
A benchmark suite and performance analysis of user-space
provenance collectors

Samuel Grayson
grayson5@illinois.edu
University of Illinois
Urbana-Champaign

Department of Computer Science
Urbana, IL, USA

Faustino Aguilar
faustino.aguilar@up.ac.pa
University of Panama

Department of Computer Engineering
Panama City, Panama

Reed Milewicz
rmilewi@sandia.gov

Sandia National Laboratories
Software Engineering and Research

Department
Albuquerque, NM, USA

Daniel S. Katz
d.katz@ieee.edu

University of Illinois
Urbana-Champaign

NCSA & CS & ECE & iSchool
Urbana, IL, USA

Darko Marinov
marinov@illinois.edu
University of Illinois
Urbana-Champaign

Department of Computer Science
Urbana, IL, USA

ABSTRACT
Computational provenance has many important applications, es-
pecially to reproducibility. System-level provenance collectors can
track provenance data without requiring the user to change any-
thing about their application. However, system-level provenance
collectors have performance overheads, and, worse still, different
works use different and incomparable benchmarks to assess their
performance overhead. This work identifies user-space system-level
provenance collectors in prior work, collates the benchmarks, and
evaluates each collector on each benchmark. We use benchmark
minimization to select a minimal subset of benchmarks, which can
be used as goalposts for future work on system-level provenance
collectors.

ACM Reference Format:
Samuel Grayson, Faustino Aguilar, ReedMilewicz, Daniel S. Katz, and Darko
Marinov. 2024. A benchmark suite and performance analysis of user-space
provenance collectors. In ACM Conference on Reproducibility and Replicabil-
ity (ACM REP ’24), June 18–20, 2024, Rennes, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3641525.3663627

1 INTRODUCTION
In the past decade, this has inspired a diverse range of research
and development efforts meant to give us greater control over our
software, including containers and virtual machines to capture
environments [12, 31, 55, 66], package managers for fine-grained
management of dependencies [23, 39], interactive notebooks and
workflows [10, 20, 38], and online platforms for archiving and shar-
ing computational experiments [16, 25, 70, 71]. In this work, we
focus on computational provenance as a complementary strategy
for managing reproducibility across the research software lifecycle.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0530-4/24/06.
https://doi.org/10.1145/3641525.3663627

Computational provenance is the history of a computational task,
describing the artifacts and processes that led to or influenced the
result [22]; the term encompasses a spectrum of tools and tech-
niques ranging from simple logging to complex graphs decorated
with sufficient detail to replay a computational experiment.

Provenance data can provide crucial information about the hard-
ware and software environments in which a code is executed. The
use cases for this data are numerous and many different tools for
collecting it have been independently developed. However a rig-
orous comparison of those available tools and the extent to which
they are practically usable in CSE application contexts has been
lacking from prior work. To summarize the state of the art and to
establish goalposts for future research in this area, our paper makes
the following contributions:
• A rapid review on available system-level provenance collectors. We
identify 45 provenance collectors from prior work, classify their
method of operation, and attempt to reproduce the ones that
meet specific criteria. We successfully reproduced 9 out of 15
collectors that met our criteria.

• A benchmark suite for system-level provenance collectors: Prior
work does not use a consistent set of benchmarks; publications
often use an overlapping set of benchmarks from their prior work.
We find the superset of all benchmarks used in the prior work,
identify unrepresented areas, and find a statistically valid subset
of the benchmark. Our benchmark subset is able to recover the
original benchmark results within 5% of the actual value 95% of
the time.
The remainder of the paper is structured as follows. Section 2

motivates provenance and describe the different methods of col-
lecting it. Section 3 describes how we execute the rapid review,
implement and execute benchmarks, and statistically subset the
results. Section 4 shows the results of the rapid review, performance
experiment, and benchmark subsetting. Section 5 explains what the
results show and touches on some problems they bring up. Section 6
summarizes the work.

https://orcid.org/0000-0001-5411-356X
https://orcid.org/0009-0000-1375-1143
https://orcid.org/0000-0002-1701-0008
https://orcid.org/0000-0001-5934-7525
https://orcid.org/0000-0001-5023-3492
https://doi.org/10.1145/3641525.3663627
https://doi.org/10.1145/3641525.3663627

ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France Samuel Grayson, Faustino Aguilar, Reed Milewicz, Daniel S. Katz, and Darko Marinov

2 BACKGROUND
As one Nature editoralist put it, “behind every great scientific find-
ing of the modern age, there is a computer” [58]. The production of
scientific results now often involve complex and lengthy operations
on hardware and software systems; transparency is fundamental
to the practice of science, and increasing the transparency of those
processes is the end goal of provenance research.

A recent Department of Energy Advanced Scientific Computing
Research report by Heroux et al. has called for further research to
develop solutions for highly automatic and portable provenance
capture and replay[29]. The potential applications are numerous.
We include only a few notable applications [61, 65]):
1. Reproducibility. A description of the inputs and processes

used to generate a specific output can aid manual and automatic
reproduction of that output1. Provenance data improves man-
ual reproducibility, because users have a record of the inputs,
outputs, and processes used to create a computational artifact.
Provenance data also has the potential to enable automatic
reproducibility, if the process trace is detailed enough to be
“re-executed”. This idea is also called “software record/replay”.
Automatic reproduciblity opens itself up to other applications,
like saving space by deleting results and regenerating them
on-demand. However, not all provenance collectors make this
their goal.

2. Caching subsequent re-executions. Computational science
inquiries often involve changing some code and re-executing
the workflows (e.g., testing different clustering algorithms). In
these cases, the user has to keep track of what parts of the
code they changed, and which processes have to be re-executed.
However, an automated system could read the computational
provenance graphs produced by previous executions, look at
what parts of the code changed, and safely decide what pro-
cesses need to be re-executed. Unlike Make and CMake, which
require the user to manually specify a dependency graph, a
provenance-enabled approach could be automatic, mitigating
the chance for a dependency misspecification.

3. Comprehension. Provenance helps the user understand and
document workflows and workflow results. An automated tool
that consumes provenance can answer queries like “What ver-
sion of the data did I use for this figure?” and “Does this work-
flow include FERPA-protected data?”. A user might have run
dozens of different versions of their workflow and may want
to ask an automated system, “show me the results I previously
computed based on that data with this algorithm?”.
There are three high-level methods by which one can capture

computational provenance: application-level (modifying an ap-
plication to report provenance data), workflow-level, (leveraging
a workflow engine or programming language to report provenance
data), and system-level (leveraging an operating system to report
provenance data) [22]. Application-level provenance is the most
semantically rich but the least general since it only applies to partic-
ular applications modified to disclose provenance. Workflow- and
language-level provenance is a middle ground between semantic
richness and generality, applying to all programs using a certain

1“Reproduction”, in the ACM sense, where a different team uses the same input
artifacts to generate the output artifact [6].

figure.png

/bin/python

PID=2

exec(binary, args, env)

matplotlib.py

open read-only

open write-only

database@v1

open read/write

PID=1

fork

/bin/bash

exec(binary, args, env)

libc.so.6

loader

database@v0

open read/write

Figure 1: Abridged graph of events a hypothetical system-
level provenance collector might collect. This collector could
infer files required for re-execution (including executables,
dynamic libraries, scripts, script libraries, data) without
knowing anything about the program or programming lan-
guage.

workflow or programming language. System-level provenance is
the least semantically rich but most general, applying to all pro-
grams on that particular system.

The implementation cost of adopting system-level provenance in
a project that currently has no provenance is low because the user
need not change anything about their application or workflow; they
merely need to install some provenance collector onto their system
and rerun their application. Although the user may eventually use
a more semantically rich provenance, low-initial-cost system-level
provenance would get provenance’s “foot in the door”. Since system-
level provenance collection is a possibly valuable tradeoff between
implementation cost and enabling provenance applications, system-
level provenance will be the subject of this work.

In the context of system-level provenance, artifacts are usually
files or processes. Operations are usually syscalls involving artifacts,
e.g., fork, exec, open, close. For example, suppose a bash script
runs a Python script that uses matplotlib to create a figure. A prove-
nance collector may record the events in Figure 1, including all file
dependencies of the process, without knowledge of the underlying
program or programming language.

We defer to the cited papers for details on versioning artifacts [7]
and cycles [52]. Some collectors may also record calls to network
resources, the current time, process IPC, and other interactions.

While there is little additional programmer-time in using system-
level provenance (no user code change), there is a non-trivial im-
plicit overhead in monitoring and recording each computational
process. Even a minor overhead per I/O operation would become
significant when amplified over the tens of thousands of I/O oper-
ations a program might execute per second. Prior publications in
system-level provenance usually contain benchmark programs to
evaluate the overhead imposed by the system-level provenance tool.
However, the set of chosen benchmark programs is inconsistent
from one publication to another, and overhead can be sensitive to
the exact choice of benchmark, so these results are incomparable
between publications. Most publications only benchmark their new
system against native/no-provenance, so prior work cannot easily
establish which system-level provenance tool is the fastest.

A benchmark suite and performance analysis of user-space provenance collectors ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France

2.1 Prior work
Each result of our rapid review (Table 2) is an obvious prior work
on provenance collection. However, those priors studies look at
only one or two competing provenance tools at a time. To the best
of our knowledge, there has been no global comparison of prove-
nance tools. ProvBench [44] uses 3 provenance collectors (CamFlow,
SPADE, and OPUS), but they are solely concerned with the differ-
ences between representations of provenance, not performance.

On the other hand, benchmark subsetting is a well-studied area.
This work mostly follows Yi et al.’s publication [78], which evalu-
ates subsetting methodologies and determines that dimensionality
reduction and clustering ar broadly good strategies. Phansalkar et
al. [60] apply dimensionality reduction and clustering to SPEC CPU
benchmarks.

3 METHODS
3.1 Rapid Review
We preformed a rapid review to identify the research state-of-the-
art tools for automatic system-level provenance.

Rapid Reviews are a lighter-weight alternative to systematic
literature reviews with a focus on timely feedback for decision-
making. Schünemann and Moja [67] show that Rapid Reviews can
yield substantially similar results to a systematic literature review,
albeit with less detail. Although developed in medicine, Cartaxo
et al. show that Rapid Reviews are useful for informing software
engineering design decisions [14, 15].

We conducted a rapid review with the following parameters:
• Search terms: “computational provenance” and “system-level
provenance” (two Google Scholar searches)

• Search engine: Google Scholar
• Number of results: 50 of both searches. This threshold is the
point of diminishing returns, as no new collectors came up in
the 40th – 50th results.

• Criteria: A relevant publication would center on one or more
operating system-level provenance collectors that capture file
provenance. A tool requiring that the user use a specific applica-
tion or platform would be irrelevant.

3.2 Benchmark Selection
For each publication selected by the literature review, if it is a sec-
ondary study, we augment the set with the primary studies on
which the secondary study is based. In the augmented set, we ag-
gregate all benchmarks that were used to evaluate the performance
of provenance collectors. THe benchmarks genrally programs like
tar xvf that manipulate a large number of files.

We excluded benchmarks for which we could not even find the
original program (e.g., TextTransfer), benchmarks that were not
available for Linux (e.g., Internet Explorer), benchmarks with a
graphical component (e.g., Notepad++), and benchmarks with an
interactive component (e.g., GNU Midnight Commander). We used
Nix package manager to build the software environment, so the
environment is buildable on many different platforms2.

2Nix has official installers for Linux, Mac OS X, and Windows Subsystem for Linux
on i686, x86_64, and aarch64 architectures, but FreeBSD and OpenBSD both package
Nix themselves, and it can likely be built from source on even more platforms. See
https://nixos.org/guides/how-nix-works

Table 1: Our experimental machine description.

Name Value

CPU 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
RAM 16 GiB of SODIMM DDR4 Synchronous 2400 MHz
Kernel Linux 6.1.64
Disk Sandisk Corp WD Black SN770 250GB NVMe SSD

We also added new benchmarks for data science and compiling-
from-source.

3.3 Performance Experiment
We run a complete matrix (every collector on every benchmark)
3 times in a random order on the machine described by Table 1.
We use CGroups [11] to precisely measure the CPU time, wall
time, memory utilization, and other attributes of the process (in-
cluding child processes). We enable ASLR, which introduces non-
determinism into the execution time, but helpfully randomizes a
variable that may otherwise have a confounding effect [53]. We
restrict the program to a single core to eliminate unpredictable
scheduling and prevent other daemons from perturbing the experi-
ment (they can run on the other N-1 cores). We wrap the programs
that exit quickly in loops so they take about 3 seconds without any
provenance system, isolating the cold-start costs.

3.4 Benchmark Subsetting
We implemented and ran many different benchmarks, which may
be costly for future researchers seeking to evaluate new provenance
collectors. A smaller, less costly set of benchmarks may sufficiently
represent the larger set.

Following Yi et al. [78], we evaluate the benchmark subset in
two different ways:
• Accuracy. How closely do features of the subset resemble fea-
tures of the original set? We will evaluate this by computing the
root mean squared error (RMSE) of a non-negative linear regres-
sion from the standardized features of selected benchmarks to
the mean of features of the total set.

• Representativeness. How close are benchmarks in the original
set to the closest benchmarks in the subset? We will evaluate this
by computing RMSE on the euclidean distance of standardized
features from each benchmark in the original set to the closest
benchmark in the selected subset.
We use a non-negative linear regression to account for the pos-

sibility that the total set has unequal proportions of benchmark
clusters. We require the weights to be non-negative, so doing
better on each benchmark in the subset implies a better perfor-
mance on the total. Finally, we normalize these weights by adding
several copies of the following equation to the linear regression:
weight𝐴 + weight𝐵 + · · · = 1. Yi et al. [78] used an unweighted
average, perhaps because they could assume the benchmarks in
SPEC CPU 2006 were already balanced.

We standardize the features by mapping 𝑥 to 𝑧𝑥 = (𝑥 − 𝑥)/𝜎𝑥 .
While 𝑥 is meaningful in absolute units, 𝑧𝑥 is meaningful in relative
terms (i.e., a value of 1 means “1 standard deviation greater than
the mean”). Yi et al., by contrast, only normalize their features

https://nixos.org/guides/how-nix-works

ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France Samuel Grayson, Faustino Aguilar, Reed Milewicz, Daniel S. Katz, and Darko Marinov

𝑥norm = 𝑥/𝑥max, which does not take into account the mean value.
We want our features to be measured relative to the spread of those
features in prior work.

We score by RMSE over mean absolute error (MAE), used by Yi et
al. [78], because RMSE punishes outliers more. MAE permits some
distances to be large, so long it is made up for by shrinking other
distances. RMSE would prefer a more equitable distribution, which
might be worse on average but better on the outliers than MAE.
We think this aligns more with the intent of “representativeness.”

We will use features that are invariant between running a pro-
gram ten times and running it once as features. These features give
long benchmarks and short benchmarks which exercise the same
functionality similar vectorization. In particular, we use:
1. The log overhead ratio of running the benchmark in each prove-

nance collector. We use the logarithm of the ratio rather than
the ratio directly because the ratio cannot be distributed sym-
metrically, but the logarithm may be3.

2. The ratio of CPU time to wall time. When limited to a single
core on an unloaded system, wall time includes I/O, but CPU
time does not.

3. The number of syscalls in each category per wall time second,
where the categories consist of socket-related, file-metadata-
related, directory-related, file-related, exec-related, fork-related,
exit-related syscalls, IPC-related syscalls, and chdir syscalls.
In order to choose the subset, we will try clustering (k-means

and agglomerative clustering with Ward linkage4), preceded by
optional dimensionality reduction by principal component analysis
(PCA). Once the benchmarks are grouped into clusters, we identify
one benchmark from each of the 𝑘 clusters to consist the benchmark
subset. We will determine the best 𝑘 experimentally.

4 RESULTS
4.1 Selected Provenance Collectors
Table 2 shows the provenance collectors we collected and their quali-
tative features. Because there are not many open-source provenance
collectors in prior work, we also include the following tools, which
are not necessarily provenance collectors, but may be adapted as
such: strace, ltrace, fsatrace, and RR. See Appendix A.1 for more
in-depth description of notable provenance collectors. The second
column shows the “collection method” (see Appendix A.2 for their
exact definition).

To acquire the source code, we looked in the original publication
for links, checked the first 50 results in GitHub, BitBucket, and
Google for the prototype name (e.g., “LPROV”), and then tried

3Suppose some provenance collector makes programs take roughly twice as long but
with a large amount of variance, so the expected value of the ratio is 2. A symmetric
distribution would require the probability of observing a ratio of -1 for a particular pro-
gram is equal to the probability of observing a ratio of 5, but a ratio of -1 is impossible,
while 5 is possible due to the large variance. On the other hand, log𝑥 maps posi-
tive numbers (like ratios) to real numbers (which may be symmetrically distributed);
choosing 2 ≈ 𝑒0.3 as our center, 5 ≈ 𝑒0.7 and 0.9 ≈ 𝑒−0.1 are equidistant in log-space
(negative logs indicate a speedup rather than slowdown, which are theoretically possi-
ble when comparing two runtimes). Also note that exp(arithmean(log(x))) is the same
as geomean(x), which is preferred over arithmean(x) for performance ratios according
to Mashey [50].
4k-means and agglomerative/Ward both minimize within-cluster variance, which is
equivalent to minimizing our metric of "representativeness" defined earlier, although
they minimize it in different ways: k-means minimizes by moving clusters laterally;
Agglomerative/Ward minimizes by greedily joining clusters.

Table 2: Provenance collectors from our search results and
from experience. See Appendix A.2 for their exact definition.

Tool Method Status

strace tracing Reproduced
fsatrace tracing Reproduced
rr [56] tracing Reproduced
ReproZip [17] tracing Reproduced
CARE [30] tracing Reproduced
Sciunit [59] tracing Reproduced/rejected
PTU [59] tracing Reproduced/rejected
CDE [27] tracing Reproduced/rejected
ltrace tracing Reproduced/rejected
SPADE [24] audit, FS, or compile-time Needs more time
DTrace [1] audit Needs more time
eBPF/bpftrace audit Needs more time
SystemTap [63] audit Needs more time
PROV-IO [28] lib. ins. Needs more time
OPUS [7] lib. ins. Not reproducible
CamFlow [57] kernel ins. Requires custom kernel
Hi-Fi [62] kernel ins. Requires custom kernel
LPM/ProvMon [9] kernel ins. Requires custom kernel
Arnold[19] kern ins. Requires custom kernel
LPS [18] kern ins. Requires custom kernel
RecProv [34] tracing No source
FiPS [73] FS No source
Namiki et al. [54] audit No source
LPROV [76] kernel mod., lib. ins. No source
S2Logger [72] kernel mod. No source
ProTracer [47] kernel mod. No source
PANDDE [21] kernel ins., FS No source
PASS/Pasta [52] kernel ins., FS, lib. ins. No source
PASSv2/Lasagna [51] kernel ins. No source
Lineage FS [65] kernel ins. No source
RTAG [33] bin. ins. No source
BEEP [43] bin. ins. Requires HW
libdft [35] bin., kernel, lib. ins. Requires HW
RAIN [32] bin. ins. Requires HW
DataTracker [69] compile-time ins. Requires HW
MPI[46] compile-time ins. Requires recompilation
LDX [40] VM ins. Requires recompilation
Panorama [79] VM ins. VMs are too slow
PROV-Tracer [68] audit VMs are too slow
ETW [5] audit Not for Linux
Sysmon [49] audit Not for Linux
TREC [75] tracing Not for Linux
URSprung [64] audit Not for Linux5
Ma et al. [45] audit Not for Linux
ULTra [13] tracing Not for Linux

emailing the original authors. Several of the authors wrote back to
say that their source code was not available at all, and some never
wrote back. We mark both as “No source”.

Although we could reproduce ltrace, CDE, Sciunit, and PTU on
certain benchmarks, we couldn’t reproduce them on all benchmarks,
so we excluded them from further consideration.

4.2 Implemented Benchmarks
Of these, Table 6 shows the benchmarks used to evaluate each
tool, of which there are quite a few. We prioritized implement-
ing frequently-used benchmarks, easy-to-implement benchmarks,
and benchmarks that have value in representing a computational
science use-case.

5URSprung depends on IBM Spectrum Scale to get directory change notifications, so
it is not for a generic Linux system.

A benchmark suite and performance analysis of user-space provenance collectors ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France

Table 3: Benchmarks implemented by this work. For brevity,
we consider categories of benchmarks in Table 6. See ?? for
a description of each benchmark group and how we imple-
mented them.

Prior
works

This
work

InstancesBenchmark group and examples from prior work

12 yes 5 HTTP server/traffic
10 yes 2 HTTP server/client
10 yes 8 Compile user packages
9 yes 19 + 1 I/O microbenchmarks (lmbench + Postmark)
9 no Browsers
6 yes 3 FTP client
5 yes 1 FTP server/traffic
5 yes 5 × 2 Un/archive
5 yes 5 BLAST
5 yes 10 CPU benchmarks (SPLASH-3)
5 yes 8 Coreutils and system utils
3 yes 2 cp
2 yes 2 VCS checkouts
2 no Sendmail
2 no Machine learning workflows (CleanML, Spark, Im-

ageML)
1 no Data processing workflows (VIC, FIE)
1 no benchmarks occurring in only one prior work (RUBiS,

x64, mysqld, gocr, Memcache, Redis, php, pybench, ping,
mp3info, ngircd, CUPS)

Table 4 shows the aggregated performance of our implemented
benchmarks in our implemented provenance collectors. From this,
we observe:
• Although SPLASH-3 CPU-oriented benchmarks contain mostly
CPU-bound tasks, they often need to load data from a file, which
does invoke the I/O subsystem. They are CPU benchmarks when
the CPU is changed and the I/O subsystem remains constant, but
when the CPU is constant and the I/O subsystem is changed, the
total running time is influenced by I/O-related overhead.

• cp is the slowest benchmark. It even induces a 45% overhead on
fsatrace.

4.3 Subsetted Benchmarks
Figure 2 shows the performance of various algorithms on bench-
mark subsetting. We observe:
1. The features are already standardized, so PCA has little to offer

besides rotation and truncation. However, the truncation is
throwing away potentially valuable data. Since we have a large
number of benchmarks, and the space of benchmarks is open-
ended, the additional dimensions that PCA trims off appear to
be important for separating clusters of data.

2. K-means and agglomerative clustering yield nearly the same
results. They both attempt to minimize within-cluster variance,
although by different methods.

3. RMSE of the residual of linear regression will eventually hit
zero because the 𝑘 exceeds the rank of the matrix of features by
benchmarks; Linear regression has enough degrees of freedom
to perfectly map the inputs to their respective outputs.
It seems that agglomerative clustering with 𝑘 = 14 has performs

quite well, and further increases in 𝑘 exhibit diminishing returns. At
that point, the RMSE of the linear regression is about 0.02. Assum-
ing the error is iid and normally distributed, we can estimate the

Table 4: The percent overhead of the mean walltime when
running with a provenance collector versus running without
provenance. A value of 3 means the execution in that cell
takes 1.03 times the execution without provenance. Negative
slowdown can occur sometimes due to random statistical
noise. We aggregate values across iterations and benchmark
cases (each cell) and across benchmark classes (last row) using
geometric mean.

(none) fsatrace CARE strace RR ReproZip

BLAST 0 0 2 2 93 8
CPU bench SPLASH-3 0 5 9 16 49 75
Compile w/Spack 0 -1 119 111 562 359
Compile w/gcc 0 4 136 206 321 344
Compile w/latex 0 7 72 40 23 288
Data science Notebook 0 4 15 32 20 174
Data science python 0 5 85 84 150 346
FTP srv/client 0 1 2 4 5 18
HTTP srv/client 0 -23 20 33 165 248
HTTP srv/traffic 0 5 135 414 1261 724
IO bench lmbench 0 -10 1 3 11 36
IO bench postmark 0 2 231 650 259 1733
Tar Archive 0 -0 75 113 179 140
Tar Unarchive 0 4 44 114 195 149
Utils 0 17 118 280 1378 697
Utils bash 0 5 75 20 426 2933
VCS checkout 0 5 71 160 177 428
cp 0 37 641 380 232 5791

Total (gmean) 0 0 45 66 146 193

standard error of the approximation of the total benchmark by lin-
ear regression is about 0.02 (log-space) or 𝑒0.02 ≈ 1.02 (real-space).
Within the sample, 68% of the data falls within one standard error
(either multiplied or divided by a factor of 1.02) and 95% of the data
falls within two standard errors (𝑒2·0.02 or 1.04x). We examine the
generated clusters and benchmark subset in Figure 4 and Table 5.

Figure 3a shows the a posteriori clusters with colors. Figure 3b
shows a priori benchmark “types”, similar but more precise than
those in Table 3. From these two, we offer the following observa-
tions:
1. It may appear that the algorithm did not select the benchmark

closest to the cluster center, but this is because we are viewing
a 2D projection of a high-dimensional space, like how three
stars may appear next to each other in the sky but in reality,
one pair may be much closer than the other, since we cannot
perceive the radial distance to each star.

2. Many clusters are singletons, e.g., simplhttp near (4, 6); this is
surprising, but given there are no points nearby, that decision
seems reasonable.

3. We might expect that benchmarks of the same type would
occupy nearby points in PCA space, but they often do not.
lmbench is particularly scattered with points at (−2, 0) and
(0, 5), perhaps because it is a microbenchmark suite where each
microbenchmark program tests a different subsystem.

4. Postmark is intended to simulate the file system traffic of a web
server (many small file I/O). Indeed the Postmark at (3.5,−2)
falls near several of the HTTP servers at (6,−3) and (7,−3).
Copy is also similar.

ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France Samuel Grayson, Faustino Aguilar, Reed Milewicz, Daniel S. Katz, and Darko Marinov

10 20 30 40
Size of benchmark subset

0

2

4

6

8
RM

SE
(m

in
 d

ist
an

ce
)

PCA-2 agglom
PCA-2 k-means
PCA-4 agglom
PCA-4 k-means
agglom
k-means

(a) Subsetting algorithms scored by the RMSE of the dis-
tance of each benchmark to the nearest selected bench-
mark. A dotted line shows the x- amd y-value of the
point of diminishing return.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Size of benchmark subset

0.00

0.05

0.10

0.15

0.20

RM
SE

(s
ub

se
t f

ea
tu

re
s,

to
ta

l f
ea

tu
re

s)

PCA-2 agglom
PCA-2 k-means
PCA-4 agglom
PCA-4 k-means
agglom
k-means

(b) Subsetting algorithms scored by the RMSE of the
difference between (weighted) features of the subset and
features of the original set. A dotted line shows the x-
amd y-value of the point of diminishing return.

Figure 2: Competition for best benchmark subsetting algorithm, sweeping over subset size on the x-axis.

2 0 2 4 6
PCA component 1

4

2

0

2

4

6

PC
A

co
m

po
ne

nt
 2

cluster centroid
selected benchmark
benchmark

Utils (hello)
Tar Archive (gzip)
Tar Unarchive (pbzip2)
Utils bash (cd)
IO bench postmark (main)
IO bench lmbench (catch-signal)
IO bench lmbench (exec)
Utils bash (shell-echo)
IO bench lmbench (fork)
HTTP srv/traffic (simplehttp)
IO bench lmbench (open/close)
HTTP srv/traffic (nginx)
Compile w/Spack (python)
HTTP srv/traffic (apache)

(a) Benchmark subset, where color shows resulting clusters. The
same-color small dots are benchmarks in the same cluster, the
“x” of that color is their hypothetical benchmark with their av-
erage features, and the big dot of that color is the closest actual
benchmark to the average of their features. A benchmark subset
replaces each cluster of small dots with just the single big dot.

2 0 2 4 6
PCA component 1

4

2

0

2

4

6
PC

A
co

m
po

ne
nt

 2
cluster centroid
selected benchmark
benchmark

BLAST
CPU bench SPLASH-3
Compile w/Spack
Compile w/gcc
Compile w/latex
Data science Notebook
Data science python
FTP srv/client
HTTP srv/client
HTTP srv/traffic
IO bench lmbench
IO bench postmark
Tar Archive
Tar Unarchive
Utils
Utils bash
VCS checkout
cp

(b) Benchmark subset, where color shows benchmark class (see
Table 3). For example, archive-with-gzip and archive-with-bzip2
are two benchmarks of the same type, and therefore color. The
“x” still shows a posteriori cluster centers as in Figure 3a.

Figure 3: Benchmarks, clustered agglomeratively into 20 subsets using standardized performance features. These axes show
only two dimensions of a high-dimensional space. We apply PCA after computing the clusters, in order to project the data into
a 2D plane.

To elucidate the structure of the clusters, we plotted a dendro-
gram (Figure 4) and listed the members of each cluster (Table 5).
We offer the following observations:
1. lmbench fork and lmbenhc exec are close in feature-space, prob-

ably because programs usually do both.
2. Utilities (especially GNU hello, which prints hello and exits)

terminate very quickly, so they probably measure resources
used to load and exit a program. We run these commands in a
loop hundreds or thousands of times, so the runtime is more
accurately measurable. cd and shell-increment, on the other
hand, are shell builtins, so they do not even need to load a
program. That cluster probably represents purely CPU-bound
workloads.

3. Many of the CPU-heavy workloads are grouped together under
lm-protection-fault.

4. Many of the un/archive benchmarks are grouped together with
lighttpd, which also accesses many files.

4.3.1 Our suggested subset.
• Running a CPU heavy benchmark (from the 55% cluster in
Table 5) is important, in some sense. It has the heaviest weight
because more of the selected programs are similar. This weight-
ing will change with the domain, but it holds on our sample of
programs.

• The programs in lmbench have very different performance char-
acteristics (see Figure 3b). Due to their simplicity, their results are

A benchmark suite and performance analysis of user-space provenance collectors ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France

05101520
Within-cluster variance

HTTP srv/client (wget)
IO bench lmbench (catch-signal)
Tar Unarchive (pbzip2)
Utils bash (shell-echo)
Data science python (python-import)
Compile w/Spack (perl)
Utils bash (cd)
HTTP srv/traffic (nginx)
HTTP srv/traffic (apache)
cp (smaller)
HTTP srv/traffic (simplehttp)
Utils (hello)
IO bench lmbench (exec)
IO bench lmbench (fork)

Figure 4: Dendrogram showing the distance between clus-
ters. A fork at 𝑥 = 𝑥0 indicates that below that threshold
of within-cluster variance, the two children clsuters are far
away enough that they should be split into two; conversely,
above that threshold they are close enough to be combined.

Representative
Members

54.7 CPU bench SPLASH-3 (nsquared)
BLAST (all), CPU bench SPLASH-3 (ocean, lu, cholesky, radiosity, spa-
tial, volrend, radix, raytrace), Compile w/latex (all), Data science Note-
book (all), FTP srv/client (all), HTTP srv/client (all), HTTP srv/traffic
(minihttp), IO bench lmbench (write, select-file, mmap, catch-signal,
protection-fault, getppid, install-signal, page-fault, fs, bw_unix, select-
tcp, bw_file_rd, bw_pipe, read), Tar Archive (gzip, bzip2), Tar Unarchive
(bzip2)

12.7 IO bench postmark (main)
Tar Archive (archive), cp (all)

7.7 Tar Unarchive (pbzip2)
HTTP srv/traffic (lighttpd), Tar Archive (pigz, pbzip2)

5.8 Compile w/Spack (python)
Compile w/Spack (rest)

5.4 Utils (hello)
Utils (rest)

3.7 Utils bash (shell-incr)
CPU bench SPLASH-3 (fft), Utils bash (shell-echo)

1.6 Utils bash (cd)
1.4 IO bench lmbench (exec)
1.4 HTTP srv/traffic (nginx)
1.3 IO bench lmbench (open/close)
1.2 HTTP srv/traffic (simplehttp)
1.0 IO bench lmbench (fork)
0.2 HTTP srv/traffic (apache)
0.0 Tar Unarchive (pigz)

Compile w/gcc (all), Data science python (all), IO bench lmbench (stat,
fstat), Tar Unarchive (gzip, unarchive), VCS checkout (all)

98.1 Sum

Table 5: A table showing cluster membership and weights as
percentages. The weights show one way of approximating
the features in the original set, which is by multiplying the
features of the cluster representative by the weight and sum-
ming over all clusters.

interpretable (e.g., testing latency of open() followed by close()
in a tight loop). We report the total time it takes to run a large
number of iterations6 rather than latency or throughput to be
consistent with benchmarks for which latency and throughput

6Users should set the environment variable ENOUGH to a large integer. Otherwise,
lmbenchwill choose a number of iterations based on the observed speed of themachine,
which can vary between runs.

are not applicable. If one has to run part of lmbench, it is not too
hard to run all of lmbench.

• Figure 3b shows that HTTP servers are very “unique”. Three
of five were selected as cluster centers, and we can tell from
Figure 3a they are quite far from other programs in feature-space.
This “uniqueness” means that future work interested in repre-
sentativeness and consistency with prior work should include
HTTP servers, but future work not on security may be able to do
without them. In that case, they should run Postmark instead,
which is intended to mimic the workload of a webserver, and
according to Figure 3, will pull the benchmarks the direction of
Nginx and ApacheHttpd.

• Surprisingly, shell builtins and Linux utilities in a tight loop
exercise provenance collectors well according to Table 4, probably
due to their fast execution time compared to the fixed cost of
loading a program and its libraries into memory. At least they
are easy to run.
There is an old adage, the best benchmark is always the target

application. Benchmarking lmbench reveals certain aspects of per-
formance, but benchmarking the target application reveals the
actual performance. If we may hazard a corollary, we might say, the
second best benchmark is one from the target domain. Supposing one
does not know the exact application or inputs their audience will
use, selecting applications from that domain is the next best option.
Future work on system-level provenance for computational science
should, of course, use a computational science benchmark, such as
BLAST, compiling programs with Spack, or a workflow, whether
or not they are selected by this clustering analysis. Likewise, work
on security should include HTTP servers.

Finally, researchers presenting new provenance collectors should
report all benchmark runtimes, not just a geometric mean [50].
Readers can be the ones to determineweights for which benchmarks
are most relevant to their workload.

5 DISCUSSION
Prior work focuses on security, not computational science.
Table 3 shows the top-used benchmarks are server programs, fol-
lowed by I/O benchmarks. Server programs access many small
files with concurrency, which is a different file-access pattern than
scientific applications. BLAST (used by 5 / 29 publications with
benchmarks; see Table 6) is the only scientific program to be used
as a benchmark by more than one publication.

One difference between security and computational science is
that security-oriented provenance collectors have to work with
adversarial programs: there should be no way for the program to
circumvent the provenance tracing, e.g. PTRACE_DETACH. Compu-
tational science, on the other hand, may satisfied by a solution that
can be intentionally circumvented by an uncooperative program
but would work most of the time. Other computational science
tools use circumventable methods without mention [77].

Provenance collectors vary in power and speed, but fast-
and-powerful could be possible.While all bear the title prove-
nance collector, some are monitoring, merely recording a history
of operations, while others are interrupting, interrupt the process
when the program makes an operation. Fsatrace, Strace, and Ltrace
are monitoring, while ReproZip, Sciunit, RR, CARE, and CDE are

ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France Samuel Grayson, Faustino Aguilar, Reed Milewicz, Daniel S. Katz, and Darko Marinov

interrupting, using their interruption store a copy of the files that
would be read or appended to by the process. None of the inter-
rupting provenance collectors we tested use library interposition
or eBPF (although PROV-IO does, we did not have time to imple-
ment it). Perhaps a faster underlying method would allow powerful
features of interrupting collectors in a reasonable overhead budget.

Current provenance collectors are too slow for “always
on”. One point of friction when using system-level provenance
collection is that users have to remember to turn it on, or else the
system is useless. An “always on” provenance system could alleviate
that problem; for example, a user might change their login shell to
start within a provenance collector. Unfortunately, the conventional
provenance collectors exhibit an intolerably high overhead to be
always used, with the exception of fsatrace. fsatrace is able to so
much faster because it uses library interpositioning rather than
ptrace (see “fast-and-powerful” discussion above), but fsatrace is
one of the weakest collectors; it only collects file reads, writes,
moves, deletes, queries, and touches (nothing on process forks and
execs).

The space of benchmark performance in provenance sys-
tems is highly dimensional.The space of benchmarks is naturally
embedded in a space with features as dimensions. If there were
many linear relations between the features (e.g., slowdown = (app
syscalls / sec) * (prov syscall latency)), then we would expect cluster-
ing to reveal fewer clusters than the number of features. However,
there are more clusters than features (14 > 12); it seems that most
dimensions are not linearly redundant. Even the relationship be-
tween workloads is non-linear; if workload A is a weighted average
of B and C in feature-space (e.g., num of syscalls), its runtime is not
necessarily the same weighted average of B and C’s runtime.

Computational scientists may already be using workflows.
While system-level provenance is the easiest way to get provenance
out of many applications, if the application is already written in a
workflow engine, such as Pegasus [37], they can get provenance
through the engine. Computational scientists may move to work-
flows for other reasons because they make it easier to parallelize
code on big machines and integrate loosely coupled components.
That may explain why prior work on system-level provenance
focuses more on security applications.

5.1 Threats to Validity
Internal validity: We mitigate measurement noise by:
• Isolating the sample machine Section 3.3
• Running the code in cgroups with a fixed allocation of CPU and
RAM

• Rewriting benchmarks that depend on internet resources to only
depend on local resources

• Averaging over 3 iterations helps mitigate noise.
• Randomizing the order of each pair of collector and benchmark
within each iteration.
External validity: When measuring the representativeness of

our benchmark subset, we use other workload characteristics, not
just performance in each collector. Therefore, our set also maintains
variety and representativeness in underlying characteristics, not
just in the performance we observe. Rather than select the highest

cluster value, we select the point of diminishing return, which is
more likely to be generalizable.

5.2 Future Work
In the future, we plan to implement compilation for more packages,
particularly xSDK [8] packages. Compilation for these packages
may differ from ApacheHttpd and Linux because xSDK is orga-
nized into many dozens of loosely related packages. We also plan
to implement computational workflows. Workflows likely have a
different syscall access pattern, unlike HTTP servers because the
files may be quite large, unlike cp because workflows have CPU
work blocked by I/O work, and unlike archiving because there are
multiple “stages” to the computation.

We encourage future work that implements an interrupting
provenance collector using faster methods like library interposi-
tion or eBPF instead of ptrace. Between them, there are pros and
cons: eBPF requires privileges but could be exposed securely by a
setuid/setgid binary; library interposition assumes the tracee only
uses libc to make I/O operations. Another optimization postponing
work to off the critical path: if a file is read, it can be copied at
any time unless/until it gets mutated (“copy-on-write-after-read”).
Other reads can be safely copied after the program is done, and
new file writes obviously do not need to be copied at all. Perhaps
the performance overhead would be low enough to be “always on”,
however storage and querying cost need to be dispatched with as
well.

6 CONCLUSION
We intend this work to bridge research to practical use of prove-
nance collectors and an invitation for future research. In order to
bridge research into practice, we identified reproducible and usable
provenance collectors from prior work and evaluated their perfor-
mance on synthetic and real-world workloads. In order to invite
future research, we collated and minimized a benchmark suite and
identified gaps in prior work. We believe this work and the work it
enables will address the practical concerns of a user wanting to use
a provenance collector.

ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCF-1763788 and
CCF-1956374. We acknowledge support for research on flaky tests
from Google and Meta.

A APENDICES
A.1 Notable provenance collectors
CDE is a record/replay tool proposed by Guo and Engler [27].
During record, CDE uses ptrace to intercept its syscalls, and copy
relevant files into an archive. During rerun, can use ptrace to
intercept syscalls and redirect them to files in the archive. PTU uses
a modified version of CDE that works on all of our benchmarks, so
we can use that as a proxy.

ltrace similar to strace, but it traces dynamic library calls not
necessarily syscalls. It still uses ptrace.

strace is a well-known system program that uses Linux’s ptrace
functionality to record syscalls, their arguments, and their return

A benchmark suite and performance analysis of user-space provenance collectors ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France

code to a file. strace even parses datastructures to write strings
and arrays rather than pointers. In this work, we use an strace
configuration that captures all file-related syscalls but read/write7,
file-metadata realated syscalls, socket- and IPC- related sycalls but
send/recv, and process-related syscalls.

fsatrace reports file I/O using library-interpositioning, a tech-
nique where a program mimics the API of a standard library. Pro-
grams are written to call into the standard library, but the loader
sends those calls to the interpositioning library instead. The inter-
positioning library can log the call and pass it to another library
(possibly the “real” one), so the program’s functionality is preserved.
This avoids some context-switching overhead of ptrace, since the
logging happens in the tracee’s process.

CARE is a record/replay tool inspired by CDE. However, CARE
has optimizations enabling it to copy fewer files, and CARE archives
can be replayed using chroot, lxc, or ptrace (by emulating chroot);
CDE only supports ptrace, which is slower than the other two.

RR [56] is a record/replay tool. It captures more syscalls than just
file I/O, including getrandom and clock_gettime and it is able to
replay its recordings in a debugger. Where other record/replay tools
try to identify the relevant files, RR only memorizes the responses
to each syscall, so it can only replay that exact code path. CDE,
CARE, ReproZip, PTU, and Sciunit allow one to replay a different
binary or supply different inputs in the filesystem of an existing
recording.

ReproZip is a record/replay inspired by CDE. ReproZip archives
can be replayed in Vagrant, Docker, Chroot, or natively. Unlike other
record/replay tools, ReproZip explicitly constructs the computa-
tional provenance graph.

PTU (Provenance-To-Use) is an adaptation of CDE which explic-
itly constructs the computational provenance graph.

Sciunit is a wrapper around PTU that also applies block-based
deduplication.

A.2 Collection methods
User-level tracing: A provenance tool may use “debugging” or
“tracing” features provided by the kernel, e.g., ptrace(2) [4], to
trace another program’s I/O operations.

Built-in auditing service: A provenance tool may use auditing
service built in to the kernel, e.g., Linux Auditing Framework [48],
enhanced Berkeley Packet Filter (eBPF) [2], kprobes [36], and ETW
[5] for Windows.

Filesystem instrumentation: A provenance tool may set up
a file system, so it can log I/O operations, e.g., using Filesystem
in User SpacE (FUSE) interface [3], or Virtual File System (VFS)
interface [26].

Dynamic library instrumentation: A provenance tool may
replace a library used to execute I/O operations (e.g., glibc) with
one that logs the calls before executing them.

Binary instrumentation: A provenance tool may use binary
instrumentation (dynamic or static) to identify I/O operations in
another program.

7We do not need to capture individual reads and writes, so long as we capture that the
file was opened for reading/writing.

Compile-time instrumentation: A provenance tool may be a
compiler pass that modifies the program to emit provenance data,
especially intra-program control flow.

Kernel instrumentation: A provenance tool may be a modified
kernel either by directly modifying and recompiling the kernel’s
source tree.

Kernelmodule: Rather than directly modify the kernel’s source,
the provenance tool may simply require that the user load a custom
kernel module.

VM instrumentation: A provenance tool may execute the pro-
gram in a virtual machine, where it can observe the program’s I/O
operations.

See Table 6 for a list of prior publications and what benchmarks
they use, if, for example, one wishes to see the original contexts in
which Firefox was used.

Table 6: Benchmarks used by prior works on provenance
collectors (sorted by year of publication).

Publication Benchmarks Comparisons

TREC [75] open/close, compile Apache, LaTeX Native
ULTra [13] getpid, LaTeX, Apache, compile package Native,

strace
PASS [52] BLAST Native ext2
Panorama [79] curl, scp, gzip, bzip2 Native
PASSv2 [51] BLAST, compile Linux, Postmark, Mercurial, Kepler Native ext3,

NFS
SPADEv2 [24] BLAST, compile Apache, Apache Native
Hi-Fi [62] lmbench, compile Linux, Postmark Native
libdft [35] scp, {tar, gzip, bzip2} x {extract, compress} PIN
PTU [59] Workflows (PEEL0, TextAnalyzer) Native
LogGC [42] RUBiS, Firefox, MC, Pidgin, Pine, Proftpd, Sendmail, sshd,

vim, w3m, wget, xpdf, yafc, Audacious, bash, Apache,
mysqld

None8

CARE [30] Compile perl, xz Native
Arnold[19] cp, CVS checkout, make libelf, LaTeX, Apache, gedit, Fire-

fox, spreadsheet, SPLASH-2
Native

LPM/ProvMon [9] lmbench, compile Linux, Postmark, BLAST Native
Ma et al. [45] TextTransfer, Chromium, DrawTool, NetFTP, Ad-

vancedFTP, Apache, IE, Paint, Notepad, Notepad++,
simplehttp, Sublime Text

Native

ProTracer [47] Apache, miniHTTP, ProFTPD, Vim, Firefox, w3m, wget,
mplayer, Pine, xpdf, MC, yafc

Auditd,
BEEP

LDX [40] SPEC CPU 2006, Firefox, lynx, nginx, tnftp, sysstat,
gif2png, mp3info, prozilla, yopsweb, ngircd, gocr, Apache,
pbzip2, pigz, axel, x264

Native

PANDDE [21] ls, cp, cd, lpr Native
MPI [46] Apache, bash, Evince, Firefox, Krusader, wget, most, MC,

mplayer, MPV, nano, Pine, ProFTPd, SKOD, TinyHTTPd,
Transmission, Vim, w3m, xpdf, Yafc

Audit, LPM-
HiFi

CamFlow [57] lmbench, postmark, unpack kernel, compile Linux,
Apache, Memcache, redis, php, pybench

Native

BEEP [43] Apache, Vim, Firefox, wget, Cherokee, w3m, ProFTPd,
yafc, Transmission, Pine, bash, mc, sshd, sendmail

Native

RAIN [32] SPEC CPU 2006, cp linux, wget, compile libc, Firefox,
SPLASH-3

Native

Sciunit [74] Workflows (VIC, FIE) Native
LPS [18] IOR benchmark, read/write, MDTest, HPCG Native
LPROV [76] Apache, simplehttp, proftpd, sshd, firefox, filezilla, lynx,

links, w3m, wget, ssh, pine, vim, emacs, xpdf
Native

MCI [41] Firefox, Apache, Lighttpd, nginx, ProFTPd, CUPS, vim,
elinks, alpine, zip, transmission, lftp, yafc, wget, ping,
procps

BEEP

RTAG [33] SPEC CPU 2006, scp, wget, compile llvm, Apache RAIN
URSPRING [64] open/close, fork/exec/exit, pipe/dup/close,

socket/connect, CleanML, Vanderbilt, Spark, Im-
ageML

Native,
SPADE

PROV-IO [28] Workflows (Top Reco, DASSA), I/O microbenchmark
(H5bench)

Native

Namiki et al. [54] I/O microbenchmark (BT-IO) Native

8LogGC measures the offline running time and size of garbage collected logs; there is
no comparison to native would be applicable.

ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France Samuel Grayson, Faustino Aguilar, Reed Milewicz, Daniel S. Katz, and Darko Marinov

REFERENCES
[1] [n. d.]. About DTrace.
[2] [n. d.]. BPF Documentation. https://docs.kernel.org/bpf/index.html.
[3] [n. d.]. FUSE. https://www.kernel.org/doc/html/latest/filesystems/fuse.html.
[4] [n. d.]. Ptrace. https://man7.org/linux/man-pages/man2/ptrace.2.html.
[5] 2021. Event Tracing - Win32 Apps. https://learn.microsoft.com/en-

us/windows/win32/etw/event-tracing-portal.
[6] ACM Inc. staff. 2020. Artifact Review and Badging.

https://www.acm.org/publications/policies/artifact-review-and-badging-
current.

[7] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, and Andy Hopper.
2013. {OPUS}: A Lightweight System for Observational Provenance in User Space.
In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13).

[8] Roscoe Bartlett, Irina Demeshko, Todd Gamblin, Glenn Hammond, Michael Allen
Heroux, Jeffrey Johnson, Alicia Klinvex, Xiaoye Li, Lois Curfman McInnes,
J. David Moulton, Daniel Osei-Kuffuor, Jason Sarich, Barry Smith, James Willen-
bring, and Ulrike Meier Yang. 2017. xSDK Foundations: Toward an Extreme-scale
Scientific Software Development Kit. Supercomputing Frontiers and Innovations
4, 1 (Feb. 2017), 69–82. https://doi.org/10.14529/jsfi170104

[9] Adam Bates, Dave (Jing) Tian, Kevin R. B. Butler, and Thomas Moyer. 2015.
Trustworthy {Whole-System} Provenance for the Linux Kernel. In 24th USENIX
Security Symposium (USENIX Security 15). 319–334.

[10] Marijan Beg, Juliette Taka, Thomas Kluyver, Alexander Konovalov, Min Ragan-
Kelley, Nicolas M Thiéry, and Hans Fangohr. 2021. Using Jupyter for reproducible
scientific workflows. Computing in Science & Engineering 23, 2 (2021), 36–46.

[11] Dirk Beyer, Stefan Löwe, and Philipp Wendler. 2019. Reliable Benchmarking:
Requirements and Solutions. Int J Softw Tools Technol Transfer 21, 1 (Feb. 2019),
1–29. https://doi.org/10.1007/s10009-017-0469-y

[12] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[13] A.N. Burton and P.H.J. Kelly. 1998. Workload Characterization Using Lightweight
System Call Tracing and Reexecution. In 1998 IEEE International Performance,
Computing and Communications Conference. Proceedings (Cat. No.98CH36191).
260–266. https://doi.org/10.1109/PCCC.1998.659975

[14] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2018. The Role of Rapid Reviews
in Supporting Decision-Making in Software Engineering Practice. In Proceedings
of the 22nd International Conference on Evaluation and Assessment in Software
Engineering 2018 (EASE ’18). Association for Computing Machinery, New York,
NY, USA, 24–34. https://doi.org/10.1145/3210459.3210462

[15] Bruno Cartaxo, Gustavo Pinto, and Sergio Soares. 2020. Rapid Reviews in Software
Engineering. InContemporary Empirical Methods in Software Engineering, Michael
Felderer and Guilherme Horta Travassos (Eds.). Springer International Publishing,
Cham, 357–384. https://doi.org/10.1007/978-3-030-32489-6_13

[16] Kyle Chard, Niall Gaffney, Matthew B Jones, Kacper Kowalik, Bertram Ludäscher,
Jarek Nabrzyski, Victoria Stodden, Ian Taylor, Matthew J Turk, and Craig Willis.
2019. Implementing computational reproducibility in the Whole Tale environ-
ment. In Proceedings of the 2nd International Workshop on Practical Reproducible
Evaluation of Computer Systems. 17–22.

[17] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-
proZip: Computational Reproducibility With Ease. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). Association for
Computing Machinery, New York, NY, USA, 2085–2088. https://doi.org/10.1145/
2882903.2899401

[18] Dong Dai, Yong Chen, Philip Carns, John Jenkins, and Robert Ross. 2017. Light-
weight Provenance Service for High-Performance Computing. In 2017 26th Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT).
117–129. https://doi.org/10.1109/PACT.2017.14

[19] David Devecsery, MIchael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen.
2014. Eidetic Systems. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 525–540.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/de
vecsery

[20] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316–319.

[21] Daren Fadolalkarim, Asmaa Sallam, and Elisa Bertino. 2016. PANDDE:
Provenance-based ANomaly Detection of Data Exfiltration. In Proceedings of
the Sixth ACM Conference on Data and Application Security and Privacy (CO-
DASPY ’16). Association for Computing Machinery, New Orleans Louisiana USA,
267–276. https://doi.org/10.1145/2857705.2857710

[22] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. 2008. Prove-
nance for Computational Tasks: A Survey. Comput. Sci. Eng. 10, 3 (May 2008),
11–21. https://doi.org/10.1109/MCSE.2008.79

[23] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R De Supinski, and Scott Futral. 2015. The Spack package man-
ager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.

1–12.
[24] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Audit-

ing in Distributed Environments. In Middleware 2012 (Lecture Notes in Computer
Science), Priya Narasimhan and Peter Triantafillou (Eds.). Springer, Berlin, Hei-
delberg, 101–120. https://doi.org/10.1007/978-3-642-35170-9_6

[25] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome biology 11, 8 (2010), 1–13.

[26] Gooch. [n. d.]. Overview of the Linux Virtual File System.
https://docs.kernel.org/filesystems/vfs.html.

[27] Philip Guo and Dawson Engler. 2011. CDE: Using System Call Interposition
to Automatically Create Portable Software Packages. In 2011 USENIX Annual
Technical Conference. USENIX, Portland, OR, USA.

[28] Runzhou Han, Suren Byna, Houjun Tang, Bin Dong, and Mai Zheng. 2022. PROV-
IO: An I/O-Centric Provenance Framework for Scientific Data on HPC Systems.
In Proceedings of the 31st International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’22). Association for Computing Machinery,
New York, NY, USA, 213–226. https://doi.org/10.1145/3502181.3531477

[29] Michael A Heroux, David E Bernholdt, Lois Curfman McInnes, John R Cary,
Daniel S Katz, Elaine M Raybourn, and Damian Rouson. 2023. Basic Research
Needs in The Science of Scientific Software Development and Use: Investment in
Software is Investment in Science. Technical Report. US Department of Energy
(USDOE), Washington, DC (United States). Office of

[30] Yves Janin, Cédric Vincent, and Rémi Duraffort. 2014. CARE, the Comprehensive
Archiver for Reproducible Execution. In Proceedings of the 1st ACM SIGPLAN
Workshop on Reproducible Research Methodologies and New Publication Models in
Computer Engineering (TRUST ’14). Association for Computing Machinery, New
York, NY, USA, 1–7. https://doi.org/10.1145/2618137.2618138

[31] Christoph Jansen, Jonas Annuscheit, Bruno Schilling, Klaus Strohmenger, Michael
Witt, Felix Bartusch, Christian Herta, Peter Hufnagl, and Dagmar Krefting. 2020.
Curious Containers: A framework for computational reproducibility in life sci-
ences with support for Deep Learning applications. Future Generation Computer
Systems 112 (2020), 209–227.

[32] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. RAIN: Refinable Attack Investigation
with On-demand Inter-Process Information Flow Tracking. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). Association for Computing Machinery, New York, NY, USA, 377–390.
https://doi.org/10.1145/3133956.3134045

[33] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2018. Enabling Refinable {Cross-Host} Attack
Investigation with Efficient Data Flow Tagging and Tracking. In 27th USENIX
Security Symposium (USENIX Security 18). 1705–1722.

[34] Yang Ji, Sangho Lee, and Wenke Lee. 2016. RecProv: Towards Provenance-
Aware User Space Record and Replay. In Provenance and Annotation of Data and
Processes (Lecture Notes in Computer Science), Marta Mattoso and Boris Glavic
(Eds.). Springer International Publishing, Cham, 3–15. https://doi.org/10.1007/
978-3-319-40593-3_1

[35] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE ’12). Association for Computing Machinery, New
York, NY, USA, 121–132. https://doi.org/10.1145/2151024.2151042

[36] Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. [n. d.]. Kernel
Probes (Kprobes). https://www.kernel.org/doc/html/latest/trace/kprobes.html.

[37] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar. 2008.
Provenance trails in the Wings/Pegasus system. Concurrency and Computation:
Practice and Experience 20, 5 (2008), 587–597. https://doi.org/10.1002/cpe.1228
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1228

[38] Johannes Köster and Sven Rahmann. 2012. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 28, 19 (2012), 2520–2522.

[39] Markus Kowalewski and Phillip Seeber. 2022. Sustainable packaging of quantum
chemistry software with the Nix package manager. International Journal of
Quantum Chemistry 122, 9 (2022), e26872.

[40] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, andDongyanXu. 2016. LDX: Causality Inference
by Lightweight Dual Execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’16). Association for Computing Machinery, New York, NY,
USA, 503–515. https://doi.org/10.1145/2872362.2872395

[41] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
ShiqingMa, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish
Gehani, and Vinod Yegneswaran. 2018. MCI : Modeling-based Causality Inference
in Audit Logging for Attack Investigation. In Proceedings 2018 Network and
Distributed System Security Symposium. Internet Society, San Diego, CA. https:
//doi.org/10.14722/ndss.2018.23306

[42] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage
Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC Conference on

https://doi.org/10.14529/jsfi170104
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1109/PCCC.1998.659975
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1109/PACT.2017.14
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://doi.org/10.1145/2857705.2857710
https://doi.org/10.1109/MCSE.2008.79
https://doi.org/10.1007/978-3-642-35170-9_6
https://doi.org/10.1145/3502181.3531477
https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1145/3133956.3134045
https://doi.org/10.1007/978-3-319-40593-3_1
https://doi.org/10.1007/978-3-319-40593-3_1
https://doi.org/10.1145/2151024.2151042
https://doi.org/10.1002/cpe.1228
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1228
https://doi.org/10.1145/2872362.2872395
https://doi.org/10.14722/ndss.2018.23306
https://doi.org/10.14722/ndss.2018.23306

A benchmark suite and performance analysis of user-space provenance collectors ACM Conference on Reproducibility and Replicability, June 18–20, 2024, Rennes, France

Computer & Communications Security (CCS ’13). Association for Computing
Machinery, New York, NY, USA, 1005–1016. https://doi.org/10.1145/2508859.25
16731

[43] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2017. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proceedings of the 2017
Network and Distributed System Security (NDSS) Symposium.

[44] Fang (Cherry) Liu, Mehmet Belgin, Nuyun Zhang, Kevin Manalo, Ruben
Lara, Christopher P. Stone, and Paul Manno. 2022. ProvBench: A perfor-
mance provenance capturing framework for heterogeneous research com-
puting environments. Concurrency and Computation: Practice and Expe-
rience 34, 10 (2022), e6820. h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / c p e . 6 8 20
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6820

[45] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free Security
Audit Logging for Windows. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC ’15). Association for Computing Machinery,
New York, NY, USA, 401–410. https://doi.org/10.1145/2818000.2818039

[46] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. {MPI}: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In 26th USENIX Security Symposium (USENIX Security
17). 1111–1128.

[47] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting. In Proceedings
2016 Network and Distributed System Security Symposium. Internet Society, San
Diego, CA. https://doi.org/10.14722/ndss.2016.23350

[48] Ashish Bharadwaj Madabhushana. 2021. Configure Linux System Auditing with
Auditd.

[49] markruss. 2023. Sysmon - Sysinternals. https://learn.microsoft.com/en-
us/sysinternals/downloads/sysmon.

[50] John R. Mashey. 2004. War of the benchmark means: time for a truce. SIGARCH
Comput. Archit. News 32, 4 (sep 2004), 1–14. https://doi.org/10.1145/1040136.10
40137

[51] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,
Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. 2009. Layering
in Provenance Systems. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (USENIX’09). USENIX Association, USA, 10. https://doi.or
g/10.5555/1855807.1855817

[52] Kiran-KumarMuniswamy-Reddy, David AHolland, Uri Braun, andMargo Seltzer.
2006. Provenance-Aware Storage Systems. In 2006 USENIX Annual Technical
Conference.

[53] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing Wrong Data without Doing Anything Obviously Wrong! SIGARCH
Comput. Archit. News 37, 1 (March 2009), 265–276. https://doi.org/10.1145/2528
521.1508275

[54] Yuta Namiki, Takeo Hosomi, Hideyuki Tanushi, Akihiro Yamashita, and Susumu
Date. 2023. A Method for Constructing Research Data Provenance in High-
Performance Computing Systems. In 2023 IEEE 19th International Conference on
E-Science (e-Science). 1–10. https://doi.org/10.1109/e-Science58273.2023.10254932

[55] Daniel Nüst, Vanessa Sochat, Ben Marwick, Stephen J Eglen, Tim Head, Tony
Hirst, and Benjamin D Evans. 2020. Ten simple rules for writing Dockerfiles for
reproducible data science. , e1008316 pages.

[56] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering Record And Replay For Deployability:
Extended Technical Report. https://doi.org/10.48550/arXiv.1705.05937
arXiv:1705.05937 [cs]

[57] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. PracticalWhole-System Provenance Capture.
In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17). Association
for Computing Machinery, New York, NY, USA, 405–418. https://doi.org/10.114
5/3127479.3129249

[58] Jeffrey M Perkel. 2021. Ten computer codes that transformed science. Nature
589, 7842 (2021), 344–349.

[59] Quan Pham, TanuMalik, and Ian Foster. 2013. Using Provenance for Repeatability.
In 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13).

[60] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. 2007. Subsetting the SPEC
CPU2006 benchmark suite. SIGARCH Comput. Archit. News 35, 1 (mar 2007),
69–76. https://doi.org/10.1145/1241601.1241616

[61] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo.
2019. A Survey on Collecting, Managing, and Analyzing Provenance from Scripts.
ACM Comput. Surv. 52, 3 (June 2019), 47:1–47:38. https://doi.org/10.1145/3311955

[62] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: Collecting High-Fidelity Whole-System Provenance. In Proceedings of the
28th Annual Computer Security Applications Conference (ACSAC ’12). Association
for Computing Machinery, New York, NY, USA, 259–268. https://doi.org/10.114
5/2420950.2420989

[63] Vara Prasad, William Cohen, Frank Eigler, Martin Hunt, Jim Keniston, and Brad
Chen. 2005. Locating System Problems Using Dynamic Instrumentation. In
Proceedings of the Linux Symposium, Vol. 2. kernel.org, Ottawa, Ontario, Canada,
49–64.

[64] Lukas Rupprecht, James C. Davis, Constantine Arnold, Yaniv Gur, and Deepavali
Bhagwat. 2020. Improving Reproducibility of Data Science Pipelines through
Transparent Provenance Capture. Proc. VLDB Endow. 13, 12 (Aug. 2020), 3354–
3368. https://doi.org/10.14778/3415478.3415556

[65] Can Sar and Pei Cao. [n. d.]. Lineage File System. ([n. d.]).
[66] Mahadev Satyanarayanan, Jan Harkes, and James Blakley. 2023. Towards Re-

producible Execution of Closed-Source Applications from Internet Archives.
In Proceedings of the 2023 ACM Conference on Reproducibility and Replicability.
15–26.

[67] Holger J. Schünemann and Lorenzo Moja. 2015. Reviews: Rapid! Rapid! Rapid!
. . . and Systematic. Systematic Reviews 4, 1 (Jan. 2015), 4. https://doi.org/10.1186/
2046-4053-4-4

[68] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2015. Decoupling
Provenance Capture and Analysis from Execution. In Proceedings of the 7th
USENIX Conference on Theory and Practice of Provenance (TaPP’15). USENIX
Association, USA, 3.

[69] Manolis Stamatogiannakis, Paul Groth, and Herbert Bos. 2015. Looking Inside
the Black-Box: Capturing Data Provenance Using Dynamic Instrumentation. In
Provenance and Annotation of Data and Processes (Lecture Notes in Computer Sci-
ence), Bertram Ludäscher and Beth Plale (Eds.). Springer International Publishing,
Cham, 155–167. https://doi.org/10.1007/978-3-319-16462-5_12

[70] Victoria Stodden, Christophe Hurlin, and Christophe Pérignon. 2012. RunMy-
Code. org: A novel dissemination and collaboration platform for executing pub-
lished computational results. In 2012 IEEE 8th International Conference on E-
Science. IEEE, 1–8.

[71] Victoria Stodden, Sheila Miguez, and Jennifer Seiler. 2015. Researchcompendia.
org: Cyberinfrastructure for reproducibility and collaboration in computational
science. Computing in Science & Engineering 17, 1 (2015), 12–19.

[72] Chun Hui Suen, Ryan K.L. Ko, Yu Shyang Tan, Peter Jagadpramana, and Bu Sung
Lee. 2013. S2Logger: End-to-End Data Tracking Mechanism for Cloud Data
Provenance. In 2013 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications. 594–602. https://doi.org/10.1109/Tr
ustCom.2013.73

[73] Salmin Sultana and Elisa Bertino. 2013. A File Provenance System. In Proceedings
of the Third ACM Conference on Data and Application Security and Privacy (CO-
DASPY ’13). Association for Computing Machinery, New York, NY, USA, 153–156.
https://doi.org/10.1145/2435349.2435368

[74] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. 2017. Sciunits:
Reusable Research Objects. In 2017 IEEE 13th International Conference on E-Science
(e-Science). 374–383. https://doi.org/10.1109/eScience.2017.51

[75] Amin Vahdat and Thomas Anderson. 1998. Transparent Result Caching. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference
(ATEC ’98). USENIX Association, USA, 3.

[76] Fei Wang, Yonghwi Kwon, Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2018.
Lprov: Practical Library-aware Provenance Tracing. In Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC ’18). Association for
Computing Machinery, New York, NY, USA, 605–617. https://doi.org/10.1145/
3274694.3274751

[77] Cong Xu, Shane Snyder, Vishwanath Venkatesan, Philip Carns, Omkar Kulkarni,
Suren Byna, Roberto Sisneros, and Kalyana Chadalavada. 2017. DXT: Darshan
eXtended Tracing. Technical Report. Argonne National Lab. (ANL), Argonne, IL
(United States).

[78] Joshua J. Yi, Resit Sendag, Lieven Eeckhout, Ajay Joshi, David J. Lilja, and
Lizy K. John. 2006. Evaluating Benchmark Subsetting Approaches. In 2006
IEEE International Symposium on Workload Characterization. 93–104. https:
//doi.org/10.1109/IISWC.2006.302733

[79] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: Capturing System-Wide Information Flow for Malware Detec-
tion and Analysis. In Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS ’07). Association for Computing Machinery, New
York, NY, USA, 116–127. https://doi.org/10.1145/1315245.1315261

https://doi.org/10.1145/2508859.2516731
https://doi.org/10.1145/2508859.2516731
https://doi.org/10.1002/cpe.6820
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6820
https://doi.org/10.1145/2818000.2818039
https://doi.org/10.14722/ndss.2016.23350
https://doi.org/10.1145/1040136.1040137
https://doi.org/10.1145/1040136.1040137
https://doi.org/10.5555/1855807.1855817
https://doi.org/10.5555/1855807.1855817
https://doi.org/10.1145/2528521.1508275
https://doi.org/10.1145/2528521.1508275
https://doi.org/10.1109/e-Science58273.2023.10254932
https://doi.org/10.48550/arXiv.1705.05937
https://arxiv.org/abs/1705.05937
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/1241601.1241616
https://doi.org/10.1145/3311955
https://doi.org/10.1145/2420950.2420989
https://doi.org/10.1145/2420950.2420989
https://doi.org/10.14778/3415478.3415556
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1007/978-3-319-16462-5_12
https://doi.org/10.1109/TrustCom.2013.73
https://doi.org/10.1109/TrustCom.2013.73
https://doi.org/10.1145/2435349.2435368
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1145/3274694.3274751
https://doi.org/10.1145/3274694.3274751
https://doi.org/10.1109/IISWC.2006.302733
https://doi.org/10.1109/IISWC.2006.302733
https://doi.org/10.1145/1315245.1315261

	Abstract
	1 Introduction
	2 Background
	2.1 Prior work

	3 Methods
	3.1 Rapid Review
	3.2 Benchmark Selection
	3.3 Performance Experiment
	3.4 Benchmark Subsetting

	4 Results
	4.1 Selected Provenance Collectors
	4.2 Implemented Benchmarks
	4.3 Subsetted Benchmarks

	5 Discussion
	5.1 Threats to Validity
	5.2 Future Work

	6 Conclusion
	Acknowledgments
	A Apendices
	A.1 Notable provenance collectors
	A.2 Collection methods

	References

