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Abstract—Code translation from one programming language
to another has been a topic of interest for academia and
industry for a long time, and has recently re-emerged with the
advent of Large Language Models (LLMs). While progress has
been made in translating small code snippets, tackling larger
projects with intricate dependencies remains a challenging task. A
significant challenge in automating such translations is validating
the resulting code. Translating existing tests to the target language
can introduce errors, yielding potentially misleading quality
assurance even when all the translated tests pass.

We propose the idea of testing the translated code using the
existing, untranslated tests written in the original programming
language. The key to our idea is to leverage language interoper-
ability to run code written in two different languages together.
This partial translation approach offers two main benefits: (1) the
ability to leverage original tests for validating translated code,
not only from the project being translated but also from the
clients using this project, and (2) the continuous maintainability
and testability of the project during translation.

We evaluate our approach by translating from Java to Python
two popular Java libraries, Apache Commons CLI and Apache
Commons CSV, with 1209 lines of code (in 22 Java files) and 860
lines of code (in 10 Java files), respectively. Our implementation
uses Oracle’s GraalVM framework for language interoperability.
We successfully validate the translation using the original Java
tests, not just from the CLI and CSV libraries themselves but
also from client projects of these libraries (30 for CLI and 6
for CSV). Our approach is the first to systematically and semi-
automatically validate translations for such non-trivial libraries.

Index Terms—Code Translation, Software Testing, GlueTest

I. INTRODUCTION

Code translation from one programming language to another
has been studied for decades, at least since 1962 [1]. This
topic has gained renewed interest with the rise of machine
learning (ML) and large language models (LLMs). While
ML and LLMs have made substantial advances in translating
smaller code components [2]–[8], the translation of larger,
more complex projects remains challenging.

One key question is how to validate the translated code. Two
broad approaches have emerged. One approach is limited to
tests with inputs of primitive type, e.g., integers or strings [9]–
[12], or types that can be easily translated from one language
to another, e.g., Go structs to Rust structs [13]. This approach
requires only tiny test driver code that can be easily translated

across languages, but it cannot handle more involved tests,
e.g., unit tests that create objects of the classes under test.

The other approach is to translate the test code itself [5],
[7], [14]. However, translating the test code can introduce
inconsistencies, leading to false positives (where a translated
test passes although the code under test is not translated
correctly) or false negatives (where a translated test fails
although the code under test is translated correctly).

We propose GlueTest—testing the translated code using the
existing, untranslated tests written in the original programming
language. The key to GlueTest is to leverage language inter-
operability to run code written in two different programming
languages together. Language interoperability allows us to use
the unmodified, existing tests written in the original language
to test the translated code in the new target language. We point
out that GlueTest introduces a new risk that the interoperability
layer itself may introduce inconsistencies, but the interop-
erability code is usually much simpler than the test code,
and so the risk is much lower. For example, while Apache
Commons CSV has 4588 lines of test code, it only requires
502 lines of interoperability code. The interoperability code is
usually boilerplate and, hence, easier to debug and potentially
automate, in comparison to the translated tests.

Moreover, interoperability also allows us to test the trans-
lated code using not only tests from the project P being
translated but also tests from the clients of P , i.e., other
projects that depend on P . Such client tests can achieve a
higher test coverage than just the project tests. The client
code, including automated tests for the clients, can remain in
the original language yet exercise the translated code. Without
interoperability, benefiting from the clients and their tests to
validate the translated code would be extremely challenging
because one would also need to translate all the client code
and its tests, increasing the cost of translation and running the
risk of more inconsistencies. Beyond the ability to leverage the
original tests, from the project or its clients, for validating the
translated code, GlueTest also offers continuous maintainabil-
ity and testability of the project during translation. We build
on the idea of partial translation where one does not need
to translate the entire project all at once but rather translates
parts of a project one at a time [15]–[17].



The key challenge is to provide appropriate interoperability
between the parts of the code written in two different lan-
guages. With successful interoperability, we can incrementally
translate only some parts of the code while keeping the project
maintainable and testable at all times. In contrast, aiming to
translate the entire project can be an “all or nothing” approach
where either the entire code gets translated, or it cannot be run
at all. Terekhov and Verhoef report how this “all or nothing”
approach led many software companies to bankruptcy [18].

To evaluate our idea in a concrete setting, we consider code
translation from Java to Python, two of the most popular
programming languages. Specifically, we translate Apache
Commons CLI [19] and Apache Commons CSV [20], two
widely-used libraries, from Java to Python. To provide inter-
operability between Java and Python code, we use Oracle’s
GraalVM [21], [22] polyglot runtime environment. We present
the challenges that we encountered in this process, some
solutions that we developed, and the potential for future work.

This paper makes the following contributions:
• Idea: We propose the first approach for testing code trans-

lation of a large project by leveraging unmodified, existing
tests through language interoperability, which is particularly
valuable in the context of translations performed by LLMs
due to the unreliability of translated test code.

• Technique: We develop a systematic, partially automated
technique for generating glue code to allow existing tests in
the original language to run with the new language.

• Evaluation: We evaluate our approach for Java-to-Python
translation on the widely-used Apache Commons CLI and
CSV libraries. We successfully validate our translations of
1209 LOCs (22 Java files) in CLI and 860 LOCs (10 Java
files) in CSV using our approach. These libraries are much
larger codebases than those used in recent research on code
translation using LLMs, which translate one method at a time
rather than an entire class or multiple classes. We further
successfully validate our translations using tests from the
client projects, 30 for CLI and 6 for CSV. These promising
results can motivate future work to use our approach for even
larger codebases.

II. BACKGROUND AND APPROACH

Background. GraalVM [21], [22] is a JVM and JDK de-
veloped by Oracle that provides a high-performance runtime
for applications that are written in multiple programming lan-
guages. GraalVM provides the Polyglot API [23] for develop-
ers to easily integrate programs written in multiple languages.
Polyglot relies on the Truffle framework [21], [24] in GraalVM
to allow the execution of multiple languages within the same
runtime environment.

A. Our GlueTest Approach

Given the original tests and the translated code, our goal is
to automatically validate the translated code by leveraging the
original tests written by developers. To enable this approach,
which we call GlueTest, we use GraalVM to run the original
tests on the translated code. The main challenge of GlueTest is

generating code, which we call the glue code, that allows the
interoperability of the two languages. This approach allows
one to run the original tests, without any changes. As a result,
we avoid translating tests themselves for translation validation,
which can be error-prone and, hence, unreliable.

GlueTest is particularly advantageous when developers
translate a large project containing several interdependent
classes and methods. GlueTest can help developers simplify
the cumbersome process of translating large projects by split-
ting translation into multiple stages whilst ensuring that the
translated code is tested at each stage. For instance, we trans-
late classes in the reverse topological order of their dependency
graph, which allows us to validate all dependencies of a class
before translating the class itself, making debugging faster
because bugs can be localized easier. Similarly, methods may
be translated in the reverse topological order of their call
graph. For maintenance of the translated project, developers
would also eventually want to have the tests translated to the
new programming language. However, GlueTest is still useful
to enable testing of the translated code with client projects
(written in the source language).

We describe the steps involved in glue code generation for
the Java-to-Python code translation for an entire project with
several interdependent Java classes. We identify and describe
the inherent challenges and limitations of this approach and
present our solutions. We also share some preliminary efforts
in automatically generating such glue code. Finally, we show
how GlueTest enables the validation of translated code using
tests in clients, i.e., projects that depend on the library being
translated, to improve the quality assurance of the translation.

B. Glue Code Generation

Common Glue Code. Listing 1 presents the common glue
code shared by the entire project. This class is responsible
for loading the Python classes into Java code so that the tests
written in Java can access and execute these classes. Lines 1-
4 import the necessary GraalVM polyglot classes. Line 10
initializes GraalVM’s runtime engine (Engine), which is used
for loading Python classes. Lines 16-18 build a new Context
object, which represents GraalVM’s global runtime that can
evaluate code from other languages (Python in this case).

The getPythonClass method loads the Python source file
containing the Python class (Lines 24-26), from the given
filepath relative to the package directory containing the trans-
lated Python code (packageDirectory). Then it uses the
context object to evaluate the source file and load the Python
class into memory as an object of Value class. The Value
class represents a value from the host (Java) or guest language
(Python) and defines a set of language-agnostic operations on
them. Finally, it returns the loaded class to the caller (Line 27).
Class-Specific Glue Code. Listing 2 presents an example
class-specific glue code for the GnuParser class from Apache
Commons CLI [19]. We add this glue code to allow inter-
operability of the translated Python code with the Java tests.
For each original Java class, we create a file that provides the
same Java API to the Python code such that the Java tests can



1 import org.graalvm.polyglot.Engine;

2 import org.graalvm.polyglot.Context;

3 import org.graalvm.polyglot.Source;

4 import org.graalvm.polyglot.Value;

5

6 public class ContextInitializer {

7 // Directory containing the Python package

8 private static String packageDirectory = "...";

9 // The shared GraalVM engine

10 private static Engine sharedEngine = Engine.create();

11 // Polyglot context for evaluating Python

12 private static Context context;

13 static {

14 try {

15 // Initializes Polyglot Context (global)

16 context = Context.newBuilder("python").allowAllAccess(true)

17 .option("python.PythonPath", packageDirectory)

18 .engine(sharedEngine).build();

19 } catch (Exception e) { ... }

20 }

21 // Fetches Python class from the corresponding Python file

22 public static Value getPythonClass(String path, String className) {

23 try {

24 File file = new File(path);

25 Source source = Source.newBuilder("python", file).build();

26 context.eval(source);

27 return context.getBindings("python").getMember(className);

28 } catch (Exception e) { ... }

29 }

Listing 1. Common glue code

1 package org.apache.commons.cli;

2 import org.graalvm.polyglot.Value;

3

4 public class GnuParser ... {

5 // Java representation of the Python class

6 private static Value clz = ContextInitializer.getPythonClass("

gnu_parser.py", "GnuParser");

7 public static Value parserObj; // Java rep. of the Python object

8 public GnuParser() { parserObj = clz.execute(); }

9 ...

10 // Delegating method invocation from Java to Python

11 protected String[] flatten(final Options options, final String[]

arguments, final boolean stopAtNonOption) {

12 return parserObj.invokeMember("flatten", options, arguments,

stopAtNonOption).as(String[].class);

13 }

14 }

Listing 2. Example class-specific glue code (for GnuParser)

use the Python code. This technique allows us to execute the
original Java tests without modifications.

The glue code for each class is generated as follows. Starting
from the original Java source file, we first add constructors
to initialize Python objects. In this example, we load the
Python class GnuParser from the Python file gnu parser.py
using the ContextInitializer class on Line 6. Line 8
defines the constructor that invokes the Python constructor
using polyglot’s execute method, creating a Python object
in runtime memory that the rest of this class uses.

Second, we replace each method body (e.g., flatten) with
a call to the Python implementation of the method, while
passing the same arguments, and return the values returned
by the Python method with appropriate casting. For instance,
Line 12 calls the flatten method on the Python object
(parserObj) using the invokeMember method. We cast the

returned Python list of strings into a Java string array using
polyglot’s as method. Finally, we remove all private members
and unnecessary imports from the file.

1# common utility for mapping types

2def java_handler(cls):

3for attr_name, attr_value in cls.__dict__.items():

4if callable(attr_value):

5# ignoring inner classes, which are also ’callable’

6if not isinstance(attr_value, type):

7setattr(cls, attr_name, type_mapper(attr_value))

8

9# when the func is called, wrapper is called instead

10def type_mapper(func):

11def wrapper(self, *args, **kwargs):

12args_ = tuple([type_map(arg) for arg in args])

13kwargs_ = {key: type_map(val) for key, val in kwargs.items()}

14return func.__get__(self, type(self))(*args_, **kwargs_)

15return wrapper

16

17# option.py

18@java_handler

19class Option:

Listing 3. Mapping types from Java to Python

1public static <T, C extends Collection<T>> C valueArrayToCollection(

Value source, Class<T> clazz, Class<C> collectionType) {

2C result;

3try {

4result = collectionType.newInstance();

5for (Value value : source.as(Value[].class)) {

6T object = clazz.cast(clazz.getMethod("create", Value.class).

invoke(null, value));

7result.add(object);

8}

9} catch (Exception e) { result = null; }

10return result;

11}

Listing 4. Converting collection types

1) Challenges in Glue Code Generation: While GraalVM
provides many utilities for integrating different languages, it
does not automatically handle advanced features such as pass-
ing values of non-primitive types across languages, handling
language-specific exceptions, and supporting third-party APIs.
We identify and describe such challenges in the context of Java
to Python translation and propose solutions to address them.

• Type Conversion: The Polyglot API provides inbuilt support
for automatic conversion of simple types, such as integers and
strings, as well as collections of such simple types between
host and guest languages. However, it cannot handle passing
objects of non-primitive and custom types. To address this
problem, we map types during runtime from Java to Python.
Listing 3 shows our utility decorator java handler (Lines 2-
7) that maps non-primitive function arguments passed from
Java to Python, such as File, Number, and Object. Lines 3-
7 iterate over all methods in the class (identified by the
callable attribute on Line 4) and replace them with a
wrapper method. The wrapper method (Lines 11-14) replaces
each function argument with our custom type map from Java
to Python type. We annotate each translated Python class with
this method, such as the Option class shown below (Line 18).
This annotation method drastically reduces the amount of
required glue code and developer effort.



• Handling collections of non-primitive types: Polyglot can-
not handle passing collections of non-primitive types between
languages. Listing 4 presents our generic method to convert
collections of custom types from Python to Java. This method
takes a Value object (source) representing a Python list,
the target Java class (clazz), and the Java collection type
(collectionType), and creates a collection of Java objects
of the specified type T to wrap these Python objects.
In Listing 4, Line 4 first initializes a collection of the Java
type C: result. Lines 5-8 then cast each Python object into
a Java type by invoking the create method (Line 6). The
create method is a constructor defined for each Java class
that wraps a Python object of the same class to a Java object.

• Value Comparison: Values and objects passed through in-
terop from Java that have no mappings defined for Python
types get the type “foreign”. For instance, passing a Java null
to Python casts it to a “None-like” object of the “foreign”
type, so Python statements such as arg is None do not
work as expected, though statements such as arg == None
do. We explicitly map Java null objects to Python None
objects during runtime to avoid making any changes to either
Java tests or the translated Python source code. To allow
comparison of Python objects wrapped in Java objects, we
add an attribute setting the class name for each Python
class during runtime. We then redefine Python’s isinstance
method to explicitly check this attribute instead of the default
behavior (which returns “foreign” due to GraalVM).

• Handling exceptions: When an exception occurs in the guest
language (Python), GraalVM raises a generic exception of
the PolyglotException class in the host language (Java).
Because developers often write special code to handle specific
kinds of exception classes in Java, we introduce custom glue
code to handle different kinds of exceptions.

• Handling third-party classes: We write custom code to
handle the conversion of objects of third-party classes when
passed from Java to Python. For instance, the Properties
class in Java is used to store and pass configurations. How-
ever, since Python does not have a similar class, we create a
Python dictionary from the object. This limitation might pose
a bigger challenge for more complex projects. In such cases,
we need to either map members of the third-party class to a
custom class or a class of a similar kind in the guest language.

• Incompatibility of Standard APIs: The behavior of some
standard APIs that ship with the language compiler or inter-
preter may differ across languages. For instance, Java’s de-
fault hash function returns integers, whereas Python’s default
hash function returns long integers. Thus we need to extract
the Python result as a long integer and cast it as an integer.

2) Automating Glue Code Generation: We implement sev-
eral glue code generation steps into a prototype tool. We use
JavaParser [25] for parsing Java files and implement each
generation step as a transformation rule. Of our 8 transfor-
mation rules, we fully implemented 5: (1) common glue code,
(2) imports from polyglot, (3) adding helper fields/methods,
(4) removing private fields/methods, and (5) replacing method

bodies with calls to Python. We did not fully implement
(6) general exception handling, (7) type conversion for col-
lection types, and (8) type conversion for some library types.

Our prototype can fully glue (i.e., generate fully correct
glue code) 4 classes in each of the two libraries and also
partially glue 13 classes in CLI and 3 classes in CSV. Counting
methods, it can fully glue 114 (56.7% of 201 methods) in CLI
and 53 (27.9% of 129) in CSV. It can also partially glue 53
(41.1%) in CLI and 68 (52.7%) in CSV, where the automation
creates a template to be filled out manually by a developer. We
expect future work to improve automation of our approach.

C. Validation Using Client Tests

The clients of the library being translated, i.e., projects that
depend on that library, may contain tests that allow us to test
the translation. Testing translated code using the clients’ tests
can help improve the coverage of the translated code over the
original tests by exercising more diverse code behavior with
varied inputs present in the clients’ tests. We automatically
scrape GitHub’s dependency tracking pages for CLI [26] and
CSV [27] to collect such client projects. To limit the number
of projects for evaluation, we only select projects that have at
least 100 forks and stars. We further filter out projects that do
not support specific library versions that we translate (i.e., CLI
1.5.0 and CSV 1.6.0). For the remaining projects, we check
if they use the APIs of the translated library. Before running
the tests of each client, we edit its pom.xml file to use our
translated version of the libraries instead of the original.

III. PRELIMINARY RESULTS

We instantiate our approach on Java and Python, two of
the most popular languages. We evaluate GlueTest using the
Apache Commons CLI [19] and Apache Commons CSV [20]
projects. Both are popular Java libraries that provide APIs for
parsing command line options and reading/writing CSV files,
respectively. CLI contains 22 Java files, 21 top-level classes,
19 test classes, and 438 tests, while CSV contains 10 Java
files, 8 top-level classes, 18 test classes, and 306 tests.
Code Translation. We manually translate CLI and CSV from
Java to Python. We follow a systematic process with lots of
reviewing to minimize the chances of introducing bugs in the
translated code. For each translated class, a member of our
research team raises a pull request that is reviewed by at least
two other members. The original Java code has 1209 lines of
code for CLI and 860 lines for CSV, whereas the translated
Python code has 1626 lines of code for CLI and 1851 lines
for CSV. A key reason for increase is handling overloaded
methods; Python does not support overloading, so we needed
to simulate it by checking argument types and dispatching
to appropriate methods. The translation was carried out by
a group of undergraduate students with varying levels of
programming experience, who anecdotally estimate spending
∼4.5 hours on average translating each main (non-test) class.
Results. We manually write the glue code classes by imple-
menting the steps outlined in Section II-B and II-B1. These
classes replace all original Java classes. We followed the same



systematic process as above for raising PRs and reviewing
code. We also partially automated the process of generating
the glue code (Section II-B2). The glue code was written by
a subset of the students who report spending ∼1 hour on
average for each main class. We were able to run and pass
all original 438 Java tests in CLI and 306 Java tests in CSV
with the translated Python code, indicating that our translation
was correct for these tests.
Testing using client projects. Using the process described in
Section II-C, we find 30 client projects for CLI and 6 for CSV.
Our evaluation involves a small subset of client projects, as
we only select clients that (1) are compatible with the specific
versions of the libraries we translate, and (2) include tests
that invoke the libraries under translation. We build all client
projects and run their tests with our translated Python code
for CLI or CSV via the Graal glue code integration. All their
tests pass when run with our translated Python code and glue
code, further increasing our confidence in our translated code.
Data Availability. We share all our translations and glue code
with documentation in our artifact [28].

IV. RELATED WORK

Code Translation. Many techniques have been proposed for
automated code translation since at least 1962 [1]. Earlier
literature introduced various rule-based methods [1], [29],
[30], leading to development of numerous tools [31]–[38].
More recent research has employed novel methods such as
statistical machine translation [2], [39]–[43]. The latest re-
search in the field utilizes approaches such as tree-to-tree
neural networks [3] and other deep-learning techniques [44],
including large language models (LLMs) [6], [13], [45]–[52].

For some specific projects, Sneed [53] explored the transla-
tion of COBOL code to Java in an airport management system;
Lee et al. [11] employ a neurosymbolic approach for tran-
spilation of assembly code, involving low-level programming
languages; Roziere et al. [4] developed a fully unsupervised
technique, called TransCoder, using a transformer architecture
for source-to-source translation tasks. As common in prior
work, Roziere et al. evaluated TransCoder for translating one
function at a time, and these translated functions had argu-
ments of primitive types. In contrast, the focus of our work is
to develop a novel, systematic way to validate translated code
by reusing the original, unmodified unit tests which invoke
methods multiple times with arguments of non-primitive types.
Further, in our work, we focus on the translation of an entire
project with several interdependent classes.

Recently, Pan et al. [7] evaluated the code translation abil-
ities of LLMs. They validate the translated code by checking
whether it “compiles, passes runtime checks, and existing tests
pass on the translated code.” Like us, they also report that
language-specific features, especially method overloading, can
cause translation challenges for real-world projects.
Validating translated code. Prior work has used many tech-
niques to validate translated code. For instance, Roziere et
al. [5] used EvoSuite to automatically generate tests to validate

translated methods. However, automated unit-test generation
techniques often generate low-quality assertions and struggle
with non-primitive input types. Another study [4] used man-
ually created unit tests for validation, which requires high
domain expertise and time to prepare quality tests. Other
works rely on existing tests in target languages to validate
translations [2], [3], [7], but such tests are not always avail-
able. Guizzo et al. [54] leverage mutation analysis for code
translation assessment. Eniser et al. [55] focus on testing the
translation model itself rather than the translated programs.

In the compiler testing domain, researchers have proposed
many verification-based techniques [56]–[59] to validate com-
piler optimizations. However, such techniques require speci-
fying the entire semantics of a language and have not been
widely adopted. In contrast, our approach can validate trans-
lations across different source languages. Because we leverage
existing tests, our approach can easily scale to large projects.
Transforming Legacy Systems. Prior studies also consid-
ered code translation, testing, or re-engineering concerning
legacy systems [15], [60]–[63]. For instance, Sneed [15]
identified key objectives for re-engineering, like improving
maintainability and achieving greater reliability, and discussed
encapsulation of legacy software [16], [64] in the reuse of
legacy systems. Sneed explored the use of wrappers for the
original code in the new language, enabling partial language
translation, similar to our glue code. Baxter [60] used rule-
based transformations for legacy systems. Bruneliere et al. [63]
explored a comprehensive framework for model-reverse engi-
neering by transforming the existing code of legacy systems
into higher-level Eclipse Modeling Framework models. Un-
like these approaches, our work focuses on maintaining the
testability of translated code.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed the idea of validating translated
code using original tests by employing language interoperabil-
ity. We demonstrated the feasibility of our approach, GlueTest,
on the Apache Commons CLI and CSV libraries, for Java-to-
Python translations. We successfully validated the translation
of all classes in both libraries using the original, unmodified
Java tests via GraalVM glue code. Because the effectiveness
of our approach is sensitive to the quality of the test suite in
the original project (and its clients), future work can explore
techniques like mutation testing to expand the fault-detection
ability of the tests and perform a more thorough validation
of the translated code. We also presented our initial attempts
at automating the glue code generation. Future work can
investigate automating the entire glue code generation process,
generalizing our insights to translation between other pairs of
languages, and evaluating our approach on larger codebases.
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