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ABSTRACT

State-space exploration is the essence of model checkith@g@an
increasingly popular approach for automating test germgratA
key issue in exploration of object-oriented programs igliag the
program state, in particular the heap. Previous reseascfohased
on standard program execution that operates on one stape/Mé&
present Delta Execution, a technique that simultaneoystyates
on several states/heaps. It exploits the fact that manyuérec
paths in state-space exploration partially overlap anddpep the
exploration by sharing the common parts across the exerugind
separately executing only the “deltas” where the execatdifier.

We have implemented Delta Execution in JPF, a popular genera
purpose model checker for Java programs, and in BOX, a dpecia
ized model checker that we have developed for efficient eapitm
of sequential Java programs. We have evaluated Delta Baacut
for (bounded) exhaustive exploration of ten basic subjeag@ams
without errors. The experimental results show that on ayekzelta
Execution improves the exploration time 10.97x (over areowf
magnitude) in JPF and 2.07x in BOX. We have also evaluatethDel
Execution for one larger case study with errors, where thoex
ration time improved up to 1.43x.

Categories and Subject Descriptors:D.2.4 [Software Engineer-
ing]: Program Verification, D.2.5 [Software Engineeringksting
and Debugging.

General Terms: Performance, Verification.
Keywords: Model checking, delta execution.

1. INTRODUCTION

Software testing and model checking are important appesach
for improving software reliability. A core technique for whel
checking isstate-space exploratiofT]: it starts the program from
the initial state, searches the states reachable throegiugens re-
sulting from non-deterministic choices (including threatrieav-
ings), and prunes the search when it encounters an alresidgdvi
state. Stateful exploration is also increasingly used toraate
test generation, in particular for unit testing of objedented pro-
grams [12,14,25,42,44,45]. In this context, each testteseane
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or more objects and invokes on them a sequence of methods- Sta
space exploration can effectively search how differentoetse-
quences affect the state of objects and can generate theetest
guences that satisfy certain testing criteria [12, 42, 44].

A key issue in state-space exploration is manipulating tioe p
gram state: saving the state at non-deterministic brandfigyo
modifying the state during execution, comparing stated rastor-
ing the state for backtracking. For object-oriented prograthe
main challenge is manipulating the heap, the part of the $kett
links dynamically allocated objects. Researchers haveldped a
large number of model checkers for object-oriented progrfn8,
16,20,29,31,35]. These model checkers have focused orenffic
manipulation and representation of states/heaps for thal pso-
gram execution that operates on one state/heap. We refecio s
execution astandard executian

We present Delta Execution, referred toaExecution,a tech-
nigue whereprogram execution simultaneously operates on sev-
eral states/heapsAExecution exploits the fact that many execu-
tion paths in state-space exploration partially overlafxecution
speeds up the state-space exploration by sharing the comant:n
across the executions and separately executing only theasde
where the executions differ. The heart®Execution is arefficient
representation and manipulation of sets of states/héapsbject-
oriented programs.AExecution is thus related to shape analy-
sis [26,36,46], a static program analysis that checks hemgepties
and operates on sets of states. However, shape analysieasgpen
abstract states, whilAExecution operates on concrete states.

AExecution is inspired by symbolic model checking (SMC) [7,
24] but considers states that include heap. SMC enabledak-bre
through in model checking as it provided a much more efficiant
ploration than explicit-state model checking. Concefpyu&MC
executes the program on a set of states and exploits theasimil
ity among executions. Typical implementations of SMC repre
states with Binary Decision Diagrams (BDDs) [5] that suppadf
ficient operations on boolean functions. However, heapatjoers
prevent the direct use of BDDs for object-oriented programis
though heaps are easily translated into boolean funct@®s4B],
the heap operations—including field reads and writes, dymabr
ject allocation, garbage collection, and comparisonsdagseheap
symmetry [4,7,22,27,30]—do not translate directly intbogént
BDD operations.

This paper makes the following contributions.

Idea: We propose the idea of sharing similar executions to speed
up state-space exploration of object-oriented prograntse Key
insight is that many execution paths in state-space exjporgar-
tially overlap.

Technique We describe\Execution, a specific technique for shar-
ing commonalities across executions and separately ergaurly



public class BST { // N bounds sequence length and parameter values

private Node root; public static void mainStandard(int N) {
private int size; /* public static void mainDelta(int N) { */
BST bst = new BST(); // empty tree
public void add(int info) { for (int i = 0; i < N; i++) {
if (root == null) /* bst = Delta.newIteration(bst); */
root = new Node(info); int methNum = Verify.getInt(0, 1);
else int value = Verify.getInt(1, N);
for (Node temp = root; true; ) /* Delta.newValue(); */
if (temp.info < info) { switch (methNum) {
if (temp.right == null) { case 0: bst.add(value); break;
temp.right = new Node (info) ; case 1: bst.remove(value); break;
break; }
} else temp = temp.right; Standard.stopIfVisited(bst); /* Delta.merge(bst); */
} else if (temp.info > info) { }
if (temp.left == null) { }
temp.left = new Node(info);
break; Figure 2: Drivers for standard execution and AExecution.

} else temp = temp.left;
} else return; // no duplicates
size++;

} are for AExecution.) The driver creates the initial state of the bi-
) o nary search tree and exhaustively explores sequences l@ipgti
N public boolean remove(int info) { ... J N) of the methodsadd and remove (with values between 1 and
N). The driver selects different methods and input valueagusi
class Node { the library methogetInt (int lo, int hi) thatintroduces a non-
T e oas(iae info) { this.info = info; } deterministic choice point to return a number betweeandh.
3 The standard driver discards from further exploration agy s
quence that results in a state that has already been viigedriver
Figure 1: Excerpt from binary search tree implementing a set uses the library methastopIfvisited(Object root) thatignores

the current execution path and forces backtracking (to aegkre
ing choice point) if the state reachable fragvt has already been
visited in the exploration. Note that the comparison ofestas
performed only at the method boundaries (not during methed e
cution), which naturally partitions an execution path istdpaths
that each cover execution of one method invocation. As ieroth
related studies [12, 42, 45], we consider a breadth-firsioeaion

of the state space. (A depth-first exploration could missspafr
the state space since state comparison could eliminatéeavgith

a shorter sequence in favor of a state with a longer seqyence.

Figure 3 illustrates some states that arise in the stateespa
ploration corresponding to the calinStandard (4). Among other
states, the exploration visits the five trees of size threwahat the
top of the figure. (For simplicity, the figure does not show ke
object that contains sizeand points to the root node.) The explo-
ration executesdd (4) on the five trees of size three. The standard
driver separately executesd (4) on each pre-state, resulting in the
five post-states shown at the bottom of the figure.

While standard execution invokesd (4) separately against each
standard state) Execution invokeadd (4) simultaneously against
2. EXAMPLE a set of standard statesAExecution itself operates on one state,

We next present an example that illustrates héwExecution called aAStatewhich represents a set of individual standard states.
speeds up the state-space exploration compared to staexierd ~ We call the operation that combines standard states idi&tate
cution. Figure 1 shows a binary search tree class that ingriesn merging The top of Figure 3 illustrates one set consisting of the
a set. EaclssT object stores the size of the tree and its root node, five pre-states. (Section 3.1 describes how to efficienflyagent a
and eachiode object stores an integer value and references to the AState, and Section 3.5 describes how to efficiently mergessja
two children. ThessT class has methods to add and remove tree  During program executionAExecution occasionally needs to
elements. A test sequence for the binary search tree classto split the AState. Informally, we say that state (or set of states)
of a sequence of method calls, for exampd& t = new BST(Q); follows an execution pathi AExecution operates on that state as
t.add(1); t.remove(2);. it executes that path. Farnd(4), for example, the five pre-states

The goal of state-space exploration is to explore differsmnt follow the same execution path until the first checkafip.right
qguences of method calls. A common exploration scenario is to == null. At that point,AExecution splits the set of states: one sub-
exhaustively explore all sequences of method calls, up teso  set (of two states) follows therue branch, and the other subset (of
bound [14, 42, 45]. Such exploration does not actually ematee three states) follows thealse branch. Note that the split enforces
all sequences hut instead uses state comparison to prunenses the invariant that all states in a set follow the same path.

the “delta” differences. We introduc&States, a novel representa-
tion for sets of states, and present efficient operationsnfamipu-
lating AStates.

Implementation: We have implemented Execution in two model
checkers, JPF [20, 29] and BOX. JPF is a general-purposelmode
checker for Java programs; it can explore concurrent codecan
save/backtrack complete Java states, including stack eaqul We
have developed BOX, a special-purpose model checker thaca
plore only sequential code and can save/backtrack only.heap
Evaluation: We have evaluated Execution for (bounded) exhaus-
tive exploration. The results on ten basic subject prograhusv

that on averag@ Execution improves the exploration time 10.97x
(over an order of magnitude) in JPF and 2.07x in BOX, while tak
ing on average 1.51x less memory in JPF and roughly the same
amount of memory in BOX. We have also evaluatkBxecution

for one larger case study with errors, where the explordiime
improved up to 1.43x.

that exercise the same states [42, 45]. Each split introduces a non-deterministic choice poinhimex-
Figure 2 shows an example driver program that enables a modelecution. Fordd(4), one execution with two states terminates after
checker to systematically explore different states of the.t(The creating a node with valueand assigning it to the right of the root.

code as shown is for standard execution, and the commentesd pa The figure depicts this execution with the left arrow. Theeotixe-
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Figure 3: Executions ofadd(4) on a set of states.

add(4)

splits on first
temp. nght == nuII

cution with three states splits at the second cheales. right ==
null: two (middle) states follow therue branch, and one (right-
most) state follows thealse branch. These two executions termi-
nate without further splits, appropriately adding the eauo the
final trees.

We next describe theergingthat AExecution performs to build
a AState from individual states. Merging is a dual operation of
splitting: while splitting partitions a set of states intdosets, merg-
ing combines several sets of states (or several individass) into
a larger set. In principle, merging can be performed on aty/afe
states whenever the executions associated with those seateh
the same program point. For examplei-xecution could merge all
three sets of states from Figure 3 when they rescta++. How-
ever, our current implementation AfExecution considers only the
program points that are method boundaries: it merges thessta
only after all of them finish the execution path for one method
since that is also where state comparison is done.

Figure 2 also shows a driver (obtained by using the commented
code) that explores states usifdExecution. The delta driver is
similar to the standard driver: both use non-deterministioices
to select different methods and input values, both prunexipéo-
ration based on the state wit, and both use breadth-first explo-
ration. However, the delta driver differs from the standdrger
in the way it operates on the state. Finsét in the delta driver
is a AState that represents several individual trees. Secord, th
delta driver backtracks the state differently than thedsiadh driver.
Specifically, the methoflewIteration returns oneAState of all in-
dividual states that should be explored in a given iterationthe
firstiteration, thisAState is a singleton that has only the initial state
(with the empty tree). The methae@rge at the end of one method
execution path collects those trees (frest) that have not been

Figure 4: AState for the five pre-states from Figure 3.

previously visited and thus should be explored in the neog licer-
ation. Effectively, the driver combines all distinct seateachable
with the method sequences of lengtinto one AState for the it-
erationi+1. The methodthewvalue updates the internal state for
AExecution as backtracking should not restore some partsadf t
internal state.

We next discuss how the performance/Execution and stan-
dard execution compare. In our running examgi&xecution re-
quires only three execution paths to reach all five posestttat
add(4) creates for the five pre-states. Additionally, these three
paths share some prefixes that can be thus executed only lonce.
contrast, standard execution requires five executioagdift), one
execution for each pre-state, to reach the five post-staiéso,
each of these five separate executions needs to be executad fo
entire path. The trade-off betweekExecution and standard ex-
ecution can be summarized like thi&Execution performs fewer
executions (avoiding separate execution of the same paitech
by multiple states) than standard execution, but each &recin
AExecution (that operates on a set of standard states) is enere
pensive than in standard execution (that operates on ondasth
state). It is also important to note that the presence ofteats
(i.e., values that are the same across a set of states) istiakse
to efficient operations undekExecution. WhetheAExecution is
faster or slower than standard execution for some exptorate-
pends on several factors, including the number of execuydiths,
the number of splits, the cost to execute one path, the nuofber
constants, and the sharing of execution prefixes.

The experimental results from Section 5 show thd#txecution
is faster than standard execution for a number of subjecjranos
and values for the boun from the drivers. For example, for the
binary search tree example and = 10, AExecution speeds up
JPF 4.41x and our model checker BOX 1.67x, while using over 2x
more memory in JPF and 3x more memory in BOX. (On average,
AExecution uses as much memory as standard execution.)

3. TECHNIQUE

The key idea ofAExecution is to execute a program simulta-
neously on a set of standard states. We first disd\Statesthat
represent sets of states. We describe in detail two mairatpes
on AStates:splitting, which divides a set of states into subsets for
executing different program paths, angkrging which combines
several states together into a set. We also present howgpnog-
ecution works inAExecution and howAExecution facilitates an
optimized comparison of states.

3.1 AState

AExecution represents a set of individual standard statesias
gle AState.EachAState encodes all the information from the orig-



inal individual states. AAState includegAObjectsthat can store
multiple values (either references or primitives) thaseacross the
multiple individual states represented byA&tate.

Figures 5, 6, and 7 show the classes used to représ8tates
for the binary search tree example. We discuss here onlydhk fi
declarations from those classes. (The methods from thassed
implement the operations ahState and are explained later in the
text.) Each object of the clage1taNode stores a collection of
references taiode objects, and each object of the clagstalnt
stores a collection of primitive integer values. T#sT andNode
objects are changed such that they have fields thah@jects.

Figure 4 shows the\State that represents the set of five pre-
states from Figure 3. EachState consists of layers of “regular”
objects andAObjects. In thisAState, each of the pre-states has
a correspondingtate indexhat ranges from 0 to 4. Note that we
could extract each of the five pre-states by traversingAlState
while indexing it with the appropriate state index. For epden
we can extract the balanced tree using state index 2. Alsothat
some of the values in the exampleState are “don’t cares” (labeled
with ‘7’) because the corresponding object is not reachable for tha
state index. For example, the first node to the left of the hast
‘7’ in the field info for the last two states (with indexes 3 and 4)
because those states have the value for the fieldroot.1left.

While eachAObject conceptually represents a collection of val-
ues, the implementation does not always need to use coltesotir
arrays. In particular, a value is often constant acrosgelyant)
states. For example, thafo fields for all tree leaves in Figure 4
have constant values (for the relevant states). Our impiéatien
uses aroptimized representation for constanthe optimization is
straightforward, and we do not discuss it in detail. We poiut,
however, that the optimization is important both for redigcthe
memory requirements akStates and for improving the efficiency
of operations om\ States.

3.2 Splitting

AExecution operates on AState that represents a set of stan-
dard statesAExecution can perform many operations on the entire
set. It needs taplit the set only at a branch control point (e.g., an
if statement) where some states from the set evaluate toetiffer
branch outcomes (e.g., for one subset of states, the bramch-c
tion evaluates to true, and for the other subset of statesyait
uates to false). We call such poirgplit points effectively, they
introduce non-deterministic choice pointsag&xecution needs to
explore both outcomes. (Note that no split is necessary &ren
branch control points when all states evaluate to the saarechr
outcome.)

One challenge il\Execution is to efficiently splif\States. Our
solution is to introduce atate maskhat identifies the currentlgc-
tive statesvithin a AState. Each state mask is a set of state indexes.
At the beginning of an executiod\Execution initializes the state
mask to the set of all state indexes. For example, the executi
of add(4) for the AState from Figure 4 starts with the state mask
being{0, 1,2, 3,4}.

At the appropriate branch point&Execution needs to split the
set of states into two subsets. Our approach does not akplici
divide a AState into twoAStates; instead, it simply changes the
state mask to reflect the splitting of the set of states. $patlly,
AExecution builds a new state mask to identify the new subiset o
active states in thé\State. It also saves the state mask for the
other subset that should be explored later on. The execthigm
proceeds with the new subset.

After AExecution finishes the execution path for some (sub)set
of states, itbacktracksto some unexplored split point to explore

the other path using the state mask saved at the split poatk-B
tracking changes the state mask but restoreg\teate to exactly
what it was at the split point. Backtracking can be impleradrin
several ways; Section 4 discusses how JPF uses state sadng a
restoration while BOX uses re-execution.

To illustrate how the state mask changes during the exegutio
consider the example from Figure 3. The state mask is ilyitial
{0,1,2,3,4}. At the first split point, the execution proceeds with
the state mask beinfp, 1}. After the first backtracking, the state
mask is set tg{2, 3,4}. At the second split point, the execution
proceeds with the state mask beifj 3}. After the second back-
tracking, the state mask is set{t} for the final execution.

Appropriate use of a state mask can facilitate optimization
the AState. Consider, for example&Object that is not a constant
when all states are active. This object can temporarily aestr
formed into a constant if all its values are the same for sctaie s
mask occurring during the execution. For instance, in ooning
example, the value afoot . right becomes the constamtil when
the state mask i§0,1}. Additionally, the state mask allows the
use ofsparse representatiorier AObjects: instead of using an ar-
ray to map all possible state indexes into values, a spaBleject
can use representations timaap only the active state indexes into
values thereby reducing the memory requirement.

3.3 Program execution model

We next discuss howhExecution executes program operations.
The key is to execute each operation simultaneously on afset o
values. AExecution uses a non-standard program execution that
manipulates a\State that represents a set of standard states. Such
non-standard execution can be implemented in two ways:nfl) i
strumenting the code such that the regular execution ofrtbteu-
mented code corresponds to the non-standard executiof2E]
or (2) changing the execution engine such that it intergretop-
erations in the non-standard semantics [12]. Our curreptem
mentation uses instrumentation: the subject code is prepsed
to supportAExecution.

We use parts of the instrumentation to describe the sensasitic
AExecution.

Classes:The instrumentation changes the original program classes
and generates new classes fo0bjects. Figure 1 from Section 2
shows a part of the original code for the binary search treenex
ple. Figures 5, 6, and 7 show the key parts of the instrumented
code for this example. Figure 5 shows the instrumented aersi
of the originalesT andnode classes. Figure 6 shows the new class
DeltaNode that stores and manipulates the multipee references
that can exist across the multiple states inGtate. Figure 7 shows
the clasPeltalnt that stores and manipulates multipte values;

this class is a part of thAExecution library and is not generated
anew for each program.

It is important to note tha\Objects are immutable from the
perspective of the instrumented code in the same way thatareg
primitive and reference values are immutable for standaetie
tion. This allows sharing ofAObjects. For example, this allows
direct assignment of onee1taInt Object to another (e.gint x
= y simply become®eltalnt x = y). Our implementation inter-
nally mutatesAObjects to achieve higher performance, in particu-
lar when values become constant across active states. Ttadonu
handles the situations that involve shark®bjects and require a
“copy-on-write” cloning.

Types: The instrumentation changes all types in the original pro-
gram to their delta versions. Comparing figures 1 and 5, edtiat
the occurrences afode andint have been replaced with the new
DeltaNode class (from Figure 6) and tle1taInt class (from Fig-



public class BST { class DeltaNode {

private DeltaNode root = DeltaNode.NULL; // maps each state index to a Node object
private Deltalnt size = Deltalnt._new(0); Node[] values; // conceptually
public void add(Deltalnt info) { DeltaNode(int size) { values = new Node[size]; }
if (get_root().eq(DeltaNode.NULL)) private DeltaNode(Node n) { values = new Node[l{ n }; }
set_root (DeltaNode._new(info)); public static DeltaNode _new(Deltalnt info) {
else return new DeltaNode(new Node(info));
for (DeltaNode temp = get_root(); true; ) }
if (temp.get_info().lt(info)) {
if (temp.get_right().eq(DeltaNode.NULL)) { public boolean eq(DeltaNode arg) {
temp.set_right (DeltaNode._new(info)); StateMask sm = StateMask.getStateMask();
break; StateMask trueMask = new StateMask(sm.size());
} else temp = temp.get_right(); StateMask falseMask = new StateMask(sm.size());
} else if (temp.get_info().gt(info)) { foreach (int index : sm)
if (temp.get_left().eq(DeltaNode.NULL) { if (values[index] == arg.values[index])
temp.set_left(DeltaNode._new(info)); trueMask.enable(index) ;
break; else
} else temp = temp.get_left(); falseMask.enable(index);
} else return; // no duplicates boolean result;
} if (trueMask.isEmpty()) result = false;
set_size(get_size() .add(Deltalnt._new(1))); else if (falseMask.isEmpty()) result = true;
} else result = (Verify.getInt(0, 1) == 0); // split
StateMask.setStateMask(result ? trueMask : falseMask);
public DeltaBoolean remove(DeltaInt info) { ... } return result;
} }
class Node { public DeltaNode get_left() {
DeltaNode left, right; StateMask sm = StateMask.getStateMask();
Deltalnt info; DeltaNode result = new DeltaNode(sm.size());
Node(Deltalnt info) { this.info = info; } foreach (int index : sm) {
} DeltaNode dn = values[index].left;
result.values[index] = dn.values[index];
Figure 5: Instrumented BST and Node classes. ¥
return result;
}

public void set_left(DeltaNode arg) {
) ) . . StateMask sm = StateMask.getStateMask();
ure 7), respectively. The instrumentation also approgigathanges IdentitySet<Node> set = new IdentitySet<Node>();

all definitions and uses of fields, variables, and methodrpaters foreach (int index : sm) {
to useAObjects. Node n = values[index]; A

if (set.add(n)) // true if n was added
Field accessesThe instrumentation replaces standard object field n.left = n.left.clone();
reads and writes with calls to new methods that read and write n.left.values[index] = arg.values[index];
fields across multiple objects. For example, all reads aritbsvr ¥
of Node fields are replaced with calls to getter and setter methods pubiic DeltaNode get_right() { ... }
in DeltaNode. Consider, for instance, the field reaghp.1eft. In public void set_right(DeltaNode arg) { ... }
AExecution,temp is no longer a reference to a singiede object publlc Deltalnt fi;;tgi;é;ﬁt'; ; PR
but a reference tomeltaNode object that tracks multiple references 3 * B gt
to possibly many differertode objects. Thealeft field of Node is
now accessed via thet_left method inDeltaNode. This method Figure 6: NewDeltaNode class.
returns aeltaNode Object that references (one or momeje ob-
jects that correspond to theft fields of all temp objects whose class Deltalnt {
states are active in the state mask. In general, this catt lesun // maps each state index to an integer value
execution split when some objectstiémp arenull. int[l values; // conceptually
Operations: The instrumentation replaces (relational and arith-  DeltaInt add(Deltalnt arg) {

metic) operations on reference and primitive values withhoe itizel‘l"aik sm ;StateMa;kife;SE*(‘teMa?kOO?)
. P . e alnt resu. = new De aln sm.slze H
calls tobeltaNode andDeltaInt Objects. All original operations foreach (int index : sm)

on values now operate ahObjects that represent sets of values. result.values[index] = values[index] + arg.values[index];
More precisely, the methods iAObjects do not need to operate return result;
on all values but only on those values that correspond todtieea } )
state indexes as indicated by the state mask. }
For an example arithmetic operation, consider integerteafdi ] ]
In standard execution, the addition takes two integer wadunel cre- Figure 7: Part of DeltalInt library class.
ates a single value. IAExecution, it takes tw0eltaInt objects
and creates a nebeltaInt object. Theadd method inDeltalInt
(Figure 7) shows howA Execution conceptually performs pairwise across the states. If seq introduces a non-deterministic choice

addition across all active state indexes for the twbtaInt ob- (with getInt) that returns a booleatrue or false after appropri-
jects. Our implementation optimizes the cases when thogetsb ately setting the state mask.
are constant (to avoid the loop or state indexing). Method calls: The instrumentation replaces a standard method call

For an example relational operation, consider referencaleq  with a method call whose receiver ig¥Object, which allows mak-
ity. The methodkq in DeltaNode (Figure 6) performs this operation  ing the call on several objects at once. Note that each dad-in
across all active state indexes. Note that this method csateer  duces a semantic branch point (since different objects naag h
a split point in the execution if the result of the operatidfieds different dynamic types) and can result in an executiort.spli



void linearize(Object o, StateMask sm) {
foreach (int index : sm) {
Pair(Map _, Seq s) = linObject(o, new Map(), index);
checkVisited(index, s);
}
}

Pair<Map, Seq> linObject(Object o, Map ids, int index) {
if (o == null) return Pair(ids, Seq(NULL));
if (o in ids) return Pair(ids, Seq(ids.get(0)));
int id = ids.size();
return linFields(o, ids.put(o, id), Seq(id), index);
/*return linFields(o, 0, ids.put(o, id), Seq(id), index);*/
}

Pair<Map, Seq> linFields(Object o, Map ids,
Seq seq, int index) {
for (int f = 0; f < o.number0fFields(); f++) {
Object fo = o.getField(f).values[index];
Pair(ids, Seq s) = linObject(fo, ids, index);
seq = seq.append(s);

return Pair(ids, seq);

}

Pair<Map, Seq> linFields(Object o, int f, Map ids,
Seq seq, int index) {
if (f < o.number0fFields()) {
Object fo = o.getField(f).values[index];
Pair(Map m, Seq s) = linObject(fo, ids, index);
return linFields(o, f + 1, m, seq.append(s), index);
} else return Pair(ids, seq);

}

Figure 8: Non-optimized linearization of AState.

3.4 Optimized state comparison

Heap symmetry [7, 22, 27, 30] is an important technique that
model checkers use to alleviate the state-space explosihem.
Heap symmetry detects equivalent states: when the exigoren-
counters a state equivalent to some already visited, theratipn
path can be pruned. In object-oriented programs, two heaps a
equivalent if they arésomorphic(i.e., have the same structure and
primitive values, while their object identities can vary) 22, 30].

An efficient way to compare states for isomorphism is to lirse
earization(also known as serialization or marshalling) that trans-

Stack stack; // mutable structure
void linearize(Object o, StateMask sm) {
stack = new Stack();
Triple(Map _, Seq s, StateMask tm) =
linObject(o, new Map(), sm);
checkVisited(tm, s); // all states from tm have sequence s
while (!stack.isEmpty()) {
Tuple(Object o, int f, Map ids,
Seq seq, StateMask nm) = stack.pop();
Triple(Map _, Seq s, StateMask tm) =
linFields(o, f, ids, seq, nm);
checkVisited(tm, s);
}
}

Triple<Map, Seq, StateMask>
linObject(Object o, Map ids, StateMask sm) {
if (o == null) return Triple(ids, Seq(NULL), sm);
if (o in ids) return Triple(ids, Seq(ids.get(o)), sm);
int id = ids.size();
return linFields(o, 0, ids.put(o, id), Seq(id), sm);
}

Triple<Map, Seq, StateMask>
linFields(Object o, int f,
Map ids, Seq seq, StateMask sm) {
if (f < o.number0fFields()) {
Triple(Object fo, StateMask em, StateMask nm) =
split(o.getField(£f), sm);
if (nm is not empty)
stack.push(o, f, ids, seq, nm);
Triple(StateMask om, Map m, Seq s) = linObject(fo, ids, em);
return linFields(o, f + 1, m, seq.append(s), om);
} else return Triple(sm, ids, seq);

}

Figure 9: Optimized linearization of AState.

association between objects and their ids. Whénan object not
yet linearized,1inObject creates a new id for it, appropriately ex-
tends the map, and linearizes all the object fields.

The method.inFields linearizes the fields of a given object. A
typical implementation is iterative, as shown in the firgiFields
method. It is important to note that the value of the expmssi
o.getField(f).values[index] determines the linearizations for
different states. We target this expression to be the splittpn
our optimized linearization algorithm. The algorithm tmeeds to

lates a heap into a sequence of integers such that two heaps arexplore different execution paths from this point, effeely per-

isomorphic if and only if their linearizations are equal.

AExecution exploits the fact that different heaps iA State can
share prefixes of linearization. Instead of computing lirzsgions
separately for each state in a set of stateExecutionsimultane-
ously computes a set of linearizatiof® a AState. Sharing the
computation for the prefixes not only reduces the execuiioe t
but also reduces memory requirements as it enables shaniogga
the sequences used for linearizations.

forming backtracking. We want to implement the optimizegioal
rithm to execute on a regular JVM, so to support backtracking
An intermediate step in the optimization is to transform dhe
gorithm to conceptually use the continuation-passingeqty¥]. In
practice, the methotlinFields is transformed into a recursive im-
plementation shown in the seconthFields method. This version
exposes the field indexand linearizes the fields efbetweers and
o.getNumberOfFields(). This version permits the linearization to

We next present how to transform a basic algorithm that sepa- continuean execution from the point it was left at innFields.

rately linearizes each state frord\sState into an efficient algorithm
that simultaneously linearizes all states frord\&tate. Figure 8

Note thatiinFields andlinObject manipulate functional objects
Map andseq, which facilitates backtracking of the state.

shows a pseudo-code of a basic algorithm that iterates adr e Figure 9 shows the pseudo-code of the optimized algorittah th
active state from the state mask and computes the lineiarzar linearizes aAState in theAExecution mode. The new methods
the individual state. For simplicity of presentation, thigorithm linObject andlinFields do not take one state index but a state
assumes that the heaps contain only reference fields of orly o mask with several active state indexes to linearize. Thestbads
class. Our actual implementation handles general heabsobit now return a state mask and one linearization for all theestat
jects of different classes, primitive fields, and arrays. that state mask. The linearization can introduce non-detéstic
The method inObject produces a sequence of integers that rep- choices to enforce the invariant that all states in the stask have
resent linearization for the state reachable froriVheno is nul1, the same linearization prefix. When the linearization catgd for
linObject returns a singleton sequence with the value that repre- some state mask, it needs to backtrack to explore the remgaini
sentsaull. Wheno is a reference to a previously linearized object, state masks.
linObject returns a singleton sequence with the identifier used for  The stack object stores the backtracking points. Each entry
that object, which handles object aliasing. The mapstores the stores the state that needs to be restored to continue antiexec



from a split point: the root object, the field index, the mapdbject
identifiers, the current linearization sequence, and the shask.
While stack is mutable, the other structures are immutable, which
makes it easy to restore the state. Tele loop in linearize
visits each pending backtracking point until it finishes goring

all linearizations.

The only source of non-determinism in the linearizationhis t
reading of fields across different states from the state masie
methodsplit takes as input & Objectdo = o.getField(f) and
a state maskn. It returns a standard objegt = do.values[idx]
for someidx from sm, a state maskm of index values such that
do.values[index] == fo, and a state maskm of index values
such thatio.values[index] '= fo. At this point,1inFields first
pushes on the stack an entry with the backtracking infoonétr
nm and then continues the linearizationseffor the states irm.

3.5 Merging

The dual of splitting sets of states into subsetségingseveral
sets of states into a larger set. Recall the driverZddixecution
from Figure 2. It merges all non-visited states from oneattien
into a AState to be used at the start of the next iteration. Specif-
ically, themerge method receives as the input/sState and (im-
plicitly) a state mask. This method extracts the non-visitates
from the AState and only stores their linearized representations.
The methocthewIteration builds and returns a nevxState from
the stored linearized representations.

Our merging usedelinearizationto construct aA State from the
linearized representations of non-visited states. Thedsta delin-
earization is an inverse of linearization: given one limezd rep-
resentation, delinearization builds one heap isomorphibe heap
that was originally linearized. The novelty of our mergisghat it
operates on aetof linearized representations simultaneously and,
instead of building a set of standard heaps, it builds A&tate
that encodes all the heaps. It is interesting to point outweaof-
ten used in debugging our implementation the fact that tination
and delinearization are inverses; the composition of thesgions
gives the identity function: for any set of linearizationsthe lin-
earization of the delinearization efshould equak.

We highlight two important aspects of the merging algorithm
First, it identifiesAObjects that should be constants (with respect
to the reachability of the nodes), which results in a morecieffit
AState. Such constants can occur quite often; for instanagyr
experiments (see Section 5), the lowest percentage of tstartt
AObjects in the merged States is 33%. Second, the merging al-
gorithm greedily shares the objects in the resultidgState: it at-
tempts to share the same€Object among as many individual states
as possible. For example, in Figure 4, the left node fromdlogis
shared among three of the five states. A more detailed discuss
of the merging algorithm can be found in a technical repdti.[1

4. |IMPLEMENTATION

We have implemented\Execution in two model checkers, JPF
and BOX. JPF [20, 29] is a popular model checker for Java pro-
grams, but it is general-purpose and has a high overheaditBle
subject programs considered in our study and related stiigs
41, 42]. We have thus implemented a specialized model checke
called BOX (fromBounded Object eXploratignfor efficient ex-
ploration of such subject programs.

41 JPF

We have implemented Execution by modifying JPF version 4.
JPF isimplemented as a backtrackable Java Virtual Mactwigl)
running on top of a regular, host JVM. JPF provides operation

for state-space exploration: storing states, restoriegntlduring
backtracking, and comparing them. By default, JPF comphes
entire JVM state that consists of the heap, stack (for eadadh),
and class-info area (that is mostly static but can be moddfigzl
to the dynamic class loading in Java). However, our experime
require only the part of the heap reachable from the rootabbje
in the driver. We have therefore disabled the JPF's defaates
comparison and instead use a specialized state compaggiona

in some previous studies with JPF [12,42, 45].

We next discuss how we have implemented each component of
AExecution in JPF. We call the resulting syst&dPF.AJPF keeps
AState as a part of the JPF state, which enables the use of dRF ba
tracking to restor@\ State at the split points. We have implemented
the library operations o State (such as arithmetic and relational
operations or field reads and writes) to execute on the hdst JV
Effectively, the library forms an extension of JPF; our gisahot
to model check the library itself but the subject code thasube
library. AJPF uses instrumented code to invoke the operations that
manipulate the\ State.

We have implemented splitting idJPF on top of the existing
non-deterministic choices in JPF. It is important to poiat that
our implementation leverages JPF to restore the eftiséate but
uses state masks to indicate the active states. Ther&fdRf man-
ages state masks on the host JVM, outside of the backtratiied s
We have implemented merging also to execute on the host J\dM an
to create oné\State as a JPF state that encodes all the non-visited
states encountered in the previous iteration of the exjioraRe-
call from Section 2 that the drivers in our experiments usatth-
first exploration. AJPF does not use the optimized state compari-
son (Section 3.4).

To automate the instrumentation of code for executiod\dPF,
we have developed a plug-in for Eclipse version 3.2 [15]. sThi
plug-in takes a subject program and manipulates its Eciijgeenal
AST representation to automate the steps described indBex:8.

4.2 BOX

We have developed BOX, a model checker optimized for sequen-
tial Java programs. JPF is a general-purpose model chexrkianfa
that can handle concurrent code and can store/restoreézertipe
entire JVM state that consists of heap, stack, and classarga.
However, in unit testing of object-oriented programs, nuuste is
sequential and most drivers need to store/restore/conopdyehe
heap part of the state. Therefore, we have used the existéasi
from state-space exploration research [1, 8, 16, 18, 2G,1235] to
engineer a high-performance model checker for such cases.

BOX can store/restore/compare only a part of the program hea
reachable from a given root. The root corresponds to the oiain
ject under exploration in the driver. BOX usestatefulexploration
(by restoring the entire statagross iterationsandstatelesexplo-
ration (by re-executing one method at a tinagdhin one iteration
BOX needs to re-execute a method within an iteration as is doe
not store the state of the program stack. Instead, BOX ordpke
a list of changes performed on the heap during a single method
execution and restores the state by undoing those changesf-F
ficient manipulation of the changes, BOX requires that cauteu
exploration be instrumented.

We refer to theAExecution implementation in BOX a&BOX.
ABOX needs to backtrack th&State in order to explore a method
for various state masksABOX re-executeshe method from the
beginning to reach the latest split point. While re-exemutis
seemingly slow, it can actually work extremely well in marity s
uations. For example, Verisoft [18] is a well-known modetcker
that effectively employs re-execution.



[ experiment Tl JPF time [ JPF mem.]| BOX time [ BOXmem. [[ #states ]| # executions
| subject T N [ std T delta [ stdidelta] std/delta | std [ delta | std/delta] std/delta | I std [ delta | std/delta |
7 25.40 2.66 9.55x 1.16x 0.80 0.35 2.26x 2.71x 16864 236096 401 588
binheap 8 466.00 | 15.34 30.37x 1.03x 11.70 3.40 3.44x 1.08x 250083 4001328 863 4636
9 * * * * 107.14 32.91 3.26x 1.04x || 1353196 24357528 1069 22785
9 44.34 | 10.98 4.04x 0.70x 2.45 1.55 1.58x 0.77x 46960 845280 | 10846 77
bst 10 216.72 | 49.17 4.41x 0.46x 12.65 7.57 1.67x 0.30x 206395 4127900 | 22688 181
11 * * * * 68.31 49.86 1.37x 0.18x 915641 20144102 | 46731 431
8 54.86 6.64 8.27x 1.50x 2.30 0.83 2.77x 1.54x 69281 1108496 576 1924
deque 9 550.57 | 57.72 9.54x 1.48x 22.53 7.58 2.97x 1.14x 623530 11223540 810 13856
10 * * * * 280.66 | 100.22 2.80x 1.18x || 6235301 || 124706020 1100 113369
6 3.13 1.52 2.06x 0.98x 0.22 0.16 1.34x - 3003 21021 82 256
fibheap 7 24.88 3.13 7.94x 2.13x 1.17 0.67 1.75x 1.24x 36730 293840 130 2260
8 398.13 | 28.31 14.06x 0.88x 16.89 9.80 1.72x 0.68x 544659 4901931 209 23454
3 2.03 1.98 1.03x 0.97x 0.15 0.25 0.58x - 58 6264 576 10
filesystem| 4 17.13 3.70 4.63x 11.50x 1.20 0.72 1.67x 1.72x 1353 194832 1568 124
5 * * * * 37.84 30.01 1.26x 0.97x 64576 11623680 3940 2950
8 104.50 4.18 24.99x 2.31x 1.24 0.89 1.39x 1.24x 97092 873828 258 3386
heaparray| 9 2,718.12( 26.96 | 100.81x 1.22x 12.02 9.00 1.33x 0.53x 804809 8048090 359 22418
10 * * * * 128.27 | 110.78 1.16x 0.58x || 8722946 95952406 488 196623
6 7.76 1.62 4.79x 2.64x 0.37 0.18 2.10x - 10057 70399 45 1564
queue 7 104.41 6.37 16.38x 1.77x 3.90 0.94 4.14x 1.44x 147995 1183960 60 19732
8 * * * * 78.79 25.32 3.11x 1.00x || 2578641 23207769 77 301399
6 4.95 1.46 3.38x 1.01x 0.31 0.12 2.50x - 9331 65317 42 1555
stack 7 59.44 5.08 11.71x 1.31x 2.93 0.68 4.27x 1.87x 137257 1098056 56 19608
8 * * * * 60.07 17.80 3.37x 1.31x || 2396745 21570705 72 299593
10 579.50 7.61 76.14x 2.69x 3.29 1.25 2.63x 1.04x 13076 261520 3579 73
treemap | 11 1,754.34| 19.42 90.34x 3.04x 10.80 3.26 3.32x 1.38x 35405 778910 5269 147
12 * * * * 32.81 9.14 3.59x 1.34x 96401 2313624 | 7774 297
8 60.37 6.26 9.64x 1.57x 2.28 1.29 1.77x 1.30x 109681 987129 595 1659
ubstack 9 1,482.75| 48.75 30.41x 1.48x 22.69 13.59 1.67x 0.66x 991189 9911890 931 10646
10 * * * * 271.56 | 175.61 1.55x 0.62x || 9922641 || 109149051| 1414 77191
gmean - - - 10.97x 1.51x - 2.07x 0.97x - - - 3040x

Figure 10: Overall time and memory for exhaustive exploraton in JPF and BOX and characteristics of the explored state sqces.

ABOX implements the components AExecution as presented
in Section 3.ABOX representg\State as a regular Java state that
contains bothAObjects and objects of the instrumented classes.
Our instrumentation foABOX (as well as for BOX) is partly man-
ual at the time ABOX uses instrumented code to perform the op-
erations on the\State. Similarly taAJPF,ABOX merges states
between iterations of the breadth-first exploratiocABOX em-
ploys the optimized state comparison as presented in SegHo

5. EVALUATION

We present an experimental evaluationXdExecution. We first
describe the ten basic subject programs used in the evaiuatid
then discuss the improvements tidExecution provides for an ex-
haustive exploration of these programs in both JPF and BOX. W
then briefly mention an evaluation for a non-exhaustive @gtion
in JPF. We finally present the improvements thdExecution pro-
vides on a larger case study, an implementation of the AODN-ro
ing protocol [34].

We performed all experiments on a Pentium 4 3.4GHz work-
station running under RedHat Enterprise Linux 4. We usedsSun
JVM 1.5.Q07, limiting each run to 1.8GB of memory and 1 hour
of elapsed time.

5.1 Basic subjects

We evaluatedAExecution on ten subject programs taken from
a variety of sources. All but one of these subjects have begn p
viously used to evaluate testing and model-checking tegcteas.
The following nine subjects are data structuregiinheap iS an
implementation of priority queues using binomial heapd;[42t
is our running example that implements a set using binargchea
trees [4,45]deque is our implementation of a double-ended queue
using doubly-linked listsfibheap is an implementation of priority
queues using Fibonacci heaps [48%aparray iS an array-based

implementation of priority queues [4, 4&fieue is an object queue
implemented using two stacks [14tack is an object stack [14];
treemap IS an implementation of maps using red-black trees based
on Java collection 1.4 [4,42, 45]pstack is an array-based imple-
mentation of a stack bounded in size, storing integers withepe-
tition [9, 33,39, 44];The tenth subjectislesystem, which is based

on the Daisy file-system code [10]. While the original code ha
seeded errors, we use a corrected version from another gdHy
The primary purpose of our evaluation is to compare the efiicy

of AExecution and standard execution, so we use correct imple-
mentations of all basic subjects. (The AODV case study dtesdr

in Section 5.4 uses code with errors that violate a safetyeatyp.)

For each subject, we wrote drivers for standard executidrf@n
AExecution (similar to Figure 2). The drivers exercise thémma
mutator methods. For data structures, the drivers add andves
elements. Fofilesystem, the drivers create and remove directo-
ries, create and remove files, and write to and read from files.

5.2 Exhaustive exploration

Figure 10 shows the experimental results for exhaustivéoexp
ration. For each subject and several bounds (on the seqlesryth
and parameter size, as in the driver shown in Figure 2), weasd
the overall exploration time and peak memory usage with attd w
out AExecution in both JPF and BOX, and the characteristics of the
explored state spaces. The cells marked withépresent that the
experiment either ran out of 1.8GB memory or exceeded theif. ho
time limit.

The columns labeled “std/delta” show the improvements that
AExecution provides over standard execution. Note that time-n
bers are ratios and not percentages; for exampleyiftteap and
N = 17, the ratio is 9.55x, which corresponds to about 90% im-
provement. For JPF, the speedup ranges from 0.68»étar and
N = 6) to 100.81x (forheaparray and N = 9), with the aver-
age of 10.97x, which is over an order of magnitude improvemen
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| subject | N | exec. | comp. | backt. exec. | comp. | backt. | merg. | subject | N exec. | comp. | backt. || exec. | comp. | backt. | merg. |
binheap | 7 1821 | 0.54 6.65 || 0.57 0.59 [ 1.10 0.39 7 0.23 0.34| 0.14 || 0.09 0.15| 0.00 0.06
8 369.49| 555| 90.97 || 4.09 6.11 | 1.04 4.10 binheap | 8 4.58 3.72 2.88 || 1.03 1.45] 0.01 0.87
bst 9 20.77 3.75 19.81 |[ 2.30 542 | 2.01 1.26 9 21.64 | 68.57 | 15.27 || 4.73 | 21.95| 0.00 6.20
10 104.54 | 20.68 91.50 || 7.32 | 31.98 | 4.02 5.86 9 0.17 1.93 0.19 || 0.48 0.74] 0.01 0.28
6 1.24 0.07 1.82 || 0.21 0.13 | 1.06 0.12 bst 10 0.60 | 10.72 | 0.97 || 1.83 3.83 | 0.01 1.85
fibheap | 7 15.03 | 0.52 9.33 (| 0.40 | 0.79 | 1.09 0.84 11 3.05| 57.79| 471 8.16 | 20.46 | 0.02 | 21.06
8 25791 8.21| 13201 3.89 | 11.43| 1.34 | 11.64 6 0.06 0.08 0.04 || 0.04 0.05 | 0.00 0.02
treemap | 10 567.16 | 2.65 9.69 || 1.39 4.34 | 1.48 0.41 fibheap | 7 0.32 0.54 0.24 || 0.20 0.24 | 0.00 0.18
11 || 1,724.36| 855 | 21.44| 2.48 | 14.36 | 1.59 0.98 8 4.77 7.80 | 3.90 | 2.79 3.78 | 0.00 3.15
10 0.20 2.86 0.20 || 0.34 0.78 | 0.01 0.07
f . T : treemap | 11 0.60 9.72 0.52 || 0.64 2.29 | 0.02 0.23
Figure 11: Time breakdown for JPF experiments. 2l 1510 2080 196 || 147| o1l 002 | o6

(The averages are geometric means over all the experiméus.
BOX, the speedup ranges from 0.58x (falesystem and N = 3)

to 4.27x (forstack and N = 7), with the average of 2.07x. Note
that the ratio less than 1.00 means thdxecution ran slower (or
required more memory) than standard execution, for exaraple
filesystem and N = 3 in BOX. While this can happen for smaller

bounds,AExecution consistently runs faster than standard execu-

tion for important cases with larger bounds.

AExecution provides these significant improvements bec#use
exploits the overlap among executions in the state-spapk-ex
ration. Figure 10 shows the information about the state expac
explored in the experiments. Note that the number of exglore
states is the same with and withasExecution. This is as ex-
pected: AExecution focuses on improving the exploration time
and does not change the exploration itself. (We have usedifthe
ference in the number of states to debug our implementation o
AExecution.) However, the numbers of executions with anth-wit
out AExecution do differ, and the column labeled “std/delta"sho
the ratio of the numbers of executions. The ratio ranges froxto
301399x. While this ratio effectively enablésExecution to pro-
vide the speedup, there is no strict correlation betweerstiwand
the speedup. The overall exploration time depends on ddeera
tors, including the number of execution paths, the numbseptifs,
the cost to execute one path, the frequency of constaniSiates,
and the sharing of execution prefixes.

We next discuss in more detail where state-space explaratio
spends time and wher&Execution reduces the time. Each state-
space exploration includes three components—(1) codaitzac
(2) state comparison, and (3) state backtracking—Aagotkecution
additionally includes merging. Figures 11 and 12 show tleakr
down of the overall exploration time on these four composént
JPF and BOX. We show the numbers for only some of the experi-
ments; the conclusions are the same for the other expesment

In JPF,AExecution significantly reduces the time for code exe-
cution and state backtracking. For example,datheap and N =
7, AExecution reduces the execution time from 18.21s to 0.5ds an
the backtracking time from 6.65s to 1.10s. These savingbigre

Figure 12: Time breakdown for BOX experiments.

the optimized state comparison is only possible Afxecution.
Indeed, it is the execution oAStates that enables the simultane-
ous comparison of a set of states.

Figure 10 also provides a comparison of memory usage. Specif
ically, the columns labeled “mem. std/delta” show the rafipeak
memory usage for standard execution veratExecution. Our
setup uses the Sunjstat monitoring tool to record the peak us-
age of garbage-collected heap in the JVM running an expetime

Although this particular measurement does not include thizee

memory used by the JVM process, it does represent the mest rel

vant amount used by a model checker. (The cells markeépre-

sent experiments where the running time is so shortjiat does
not provide accurate memory usage.)
For JPF, standard execution uses more memoryAt&xecution

for most experiments and uses 1.51x more memory on average.

However, AExecution occasionally uses more memory, for exam-
ple forvst. For BOX, AExecution and standard execution on av-
erage use about the same amount of memory.

Many factors, already mentioned for exploration time, cdhut
ence the memory usage, but an important factor seems to be the
number of constanf\Objects. AExecution uses these objects to
represent values that are the same across all state\itate.

There is a relatively strong positive correlation betwelea per-

centage of constankObjects and the memory ratio for an exper-
iment. For examplepst and N = 11 has a poor memory ratio,
and the average percentage of constant objecfsStates is 33%,

the lowest of all subjects. Fateemap and N = 12, on the other

hand, AExecution uses less memory than standard execution, and

the average percentage of constant objects is 69%.

5.3 Non-exhaustive exploration

We have also evaluatefiExecution for a different state-space
exploration. Visser et al. [42] recently proposed and immated
in JPF several non-exhaustive explorations. Their resuitfour

enough and make the times for merging and state comparigsn ir ~ SUPject programs-binheap, bst, fibheap, andtreemap—showed
evant. A\JPF does not even use the optimized state comparison forthat absFra_ct matchingichieved th_e bgst structural code coverage.
this exploration.) As mentioned earlier, JPF is a geneuappse The main idea of abstract matching is to compare states lmsed
model checker that stores and restores the entire Java stade  their shape abstractiantwo states that have the same shape are
thus has a high execution and backtracking overhead. considered equivalent even if they have different valuesodes.

In BOX, AExecution sometimes results in a higher code execu- n'summary, our evaluation dfExecution for abstract matching on
tion time, yet has a smaller overall exploration time. Thasmn is ~ the same four subjects shows theExecution improves the explo-
that AExecution achieves significant savings in the state compari ration time for various bounds between 0.93x and 21.81h wi
son using the optimized algorithm from Section 3.4. For exam  average of 3.37x. For lack of space, we cannot include thalglet
for bst and N = 11, AExecution increases the execution time ©Of the evaluation, but they can be found in a technical refidit
from 3.05s to 8.16s. However, it reduces the state compatise 54 AODV case study

from 57.79s to 20.46s, which more than makes up for the longer
We also evaluated\Execution on a larger application, namely

execution time. Note that the number of states and state @aemp
isons is the same in both standard execution Afitkecution, but the implementation of the Ad-Hoc On-Demand Distance Vector
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I [[ apFmem. J| #states |
|| std | delta

[ staideita || stdrdeita ]| |

| experiment
| subjecl| N

8 8195 73.18| 1.12x 0.52 14741
aodv 9 296.33 | 226.39  1.31x 0.58 51488
10 || 1,057.65| 739.80 | 1.43x 0.51 173468

Figure 13: Exploration of AODV in JPF.

(AODV) routing protocol [34] in the J-Sim network simulat@3].

mental state hashing based on a breadth-first heap linganZa0].
We plan to implement this algorithm in JPF and to ésexecution
to optimize it.

Darga and Boyapati proposed glass-box model checking §it4] f
pruning search. They proposed a static analysis that carceed
state space without sacrificing coverage. Glass-box exjior
represents the search space as a BDD and identifies, witkout e
ecution, parts of the state space that would not lead to nmmre ¢
erage. However, glass-box exploration requires the digfimif

This application was previously used to evaluate a J-Simehod  executable invariants in order to guarantee soundnesninast,

checker [38] and a technique for optimizing the executiodetér-
ministic code blocks in JPF [13].

AODV is a routing protocol for ad-hoc wireless networks. Eac
of the nodes in the network contains a routing table thatritesse
where a message should be delivered next, depending ongleé ta
The safety property we check in this study expresses thedks
from a source to a destination should be free of cyclesniot have
the same node appear more than once in the route [38].

The implementation of AODV, including the J-Sim library st&s
that it depends on, consists of 43 classes with over 350itwotk,
non-comment lines of code. We instrumented this code usiag t
Eclipse plug-in that automates instrumentation Adxecution on
JPF. The resulting instrumented code consisted of 143adagith
over 9500 lines of code. We did not try this case study in BOXei
it currently requires much more manual work for instruméaota

We used for this case study the driver previously developed f
AODV [38]. Like the bst driver shown in Figure 2, the AODV
driver invokes various methods that simulate protocobastisend-
ing messages, receiving messages, dropping messaget/atikée

thebst driver, the AODV driver (1) includes guards that ensure that

an action is taken only if its preconditions are satisfied @)dn-
cludes a procedure that checks whether the resulting polostete
satisfies the safety property described above. In our axgeis,
when a violation is encountered, the driver prunes thaektath
but continues the exploration.

AExecution does not require any additional annotation ocole.

Symbolic execution [25, 40, 45] is a special kind of exeautio
that operates on symbolic values. In symbolic executiom state
includes symbolic variables (that can represent a set ofrets
values) and a path-condition that encodes constraints eosytm-
bolic variables. Symbolic execution has recently gaingolparity
with the availability of fast constraint solvers and hasrbapplied
to test-input generation of object-oriented programs42545]. In
the general case, constraints generated during symbaizuggn
are undecidable. The recent techniques combining syméxdicu-
tion and random execution show good promise in handling satfme
these problems [6, 19, 37]. Conceptually, both symbolicetien
and AExecution operate on a set of states. While symbolic exe-
cution can represent an unbounded number of stAtEsecution
uses an efficient representation for a bounded set of canstaties.
The use of concrete states allowsExecution to overcome the
problems that symbolic execution has. Moreover, we planies-
tigate how to applyAExecution to speed up symbolic execution by
sharing symbolic states.

Shape analysis [26, 36, 46] is a static program analysisvértat
ifies programs that manipulate dynamically allocated datacs
tures. Shape analysis uses abstraction to representerdigti of
concrete heaps and performs operations on these setsdinglu
operations similar to splitting and merging XExecution. Shape
analysis computes overapproximations of the reachaldeméstates

We ran experiments on three variations of the AODV implemen- and loses precision to obtain tractability. In contrasExecution

tation, each containing an error that leads to a violatich@&afety
property [38]. Figure 13 shows the results of experimentsma
variation. Since the property was first violated in the niitghation
for all three variations, the results for the other two viiwias were
similar, and we do not present them here.

For AODV, AExecution improves the overall exploration time

operates precisely on sets of concrete states but can exphty
bounded executions.

Offutt et al. [32] proposed DDR, a technique for test-inpehg
eration where the values of variables are ranges of coneagies.
DDR uses symbolic execution (on ranges) to generate inpnits.
itively, DDR can be efficiently implemented as the rangessati

for up to 1.43x, while taking about twice as much peak memsry a (ysing a technique calledomain splitting when constraints are

standard execution. We believe that it would be possiblmfrove
these results by using a specializegrging at the abstract state
level. Namely, the default merging iNExecution works at the con-
crete state level, and AODV operates on complex statesjdimg
for example routing tables. Even when two routing tableseaep
sent the same abstract state (say & &8%, No), (N2, No)}), they
could have different concrete states (say lj&hé;, No), (N2, No)]
and [{N2, No), (N1, No)]). While such differences of concrete
states would disallow the default merging, it should be iixsgo
merge those states because they represent the same aiateact

6. RELATED WORK

Handling state is the central issue in explicit-state matielck-
ers [21, 22,27, 30]. For example, JPF [29] implements teples

such as efficient encoding of Java program state and symmetry

reductions to help reduce the state-space size [2¥Execution
uses the same state comparison, based on losif’s deptidiagt
linearization [22]. HoweverAExecution leverages the fact that

AStates can be explored simultaneously to produce a set-of lin

earizations. Musuvathi and Dill proposed an algorithm farre-

added to the system. DDR requires inputs to be given as ranges
implements a lossy abstraction (to reduce the size of the space

in favor of more efficient decision procedures), and doessopt

port object graphsAExecution focuses on object graphs and does
not require inputs to be ranges, but the use of ranges as mlspec
representation im\States could likely improve\ Execution even
more, and we plan to investigate this in the future.

In the introduction, we have discussed the relationshipvéen
symbolic model checking [7, 24] anfiExecution. AExecution is
inspired by symbolic model checking and conceptually pent
the same exploration but handles states that involve hezpBs
are typically used as an implementation tool for symbolicdeio
checking. Predicate abstraction in model checking [2, 8lices
the checking of general programs into boolean programstiaf-
ficiently handled by BDDs. While predicate abstraction Hass
great results in many applications, it does not handle vegtipdex
data structures and heaps. BDDs have been also used foemffici
program analysis [28, 43] to represent analysis informaie sets
and relations. These techniques employ either data [28)mtral
abstraction [43] to reduce the domains of problems and niad@ t



tractable. It remains to investigate if it is possible toeleage on
a symbolic representation, such as BDDs, to represent etsmo
crete heaps to efficiently execute programaliExecution mode.

We previously proposed a technique, called Mixed Execution
for speeding up straightline execution in JPF [13]. Mixed&ix
tion considers only one state and uses an existing JPF mieghan
to execute code parts outside of the JPF backtracked stegey-
ing the exploration time up to 379\ Execution considers multiple
states and improves the exploration time by an order of nbadg.i

7. CONCLUSIONS

We have presentedExecution, a novel technique that signif-
icantly speeds up state-space exploration of object-mikpro-
grams. State-space exploration is an important comporembael
checking and automated test generatidriExecution executes the
program simultaneously on a set of standard states, shtreng
common parts across the executions and separately exgountiy
the “deltas” where the executions differ. The key to efficieof
AExecution isAState, a representation of a set of states that per-
mits efficient operations on the set. The experiments on tedah
checkers show thakExecution can reduce the time for state-space
exploration from two times to over an order of magnitude.

In the future, we plan to apply the ideas frafxExecution in
more domains. First, we plan to manually transform some impo
tant algorithms to work in the “delta mode”, as we did for the o
timized comparison of states. For instance, we plan to foams
merging of AStates, which would further improve the results of
AExecution. Second, we plan to evaluate automatitxecution
outside of state-space exploration. For example, in regmegest-
ing the old and the new versions of a program can be run in the
“delta mode”, which would allow a detailed comparison of the
states from two versions. We believe thaExecution can also
provide significant benefits in these new domains.
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