Q

1

and Q

2

. If a partial exeution hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i of P

1

has in�nite length,

then there exists a partial exeution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i of P

2

suh that

if m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the partial exeution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i has

in�nite length.

Proof: By ontradition, assume that there exists no in�nite partial exeution

hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

suh that m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

. Sine j= F

v

Q

1

;Q

2

, we

have by the proof in the previous setion

6

, that for all hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i of

P

1

, there exists hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

suh that for all L

1

,L

0

2

:sim-inv J

0

from S

�

k

, there exists L

1

,L

00

2

:sim-inv J 2 set-sim-inv(L

1

; S

�

k

) suh that L

2

� L

00

2

and

m

1

; a

1

; m

2

; a

2

j= J . In other words, for all partial exeutions of P

1

that reah (a half

of) a simulation invariant, there exists an exeution of P

2

that reahes a orrespond-

ing (half of) simulation invariant. (Also, whenever the exeutions reah the invariant,

its formula holds, but we do not need that for this proof.)

Sine the partial exeution of P

1

has in�nite length, it exeutes at least one node

in P

1

in�nite number of times. Further, sine j= F

v

Q

1

;Q

2

, the SimVCG ould generate

F

v

Q

1

;Q

2

. and therefore it follows that the exeution reahes at least one half of a

simulation invariant in�nite number of times. Let the label for that invariant be L

1

.

We show that the partial exeutions of P

2

that reah a orresponding half of the

invariant annot be all �nite, whih thus ontradits the assumption that they are all

�nite.

We now onsider di�erent partial exeutions of P

1

(started from the same on�gu-

ration hP

0

1

; m

0

1

; a

1

i) that reah the same L

1

. Reall that the notation hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i is an abbreviation for the sequene hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

; a

1

i.

We an order the partial exeutions that reah L

1

by their length. Let the sequene

5

An ativation of a proedure has a all that does not terminate if the partial exeution of that

ativation has a �nite length, but the last on�guration is a all node and not a return node.

6

Note that the proof in the previous setion and the urrent proof should be atually done

simultaneously as desribed for the all nodes.

101

of suh exeutions be:

pe

1

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

pe

2

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

+

! : : :

+

! hL

1

; m

2

1

; a

1

i

pe

3

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

+

! : : :

+

! hL

1

; m

2

1

; a

1

i

+

! : : :

+

! hL

1

; m

3

1

; a

1

i

.

.

.

Note that the memories m

i

1

and m

j

1

for two di�erent partial exeutions pe

i

1

and pe

j

1

may or may not be di�erent.

For eah partial exeution pe

i

1

of P

1

, there is a orresponding partial exeution

pe

i

2

of P

2

. Let the sequene of suh orresponding exeutions be:

pe

1

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

1

2

; m

1

2

; a

2

i

pe

2

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

2

2

; m

2

2

; a

2

i

pe

3

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

3

2

; m

3

2

; a

2

i

.

.

.

where L

1

,L

i

2

:sim-inv J

i

2 set-sim-inv(L

1

; S

�

k

). Note that the labels L

i

2

and L

j

2

, as

well as the memories m

i

2

and m

j

2

, for two di�erent indies i and j may or may not

be di�erent. Further, even the whole partial exeutions pe

i

2

and pe

j

2

, and thus their

lengths, may or may not be di�erent. We denote the length of pe

i

2

by jpe

i

2

j.

From j= F

v

Q

1

;Q

2

, we an prove that the length of the orresponding partial exe-

utions does not derease (for all i and for all j > i, jpe

j

2

j � jpe

i

2

j). Even more, we

an prove that the length must inrease after a �nite number of exeutions in the

sequene pe

i

2

(for all i, exists j > i suh that jpe

j

2

j > jpe

i

2

j). The proof proeeds as

outlined in the previous setion (page 100). Therefore, the maximum length of pe

i

2

annot be bounded by any �nite number, i.e., there is a partial exeution of P

2

that

has in�nite length.

This onludes the proof that if the exeution of P

1

does not reah a return node,

then there exists an exeution of P

2

that does not reah a return node either. We

have also proven that if the exeution of P

1

reahes a return node, then there exists an

exeution of P

2

that reahes a return node (and the simulation output ontext holds).

This ompletes the proof of all simulation requirements|P

1

an generate only the

results that P

2

an generate.

We next give examples of two interesting ases of simulation. First, P

2

may

generate more results than P

1

. For example, if P

1

never terminates, P

2

an terminate

for some initial values of the loal variables, but there de�nitely exist some initial

values for whih P

2

does not terminate:

pro I

1

() fL

1

:br(TRUE)L

1

;ret;g pro I

2

() fL

2

:br(i == 0)L

2

;ret;g

Conversely, if P

1

always terminates, P

2

may not terminate for some initial values of the

102

loal variables, but there de�nitely exist some initial values for whih P

2

terminates:

pro I

1

() fret;g pro I

2

() fL

2

:br(i == 0)L

2

;ret;g

In the above examples, the result of P

2

depends on the uninitialized loal variable i.

Seond, if neither of proedure terminates, any simulation output ontext is prov-

able. This is sound beause the simulation de�nition requires the simulation output

ontext to hold only if the exeutions reah return nodes. For example, for proedures:

pro I

1

() fg=1;L

1

:br(TRUE)L

1

;ret;g pro I

2

() fg=2;L

2

:br(TRUE)L

2

;ret;g

the ompiler an prove that the output ontext is g

1

= g

2

for the input ontext true.

This learly would not hold if the exeutions ould reah the return nodes.

103

Chapter 6

Extensions and Limitations

In Chapter 4 we presented a framework for redible ompilation. The basi frame-

work is for a simple language whih we all basi language (BL). BL has only simple

integer variables, the same as the initial language for redible ompilation [41℄. The

advane is that BL has proedures and therefore supports modularity, whereas the

programs in the initial language onsist of only one proedure. However, the ap-

proah is essentially the same for both languages. First, the ompiler outputs the

standard ontexts (and invariants) for the analysis results and the simulation ontexts

(and invariants) together with the transformed program. Next, the veri�er uses the

veri�ation-ondition generator (VCG), whih onsists of the standard VCG (Std-

VCG) and the simulation VCG (SimVCG), to generate the standard veri�ation on-

dition (StdVC) and the simulation veri�ation ondition (SimVC). These onditions

are logi formulas, and the ompiler has the obligation to prove that the formulas

hold. What hanges for BL, in omparison with the initial language, is the VCG.

In this hapter we disuss how the framework for redible ompilation ould handle

more realisti programming languages. The main strategy still remains the same|

the veri�er requires the ompiler to produe the standard and simulation ontexts,

and to prove the veri�ation onditions for those ontexts. We extend BL with some

C onstruts, suh as pointers and arrays. We also disuss some extensions to the

language semantis, in partiular adding error states. The hanges to the language

syntax and semantis learly neessitate hanges to the veri�ation-ondition gener-

ators. For some hanges, it is also neessary to hange the logi, more preisely, to

extend the formulas with new onstrutors and new types of variables and expressions.

We present the extensions to the logi along with the extensions to the language.

We also show a group of extensions independent of the language used for inter-

mediate representation of programs. These extensions hange the language used for

representing invariants and also require hanges in the VCG. We introdue these ex-

tensions to make it easier to express the results of ompiler analyses. The hanges

to the language for invariants are therefore primarily for standard invariants, but the

hanges also propagate to simulation invariants. It is important to point out that

these hanges are not fundamental to simulation invariants. As mentioned earlier,

simulation invariants are the ruial onept for our approah to redible ompi-

lation. The fat that simulation invariants basially remain the same, in spite of

104

hanges to the programming language and standard invariants, supports our belief

that simulation invariants are essential for redible ompilation in general.

Finally, we present some limitations of the urrent framework for redible ompi-

lation. In partiular, the framework does not support translations from one program

representation to essentially di�erent representations. Suh translation an involve

both hanging the ode and the data representation. Additionally, the framework

urrently does not support hanges in the data layout even within the same represen-

tation. We believe that more general simulation invariants, together with the related

hanges in the SimVC, ould enable the framework to support some of these hanges.

6.1 Language Extensions

In this setion we onsider how the framework ould handle several extensions to

BL. We start by adding C-like pointers to BL. BL is obtained by adding proedures

to the initial language for redible ompilation. Even before adding proedures, we

explored [42℄ adding C-like pointers to the initial language. It may look surprising

that we extend the language �rst with suh low-level onstruts as pointers to arbi-

trary memory loations. We �rst present the motivation and then formalize in detail

hanges to the language, the logi, and the VCG.

We next briey disuss how to add arrays to the language. Array-bounds heking

emphasizes the neessity of a safe language semantis. We then disuss how to extend

the language semantis and the VCG to inlude error states. Finally, we onsider

extending the language with some ommon onstruts from imperative programming

languages, suh as expressions with side e�ets and omputed gotos.

6.1.1 Pointers

Before we present the extensions to the language syntax and semantis, we disuss

why we �rst add arbitrary C-like pointers to the language. Arbitrary pointers are

learly neessary if the redible ompiler has to generate ode for unsafe programming

languages like C. They are, however, neessary even for more disiplined languages

that provide a safe high-level memory model, e.g., the Java programming language [8℄.

Compilers translate the programs from the high-level representation into a lower-

level representation before performing most of the optimizations. The translations

introdue pointers in their full generality, so that the transformations an optimize

the way in whih the resulting ode aesses memory. Therefore, a framework that

allows the ompiler to prove results of suh transformations has to support pointers.

Pointers are also essential for an intermediate representation that desribes as-

sembly ode. Pointers, or their equivalents, are used to represent memory reads and

writes, and speial global variables (that pointers annot point to) are used to repre-

sent mahine registers. Finally, we added pointers to the initial language for redible

ompilation to �nd out how the ompiler ould prove that the results of pointer

analyses are orret. In partiular, we developed a framework [42℄ whih allows the

ompiler to prove that the results of ow-insensitive pointer analyses [2, 44℄ are or-

105

ret. We disovered that ow-insensitive analyses require a language semantis with

ertain guarantees; we present details in Setion 6.2.4.

We next extend the language syntax and semantis with pointers. Figure 6-1 shows

the modi�ed program syntax. There are three new forms for program expressions: &I

denotes the address of the variable named I, *E denotes the value stored at memory

loationE, and NULL denotes a speial address that is di�erent than possible addresses

of the variables. We introdue a new syntati domain for left-hand expressions whih

have two forms: a variable or a dereferene of an expression. The assignment nodes

are hanged so that the left-hand side is W instead of I. We use &W to represent the

syntati elimination of one level of dereferening: if W � I, then &W � &I; and if

W � *E, then we de�ne &W � E.

SyntatiDomains :

E 2 Expression

W 2 L-expression

: : : 2 the same as in BL, Figure 4-1

ProdutionRules :

E � : : : [the same as in BL℄

j &I [Address-of Operation℄

j *E

deref

[Dereferene℄

j NULL [Null Pointer Constant℄

W � I [Variable Loation℄

j *E

deref

[Expression Loation℄

N � L:W=E [Assignment Node℄

j : : : [the rest the same as in BL℄

Figure 6-1: Extensions to the Abstrat Syntax of BL

Note that the syntax allows expressing arbitrary pointer operations that involve

arithmeti and use integers diretly as pointers, e.g., *(p+1)=*(q+i)-*8. There are

no types; pointers and integers are syntatially used in the same way. This is (modulo

type asting) the way pointers are used in C. Additionally, pointers are semantially

equivalent to integers in C. It is undeidable, in general, whether a C program is type

and memory safe. We initially wanted to develop a framework in whih the ompiler

an prove its transformation orret even if the input program is an arbitrary C

program without any safety guarantees. However, trying to prove anything about the

full C language leads to numerous tehnial problems. Therefore, we onsider only a

safer subset of C. In partiular, we do not allow programs that apply the address-of

operator to a loal variable. We still allow ompletely arbitrary pointers to the global

variables, more preisely, to the global memory.

We next desribe how to modify the operational semantis of BL (Setion 4.1.2)

to add arbitrary pointers to non-loal variables. The main hange is to separate the

106

memory into two parts: the loal memory and the global memory. (We disuss in

next setions how this orresponds to realisti mahines.) The loal variables and

proedure parameters are stored in the loal memory. The loal memory represents

(data) stak; we disallow pointers in the stak, and thus aliasing of the loal variables.

The global variables are stored in the global memory. The global memory represents

stati data and an also represent the heap, i.e., dynamially alloated memory.

Formally, we �rst hange the domains of the operational semantis and the allo-

ation funtions in the following way:

One-Memory = Address! Value

m 2Memory = One-Memory� One-Memory

One-Allo-Pointer = Address

p 2 Allo-Pointer = One-Allo-Pointer�One-Allo-Pointer

allo-init

l

(hm; a; pi; I; Z) = hhm

g

; m

l

[p

l

7! Z℄i; ha

g

; a

l

[I 7! p℄i; hp

g

; p

l

+ 1ii

allo-init

g

(hm; a; pi; I; Z) = hhm

g

[p

g

7! Z℄; m

l

i; ha

g

[I 7! p℄; a

l

i; hp

g

+ 1; p

l

ii:

The Memory domain is now a pair that separately represents the global and loal

memories. We use m

g

and m

l

to denote the omponents of a pair m. Similarly,

eah memory has a separate alloation pointer p

g

and p

l

. For the loal memory, p

l

is the stak pointer; for the global memory, p

g

is the heap pointer. The alloation

funtions for loal and global variables hange the respetive memories, environments,

and pointers.

The input and output funtions of the operational semantis remain the same as

for BL; the only requirement is that the initial value of the p

g

pointer be greater than

0. The expression evaluation is also similar as in BL; only the evaluation of a variable

slightly hanges as shown in Figure 6-2. We use helper funtion var-in-lo-env(W; a

l

)

that returns true if the expression W � I, for some I, and the environment a

l

maps

the variable I; otherwise, var-in-lo-env(W; a

l

) returns false. Figure 6-2 also shows

the evaluation of the new forms of expressions.

m(a(I)) = if var-in-lo-env(I; a

l

) then m

l

(a

l

(I)) else m

g

(a

g

(I)) �

m(a(&I)) = a(I) = if var-in-lo-env(I; a

l

) then a

l

(I) else a

g

(I) �

m(a(*E

deref

)) = m

g

(m(a(E

deref

)))

m(a(NULL)) = 0

Figure 6-2: Extensions to the BL Expression Evaluation

The rewrite rules remain the same as for BL, exept that the rule for assignments

is replaed with two new rules. Figure 6-3 shows the new rules for an assignment to

a loal variable and an assignment to the global memory. Note that W an be of the

form *E

deref

, where E

deref

is an arbitrary expression that an evaluate to an address

di�erent than the addresses of the global variables.

107

hL;m; a; p; h; P i ! hL+

P

1; hm

g

; m

l

[V 7! V

0

℄i; a; p; h; P i
[assign-lo℄

where P (L) � L:W=E

and var-in-lo-env(W; a

l

)

and V � m(a(&W)) and V

0

� m(a(E))

hL;m; a; p; h; P i ! hL+

P

1; hm

g

[V 7! V

0

℄; m

l

i; a; p; h; P i
[assign-glob℄

where P (L) � L:W=E

and not var-in-lo-env(W; a

l

)

and V � m(a(&W)) and V

0

� m(a(E))

Figure 6-3: Extensions to the BL Operational Semantis Rewrite Rules

Logi Extensions for Pointers

We next desribe how to extend the logi after we add pointers to the language. There

are several ompliations in obtaining an e�etive logi when dealing with pointers

in the intermediate representation. These ompliations stem from the possibility

that an assignment via a pointer may hange a variable that is not syntatially

visible in the assignment statement. The solution is to use logi expressions with

expliit memory ; these expressions are di�erent from the program expressions where

the memory is impliit.

1

We extend the logi with a new group of expressions that

expliitly represent memory. In our presentation, we follow Neula [35, page 64℄, who

attributes the rules related to these expressions to MCarthy [29℄.

We �rst illustrate the main di�erene between the expressions with expliit and

impliit memory using an example. Consider the assignment i=j in a program with

global variables i and j. No memory m

g

is syntatially visible in the expressions

i and j. However, the meaning of the assignment is to read (selet) the value of

variable j from the memory m

g

, more preisely from the memory address to whih

the urrent environment maps j, and to write (update) that value to the loation in

memory m

g

to whih the urrent environment maps i.

In the logi, we denote the addresses of the variables i and j as addr(i) and

addr(j). Suppose that the logi variable x

m

represents the state of the global memory

before the assignment i=j. The logi expression sel(x

m

,addr(j)) denotes the value

of variable j in memory x

m

. The logi expression upd(x

m

,addr(i),sel(x

m

,addr(j)))

denotes the memory whose loations have the same values as in x

m

, exept that the lo-

ation with address addr(i) has value sel(x

m

,addr(j)). Therefore, the expression

with upd represents the memory after the assignment i=j.

We proeed to formally desribe the logi that inludes the new expressions with

memory. We �rst present the syntax of the new expressions. We next desribe how to

1

We initially used approximately the same syntax and semantis for the logi expressions as for

the program expressions, and we devised speial rules for substitution [42℄ to model assignments

in the presene of pointers. However, those rules require the ompiler to provide pointer-analysis

results and to guide the use of the results in the VCG; otherwise, the VC an get exponentially

large.

108

represent the loal and global variables with those expressions. The new expressions

neessitate hanges to the funtions for translating the program expressions to the

logi expressions. We present the new translation funtions, and then the semantis

of the new logi expressions, as well as the proof rules for those expressions.

Figure 6-4 shows the modi�ed logi syntax. We use G

m

to range over memory ex-

pressions that have four forms: a logi variable x

m

denotes some memory, the onstant

mem

0

denotes the memory that maps all loations to 0, an expression upd(G

m

,G

i

a

,G

i

v

)

denotes the result of updating the memory G

m

at loation G

i

a

with value G

i

v

, and

an expression M denotes a program memory. Observe that the new logi has two

types of logi variables: integer logi variables and memory logi variables. We as-

sume that the quanti�ed formulas are extended so that they an quantify over both

types of variables, and additionally that there are formula onstrutors for equality

and inequality of memory expressions. There are also two new forms for integer logi

expressions: sel(G

m

,G

i

a

) denotes the result of seleting the value at loation G

i

a

in

the memory G

m

and H(I) denotes the value or the address of a program variable.

SyntatiDomains :

H 2 Program-variable = fval; val

1

; val

2

g [faddr; addr

1

; addr

2

g

M 2 Program-memory = fmem; mem

1

; mem

2

g

G

i

2 Integer-expression

G

m

2Memory-expression

: : : 2 the rest the same as in Figure 4-4

ProdutionRules :

G

i

� : : : [the rest the same as in Figure 4-4℄

j H(I) [Program Variable Value or Address℄

j x

i

[Integer Logi Variable℄

j sel(G

m

,G

i

a

) [Memory Read℄

G

m

� x

m

[Memory Logi Variable℄

j mem

0

[Memory Constant℄

j upd(G

m

,G

i

a

,G

i

v

) [Memory Write℄

j M [Program Memory℄

Figure 6-4: Extensions to the Abstrat Syntax of the Logi Formulas

We next desribe how to represent the program variables and the memory in

the logi formulas. The introdution of pointers in the program expressions and the

introdution of the memory expressions in the logi neessitate a hange in the rep-

resentation of the program variables in the logi. In the logi in the basi framework,

the expression H(I) always represents the value of the program variable I; depending

on the partiular onstrutor H, the variable is loal or global, from one program or

from one of the two programs. In the extended logi, we represent the loal variables

di�erently than the global variables: the expression val(I

l

) represents the value of

109

the loal variable

2

I

l

and the expression addr(I

g

) represents the address of the global

variable I

g

. There are still two groups of formulas: the formulas for one program

(the analysis results) that an ontain only the onstrutors val and addr and the

formulas for two programs (the simulation relationships) that an ontain only the

indexed onstrutors val

1=2

and addr

1=2

.

The logi formulas represent the (standard and simulation) invariants and the

veri�ation onditions. In the veri�ation onditions, the memory is denoted with

arbitrary memory logi expressions. In the invariants, we want to refer, at di�erent

program points, to a partiular memory that is the global memory during the program

exeution. We use the onstrutor mem to denote the state of the global memory in the

standard invariants. For instane, to represent that global pointer p points to global

variable x at some node 3, we write 3:inv sel(mem,addr(p)) = addr(x). We use

indexed versions mem

1

and mem

2

to represent the states of the global memories of

two programs in the simulation invariants. For instane, to represent that the global

variable g

1

in program 1 at node 3

1

has the same value as the variable g

2

in program

2 at node 3

2

, we write 3

1

,3

2

:sim-inv sel(mem

1

,addr

1

(g)) = sel(mem

2

,addr

2

(g)).

We also present several other examples of the formulas used in the simulation

invariants. To represent that the two programs have exatly the same memories, we

write mem

1

= mem

2

. If the memories have the same values at all loations exept for,

say, the loation with the address of g

1

, we an write

3

:

8x: x 6= addr

1

(g)) sel(mem

1

,x) = sel(mem

2

,x):

We an also represent this without the universal quanti�ation:

mem

1

= upd(mem

2

,addr

1

(g),sel(mem

1

,addr

1

(g))):

In general, the memories an have di�erent values for a set of loations. (We briey

disuss extending the logi formulas with sets in Setion 6.2.3.) The ompiler an gen-

erate arbitrary invariants as long as it an prove the veri�ation onditions generated

for those invariants.

We next desribe the funtions for translating the program expressions with im-

pliit memory to the logi expressions with expliit memory. In the logi in the basi

framework, the translation funtions take a symboli environment that maps variable

names to the appropriate logi expressions for the values of those variables. In the

extended logi, the translation funtions take a symboli environment e that maps

eah loal variable name to the logi expression for the value of that variable and eah

global variable name to the logi expression for the address of that variable. (We use

2

The onstrutor val is the same as lo that we use in the basi framework for loal variables.

We avoid the name lo beause it might be misinterpreted as \loation." That is, indeed, the name

that MCarthy and Painter use for loations in the �rst published paper on ompiler orretness [29℄.

They use a binary onstrutor that takes the name of the variable and the environment. We do not

need to represent the environment expliitly in the veri�ation onditions.

3

Note that x is an integer logi variable in this example. We omit the expliit typing of the

variables and expressions when it is possible to infer the types.

110

the funtion var-in-lo-env(I; e) to test if the variable I is loal in the environment

e.) Additionally, the new translation funtions take an expression G

m

that represents

the logi expression to use for the memory.

Figure 6-5 shows the new translation funtions. The translation of the address-of

operation is the expression representing the address of the variable in the symboli

environment. (This translation is used only for global variables.) The translation of

the dereferene operation �rst translates the program expression E

deref

to the logi

expression G, and then generates the expression representing a read from loation G

of the symboli memory G

m

. Similarly, a global variable referene is translated into

the expression representing a read from the symboli memory at the address of the

variable in the symboli environment. The other translations are done as before, by

strutural indution on the program expressions, passing the symboli memory and

environment to the translations of the subexpressions.

translate-type(&I; G

m

; e) = he(I); inti

translate-type(*E

deref

; G

m

; e) =

let G be to-type(translate-type(E

deref

; G

m

; e); int) in

hsel(G

m

,G); inti

translate-type(NULL; G

m

; e) = h0; inti

translate-type(I; G

m

; e) =

if var-in-lo-env(I; e) then he(I); inti else hsel(G

m

,e(I)); inti �

translate-type(: : : ; G

m

; e) = the same as in Figure 4-5

Figure 6-5: Extensions to the Funtions for Translating Program Expressions to Logi

Expressions

We next de�ne the semantis of the new logi expressions. Figure 6-6 shows the

modi�ations to the basi logi. We add the domain Store to the domains for the

basi logi (Figure 4-6). The new domain represents memories, i.e., funtions from

addresses to values. We also use the new valuation funtion G

m

for the meaning of

the memory expressions. The meaning of the mem

0

is the onstant funtion 0. The

meaning of upd(G

m

,G

i

a

,G

i

v

) is the meaning of G

m

, whih is a funtion, �, with a

hange that the meaning of G

i

a

, z

a

, is mapped to the meaning of G

i

v

, z

v

:

�[z

a

7! z

v

℄ = �z: if z = z

a

then z

v

else �(z) �:

The meaning of sel(G

m

,G

i

a

) is the appliation of the meaning of G

m

, �, to the

meaning of G

i

a

, z

a

: �(z

a

). We de�ne the meaning of the formulas that quantify the

memory variables in the same (informal) way as the meaning of the formulas that

quantify the integer variables. Finally, program expressions (values, addresses, and

memories) get the meaning from the ontext that onsists of one or two onrete

memory-environment pairs m; a.

We �nally present a set of proof rules for the new logi expressions. For the

111

� 2 Store = Int ! Int

G

m

: Memory-expression! Context ! Store

G

m

[[mem

0

℄℄ = �z: 0

G

m

[[upd(G

m

,G

i

a

,G

i

v

)℄℄ = (G

m

[[G

m

℄℄)[(G

i

[[G

i

a

℄℄) 7! (G

i

[[G

i

v

℄℄)℄

G

i

[[sel(G

m

,G

i

a

)℄℄ = (G

m

[[G

m

℄℄)(G

i

[[G

i

a

℄℄)

G

i

[[: : :℄℄ = the same as in Figure 4-8

 j= 8x

m

: F

0

i� j= F

0

[�=x

m

℄ for all � 2 Store

 j= 9x

m

: F

0

i� j= F

0

[�=x

m

℄ for some � 2 Store

 j= : : : i� the rest the same as in Figure 4-8

G

i

[[val(I)℄℄ = m

l

(a

l

(I))

G

i

[[addr(I)℄℄ = a

g

(I)

G

i

[[val

1=2

(I)℄℄

1

;

2

= m

l

1=2

(a

l

1=2

(I))

G

i

[[addr

1=2

(I)℄℄

1

;

2

= a

g

1=2

(I)

G

i

[[mem℄℄ = m

g

G

i

[[mem

1=2

℄℄

1

;

2

= m

g

1=2

Figure 6-6: Valuation Funtions for Expressions and Validity of Formulas

memory expressions, we use the following two rules, alled the MCarthy rules:

` sel(upd(G

m

,G

i

a

,G

i

v

),G

i

a

) = G

i

v

[Alias℄

` G

i

a

6= G

i

b

` sel(upd(G

m

,G

i

a

,G

i

v

),G

i

b

) = sel(G

m

,G

i

b

)

[Non-Alias℄

The [Alias℄ rule states that a read from the memory loation with address G

i

a

returns

value G

i

v

that has been written to that loation. The [Non-Alias℄ rule states that

a read from the memory loation with address G

i

b

returns the value that does not

depend on the writes to other memory loations.

We next present several rules that involve the program variable names, i.e., iden-

ti�ers. In BL, the identi�ers annot appear in the veri�ation onditions, beause the

VCG for BL substitutes the program variables with the logi expressions that repre-

sent their values. Therefore, in the logi for BL, there is no need to have proof rules

that involve identi�ers. However, we later show that the identi�ers an appear in the

veri�ation onditions for the extended language. In partiular, the identi�ers of the

global program variables appear in the address-of expressions onstruted with addr.

112

We introdue the following rules for expressions representing addresses of variables:

` I

1

� I

2

` addr(I

1

) = addr(I

2

)

[Same-Id℄

` I

1

6� I

2

` addr(I

1

) 6= addr(I

2

)

[Di�-Id℄

` addr(I) 6= 0

[Non-Null℄

` addr

1

(I) = addr

2

(I)

[Same-Env ℄

The [Same-Id℄ rule is an instantiation of the general ongruene rule for equality. We

present the rule expliitly beause it involves the syntati equality of the program

identi�ers. This requires that a mahine-veri�able representation of the proofs have

support for the program identi�ers.

4

The [Di�-Id℄ rule states that the environments

are injetive|they map di�erent identi�ers to di�erent memory loations. The [Non-

Null℄ rule states that the environments do not map any identi�er to the value of NULL.

For eah of the rules [Same-Id℄, [Di�-Id℄, and [Non-Null℄, there are two analogous rules

for the indexed versions of the onstrutor addr. Finally, the [Same-Env ℄ rule states

that the environments from the two programs map idential identi�ers to the same

memory loations. Therefore, we abbreviate all addr

i

(I) expressions to &I in the

rest of the text. We disuss the relationship between the addresses of the variables

from two programs in the next setion.

Veri�ation-Condition Generator Extensions for Pointers

Sine we extended the language and the logi, we also need to extend the VCG.

We �rst desribe the small hanges to the (standard and simulation) ontexts and

invariants, and the analysis and transformation orretness requirements. We then

present the extensions to the StdVCG and SimVCG algorithms for BL. We also show

an example of veri�ation ondition generated by the new algorithms.

The (standard and simulation) ontexts remain the same; they onsist of an input

ontext, an output ontext, a set of invariants, and the other additional information.

The input and output ontexts and the invariants are similar as the ontexts and

invariants in BL. The only hange is that these formulas are now from the extended

logi with expliit memory. The analysis and the transformation requirements are

4

It is not stritly neessary to use the identi�ers. Instead, we an use (distint) integer onstants

to represent (distint) identi�ers from some lexial sope. That, in turn, requires enoding integer

literals and proofs involving them in a mahine-veri�able form. The Athena framework, whih

we use for proof representation and veri�ation, has a built-in support for both integer literals and

objet-level identi�ers. We use identi�ers as they allow a better readability of veri�ation onditions.

113

also similar as in BL. The VCG generates StdVC and SimVC, and the ompiler has

to prove that those formulas hold. The only di�erene is in the simulation ontext

for the starting proedures of the two programs.

The ompiler has to prove that the two programs generate the same output given

the same input. For BL, the input onsists of the values of the global variables and

the parameters of the starting proedures, and the output onsists of the values of

the global variables. For the extended language, instead of the values of the global

variables, we use the entire global memories. To prove that Q

1

� Q

2

, the ompiler

has to prove the simulation ontext whose input ontext is:

J

in

� mem

1

= mem

2

^

^

val

1

(I

p

1

) = val

2

(I

p

2

);

for all parameters I

p

1

of the starting proedure ofQ

1

and the orresponding parameters

I

p

2

of the starting proedure of Q

2

, and the output ontext is:

J

out

� mem

1

= mem

2

:

The ompiler an additionally assume that the two programs have the same allo-

ation of global variables; the orresponding global addresses have the same addresses

and thus a

g

1

= a

g

2

. (This does not allow the ompiler to prove that hanges in the data

layout are orret.) We need to use the same addresses in both programs and the

whole memories in the simulation requirement beause we allow arbitrary pointers.

For instane, onsider a program that only inrements a global variable g with the

value of some loation with address 8: g=g+*8. Even if g has the same value at the

beginning of the two programs, it would not have the same value at the end unless the

value at loation 8 is the same. Additionally, if g were mapped to di�erent addresses

in the two programs, and one of the addresses happened to be 8, the value of g would

not be the same at the end of the two programs. Therefore, the ompiler an use the

rule ` addr

1

(I) = addr

2

(I) in the proof, and mem

1

= mem

2

in J

in

.

We next present hanges to the StdVCG (Figure 4-9) and the SimVCG (Figure 4-

11) for BL. The StdVCG and SimVCG for the extended language also symbolially

exeute proedures and generate the appropriate StdVC and SimVC. However, a

symboli exeution operates on a di�erent symboli state than the symboli exeution

of BL proedures. A symboli state s for the StdVCG now maps val(I

l

), for eah

loal variable I

l

, to an integer logi expression representing the value of the variable,

as for BL, but s also maps mem to a memory logi expression representing the global

memory. Analogously, states s

1=2

for the SimVCG map val

1=2

(I

�

1=2

) and mem

1=2

.

We next desribe hanges to the helper funtions for the StdVCG and SimVCG.

The funtion fresh-sym-state returns fresh integer logi variables for all val(I

l

) and

a fresh memory logi variable for mem. The funtion fresh-globals remaps only mem to

a fresh memory logi variable. The substitution of the symboli state in formulas is

the substitution of the expressions G

i�

for val(I

�

l

) and the expression G

m

for mem:

subst(F; s) = F [G

i�

=val(I

�

l

)℄[G

m

=mem℄. The funtions for the SimVCG hange in a

similar way, taking into aount the speial form of logi formulas J that express the

related variables in two programs. (We also allow the pair mem

1

; mem

2

to appear in

114

the sequene of pairs of related variables.)

Both StdVCG and SimVCG use the same helper funtions for the assignment,

branh, and all nodes. Figure 6-7 shows the new funtions for the extended language.

Compared to BL, the new funtions have an extra argument M that represents the

memory to use for the translations. The modi�ed StdVCG alls these funtions with

mem for M , and the modi�ed SimVCG alls with mem

1

or mem

2

depending on the

program. In pratie, the translations of the expressions from the program form to

the logi form are done while preparing proedures for symboli exeutions (both for

BL and the extended language), i.e., while merging the invariants. The exeutions

then perform only the substitutions in the urrent symboli states.

translate-assign(W;E;M; s; e) =

let G

E

be translate(E;M; e) in

if var-in-lo-env(W; e) then

s[translate(I; e) 7! subst(G

E

; s)℄

else

let G

W

be translate(&W;M; e) in

s[M 7! subst(upd(M,G

W

,G

E

); s)℄

�

translate-branh(E;M; s; e) = subst(translate-bool(E;M; e); s)

translate-all(E

�

;M; s; e) = subst-seq(translate-seq(E

�

;M; e); s)

Figure 6-7: Changes to the Helper Funtions for Veri�ation-Condition Generators

We next show the veri�ation onditions that the modi�ed VCG generates for

an example slightly hanged from the example presented in Chapter 3. We hange

the original proedure from Figure 3-2 in the following way: there is a new global

variable h, there is a new node 0:h=&g before node 1:i=0, and the node with label

3 is 3:*h=g+2*i. We onsider that the ompiler an perform onstant propagation

on the input proedure and an transform the nodes 3:*h=g+2*i and 5:i=i+ so

that the output proedure has nodes 3:g=g+2*i and 5:i=i+3. We �rst desribe the

analysis results that the ompiler generates and the StdVC for those results. We then

desribe the simulation relationships and the SimVC for this example.

The ompiler �rst performs a pointer analysis on the original program. Consider

that the proedure q is suh that no exeution of q hanges the pointer h when h

points to g. The ompiler an then generate and prove the standard ontext for q

with both input and output ontexts being sel(mem,&h) = &g. For the proedure p,

we onsider the standard ontext with both input and output ontexts being true.

Suppose that the ompiler generates only one standard invariant for the analysis

results of this ontext: 3:inv sel(mem,&h) = &g ^ val() = 3. For this example

115

ontext of p, the StdVCG generates the following StdVC:

8i

1

;

1

; m

1

: true

p

in

)

sel(upd(m

1

,&h,&g),&h) = &g ^ 3 = 3 ^

8i

2

;

2

; m

2

: sel(m

2

,&h) = &g ^

2

= 3)

sel(upd(m

2

,sel(m

2

,&h),sel(m

2

,&g) + 2 � i

2

),&h) = &g ^

8m

3

: sel(m

3

,&h) = &g)

(i

2

+

2

< 24) sel(m

3

,&h) = &g ^

2

= 3) ^

(:(i

2

+

2

< 24)) true

p

out

):

We next onsider, for the original and transformed proedures p, a simulation

ontext with both simulation input and output ontexts being just mem

1

= mem

2

.

We use the same simulation input and output ontexts for the alls to proedure q.

Suppose that the ompiler generates only one simulation invariant for the ontext for

proedures p: 3

1

,3

2

:sim-inv mem

1

= mem

2

^ val

1

(i) = val

2

(i). Also, the ompiler

generates that the initial values for loal variables i

2

and

2

are the same as for i

1

and

1

. In this example, the SimVCG generates the following SimVC:

8m

1

1

; i

1

1

;

1

1

; m

1

2

: m

1

1

= m

1

2

)

m

1

1

= m

1

2

^ 0 = 0 ^ 8m

2

1

; i

2

1

;

2

1

; m

2

2

; i

1

2

;

1

2

: m

2

1

= m

2

2

^ i

2

1

= i

2

2

)

2

2

= 3)

upd(m

2

1

,sel(m

2

1

,&

1

h),sel(m

2

1

,&

1

g)+ 2 � i

2

1

) =

upd(m

2

2

,sel(m

2

2

,&

2

h),sel(m

2

2

,&

2

g)+ 2 � i

1

2

) ^ 8m

3

1

; m

3

2

: m

3

1

= m

3

2

)

(i

2

1

+ 3 < 24) i

1

2

+

1

2

< 24 ^m

3

1

= m

3

2

^ i

2

1

= i

1

2

) ^

(:(i

2

1

+ 3 < 24)) :(i

1

2

+

1

2

< 24) ^m

3

1

= m

3

2

):

Observe that the above example does not show the use of the formulas J with a

sequene of related variables. Using these formulas, the input and output ontexts

are just true,(mem

1

,mem

2

) (i.e., true ^ mem

1

= mem

2

), and the simulation invariant

is 3

1

,3

2

:sim-inv true,(mem

1

,mem

2

),(val

1

(i),val

2

(i)). In this ase, the SimVC

is muh shorter

5

:

8m

1

; i

1

;

1

1

: true)

true ^ 8m

2

; i

2

;

2

1

;

1

2

: true)

1

2

= 3)

true ^ 8m

3

: true)

(i

2

+ 3 < 24) i

2

+

1

2

< 24 ^ true) ^

(:(i

2

+ 3 < 24)) :(i

2

+

1

2

< 24) ^ true):

6.1.2 Arrays

We next briey show how to add (stati) arrays to the BL with pointers. In the

simplest ase, we add a new delaration form for (one-dimensional) arrays, I[Z℄.

The alloation of array I[Z℄ takes Z onseutive loations in the memory and the

environment maps I to the address of the �rst loation. We also add a new expression

form for array aesses, W [E

index

℄, both to the left-hand expressions W and to the

5

In pratie, the SimVCG does not even generate true in true) F or true ^ F or F ^ true.

116

right-hand expressions E. We allow only global variables to be arrays that are indexed

with arbitrary expressions. Sine the language has pointer arithmeti, we an onsider

array expressions simply as syntati sugar: W [E℄ � *(&W +E). This onludes the

extensions for arrays with arbitrary indies.

We also point out a useful restrited form of arrays. Namely, if the size of arrays

is known at ompile time and arrays an be indexed only with integer onstants,

it is trivial to hek at ompile time that array indies are within bounds. These

arrays an be even loal, and we use them to model an ativation frame ontaining

loal variables addressed using the frame pointer. Eah array element is, essentially,

treated as a separate variable.

We �nally argue why it is neessary to have run-time array-bounds heking for

general array indies, as well as more restrited pointers, in the language semantis.

The main reason is to formally model the exeution of programs on realisti mahines

while still retaining ertain guarantees in the language. For example, in the BL with

pointers, a pointer expression involving global variables annot aess loal variables.

However, to guarantee that, the semantis presented in Setion 6.1.1 requires the

mahine to have two separate memories, whih is not the ase in pratie. Running

a program on a mahine with one memory ould generate a di�erent result than

running the program on a mahine with separate memories. Therefore, to model

the exeution of programs on realisti mahines, we need to hange the semantis.

We disuss in next setion how to introdue error states in the semantis to restrit

memory aesses that pointer/array expressions an make.

6.1.3 Error States

We next briey disuss how we ould hange the framework to support error states in

the language semantis. Error states are added to the semantis as follows. For eah

group of nodes in the language, the exeution heks whether ertain error onditions

are satis�ed. For instane, for the nodes that evaluate expressions, there are heks

for whether array indies are out of bounds and for division by zero. If the error

onditions are satis�ed, the exeution goes to an error state; otherwise, the exeution

ontinues as normal. Error states are �nal states of a program exeution, and an

error is one of the observable results that a program an generate.

We do not formally present error onditions for nodes in the BL with pointers (and

arrays). We assume that these onditions provide ertain guarantees for the program

exeution. For example, a read/write of a[i℄ an read/write only an element of

the array a. More preisely, if the exeution (evaluation) of a[i℄ does not end up

in an error state (i.e., the index i is within the bounds of a), then a[i℄ aesses

an element of a. Note that de�ning error onditions for arbitrary expressions with

pointer arithmeti is muh more involved. For the full C language, the standard [26℄

does not formally present semantis (and error onditions), and the paper [21℄, whih

presents formal semantis for C, ignores the issue of errors.

We next onsider two approahes that we ould use to handle errors in BL ex-

tended with pointers: disallowing programs with errors and extending the framework.

We would disallow errors by requiring that the ompiler input program have no errors,

117

i.e., that the program be suh that its exeution an never get into an error state. The

ompiler annot determine whether this holds for an arbitrary BL program. However,

BL is only an intermediate representation in the ompiler, and we an restrit the

soure language so that the ompiler an e�etively hek whether a soure program

has an error. This approah is used in the ertifying ompilers Touhstone [38℄ and

Poporn [31℄. The soure language for these ompilers is a type-safe subset of C, and

eah ompiler translation (or transformation) preserves type safety and generates ev-

idene that the output program has no errors.

6

To use this approah for redible

ompilation, we would extend BL with stati types. Eah ompiler transformation

would �rst show that the output program has no errors and then that the output

program simulates, as before, the input program.

The other approah to handling errors is to allow the input program to potentially

have errors, but extend the framework so that the ompiler an prove that it orretly

transformed the input program even if it has an error. We extend the de�nition of

the simulation requirement to inlude errors|program Q

1

simulates program Q

2

i�

the following holds: an exeution of Q

1

an generate an error only if an exeution of

Q

2

an generate an error and, as before, an exeution of Q

1

an terminate only if an

exeution of Q

2

an terminate with the same output and an exeution of Q

1

does not

terminate only if an exeution of Q

2

does not terminate. The ompiler need prove

only that the output program simulates the input program, and it follows that the

output program has no errors if the input program has no errors.

We next desribe how to extend the SimVCG to generate the SimVC for two

programs that an have errors. Coneptually, we introdue, in eah proedure from

the two programs, a speial node that represents an error state. We an then replae

eah original node that an generate an error, when some error ondition C holds, with

two new nodes: a branh node, whose ondition is C and whose target is the speial

error node, and a opy of the original node, where the opy now annot generate an

error. After this, we an use, for the new proedures, a similar SimVCG as we use for

the language without errors. The only hange in the symboli exeutions is that both

proedures need to simultaneously exeute the error nodes (as they simultaneously

exeute the return and all nodes). This approah to errors allows us to desribe the

semantis of the language using dynami types in error onditions. We have started

exploring whether it is pratial to treat pointers as pairs of a base address and

o�set. We believe that this would enable easier modeling of some of the \unde�ned"

onstruts in the C language.

6.1.4 Side E�ets

We next briey onsider extending BL by adding expressions that have side e�ets.

In partiular, we disuss how to hange the logi and the VCG to support funtions.

6

In Touhstone, the evidene is a proof; in Poporn, it is type information for the output program.

The type system is sound| every well-typed program is guaranteed to have no errors. The evidene

is statially heked, and the mahine that exeutes the program does not need to perform run-time

heks.

118

Funtions are subroutines that return a result, as opposed to proedures, whih only

modify the state. To add funtions to the language, we add a new expression form for

funtion alls, I(E

�

), and we hange return nodes to be L:ret E. In the language

semantis, we need to operationally desribe the expression evaluation that now takes

many steps, instead of one step as in BL.

We hange the VCG similarly; the VCG does not translate in one step the pro-

gram expressions that ontain funtion alls to logi expressions. Instead, the VCG

translates the expressions in several steps and uses a symboli state that ontains a

speial element that represents the value of the expression. The ompiler provides

(standard and simulation) ontexts for funtions, and the VCG uses those ontexts

for modeling the funtion alls. As usual, the VCG generates a VC that requires the

input ontext to hold before the all(s) and assumes the output ontext to hold after

the all(s). The symboli state after the all has a fresh logi variable for the global

memory and for the speial element representing the value of the expression. In the

logi formulas, we only add a new onstrutor for representing the return value of

the funtion, and the ompiler an use the new onstrutor in output ontexts. This

onludes the list of suÆient hanges to the framework to make it support funtions

in the language. (We present in next setion another approah, extending the logi

formulas with expressions that represent alls, that an be used to add support for

funtions.)

6.1.5 Computed Jumps

We next onsider extending BL with jumps that have omputed targets. We onsider

two groups of \omputed jumps": \omputed jumps to subroutine" (subroutine alls

with the subroutine being an arbitrary expression instead of a subroutine identi�er)

and \indiret jumps" (branh nodes with the label being an arbitrary expression

instead of a label identi�er).

We �rst onsider hanging the alls from diret I(E

�

) to indiret W(E

�

), where

the expression &W evaluates to the address of the alled proedure. (We present the

hanges only for proedures as the hanges for funtions are similar.) We also add

the expression form &I for taking the address of a proedure named I. For example,

the sequene l=&p;(*l)() makes a all to a parameterless proedure p. The hange

of the alls in the language requires a hange of the VCG. We an hange the VCG

to support indiret alls using two approahes: extending the desription of ontexts

at all sites or extending the logi formulas.

We extend the desription of ontexts at all sites by allowing the ompiler to

generate whih proedures might be alled. For programs with diret alls, only

one proedure an be alled at any all site, and the VCG requires the ompiler to

generate only the index of a allee ontext to use for the all site. (The StdVCG

requires an index of a standard ontext for one allee, and the SimVCG requires an

index of a simulation ontext for two allees.) The VCG for diret alls uses the input

and output ontexts, for the spei�ed index, to generate a part of VC that requires

the input ontext to hold before the all and assumes the output ontext to hold after

the all. The VCG for indiret alls generates a VC that additionally requires that

119

before the all, the all expression &W evaluates to one of the proedures spei�ed

by the ompiler. The VCG also heks that all those proedure have the ontext

spei�ed by the ompiler.

If the ompiler annot determine whih proedures might be alled at a all site,

the ompiler uses the \default ontext." For standard ontexts, the default ontext

has both input and output ontexts true, and this ontext an be used for any pro-

edure. For simulation ontexts, the default ontext represents that two proedures

generate the same output given the same input, i.e., the default simulation ontext

has input ontext mem

1

= mem

2

^

V

val

1

(I

p

1

) = val

2

(I

p

2

), where

V

ranges over the

parameters of the proedures, and output ontext mem

1

= mem

2

. This ontext an

be used only for the pairs of proedures for whih it holds. Sine it holds if the two

proedures are idential, the SimVCG would generate the SimVC that requires the

(translations of) all expressions to be equal at the two all sites.

The other approah to supporting indiret alls is to extend the logi formulas

with expressions that represent proedure alls. If the memory before the all is G

m

,

then the memory after the all would be app

i

(G

m

,G

p

,G

�

), where app

i

is a family

of memory expression onstrutors indexed by the number of proedure parameters,

G

p

is a logi expression representing the proedure that is alled, and G

�

represents

the parameters. The new onstrutors would be uninterpreted funtion symbols in

the logi. (The same result is ahieved in the previous approah if the ompiler uses

\default ontexts" at all all sites beause the ompiler does not perform an interpro-

edural analysis or transformation.) Extending the logi formulas for indiret alls

does not support interproedural analyses and transformations in a lean manner.

7

Therefore, we prefer extending the ompiler desription of ontexts.

We next onsider hanging the branhes from diret br(E)L to indiret br(E

)E

t

,

where the target E

t

evaluates to the label to branh to if the ondition E

evalu-

ates to true. We also hange the labels to be integers. For example, the sequene

1:j=1;br(TRUE)j is an inde�nite loop. The hange of the branhes in the language

also requires a hange of the VCG. However, we annot hange the symboli exeution

of the VCG to support arbitrary indiret jumps. The reason is that the VCG ould

not deide, in general, where to ontinue the symboli exeution for the branh-taken

path. If we restrited the indiret jumps in some way so that the VCG ould deter-

mine what all possible targets are, then we ould simply hange the VCG to follow

all those paths.

6.2 Invariant Extensions

In this setion we disuss several extensions to the language used for representing

invariants. An invariant onsists of a logi formula and one program label (for a stan-

dard invariant) or two program labels (for a simulation invariant). We �rst extend the

7

The support an be added by hanging the VCG to generate, as assumptions in the VC, formulas

that involve app

i

and desribe ontexts. We do not present more details here, but suÆe it to say

that this would make the VC muh more diÆult to prove.

120

invariants so that the ompiler an represent a set of variables that are not modi�ed

during a loop. We then extend the logi formulas with some new expression onstru-

tors, more spei�ally, onstrutors that allow the ompiler to refer to the program

state at the beginning of an exeution and onstrutors that allow the ompiler to

more suintly express the results of analyses and the simulation relationships. We

�nally extend the representation of the program labels in standard invariants to allow

the ompiler to more easily express the results of ow-insensitive analyses.

6.2.1 Loop Constants

We next desribe how to hange standard invariants and the StdVCG to allow the

ompiler to represent that some variables have onstant values during some loop. We

model this hange after the invariants that Neula and Lee use in their ertifying

ompiler [38℄.

With the invariants presented so far, the ompiler an represent that some vari-

ables have the same values for all exeutions that reah a program point. The ompiler

has to determine these values and to represent them as onstants. For example, the

invariant 2:inv sel(mem,&g) = 1 ^ val(i) = 0 represents that the global variable

g and the loal variable i have the value 1 and 0, respetively, for all exeutions

that reah the node with label 2. However, the ompiler annot represent that the

value of a variable (in general, the value of an expression) does not hange between

the onseutive exeutions that reah the invariant. More preisely, we refer to the

onseutive exeutions within the same loop, i.e., the onseutive exeutions that do

not reah any node before the invariant. The value an hange for di�erent loops.

We extend the invariants so that eah invariant has, beside a label and a formula,

also a set of expressions that do not hange within the innermost loop ontaining

the invariant. We write suh invariant as L:inv F;G

�

. For example, the extended

invariant 5:inv val(j) > 3;sel(mem,&g); val(i) represents that the value of j

is greater than 3 for all exeutions reahing the node 5 and that the values of g

and i are onstant within the innermost loop ontaining the node 5. Note that

the ompiler an represent that an expression has a onstant value within the loop

although the ompiler does not determine that value. The ompiler an use arbitrary

expressions in G

�

, e.g., mem in G

�

represents that the whole memory does not hange,

and sel(mem,sel(mem,&p)) in G

�

represents that the value of the loation pointed

to by the pointer p does not hange.

The extended invariants require hanges in the StdVCG for BL (Figure 4-9).

Figure 6-8 shows the new symboli exeution of the invariants with expressions G

�

.

The most ommon expressions in G

�

are the values of variables (val(I

l

) for lo-

al I

l

and sel(mem,&I

g

) for global I

g

) and the value of the whole memory (mem).

Instead of the helper funtion fresh-sym-state, the new StdVCG uses the funtion

fresh-sym-state-related(s;G

�

) that generates the state s

0

from s with respet to G

�

.

For eah expression G (be it val(I

l

) or mem) that s maps, s

0

maps G to a fresh logi

variable if G is not in G

�

, and s

0

maps G to s(G) if G is in G

�

. The extended StdVCG

also uses the funtion seq-eq(G

�

; s; s

0

) that generates

V

subst(G; s) = subst(G; s

0

),

where

V

ranges over all G in G

�

for whih subst(G; s) 6� subst(G; s

0

). The soundness

121

proof for this StdVCG is similar to the soundness proof for the StdVCG for BL; only

StdIH3 in the indution hypothesis hanges. Neula [35℄ shows a similar proof in

detail.

mathing P

0

(L)

.

.

.

� L:inv F;G

�

[℄

if member(hL; s

0

i; i) then

subst(F; s) ^ seq-eq(G

�

; s; s

0

)

else

let hs

0

; x

�

i be fresh-sym-state-related(s;G

�

) in

subst(F; s) ^

8x

�

: subst(F; s

0

) ^ seq-eq(G

�

; s; s

0

)) Std(L+

P

0

1; s

0

; union(hL; s

0

i; i))

�

endmathing

Figure 6-8: Extensions to the Veri�ation-Condition Generator for BL

We have desribed so far how to extend the standard invariants with sets of

expressions that do not hange during a loop. An analogous extension an be used

for standard ontexts for proedures. We an allow the ompiler to represent in the

input (or the output) ontext a set of expressions that do not hange during the

exeution of one ativation. (Alternatively, the ompiler an represent a set of all

expressions that the proedure may hange, i.e., the write-set of the proedure.) The

StdVCG an then generate, at all sites, a symboli state for the output ontext with

respet to the symboli state for the input ontext. In the next setion we present

another extension that allows the ompiler to represent relationships between the

states for the input and output ontexts.

Finally, the simulation invariants and ontexts an be extended in a similar way

as the standard invariants and ontexts. Eah simulation invariant would relate

not only the states from two programs, but also di�erent states from one program.

The SimVCG would then generate the fresh symboli states with respet to the old

symboli states.

6.2.2 Starting States in Formulas

We next desribe how to extend the logi formulas so that the ompiler an represent

the starting state in them. (By starting state we mean the state of the program

memory at the beginning of the exeution of a proedure ativation.) Using the

logi formulas presented so far, the ompiler an represent in standard invariants

only the urrent state during the exeution. (In simulation invariants, the ompiler

an represent two states, but again only the urrent states of two memories.) The

ompiler uses the onstrutors lo and glob, in the logi for BL (Setion 4.2), or

the onstrutors val and mem, in the logi for BL with pointers (Setion 6.1.1), to

122

represent the urrent values of program variables or memory.

8

(In both logis, there

are also indexed versions of onstrutors for simulation invariants.) We will use H

to refer to all these onstrutors. Similar to the formulas for invariants, the ompiler

an represent only the urrent state in the formulas for input and output ontexts,

respetively, the state at the beginning and the state at the end of the exeution of

an ativation.

We extend the logi formulas to allow the ompiler to represent in any formula

the starting state m

0

, beside the urrent state m. We add a set of onstrutors H

0

(one for eah appropriate H). The expressions with H

0

denote the orresponding

values in m

0

. For example, 2:inv glob(g) = glob

0

(g) means that the value of some

global variable g is the same at node 2 as it is in the beginning of the proedure.

Formally, the meaning of the new formulas is de�ned with respet to the ontexts

that onsist of two memories and an environment: = hm

0

; m; ai. The translation

funtions from program expressions to logi expressions remain the same. We next

disuss the e�et of the new expressions on the (standard and simulation) ontexts,

and then we desribe the hanges to the VCG.

Using the new formulas, the ompiler an represent in an output ontext the state

at the beginning of the ontext. This makes the ontexts muh more expressive. For

example, onsider a simple proedure that swaps the values of two variables x and y.

The ompiler an generate only one ontext for this proedure, namely F

in

� true

and F

out

� glob(x) = glob

0

(y) ^ glob(y) = glob

0

(x). Without glob

0

, the

ompiler would need to generate a ontext with F

in

� glob(x) = C

x

^glob(y) = C

y

and F

out

� glob(x) = C

y

^ glob(y) = C

x

for every two onstants C

x

and C

y

for

whih the ompiler uses the fat that the proedure swaps values. In general, the

ompiler an now generate only one ontext for the results of any analysis on any

proedure. We argue that this is not always the best approah.

In the simple example with swap, di�erent input ontexts have only di�erent

values of the parameters. However, in more involved examples of ontext-sensitive

interproedural analyses, di�erent input ontexts may express di�erent relationships

between variables. Consider that suh an analysis generates n di�erent input ontexts

F

in

1

; : : : ; F

in

n

and n orresponding output ontexts F

out

1

; : : : ; F

out

n

for some proedure.

The ompiler an ombine all these ontexts into one: F

in

� F

in

1

_ : : : _ F

in

n

and

F

out

� F

in

1

[H

0

=H℄) F

out

1

^ : : : ^ F

in

n

[H

0

=H℄) F

out

n

. (The ompiler has also to

ombine the invariants similarly as the output ontexts.)

The VCG for the new formulas uses the ontexts at all sites in the same way as

the VCG for BL. When a proedure has only one ombined ontext, the new VCG

would use that ontext for all alls to that proedure. The �rst problem with the

ombined ontext is that the VCG uses F

in

and F

out

, instead of F

in

k

0

and F

out

k

0

for

some k

0

, and thus a part of VC is (roughly n times) longer at eah all site. A muh

bigger problem is that the proof generator that proves the VC has to \redisover"

whih of the ontexts F

in

1

; : : : ; F

in

n

to atually prove for eah all site. Therefore, in

the new VCG, we still allow the ompiler to generate many standard ontexts for the

8

The addresses of global variables do not hange during the exeution of a program, and thus

addr(I) represents the address of the variable I throughout the exeution.

123

same proedure. (The ompiler an also generate many simulation ontexts for the

same pair of proedures.)

The new VCG di�ers from the VCG for BL only in the substitutions of symboli

states, both for the StdVCG (Figure 4-9) and for the SimVCG (Figure 4-11). Eah

subst(F; s) for a standard invariant is replaed with subst(subst(F; s); s

0

), and analo-

gously eah subst-sim(J; s

1

; s

2

) is replaed with subst-sim(subst-sim(J; s

1

; s

2

); s

0

1

; s

0

2

).

We allow only H

0

onstrutors in the input ontext formulas, and the starting sym-

boli states (s

0

, s

0

1

, and s

0

2

) map the expressions with H

0

to some logi expres-

sions. The substitution at all sites also hanges. The new StdVCG �rst reates

s

in

= set-params(I; G

�

; s)[H

0

=H℄ and then performs the substitutions subst(F

in

; s

in

)

and subst(subst(F

out

; s

0

); s

in

); the new SimVCG operates analogously. The soundness

proofs for the new StdVCG and SimVCG proeed in a similar way as for the StdVCG

and SimVCG for BL.

6.2.3 Formula Extensions

We next disuss general extensions to the logi formulas and, in partiular, adding

set expressions to the formulas. Generally, adding new prediates and/or types of

logi variables and expressions allows the ompiler to generate shorter invariants.

As a simple example, onsider an analysis that determines whih program variables

have truth values (0 or 1). Using the formulas presented so far, the ompiler an

represent the results of the analysis only with expressions val(I) = 0 _ val(I) = 1.

Introduing a new onstrutor bool allows the ompiler to use bool(val(I)) instead.

Adding new onstrutors requires adding proof rules for the formulas with new

onstrutors. In the example with bool, it is enough to add only the rule for the

de�nition of bool (for all x, bool(x) i� x = 0 _ x = 1), and the ompiler ould add

suh de�nitions automatially. However, in more omplex ases, it is usually neessary

to add several proof rules for the new formulas and to generate a meta-proof that

the new proof rules are sound. Sine the ompiler annot generate a meta-proof, we

need to speify, before a ompilation, a logi that allows the ompiler to eÆiently

represent and prove the results of \standard" analyses.

Based on our experiene with the implementation of a (ow-sensitive intraproe-

dural) pointer analysis, we �nd sets (sequenes) of onstants to be partiularly useful

for expressing the results of ompiler analyses. In BL extended with pointers, we

regard as onstants the addresses of global variables as well as the integer onstants

(C ::= addr(I)jZ). We have started extending the logi with the expressions that

denote sets of onstants: G

s

::= emptyjunion(C,G

s

). The prediate in(G

i

,G

s

)

denotes that the value of expression G

i

is in the set G

s

. For example, the expression

in(val(i),union(0,union(1,empty))) denotes that the value of i is either 0 or 1,

i.e., val(i) = 0 _ val(i) = 1. Similarly,

in(sel(mem,&p),union(&x,union(&y,empty)))

denotes that the pointer p points either to x or to y. To fully utilize the sets, we

plan to further extend the logi with ways for naming sets and for proving subset

124

relationships between sets.

9

As mentioned briey in Setion 6.1.1, we an also use a set of addresses of variables

to represent, in simulation invariants, that two memories have the same value in all

loations exept for the loations whose addresses are from the set G

s

:

8x: in(x,G

s

)) sel(mem

1

,x) = sel(mem

2

,x):

Observe that one the formulas involve sets of addresses, it is not possible to prove

that two memories are equal even if the set is empty. We need therefore to add a rule

that mem = mem

0

if 8x: sel(mem

1

,x) = sel(mem

2

,x).

6.2.4 Flow-Insensitive Analyses

We next desribe how the ompiler represents the results of ow-insensitive analyses

and how a speialized StdVCG generates StdVC for those results. We also disuss

the relationship between those results and the initialization of variables.

Flow-insensitive analyses generate, for one ontext (a pair F

in

and F

out

), the same

result (formula F) for all nodes in a proedure. We an represent this result with

only one standard invariant of a speial form, e.g., *:inv F . This invariant represents

that F holds everywhere.

Further, ow-insensitive analyses do not use the information from the branh

onditions. We an therefore use a speialized StdVCG that does not exeute the

branh nodes of the proedure and generates a shorter StdVC.

10

The StdVCG for

*:inv F exeutes only the assignment nodes and the all nodes. The StdVCG �rst

reates fresh symboli states s

0

and s, with logi variables x

�0

and x

�

, and then

generates the following part of StdVC for the input and output ontexts and the

assignment nodes:

8x

�

; x

�0

: subst(F

in

; s

0

)) subst(subst(F; s); s

0

)) subst(subst(F

out

; s); s

0

) ^

V

W=E2P

subst(subst(F; translate-assign(W;E; mem; s; e)); s

0

);

where the onjuntion ranges over all assignment nodes in the proedure. The Std-

VCG also generates a similar part of StdVC for the all nodes as for the assignment

nodes.

9

Cheking the subset/membership relationships using the proof heker requires the relationships

to be enoded in proofs. It is more eÆient to hek the relationships using a funtion additional to

the proof heker. The Athena framework, whih we use for proof representation and veri�ation,

o�ers a diret way to add suh a funtion, i.e., to add omputation to dedution.

10

Similarly, we an use speialized StdVCGs for other kinds of analyses. For example, standard

(non-prediated) dataow analyses do not use the information from the branh onditions. There-

fore, for the results of suh analyses, the StdVCG does not need to add the branh onditions to

the StdVC. (Omitting those onditions from StdVC is sound sine the onditions are used only as

assumptions in the StdVC. Also, the proof generator an prove the StdVC without the onditions

sine the analysis results do not depend on those onditions.) The StdVCG still needs to symbol-

ially exeute all nodes of the proedure to generate the StdVC. In general, the ompiler has to

exeute all nodes and to also generate the branh onditions; otherwise, the proof generator might

not be able to prove the StdVC.

125

We next disuss the relationship between ow-insensitive analyses and the initial-

ization of program variables. We show that obtaining e�etive ow-insensitive analy-

ses requires that the language provides some guarantees. As an example, we onsider

a ow-insensitive pointer analysis. A pointer analysis determines where eah pointer

an point to. Assume that some proedure (in BL with pointers) has only one pointer

p and two assignments to p: p=&x and p=&y. Usually, an analysis would generate that

val(p) = &x _ val(p) = &y everywhere in the proedure. However, this atually

does not hold (and thus annot be proven) at the beginning of the proedure|p an

have any value in the starting state. Therefore, a ow-insensitive result has to inlude

the starting value, namely val(p) = &x _ val(p) = &y _ val(p) = val

0

(p).

The results beome less preise (and thus less useful) after adding the option

that a variable an have the starting value anywhere. For example, even if p ould

otherwise point only to x, the ompiler ould not replae *p with x when p an also

have the starting value p

0

. Furthermore, if the value p

0

is unknown, as it is for the

uninitialized loal variables in BL, then *p ould aess any loation. This, in turn,

prevents e�etively performing a ow-insensitive pointer analysis beause variables

that are assigned the value read from *p get an arbitrary value.

11

We showed in [42℄ how to minimally hange the language semantis to enable a

ow-insensitive pointer analysis to generate provably orret results. We require all

variables to be initialized to some value, v, and aessing the loation with address v

has speial behavior: a read from loation v always returns v and a write to loation

v does not hange the memory. (We use 0 for v, and thus give a speial semantis to

null pointer dereferening.) This still requires that the results of the analyses inlude

v as a possible value for all variables.

As mentioned, ow-insensitive analyses in general, and in partiular pointer analy-

ses suh as Steengaards's [44℄ and Andersen's [2℄, generate results that do not inlude

the starting values. The assumption under whih these analyses operate is \no use

before de�nition," i.e., no memory loation is read from before it is written to. The

generated results then hold for all uses of a variable, but they need not hold before

the �rst de�nition. (Additionally, when the semantis has error states, the results

need not hold if the exeution gets to an error, but the results hold if there is no

error.)

For the full C language, as well as for BL, the \no use before de�nition" assump-

tion learly does not hold in general. It is, also, undeidable to determine whether

the assumption holds for an arbitrary program. One method to ensure that the as-

sumption holds is to initialize, at run-time, all loal variables at the beginning of a

proedure. For eÆieny reasons, realisti languages do not require the initialization

of loal variables. (They may require the initialization of heap data.) The other

method to ahieve that the assumption holds is to aept (for ompilation or exeu-

tion) only the \orret" programs, i.e., programs for whih some analysis determines

that the assumption holds. For example, the Java Byteode Veri�er [28℄ performs a

11

Even the results of ow-insensitive analysis in programs without pointers beome less preise

when variables an have starting values anywhere. The reason is that assignments propagate the

starting values; for instane, the assignment x=y neessitates that the result for x also inludes y

0

.

126

dataow analysis to determine that \no loal variable is aessed unless it is known

to ontain a value of an appropriate type."

Finally, observe that ow-insensitive analyses annot, by themselves, determine

whether a proedure is \orret." Therefore, another method has to �rst establish

that the proedure is \orret." The result then annot depend on the starting

values of the loal variables, and the StdVCG an generate StdVC that existentially

quanti�es logi variables representing the starting values.

6.3 Limitations

In this setion we present some limitations of the urrent framework for redible om-

pilation. We disuss how the framework ould or ould not support translations of

programs from one representation to another representation with di�erent syntax and

semantis. As mentioned in Chapter 1, we make a distintion between transforma-

tions and translations.

We use the term transformation for a ompiler pass whose input and output pro-

grams are in a similar representation. For example, before register alloation, the

representation of a program inludes temporary variables (virtual registers), but no

physial registers. After register alloation, the representation inludes physial regis-

ters and spill slots. Although the representations before and after register alloation

are not exatly the same, they are quite similar. In fat, eah representation is a

subset of a general representation that inludes variables and registers. Therefore,

a VCG an use the same symboli exeution for both input and output programs.

That is exatly what the basi VCG and the extensions presented so far do.

We use the term translation for a ompiler pass whose input and output programs

are in essentially di�erent representations. For example, lexial analysis translates the

program from the soure ode to a sequene of tokens and parsing translates the list

of tokens into an abstrat syntax tree. (After these two passes, a ompiler front-end

usually performs semanti analysis that heks whether the program satis�es seman-

ti onditions.) A C ompiler that uses a BL-like intermediate representation also

needs to translate the syntax tree into a ow graph. Compilers for more advaned

languages usually do not generate a low-level BL-like representation diretly from

the syntax tree. Instead, these ompilers use several levels of intermediate represen-

tations and translate the program from higher-level to lower-level representations.

These translations involve both transforming ode and hanging data representation.

Finally, ompilers also perform a translation in the bak-end where ode generation

pass translates the program from an intermediate representation to the mahine lan-

guage.

The framework presented so far an support only transformations. It is not lear

how we ould extend the framework to support front-end translation passes. The

representations before and after the front-end are ompletely di�erent, and the soure

ode is not suited for a symboli exeution. Therefore, the front-end of a redible

ompiler has to be trusted. We an say, alternatively, that a veri�er an hek the

results of the ompiler front-end only if the veri�er itself has an implementation of the

127

same front-end as the ompiler has. With tools available for automati generation of

lexial analyzers and parsers, paranoid programmers ould develop their own front-

ends. In general, the front-end is not regarded as an origin of many ompiler errors.

At a glane, it seems easier to extend the framework to support translations from

one intermediate representation to another. All we need is a SimVCG with two

di�erent symboli exeutions: one for the input program representation and one for

the output program representation. However, we also need simulation invariants that

an express relationships between di�erent program representations. It is not lear

how we ould make suh simulation invariants in general. The main problem is how

to eÆiently express relationships between di�erent data representations.

Consider, for example, a translation from a Java-like program representation to a

C-like representation. Suh translation needs to translate data represented with Java-

like lasses and objets into a representation with C-like strutures. The simulation

invariants would then need to desribe whih data in one representation orresponds

to whih data in the other. As even simpler example, onsider a program in BL with

pointers and a transformation that does not hange the ode but only hanges the

data layout, i.e., the addresses of the global variables. Although this hange is within

the same representation, the ompiler would need to speify a mapping from the new

addresses to the old addresses and to represent, in simulation invariants, that the two

memories are related under the given (re)mapping of the addresses. We believe that

the framework an be extended to support some of these translations using simulation

invariants that would involve mappings from one data representation to another.

We do not explore redible ode generation in this thesis, but in priniple, it is

not a limitation for the presented framework. Rinard [41℄ briey disusses how a

redible ompilation framework an support ode generation. The idea is that the

ompiler �rst transforms the ontrol ow graph of the program so that eah node

losely orresponds to a mahine instrution. After that, the ompiler uses a simple

translation to generate the atual binary ode. This approah requires an interme-

diate representation that models all details of the target instrution set arhiteture.

Designing suh an intermediate representation for a omplex arhiteture, suh as

Intel IA-64, is a non-trivial task, but we believe that it an be done by extending the

types of nodes in the ontrol ow graph, as desribed in [41℄.

The presented framework an also support \ompiling to logi" as done, for in-

stane, in the DeepC ompiler developed by Babb et al. [9℄. This ompiler targets

FPGA-based systems and has a muh leaner ode generation than a ompiler that

targets some spei� instrution set. We believe that this makes it even easier to

develop a redible ode generation for DeepC.

128

Chapter 7

Related Work

The most widely used ompilers today do not provide any formal evidene of orret

ompilation. However, there is a large body of researh on orret ompilation. The

�rst proof of a ompiler orretness an be traked down to a 1967 paper by MCarthy

and Painter [29℄. They present a paper-and-penil proof that a ompiler algorithm

is orret. Even before, MCarthy argued that proofs should be, instead, mahine-

veri�able and that omputers should be used to hek proofs. There is a di�erene,

though, between heking a spei�ation of a ompiler algorithm, or for that matter

any algorithm, and the atual implementation of the algorithm.

Most researh on ompiler orretness foused on proving translation algorithms

orret [18,22,24,33,47℄. There are several aspets in whih these projets di�er. First,

some projets present proofs for all translation steps from a high-level soure language

to a mahine language, whereas other projets present proofs only for some parts of

ompilers, or do not translate to a realisti mahine language. Seond, in several

projets mehanial proof veri�ers are used to omplement the manual proofs or to

substitute them. Finally, implementations of some algorithms are arefully veri�ed

through stepwise re�nements. These implementations, however, do not generate run-

time proofs that show the ompilation to be orret.

There are several pragmati drawbaks in implementing a fully veri�ed ompiler.

They stem from the fat that the implementation and veri�ation methodology is

not ompletely automati. It is therefore possible to have human-introdued errors

in the development proess. Also, the e�ort of hanging a ompiler is muh greater

for a fully veri�ed ompiler than for a ompiler that generates proofs at run-time.

Furthermore, some hanges are almost impossible in pratie|it is extremely ostly

to extend a fully veri�ed ompiler with a transformation from an untrusted soure.

This would require heking the whole implementation of the new transformation

before it an be safely added. That is why all fully veri�ed ompilers were developed

by small, losed groups of people. Compilers that generate run-time proofs, on the

other hand, o�er muh more possibility for having an open soure ompiler to whih

anyone an ontribute. It is not the ompiler program that is heked, but its result.

The onept of heking the equivalene of the input and output programs after

eah ompiler run appeared in several works at approximately the same time. Cimatti

et al. [10,12℄ present a system for verifying translations of non-exeutable \embedded"

129

programs to an exeutable form. These programs onsist of only a single loop whose

body is translated. Their veri�er heks that the input and output programs satisfy a

partiular syntati equivalene ondition, whih then implies semanti equivalene.

Cimatti et al. all the syntati equivalene proof \on-line," as opposed to the \o�-

line" proof whih shows the soundness, i.e., that the syntati equivalene implies

the semanti equivalene for all possible pairs of programs. Pnueli et al. [39, 40℄

present a system for translation validation|verifying translations from programs in

synhronous languages to programs in the C programming language. These programs

also onsist of a single loop that ylially omputes the values of the output variables

from the values of the input variables. Our approah is designed for imperative

languages with programs that an have arbitrary ow of ontrol.

The general tehnique of program heking|heking the program run-time re-

sults instead of verifying the whole program ode|was �rst onsidered by Blum and

Kannan [11℄. Clearly, heking the program results is muh easier than verifying the

ode in many appliations. In some appliations, it is possible to verify that the

output of the program is orret by heking only that the output itself satis�es some

onditions with respet to the input. In other appliations, though, the program

needs to generate the regular output and also additional information whih eases,

or enables, the heking. As explained in Setion 2.2, this in partiular holds for

ompilers. It is not possible, in general, to hek that the output program is orret

simply by onsidering the output and input programs.

Goos and Zimmermann [20℄ present another methodology for developing orret

ompilers. This work is a part of the bigger Veri�x projet whih proposed several

approahes for onstruting provably orret ompilers for realisti programming lan-

guages. The earlier approahes used only the ompiler implementation veri�ation,

whereas the new approah [19,20℄ also uses program heking tehniques for the veri-

�ation of ompiler output. However, the program heking idea is used in the diret

way, without requiring the ompiler to generate any additional output besides the

transformed program. The drawbak of this tehnique is that adding a new transfor-

mation requires a new heker whih has to be veri�ed itself using standard methods.

Therefore, the ompiler annot be easily extended from untrusted soures. Gaul et

al. [17℄ report on the use of this methodology for developing ompiler bak-ends.

Proof arrying ode (PCC), introdued by Neula and Lee [34, 37℄, is a general

framework for attahing proofs to the ompiled ode. Credible ompilation an be

regarded as an instane of this framework, with the main goal to deliver proofs that

the transformed ode is semantially equivalent to the original ode. Neula and

Lee [38℄ use the name ertifying ompiler to refer to a pair onsisting of a ompiler,

whih produes ode annotated with some additional information, and a erti�er,

whih uses the annotations to generate the proof and hek it. We prefer to use a

di�erent name, beause so far ertifying ompilers have been developed to generate

proofs for properties of one (ompiled) program, whereas redible ompilers generate

proofs about two programs. We are not aware of any other work with the goal of

generating equivalene/simulation proofs in PCC framework.

Neula desribes in his PhD thesis [35℄ the Touhstone ompiler, a ertifying

130

ompiler that translates a type-safe subset of C

1

into mahine ode annotated with

invariants. The invariants allow the erti�er to prove safety properties, in partiular

type safety, of the ompiled ode. For the proof formalism, Neula uses an extension of

�rst-order prediate logi. The erti�er has a veri�ation-ondition generator whih

takes the annotated ode and generates a veri�ation ondition|a formula whose

validity implies the safety of the ode. An untrusted theorem prover is then used to

generate the proof of the veri�ation ondition, and a trusted proof heker veri�es

this proof. Our struture of the redible ompiler is similar to the Touhstone, but

the redible ompilers should prove more; we try \to be more ambitious and attempt

to verify not just the type safety of the target ode but also its equivalene to the

soure program" [35, page 152℄.

Morrisett et al. [32℄ present another approah in building a ertifying ompiler for

a PCC framework. They do not use �rst-order prediate logi for expressing safety

poliies; instead, they use type systems, and proof heking redues to type heking.

They based their work on typed intermediate languages [43,45℄ and designed an ideal-

ized typed assembly language. In a later work [31℄, they develop a type system for the

Intel IA32 assembly language and implemented the Poporn ompiler that translates

a type-safe subset of C into mahine ode and generates the required typing informa-

tion. This system has been extended to support advaned language onstruts, e.g.,

run-time ode generation [25℄, and more expressive seurity properties, e.g., resoure

bound veri�ation [15℄.

Appel and Felty [3℄ present a PCC framework in whih a ode produer has muh

more exibility. The typing rules are not �xed in the safety poliy, but the ode

produer an hoose a set of typing rules, prove them sound, and then use them to

prove the safety of a program. Similarly, the mahine ode semantis is not �xed in

the veri�ation-ondition generator, but is a part of the safety poliy. This eliminates

the need for the veri�ation-ondition generator, but requires more omplex proofs

(as we also explained in Setion 2.3). The inrease in omplexity is not as huge

for a mahine language as it would be for a syntatially (and semantially) riher

higher-level language suh as BL in our basi framework.

Neula's reent work [36℄ is more related to our approah on redible ompilation.

2

He desribes a translation validation infrastruture that heks equivalene of the

ompiler input and output programs (both in an intermediate representation), and not

only properties of the output program. His framework is similar to ours in that it uses

simulation invariants (alled simulation relations) and symboli exeution. However,

the di�erene is that his symboli exeution does not use simulation ontexts and

therefore his urrent framework an support only intraproedural transformations.

Another di�erene from our approah is that there are no proofs in Neula's

translation validation. The ompiler (or a theorem prover) does not generate any

proof. Instead, the heker has built in rules for equivalene and uses them to verify

1

Reently, Colby et al. [13, 14℄ report on the development of the Speial J ompiler, a ertifying

ompiler for Java.

2

Neula's reent work was done in parallel with the work disussed in this thesis. We do not use

any results from [36℄ in the approah presented in this thesis.

131

the simulation invariants. This omplexity makes the heker bigger and more diÆult

to verify than a \standard" proof heker used in logial frameworks. Additionally,

to support the full C language, Neula uses the rules that informally model the C

notion of \unde�ned." This approah an lead to errors that introdue unsound rules

in the heker, espeially for aliasing.

Beside the heking algorithm, Neula also presents the inferene algorithm. This

algorithm disovers the simulation invariants for the input and output programs, with-

out requiring any additional information from the ompiler. Neula implemented his

inferene algorithm for verifying transformations in the widely used GNU C optimiz-

ing ompiler (g). The inferene algorithm an disover the simulation invariants

in all intraproedural transformations that g performs, exept for some ases of

loop unrolling. This is an important result that shows that the simulation invari-

ants an be pratially inferred for a realisti ompiler output. However, g is not

an aggressive ompiler. For example, it does not have transformations that involve

pointers, and it would not even try to optimize the third loop in the example shown

in Setion 1.3. The onlusion is that, in general, a redible ompiler should gener-

ate some additional information to enable the veri�er to hek the orretness of a

transformation.

132

Chapter 8

Conlusions and Future Work

Today, widely-used industry ompilers o�er no formal guarantees that they work or-

retly. Most previous researh on ompiler orretness foused on developing om-

pilers that are guaranteed to orretly translate every input program. It is extremely

diÆult, however, to verify that a omplex ode, whih implements a ompiler, is

orret. Therefore, a novel approah has been reently proposed: instead of verify-

ing a ompiler, verify the result of eah single ompilation. We require the ompiler

to generate a transformed program and some additional information that enables a

simple veri�er to hek the ompilation. We all this approah redible ompilation.

This thesis presents a theoretial framework for redible ompilation. We develop

a framework in whih a ompiler proves orret the results of transformations. The

transformations operate on programs in an intermediate representation based on ow

graphs. Eah transformation generates an output program and two sets of invariants

and ontexts: standard invariants and ontexts, whih allow the ompiler to prove

that the analysis results are orret, and simulation invariants and ontexts, whih

allow the ompiler to prove that the output program simulates the input program.

Additionally, the ompiler has the proof generator that generates a proof that all the

invariants and ontexts are orret.

We desribe in detail the struture of a veri�er that heks the invariants and

ontexts. The veri�er �rst uses the standard and simulation veri�ation-ondition

generators to generate the veri�ation ondition for the given programs and the addi-

tional information. The veri�er then uses a proof heker to verify that the supplied

proof indeed proves the partiular veri�ation ondition. If the proof fails, the output

program potentially does not simulate the input program, and the ompiler should

not use this transformation for this input program. If the proof is aepted, the

partiular transformation is orret.

This thesis shows how to formalize the basi tehniques for building redible om-

piler transformations for a simple imperative language. There are several diretions

for the future work on redible ompilation, both in extending the theoretial frame-

work and implementing a redible ompiler.

Two questions about the framework are what language it supports and what trans-

formations it supports. The main goal is to develop a formal framework that supports

a realisti language. We believe that it an be done using a ompiler intermediate

133

representation that has leaner and safer semantis than the full-blown unsafe C

language. Otherwise, to handle C, it is neessary to ompromise the presented for-

mal approah, or use omplex theoretial models that would give poor performane

in an implementation. Regarding transformations, the presented framework an be

extended to support more transformations. However, the ultimate goal is to have

redible ompilation for all ompiler phases, not only intermediate transformations.

This requires support for ode generation and front-end translations. Additionally,

ompilers for advaned languages usually have several intermediate representations,

and the framework should support translations between those representations, in par-

tiular translations from abstrat to onrete data representations.

Two fundamental questions that an implementation an answer are is it possible

for a redible ompiler to generate the required additional information and is it pos-

sible to automatially prove the veri�ation onditions. Additional pragmati issues

in the ontext of redible ompilation are the diÆulty of generating the proofs, the

size of the generated proofs, and the diÆulty of heking the proofs. To explore

these issues, we have started developing a prototype of a redible ompiler. We have

implemented a small system for the language without proedures, but with pointers.

We have used Java [8℄ for implementing a ow-sensitive pointer analysis and onstant

propagation analysis/transformation.

For proof representation and veri�ation we use Athena [5,6℄, a denotational proof

language [7℄ developed by Kostas Arkoudas at MIT. Athena is a exible logial frame-

work that allows a ompat, proedural representation of proofs. This makes it possi-

ble to balane the division of labor between the proof generator and the proof heker,

while retaining the full soundness guarantee. It also simpli�es the onstrution of the

ompiler by simplifying the proof generator and allowing the ompiler developer to

easily generate proofs. Based on our initial positive experiene with Athena, we be-

lieve that a key enabling feature to obtaining reasonable proof sizes and ompiler

omplexity is the use of suh a exible logial framework. We intend to ontinue to

use Athena for redible ompilation. Our plan is to desribe, in a follow-up paper,

the implementation strategy for a redible ompiler based on Athena.

134

Bibliography

[1℄ A. V. Aho, R. I. Sethi, and J. D. Ullman. Compilers: Priniples, Tehniques,

and Tools. Addison-Wesley, Reading, Mass., Reading, MA, seond edition, 1986.

[2℄ L. O. Andersen. Program Analysis and Speialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[3℄ A. Appel and A. Felty. A semanti model of types and mahine instrutions for

proof-arrying ode. In Proeedings of the 27th Annual ACM Symposium on the

Priniples of Programming Languages, pages 243{253, Boston, Massahusetts,

Jan. 2000.

[4℄ K. R. Apt and E.-R. Olderog. Veri�ation of Sequential and Conurrent Pro-

grams. Springer-Verlag, seond edition, 1997.

[5℄ K. Arkoudas. An Athena Tutorial. Available from: http://www.ai.mit.edu/

projets/express/athena.html.

[6℄ K. Arkoudas. Dedution vis-a-vis omputation: The need for a formal language

for proof engineering. Available from: http://www.ai.mit.edu/projets/

express/athena.ps.

[7℄ K. Arkoudas. Denotational Proof Languages. PhD thesis, Massahusetts Institute

of Tehnology, May 2000.

[8℄ K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,

Reading, Mass., 1996.

[9℄ J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe.

Parallelizing appliations into silion. In Proeedings of the IEEE Workshop on

FPGAs for Custom Computing Mahines (FCCM), Napa Valley, CA, Apr. 1999.

[10℄ P. Bertoli, A. Cimatti, F. Giunhiglia, and P. Traverso. Certi�ation of transla-

tors via o�-line and on-line proof logging and heking. Tehnial Report 9710{

14, IRST, Trento, Italy, Ot. 1997.

[11℄ M. Blum and S. Kannan. Designing programs that hek their work. In Pro-

eedings of the Twenty First Annual ACM Symposium on Theory of Computing,

pages 86{97, Seattle, Washington, May 1989.

135

[12℄ A. Cimatti, F. Giunhiglia, P. Pehiari, B. Pietra, J. Profeta, D. Romano,

P. Traverso, and B. Yu. A provably orret embedded veri�er for the erti�ation

of safety ritial software. In Proeedings of the 9th International Conferene on

Computer Aided Veri�ation, pages 202{213, Haifa, Israel, June 1997.

[13℄ C. Colby, P. Lee, and G. C. Neula. A proof-arrying ode arhiteture for

Java. In Proeedings of the 12th International Conferene on Computer Aided

Veri�ation (CAV00), Chiago, July 2000.

[14℄ C. Colby, P. Lee, G. C. Neula, F. Blau, K. Cline, and M. Plesko. A ertifying

ompiler for Java. In Proeedings of the ACM SIGPLAN '00 Conferene on

Program Language Design and Implementation, Vanouver, British Columbia,

Canada, June 2000.

[15℄ K. Crary and S. Weirih. Resoure bound erti�ation. In Proeedings of the

27th Annual ACM Symposium on the Priniples of Programming Languages,

pages 184{198, Boston, Massahusetts, Jan. 2000.

[16℄ R. W. Floyd. Assigning meanings to programs. In J. T. Shwartz, editor, Pro-

eedings of Symposium in Applied Mathematis, volume 19, pages 19{32, 1967.

[17℄ T. Gaul, A. Heberle, W. Zimmermann, and W. Goerigk. Constrution of veri�ed

software systems with program-heking: An appliation to ompiler bak-ends.

In Proeedings of the Workshop on Run-Time Result Veri�ation, Trento, Italy,

July 1999.

[18℄ W. Goerigk. Towards rigorous ompiler implementation veri�ation. In

R. Berghammer and F. Simon, editors, Pro. of the 1997 Workshop on Program-

ming Languages and Fundamentals of Programming, pages 118{126, Avendorf,

Germany, Nov. 1997.

[19℄ W. Goerigk, T. Gaul, and W. Zimmermann. Corret programs without proof?

On heker-based program veri�ation. In Proeedings of ATOOLS'98 Work-

shop on \Tool Support for System Spei�ation, Development, and Veri�ation",

Malente, 1998.

[20℄ G. Goos and W. Zimmermann. Veri�ation of ompilers. Corret System Design,

Leture Notes in Computer Siene, 1710:201{230, 1999.

[21℄ Y. Gurevih and J. K. Huggins. The Semantis of the C Programming Language.

In E. B�orger, H. Kleine B�uning, G. J�ager, S. Martini, and M. M. Rihter, editors,

Computer Siene Logi, volume 702 of LNCS, pages 274{309. Springer, 1993.

[22℄ J. Guttman, J. Ramsdell, and M. Wand. VLISP: A veri�ed implementation of

Sheme. Lisp and Symboli Computing, 8(1{2):33{110, Mar. 1995.

[23℄ C. A. R. Hoare. An axiomati basis for omputer programming. Communiations

of the ACM, 12(10):576{580, Ot 1969.

136

[24℄ C. A. R. Hoare, H. Jifeng, and A. Sampaio. Normal form approah to ompiler

design. Ata Informatia, 30:701{739, 1993.

[25℄ L. Hornof and T. Jim. Certifying ompilation and run-time ode generation.

In Proeedings of the ACM SIGPLAN Workshop on Partial Evaluation and

Semantis-Based Program Manipulation, pages 60{74, San Antonio, Texas, Jan

1999.

[26℄ B. W. Kernighan and D. M. Rithie. The C Programming Language. Prentie

Hall, seond edition, 1988.

[27℄ J. C. King. Proving programs to be orret. In IEEE Transations on Computers,

volume 20, pages 1331{1336, Nov 1971.

[28℄ T. Lindholm and F. Yellin. The Java Virtual Mahine Spei�ation. Addison-

Wesley, Reading, Mass., 1996. The Byteode Veri�er: http://java.sun.om/

dos/books/vmspe/html/ClassFile.do.html#9801.

[29℄ J. MCarthy and J. Painter. Corretness of a ompiler for arithmeti expressions.

In Proeedings of Symposia in Applied Mathematis. Amerian Mathematial

Soiety, 1967.

[30℄ R. Milner. Operational and algebrai semantis of onurrent proesses. In J. van

Leeuwen, editor, Handbook of Theoretial Computer Siene, volume B: Formal

Models and Semantis, hapter 19, pages 1201{1242. Elsevier and MIT Press,

1994.

[31℄ G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker,

S. Weirih, and S. Zdanewi. TALx86: A realisti typed assembly language. In

Seond Workshop on Compiler Support for System Software, Atlanta, Georgia,

May 1999.

[32℄ G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed

assembly language. In Proeedings of the 25th Annual ACM Symposium on the

Priniples of Programming Languages, pages 85{97, San Diego, Jan. 1998.

[33℄ M. M�uller-Olm. Modular ompiler veri�ation. Leture Notes in Computer Si-

ene, 1283, 1996.

[34℄ G. C. Neula. Proof-arrying ode. In N. D. Jones, editor, Conferene Reord of

the 24th Symposium on Priniples of Programming Languages (POPL'97), pages

106{119, Paris, Frane, Jan. 1997. ACM Press.

[35℄ G. C. Neula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

Ot. 1998. Available as Tehnial Report CMU-CS-98-154.

[36℄ G. C. Neula. Translation validation for an optimizing ompiler. In Proeed-

ings of the ACM SIGPLAN '00 Conferene on Program Language Design and

Implementation, Vanouver, British Columbia, Canada, June 2000.

137

[37℄ G. C. Neula and P. Lee. Safe kernel extensions without run-time heking. In

Proeedings of the Seond Symposium on Operating System Design and Imple-

mentation (OSDI'96), pages 229{243, Seattle, Washington, Ot. 1996.

[38℄ G. C. Neula and P. Lee. The design and implementation of a ertifying ompiler.

In K. D. Cooper, editor, Proeedings of the Conferene on Programming Language

Design and Implementation (PLDI'98), pages 333{344, Montreal, Canada, June

1998. ACM Press.

[39℄ A. Pnueli, O. Shtrihman, and M. Siegel. Translation validation for synhronous

languages. Leture Notes in Computer Siene, 1443:235{246, 1998.

[40℄ A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proeedings of

the 4th International Conferene on Tools and Algorithms for the Constrution

and Analysis of Systems, pages 151{166, Lisbon, Portugal, Mar. 1998.

[41℄ M. Rinard. Credible ompilation. Tehnial Report MIT-LCS-TR-776, Lab-

oratory for Computer Siene, Massahusetts Institute of Tehnology, Mar.

1999. Available from: http://www.ag.ls.mit.edu/�rinard/tehreport/

redibleCompilation.ps.

[42℄ M. Rinard and D. Marinov. Credible ompilation with pointers. In Proeedings

of the Workshop on Run-Time Result Veri�ation, Trento, Italy, July 1999.

[43℄ Z. Shao and A. W. Appel. A type-based ompiler for Standard ML. In Proeed-

ings of the ACM SIGPLAN '96 Conferene on Program Language Design and

Implementation, pages 116{129, 1995.

[44℄ B. Steensgaard. Points-to analysis in almost linear time. In Proeedings of the

23rd Annual ACM Symposium on the Priniples of Programming Languages, St.

Petersburg Beah, FL, Jan. 1996.

[45℄ D. Tarditi, J. G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A

type-direted optimizing ompiler for ML. In Proeedings of the ACM SIGPLAN

'96 Conferene on Program Language Design and Implementation, pages 181{

192, May 1996.

[46℄ F. Turbak and D. Gi�ord. Applied semantis of programming languages. Un-

published book draft used in MIT ourse 6.821, Sep 1999.

[47℄ W. Zimmermann and T. Gaul. On the onstrution of orret ompiler bak-

ends: An ASM-approah. Journal of Universal Computer Siene, 3(5):504{567,

1997.

138

