
Automated Test Generation for AspectJ Programs

Tao Xie1 Jianjun Zhao2 Darko Marinov3 David Notkin1

1 Department of Computer Science & Engineering, University of Washington, USA
2 Department of Computer Science & Engineering, Fukuoka Institute of Technology, Japan

3 Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801, USA
{taoxie,notkin}@cs.washington.edu, zhao@cs.fit.ac.jp, marinov@cs.uiuc.edu

ABSTRACT
Aspect-oriented software development (AOSD) is a new paradigm
that improves separation of concerns in software development. AOSD
has gained popularity with the adoption of languages such asAs-
pectJ. Automated test generation for AspectJ programs is important
for reducing the manual effort in testing AspectJ programs.This
position paper proposes Wrasp, a framework for automatic gener-
ation of tests for AspectJ programs. In aspect-oriented programs,
we define three levels of units: advised methods (methods of base
classes), advice, and intertype methods. Wrasp can generate tests
to test the integration of these units. Wrasp can also generate tests
to test advice as stand-alone units. The main contribution of Wrasp
is automatic synthesis of appropriate wrapper classes thatenable
Wrasp to generate tests for AspectJ programs using the existing
tools that generate tests for Java programs.

1. INTRODUCTION
Aspect-oriented software development (AOSD) is a new tech-

nique that improves separation of concerns in software develop-
ment [5, 14, 15, 20]. AOSD makes it possible to modularize cross-
cutting concerns of a software system thus making it easier to main-
tain and evolve.

Research in AOSD has focused mainly on the activities of soft-
ware system design, problem analysis, and language implementa-
tion. Although it is well known that testing is a labor-intensive
process that can account for half the total cost of software develop-
ment [4], little research on testing of AOSD, especially automated
testing, has been carried out. AOSD can lead to better-quality soft-
ware, but it does not provide the correctness by itself. An aspect-
oriented design can lead to a better system architecture, and an
aspect-oriented programming language enforces a disciplined cod-
ing style, but they do not protect against mistakes made by pro-
grammers during the system development. As a result, software
testing remains an inevitable task in AOSD.

Aspect-oriented programming languages, such as AspectJ [14],
introduce some new language constructs (such as join points, ad-
vice, intertype declarations, and aspects) to the common object-
oriented programming languages, such as Java. These specific con-
structs require adapting the common testing concepts.

Our research focuses on both unit testing and integration testing
for aspect-oriented programs. Unit testing is the process of test-
ing each basic component (a unit) of a program to validate that it
correctly implements its detailed design [31], whereas integration
testing is the process of testing a partially integrated application
to expose defects involving the interaction of collaborating com-
ponents. For an AspectJ program, we can perform unit testingon
aspects in isolation and perform integration testing on aspects in
the context with some affected classes since the intended use of an

aspect is to affect the behavior of one or more classes through join
points and advice. Integration testing allows for testing the com-
plex interactions between the aspect and the affected classes. One
way to generate tests for AspectJ programs would be to develop
completely new tools, but they would duplicate a large part of the
existing Java test-generation tools’ functionality. Therefore, we de-
velop a solution to leverage the existing Java test-generation tools
for generating tests for AspectJ programs. These test-generation
tools for Java are available commercially (e.g., Jtest [16]) or as
research prototypes (e.g., Java Pathfinder [13, 22], JCrasher [8],
Rostra [23, 24], and Symstra [25]). Given the bytecode of a Java
class, these tools test the class by generating and executing various
method sequences on the objects of the class.

In this paper, we propose Wrasp, a novel framework for auto-
matic generation of both unit and integration tests for AspectJ pro-
grams. Wrasp is proposed with a careful design of wrapper classes
to address aspect weaving issues in test generation (by providing
visibility of woven methods to the test-generation tool andavoid-
ing unwanted weaving). The core component of Wrasp is its wrap-
per mechanism to support the generation of integration tests. To
generate integration tests for a base class and aspects, Wrasp first
synthesizes a wrapper class for the base class and then feedsthe
wrapper class instead of the woven base class to the existingtest
generation tools. The wrapper mechanism provides a clean inter-
face between the program under test and the test generation tools.
To support the generation of integration tests, the other component
of Wrasp adapts the existing test generation techniques to gener-
ate integration tests for testing the integration of the three types of
units in AspectJ programs: advised methods, advice, and intertype
methods. To generate unit tests for advice in isolation, Wrasp treats
an aspect class as the class under test and generates unit tests for
advice in the aspect class.

This paper makes two main contributions by (1) asking how
we can use existing tools for Java programs to generate testsfor
AspectJ programs and (2) proposing to solve that with wrapper
classes. The remainder of this paper is structured as follows. Sec-
tion 2 starts with the background information on AspectJ andau-
tomated test generation for object-oriented programs. Section 3
presents the example that is used to illustrate the Wrasp framework.
Section 4 introduces the Wrasp framework for generating both in-
tegration tests and unit tests. Section 5 discusses relatedwork, and
Section 6 concludes.

2. BACKGROUND
Wrasp generates tests for AspectJ programs based on the existing

automated test generation tools for object-oriented programs. We
next introduces background information on AspectJ and automated
test generation for object-oriented programs. Although wepresent

1

Wrasp in the context of AspectJ [1], a widely used aspect-oriented
language, and its AspectJ compiler [1, 11], the underlying ideas
apply to other aspect-oriented languages such as Hyper/J [20].

2.1 AspectJ
AspectJ adds to Java some new concepts and associated con-

structs including join points, pointcuts, advice, intertype declara-
tions, and aspects. Thejoin point in AspectJ is an essential con-
cept in the composition of an aspect with other classes. It isa
well-defined point in the execution of a program, such as a call
to a method, an access to an attribute, an object initialization, or
an exception handler. Apointcut is a set of joint points that op-
tionally expose some of the values in the execution of these joint
points. AspectJ defines several primitivepointcut designators that
can identify all types of join points. Pointcuts in AspectJ can be
composed and new pointcut designators can be defined according
to these combinations.

Advice is a method-like mechanism used to define certain code
that executesbefore, after, or around a pointcut. Thearound ad-
vice executesin place of the indicated pointcut, which allows the
aspect to replace a method. An aspect can also use anintertype
declaration to add a public or private method, field, or interface
implementation declaration into a class.

Aspects are modular units of crosscutting implementation. As-
pects are defined by aspect declarations, which have similarforms
of class declarations. Aspect declarations may include pointcut, ad-
vice, and intertype declarations, as well as method declarations that
are permitted in class declarations.

The AspectJ compiler [1,11] usesaspect weaving to compose the
code of the base classes and the aspects to ensure that applicable
advice runs at the appropriate join points. After aspect weaving,
these base classes are then calledwoven classes and the methods in
these classes are calledadvised methods.

During the weaving process, each aspect in an AspectJ program
is compiled into a standard Java class (calledaspect class) and each
piece of advice declared in the aspect is compiled into a public
non-static method in the aspect class. The parameters of this public
method are the same as the parameters of the advice, possiblyin
addition to somethisJoinPoint parameters. The body of this
public method is usually the same as the body of the advice. Some
calls to the advice are inserted at appropriate locations ofthe base
class. At each site of these inserted calls, a singleton object of an
aspect class is first obtained by calling the static methodaspectOf

that is defined in the aspect class. Then a piece of advice is invoked
on the aspect object.

Each intertype method declaration in the aspect is compiledinto
a public static method (calledintertype method) in the aspect class
and each intertype field declaration is compiled into a field in the
base class. The parameters of this public method are the sameas
the parameters of the declared method in the aspect except that the
declared method’s receiver object is inserted as the first parameter
of the intertype method. A wrapper method is inserted in the base
class which invokes the actual method implementation in theas-
pect class. Moreover, all accesses to the fields inserted in the base
class are through two public static wrapper methods in the aspect
class for getting and setting field respectively. For more informa-
tion about AspectJ weaving, refer to [11].

2.2 Automated Test Generation
There are two main types of automated test generation for object-

oriented programs: specification-based (black-box) test generation
and program-based (white-box) test generation. Specification-based
test generation takes advantage of specifications during test gen-

eration. For example, Korat [6] monitors field accesses within
the execution of a Java predicate (an implementation for check-
ing class invariants) and uses this information to prune thesearch
for valid object states. AsmlT [9,10] produces finite state machines
by executing abstract state machines and generates tests based on
the extracted finite state machines. Given a Java predicate,Java
Pathfinder [13, 22] generates valid object states by using symbolic
execution implemented upon its explicit-state model checker [21].

Program-based test generation takes advantage of implementa-
tions during test generation. For example, both Parasoft Jtest [16]
and JCrasher [8] generate random method sequences for the class
under test. Buyet al. [7] use dataflow analysis, symbolic execu-
tion, and automated deduction to produce method sequences for
the class under test. Both Java Pathfinder [22] and Rostra [23, 24]
(developed in our previous work) generate method sequencesby
exploring the concrete-object-state space. Symstra [25] (developed
in our previous work) uses symbolic executions to produce sym-
bolic states instead of concrete states produced by concrete execu-
tions in Rostra. Then Symstra checks the subsumption relationship
among symbolic states and prunes the state space based on thestate
subsumption. Symstra can effectively generate tests for achieving
higher structural coverage faster than Rostra.

3. EXAMPLE
We next illustrate Wrasp by using a simple integer stack example

adapted from Rinardet al. [17]. Figure 1 shows the implementation
of the class. This class provides standard stack operationsas public
non-constructor methods:push andpop. The class also has one
package-private method:iterator returns an iterator that can be
used to traverse the items in the stack. The implementation of the
iterator class is shown in Figure 2.

The stack implementation accommodates integers as stack items.
Figure 3 shows three aspects that enhance the stack implementa-
tion. TheNonNegativeArg aspect checks whether a method ar-
guments are nonnegative integers. The aspect contains a piece of
advice that goes through all arguments of an about to be executed
method to check whether they are nonnegative integers. The advice
is executed before a call of any method. TheNonNegative as-
pect checks the property of nonnegative items: the aspect contains
a piece of advice that iterates through all items to check whether
they are nonnegative integers. The advice is executed before an
execution of aStack method.

The PushCount aspect counts the number of times aStack’s
push method is invoked on an object since its creation. The aspect
declares an intertype fieldcount for the Stack class. The field
keeps the number of times aStack’s Push method is invoked. The
aspect declares a public intertype methodincreaseCount for the
Stack class. The method increases thecount intertype field of
Stack. Note that we declare this intertype method as public for
illustration purpose. Then a client can invoke theincreaseCount
method to increasecount without invokingpush. The aspect also
contains a piece ofaround advice that invokes theStack’s inter-
type methodincreaseCount declared in the aspect. The advice
is executed around any execution ofStack’s push method.

4. FRAMEWORK
We propose the Wrasp framework for generating both integra-

tion and unit tests for AspectJ programs. Integration testsare test
inputs to the base classes woven with aspect classes1, which can

1Integration tests for the base classes woven with aspect classes can
also be seen as unit tests for the base classes when our focus is not
the interaction between the base classes and aspect classes.

2

class Cell {
int data; Cell next;
Cell(Cell n, int i) {

next = n;
data = i;

}
}

public class Stack {
Cell head;
public Stack() {

head = null;
}
public boolean push(int i) {

head = new Cell(head, i);
return true;

}
public int pop() {

if (head == null)
throw new RuntimeException("empty");

int result = head.data;
head = head.next;
return result;

}
Iterator iterator() {

return new StackItr(head);
}

}

Figure 1: An integer stack implementation

interface Iterator {
public boolean hasNext();
public int next();

}

public class StackItr implements Iterator {
private Cell cell;
public StackItr(Cell head) {

this.cell = head;
}
public boolean hasNext() {

return cell != null;
}
public int next() {

int result = cell.data;
cell = cell.next;
return result;

}
}

Figure 2: Stack Iterator

be generated to test the integration of advised methods, advice, and
intertype methods. Unit tests are test inputs to advice in aspect
classes, which are generated to test advice in isolation.

4.1 Generation of Integration Tests
The Wrasp framework for integration testing consists of two

components. The first component synthesizes a wrapper classfor a
base class (Section 4.1.1). The second component adapts theexist-
ing test generation techniques by treating the wrapper class as the
class under test (Section 4.1.2).

4.1.1 Wrapper Synthesis
Several automated test generation tools generate tests based on

Java bytecode instead of source code. For example, both Parasoft
Jtest [16] and JCrasher [8] generates random method sequences for
the class under test based on its bytecode. Based on Java bytecode,
our previous work developed Rostra [23, 24] and Symstra [25]for
generating only method sequences that produce different inputs for
methods under test. To generate tests for AspectJ programs,we can
simply feed their woven bytecode to these existing test generation
tools and use these tools to generate tests for the woven bytecode.

However, we need to address two issues to reuse these existing
test generation tools to generate tests for AspectJ programs:

• When a piece of advice is related tocall join points, such

aspect NonNegativeArg {
before() : call(* *.*(..)) {

Object args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {

if ((args[i] instanceof Integer) &&
(((Integer)args[i]).intValue() < 0))
throw new RuntimeException("negative arg of " +

thisJoinPoint.getSignature().toShortString());
}

}
}

aspect NonNegative {
before(Stack stack) : execution(* Stack.*(..)) &&

&& target(stack) {
Iterator it = stack.iterator();

while (it.hasNext()) {
int i = it.next();
if (i < 0) throw new RuntimeException("negative");

}
}

}

aspect PushCount {
int Stack.count = 0;

public void Stack.increaseCount() {
count++;

}
boolean around(Stack stack):

execution(* Stack.push(int)) && target(stack) {
boolean ret = proceed(stack);
stack.incrementCount();

return ret;
}

}

Figure 3: NonNegativeArg, NonNegative, and PushCount as-
pects

as the advice in theNonNegativeArg aspect, the existing
test generation tools cannot execute the advice during its test
generation process, because the advice is to be woven in call
sites, which are not available before test generation.

• Although we can use the AspectJ compiler [1, 11] to weave
the generated test with the aspect classes in order to execute
advice related tocall join points, the compilation can fail
when the interfaces of woven classes contain intertype meth-
ods and the generated test code invoke these intertype meth-
ods, such as the intertype method in thePushCount aspect.
In addition, weaving the generated test classes with the as-
pect classes could introduce unwanted advice into the test
classes. For example, weaving test classes with the advice in
theNonNegativeArg aspect introduces unwanted argument
checking for other methods invoked in the test classes.

To address these issues, we synthesize a wrapper class for each
base class under test. There are six steps for generating integration
tests based on the wrapper class:

1. Compile and weave the base class and aspects into class byte-
code using the AspectJ compiler.

2. Synthesize a wrapper class for the base class based on the
woven class bytecode.

3. Compile and weave the base class, wrapper class, and aspects
into class bytecode using the AspectJ compiler.

4. Clean up unwanted woven code in the woven wrapper class.
5. Generate tests for the woven wrapper class using the existing

test generation tools based on class bytecode.
6. Compile the generated test class into class bytecode using

the Java compiler [3].

In the second step, we synthesize a wrapper class for the base
class under test. In this wrapper class, we synthesize a wrapper
method for each public method in the base class. This wrapper

3

method invokes the public method in the base class. In this wrap-
per class, we also synthesize a wrapper method for each public
intertype method woven into the base class. This wrapper method
uses Java reflection [3] to invoke the intertype method; otherwise,
the compilation in the third step can fail because intertypemeth-
ods are not recognized by the AspectJ compiler before compilation.
Figure 4 shows the wrapper class synthesized for theStack class
(Figure 1) woven with the three aspects (Figure 3).

In the third step, we use the AspectJ compiler to weave the wrap-
per class with the base class and aspects. This step ensures that the
advice related tocall join points is executed during test genera-
tion process, because the invocations to the advice are woven into
the call sites (within the wrapper class) of public methods in the
base class.

In the fourth step, we need to clean up unwanted woven code in
the woven wrapper class. For example, suppose that we changethe
call join point of theNonNegativeArg aspect to anexecution
join point, the wrapper method for thepush method ofStack is
also advised by theexecution advice. The advice is unwanted
by the wrapper method; otherwise,push’s arguments are checked
twice during test generation, one time in the wrapper methodand
the other time in the advised method. We scan the bytecode of the
woven wrapper class and remove the woven code that are for advice
related toexecution join points. Note that we need to keep the
woven code that are for advice related tocall join points.

In the fifth step, we feed the woven wrapper class to the exist-
ing test generation tools based on bytecode, such as Parasoft Jtest,
JCrasher, Rostra, and Symstra. These tools export generated tests
to test code, usually as a JUnit test class [12]. The next section
discusses how we adapt the existing test generation techniques for
testing AspectJ programs.

In the final step, we use the Java compiler [3] to compile the
exported test class. We do not use the AspectJ compiler to weave
the exported test class with the wrapper class, base class, or aspects,
because the weaving process can introduce unwanted woven code
into the test class.

4.1.2 Test Generation
In our previous work [26], we proposed Aspectra, a framework

for detecting redundant tests for AspectJ programs. Aspectra de-
tects a redundant subset of automatically generated tests for testing
three levels of units in AspectJ programs: advised methods,advice,
and intertype methods. In this work, Wrasp further exploreshow
to generate integration tests effectively for testing the integration of
these three levels of units in AspectJ programs.

When generating tests for advised methods, Wrasp enables the
existing test generation techniques to take into account the effect of
advice on the advised methods because the code under test (wrap-
per class) eventually invokes woven advice, even advice related
to call join points. The existing test generation tools based on
concrete-state exploration, such as Java Pathfinder [21,22] and Ros-
tra, can directly operate on the wrapper class produced by Wrasp.
For example, theNonNegativeArg advice has been woven in the
wrapper classStackWrapper, in particular in the call sites of the
three publicStack methods. Although theNonNegativeArg ad-
vice does not directly alter the states of aStack object, when the
argument ofpush is a negative integer, the advice alters the con-
trol flow of the method execution by throwing an exception, thus
changing the method execution’s effect on theStack object state.
Without using Wrasp, tools such as Java Pathfinder and Rostracan-
not take into account the effect of theNonNegativeArg advice
during state exploration.

When generating tests for advice, Wrasp proposes techniques to

public class StackWrapper {
Stack s;
public StackWrapper() {

s = new Stack();
}
public boolean push(int i) {

return s.push(i);
}
public int pop() {

return s.pop();
}

public void increaseCount() {
Class cls = Class.forName("Stack");
Method meth = cls.getMethod("increaseCount", null);
meth.invoke(s, null);

}
}

Figure 4: The wrapper class for Stack

adapt the existing test generation tools such as Rostra and Sym-
stra. Because a piece of advice often reads only a subset of the
base class’ fields, only these fields are relevant for affecting the
behavior of the advice. We can use Rinardet al.’s static analy-
sis [17] to determine which fields of the base class can be readby
the advice. Then during the concrete-state exploration of Rostra,
we can project the whole concrete state of the base class on these
fields. With this state projection technique, Rostra can be better
guided to explore different inputs for the advice. For example, the
PushCount advice reads only the intertype fieldcount. During
the concrete-state exploration of Rostra, we can consider two object
states to be equivalent for thePushCount advice if these two states
have the same value ofcount (even if the stack elements in the
state are different). When focusing on testing thePushCount ad-
vice, Rostra can effectively generatepush’s inputs (receiver states
and arguments) whose executions eventually produce different in-
puts for thePushCount advice.

In order to achieve structural coverage for advice, Wrasp ex-
tends Symstra to also apply symbolic execution on the advicecode.
For example, theNonNegativeArg advice contains a conditional
((args[i] instanceof Integer) &&

(((Integer)args[i]).intValue() < 0)). After the sym-
bolic execution of theNonNegativeArg advice, Symstra can use
a constraint solver to generate both negative and non-negative inte-
gers for thepush method’s argument.

When generating tests for a public intertype method of a base
class, Wrasp treats the intertype method as a regular publicmethod
of the base class; in particular, Wrasp synthesizes a publicwrap-
per method in the wrapper class for the intertype method and then
generates tests to exercise the wrapper method. In addition, we can
also use Rinardet al.’s static analysis [17] to determine which in-
tertype fields or fields of the base class can be read by the intertype
method, and then focus on these read fields during state match-
ing and exploration. For example, theincreaseCount intertype
methods defined in thePushCount aspect reads only thecount in-
tertype field; therefore, we can explore and generate only different
values ofcount in the receiver object state forincreaseCount.

4.2 Generation of Unit Tests
The Wrasp framework for unit-test generation produces testin-

puts to directly exercise advice in an aspect class in isolation. Wrasp
treats an aspect class as the class under test and advice defined in
the aspect class as the methods under test. For example, after we
use the AspectJ compiler [1, 11] to compile the aspect classes in
Figure 3, we can get the interfaces of the compiled aspect classes
shown in Figure 5. We do not list those helper methods such as
aspectOf andhasAspect; these helper methods are the same for
all aspect classes and it is not necessary to invoke them whentesting

4

class NonNegativeArg {
public NonNegativeArg();
public void

ajc$before$NonNegativeArg$1$8d7380d7(JoinPoint j);
...

}

class NonNegative {
public NonNegative();
public void

ajc$before$NonNegative1d9be608f(Stack s);
...

}

aspect PushCount {
public PushCount();
public static int

ajc$interMethod$PushCount$Stack$incrementCount(Stack s);
public int

ajc$around$PushCount$1$69ee3a63(Stack s, AroundClosure c);
...

}

Figure 5: The interfaces of the compiled aspect classes of
NonNegative, NonNegativeArg, and PushCount

advice in isolation. In addition, we do not list a dispatch method for
the intertype methodincreaseCount and several dispatch meth-
ods for initializing, getting, setting the intertype fieldcount; it is
not necessary to invoke these dispatch methods when testingadvice
in isolation.

We feed the complied aspect classes to the existing test genera-
tion tools such as Parasoft Jtest. Jtest then generates unittests for
the public methods in the compiled aspect classes. For example,
one of the unit tests generated by Jtest for theNonNegative as-
pect class is as follows:

public void testNonNegative1() {
Stack t0 = new Stack();
NonNegative THIS = new NonNegative();
THIS.ajc$before$NonNegative1d9be608f(t0);

}

One of the unit tests generated by Jtest for thePushCount aspect
class is as follows:

public void testPushCount1() {
Stack t0 = new Stack();
PushCount.ajc$interMethod$PushCount$Stack$incrementCount(t0);

}

However, Jtest is not able to generate meaningful tests for the
before advice method in theNonNegativeArgaspect or thearound
advice method in thePushCount aspect because the types of their
method arguments includeJoinPoint orAroundClosure. These
two classes belong to the AspectJ runtime environment and Jtest
cannot create appropriate objects for them. In future work,we
plan to use automatically created mock objects [18] to simulate the
method calls on these objects based on the execution historyduring
integration testing.

5. RELATED WORK
The Wrasp framework is complementary to Aspectra (proposed

in our previous work [26]), a framework for detecting redundant
tests for AspectJ programs. Aspectra operates on any set of gener-
ated tests for AspectJ programs and reduces the size of the gener-
ated tests for inspection when specifications are not written for As-
pectJ programs. Wrasp automatically generates tests for AspectJ
programs, which can be minimized by Aspectra for inspection.

Souteret al. [19] developed a test selection technique based on
concerns. A concern is the code associated with a particularmain-
tenance task. An aspect in AspectJ programs can be seen as a

concern. To reduce the space and time cost of running tests on
instrumented code, they proposed to instrument only the concerns
for collecting runtime information. They also proposed to select or
prioritize tests for the selected concerns. In particular,they selects
a test if the test covers a concern that has not been been exercised
by previously selected tests. Zhouet al. [30] also used the same
technique for selecting tests for an aspect. These two test selection
approaches assume that there already exist a set of tests foran As-
pectJ program (or just for the base classes in the AspectJ program),
whereas Wrasp focuses on automatically generating tests for an As-
pectJ program during the unit and integration testing of theaspects
and base classes in the AspectJ program.

Xu et al. [27] presented a specification-based testing approach
for aspect-oriented programs. The approach creates aspectual state
models by extending the existing FREE (Flattened Regular Expres-
sion) state model, which was originally proposed for testing object-
oriented programs. Based on the model, they developed two tech-
niques for testing aspect-oriented programs. The first technique
transforms an aspectual state model to a transition tree andgener-
ates tests based on the tree. The second techniques constructs and
searches an aspect flow graph for achieving statement coverage and
branch coverage. Their work focuses on testing aspect-oriented
programs based on abstract state models, whereas Wrasp focuses
mainly on automatically generating integration and unit tests based
on implementations.

Alexanderet al. [2] developed a fault model for aspect-oriented
programming, including six types of faults that may occur inaspect-
oriented systems. Their fault model provides useful guidance in de-
veloping testing coverage tools for aspect-oriented programs, whereas
Wrasp proposes an automated approach for generating tests to achieve
structural coverage and object-state coverage.

Zhao [28, 29] proposed a data-flow-based unit testing approach
for aspect-oriented programs. For each aspect or class, theap-
proach performs three levels of testing: intra-module, inter-module,
and intra-aspect or intra-class testing. His work focused on unit
testing of aspect-oriented programs based on data flow, whereas
Wrasp focuses on automatically generating both unit and integra-
tion tests for AspectJ programs based on primarily object states.

Rinard et al. [17] proposed a classification system for aspect-
oriented programs and developed a static analysis to support au-
tomatic classification. Their system characterizes the interactions
between advice and advised methods based on field accesses. De-
velopers can use the classification system and analysis to structure
their understanding of the aspect-oriented programs. Wrasp uses
Rinardet al.’s static analysis to determine whether a piece of advice
reads one field in the aspect or base class. Based on this informa-
tion, Wrasp can focus on these read fields during state exploration
for test generation and thus effectively explore differentinputs for
the advice.

6. CONCLUSION
We proposed Wrasp, a novel framework for automatically gen-

erating tests for AspectJ programs. For integration testing, Wrasp
synthesizes a wrapper class for each base class under test. The
wrapper mechanism allows test generation tools to indirectly exer-
cise advice related tocall join points during test generation. At
the same time, the mechanism prevents the methods in generated
test classes from being advised by unwanted advice. Wrasp also
adapts the existing test generation techniques for generating tests
for testing the integration of three types of units in AspectJ pro-
grams: pieces of advice, advised methods, and intertype methods.
For unit testing, Wrasp feeds compiled aspect classes to theexist-
ing test generation tools and generates unit tests to directly exercise

5

advice. In future work, we plan to implement Wrasp and evaluate
it on generating tests for a variety of AspectJ programs.

Acknowledgments
This work was supported in part by the National Science Foun-
dation under grant ITR 0086003 and the Japan Society for Pro-
motion of Science under Grand-in-Aid for Scientific Research (C)
(No.15500027). We acknowledge support through the High De-
pendability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

7. REFERENCES
[1] AspectJ compiler 1.2, May 2004.

http://eclipse.org/aspectj/.
[2] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards

the systematic testing of aspect-oriented programs. Technical
Report CS-4-105, Department of Computer Science,
Colorado State University, Fort Collins, Colorado, 2004.

[3] K. Arnold, J. Gosling, and D. Holmes.The Java
Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[4] B. Beizer.Software Testing Techniques. International
Thomson Computer Press, 1990.

[5] L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filters.Commun. ACM,
44(10):51–57, 2001.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. InProc. International
Symposium on Software Testing and Analysis, pages
123–133, 2002.

[7] U. Buy, A. Orso, and M. Pezze. Automated testing of
classes. InProc. the International Symposium on Software
Testing and Analysis, pages 39–48. ACM Press, 2000.

[8] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java.Software: Practice and
Experience, 34:1025–1050, 2004.

[9] Foundations of Software Engineering, Microsoft Research.
The AsmL test generator tool.
http://research.microsoft.com/fse/asml/
doc/AsmLTester.html.

[10] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state
machines. InProc. International Symposium on Software
Testing and Analysis, pages 112–122, 2002.

[11] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proc. 3rd International Conference on Aspect-Oriented
Software Development, pages 26–35, 2004.

[12] JUnit, 2003.http://www.junit.org.
[13] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized

symbolic execution for model checking and testing. InProc.
9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 553–568,
April 2003.

[14] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InProc. 11th European Conference on
Object-Oriented Programming, pages 220–242. 1997.

[15] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods.Commun. ACM,
44(10):39–41, 2001.

[16] Parasoft. Jtest manuals version 4.5. Online manual, April
2003.http://www.parasoft.com/.

[17] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. InProc.
12th International Symposium on the Foundations of
Software Engineering, pages 147–158, 2004.

[18] D. Saff and M. D. Ernst. Automatic mock object creation for
test factoring. InProc. the Workshop on Program Analysis
for Software Tools and Engineering (PASTE’04), pages
49–51, June 2004.

[19] A. L. Souter, D. Shepherd, and L. L. Pollock. Testing with
respect to concerns. InProc. International Conference on
Software Maintenance, page 54, 2003.

[20] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. InProc. 21st International Conference on Software
Engineering, pages 107–119, 1999.

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. InProc. 15th IEEE International
Conference on Automated Software Engineering (ASE),
pages 3–12, 2000.

[22] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. InProc. 2004 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 97–107, 2004.

[23] T. Xie, D. Marinov, and D. Notkin. Improving generationof
object-oriented test suites by avoiding redundant tests.
Technical Report UW-CSE-04-01-05, University of
Washington Department of Computer Science and
Engineering, Seattle, WA, Jan. 2004.

[24] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InProc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[25] T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. InProc. the International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2005), April 2005.

[26] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting
redundant unit tests for AspectJ programs. Technical Report
UW-CSE-04-10-03, University of Washington Department of
Computer Science and Engineering, Seattle, WA, Oct. 2004.

[27] D. Xu, W. Xu, and K. Nygard. A state-based approach to
testing aspect-oriented programs. Technical Report
NDSU-CS-TR04-XU03, North Dakota State University
Computer Science Department, September 2004.

[28] J. Zhao. Tool support for unit testing of aspect-oriented
software. InProc. OOPSLA’2002 Workshop on Tools for
Aspect-Oriented Software Development, Nov. 2002.

[29] J. Zhao. Data-flow-based unit testing of aspect-oriented
programs. InProc. 27th IEEE International Computer
Software and Applications Conference, pages 188–197, Nov.
2003.

[30] Y. Zhou, D. Richardson, and H. Ziv. Towards a practical
approach to test aspect-oriented software. InProc. 2004
Workshop on Testing Component-based Systems (TECOS
2004), Net.ObjectiveDays, Sept. 2004.

[31] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy.ACM Comput. Surv., 29(4):366–427,
1997.

6

