Summer School RIO 2011 Course C5

Automated Test Generation and Repair

Lab Exercise 1
Assigned: Mon, Feb 14, 2011
Available for discussion: Tue, Feb 15, 2011 3pm-5pm (email Darko to schedule a meeting)

The problems are based on some examples from Chapter 1 of the book “Introduction to Software Testing”
by Ammann and Offutt.

Problem 1: (Based on Exercise 2 after Section 1.1 in the book.) The following exercise is intended to
encourage you to think of testing in a more rigorous way than you may be used to. The exercise also hints
at the strong relationship between specification clarity, faults, and test cases.
(a): Write a Java method union with the signature

public static Vector union(Vector a, Vector b)
The method should return a Vector of objects that are in either of the two argument Vector objects.
Describe in code comments how you interpreted the notion of union.
(b): Upon reflection, you may discover a variety of defects and ambiguities in the given assignment. In
other words, ample opportunities for faults exist. Identify at least five potential faults.
(c): Write in JUnit a set of test cases that you think would have a reasonable chance of revealing the faults
you identified above. Document a rationale for each test in your test set. If possible, characterize all of
your rationales in some concise summary. Run your tests against your implementation.
(d): (optional) If you’re familiar with code coverage, what statement coverage do your tests achieve?
You can use EclEmma or a similar tool to measure coverage, and it need not be 100%. Is 100% statement
coverage feasible for your code?

Problem 2: (Based on an old exercise after Section 1.2 in the book.) Consider the following class Count:
public class Count {
I Effects: return the number of occurrences of 0 in a
public static int numZero(int[] a) {

int count = 0;
for (inti=1; i <a.length; i++) {
if (afi] ==0) {
count++;
}
}
return count;
}
public static void main(String[] args) {
}
}

(a): This program contains a fault. What is it? Does executing the program necessarily result in either
incorrect output or in failure?

(b): Write a JUnit test case that results in failure. Verify by executing this test case.

(c): Write another JUnit test case that does not result in failure. Verify by executing this test case.

(d): (optional) Complete this program by modifying the main method to contain exactly one call to the
numZero method. The arguments for the call can be read from the command line (parsing args) or from
the standard input (for an example, see http://mir.cs.illinois.edu/~marinov/sp09-cs498dm/trityp.java).

http://mir.cs.illinois.edu/%7Emarinov/sp09-cs498dm/trityp.java

	Automated Test Generation and Repair

