Automated Test Generation for AspectJ Programs

Tao Xie! Jianjun Zhao?

Darko Marinov?

David Notkin!

1 Department of Computer Science & Engineering, UniversitWashington, USA
2 Department of Computer Science & Engineering, Fukuokatlrstof Technology, Japan
3 Department of Computer Science, University of lllinois pena-Champaign, IL 61801, USA

{t aoxi e, not ki n}@s. washi ngt on. edu, zhao@s.fit.ac.jp,

ABSTRACT

Aspect-oriented software development (AOSD) is a new pgnad
that improves separation of concerns in software developrd€®©SD
has gained popularity with the adoption of languages suoksas
pectJ. Automated test generation for AspectJ programsasritant
for reducing the manual effort in testing AspectJ prograrfisis
position paper proposes Wrasp, a framework for automatiege
ation of tests for AspectJ programs. In aspect-orientedrpros,
we define three levels of units: advised methods (methodasé b
classes), advice, and intertype methods. Wrasp can gertesis
to test the integration of these units. Wrasp can also gentsts
to test advice as stand-alone units. The main contributi®édrasp
is automatic synthesis of appropriate wrapper classesetietile
Wrasp to generate tests for Aspectd programs using thanexist
tools that generate tests for Java programs.

1. INTRODUCTION

Aspect-oriented software development (AOSD) is a new tech-
nique that improves separation of concerns in softwareldpve
ment [5, 14, 15, 20]. AOSD makes it possible to modularizessro
cutting concerns of a software system thus making it easi@iatin-
tain and evolve.

Research in AOSD has focused mainly on the activities of soft
ware system design, problem analysis, and language imptame
tion. Although it is well known that testing is a labor-insve
process that can account for half the total cost of softwaveldp-
ment [4], little research on testing of AOSD, especiallyoanated
testing, has been carried out. AOSD can lead to betterigsaift-
ware, but it does not provide the correctness by itself. Aees
oriented design can lead to a better system architectuck aan
aspect-oriented programming language enforces a disegptod-
ing style, but they do not protect against mistakes made by pr
grammers during the system development. As a result, saftwa
testing remains an inevitable task in AOSD.

Aspect-oriented programming languages, such as Aspet}J [1
introduce some new language constructs (such as join p@aidts
vice, intertype declarations, and aspects) to the commgectb
oriented programming languages, such as Java. These specifi
structs require adapting the common testing concepts.

Our research focuses on both unit testing and integrati&iimte
for aspect-oriented programs. Unit testing is the procésest-
ing each basic component (a unit) of a program to validateitha
correctly implements its detailed design [31], whereasgrdtion
testing is the process of testing a partially integratedieggion
to expose defects involving the interaction of collabargitcom-
ponents. For an AspectJ program, we can perform unit testing
aspects in isolation and perform integration testing oreetspin
the context with some affected classes since the intendedfiean

mari nov@s. ui uc. edu

aspect is to affect the behavior of one or more classes thrjmiigy
points and advice. Integration testing allows for testing tom-
plex interactions between the aspect and the affectedesla@ne
way to generate tests for AspectJ programs would be to develo
completely new tools, but they would duplicate a large pathe
existing Java test-generation tools’ functionality. Téfere, we de-
velop a solution to leverage the existing Java test-geioer&ols
for generating tests for AspectJ programs. These testagoe
tools for Java are available commercially (e.g., Jtest)[b8]as
research prototypes (e.g., Java Pathfinder [13, 22], Jérd48h
Rostra [23, 24], and Symstra [25]). Given the bytecode ofva Ja
class, these tools test the class by generating and exgeatiious
method sequences on the objects of the class.

In this paper, we propose Wrasp, a novel framework for auto-
matic generation of both unit and integration tests for Aspero-
grams. Wrasp is proposed with a careful design of wrappese&
to address aspect weaving issues in test generation (bydprov
visibility of woven methods to the test-generation tool @vaid-
ing unwanted weaving). The core component of Wrasp is itpwra
per mechanism to support the generation of integratiors.teBb
generate integration tests for a base class and aspectsp Vihst
synthesizes a wrapper class for the base class and thentfeeds
wrapper class instead of the woven base class to the existiatg
generation tools. The wrapper mechanism provides a cldan in
face between the program under test and the test generatin t
To support the generation of integration tests, the othempoment
of Wrasp adapts the existing test generation techniquegrerg
ate integration tests for testing the integration of the¢hypes of
units in AspectJ programs: advised methods, advice, andype
methods. To generate unit tests for advice in isolation,3f¥teeats
an aspect class as the class under test and generates tanfotes
advice in the aspect class.

This paper makes two main contributions by (1) asking how
we can use existing tools for Java programs to generate ftasts
Aspect] programs and (2) proposing to solve that with wnappe
classes. The remainder of this paper is structured as fell@ec-
tion 2 starts with the background information on AspectJ and
tomated test generation for object-oriented programs.ti@e8
presents the example that is used to illustrate the Wrasgefrark.
Section 4 introduces the Wrasp framework for generating bot
tegration tests and unit tests. Section 5 discusses relatdd and
Section 6 concludes.

2. BACKGROUND

Wrasp generates tests for AspectJ programs based on thiagxis
automated test generation tools for object-oriented jarmogr We
next introduces background information on AspectJ andnaated
test generation for object-oriented programs. Althoughpresent

Wrasp in the context of AspectJ [1], a widely used aspe&rbeid
language, and its AspectJ compiler [1, 11], the underlyoteps
apply to other aspect-oriented languages such as Hyp@ij/J [2

2.1 Aspectd

eration. For example, Korat [6] monitors field accesses iwith
the execution of a Java predicate (an implementation foclche
ing class invariants) and uses this information to prunestrgch
for valid object states. AsmIT [9, 10] produces finite statchines
by executing abstract state machines and generates tests$ ba

Aspect] adds to Java some new concepts and associated corfe extracted finite state machines. Given a Java predigate,

structs including join points, pointcuts, advice, int@eydeclara-
tions, and aspects. Thein point in AspectJ is an essential con-
cept in the composition of an aspect with other classes. # is
well-defined point in the execution of a program, such as hk cal
to a method, an access to an attribute, an object initigdizabr

an exception handler. fointcut is a set of joint points that op-
tionally expose some of the values in the execution of theise |
points. AspectJ defines several primitpantcut designators that
can identify all types of join points. Pointcuts in Aspecthde
composed and new pointcut designators can be defined aegordi
to these combinations.

Advice is a method-like mechanism used to define certain code
that executegefore, after, or around a pointcut. Thear ound ad-
vice executesn place of the indicated pointcut, which allows the
aspect to replace a method. An aspect can also usetatype
declaration to add a public or private method, field, or interface
implementation declaration into a class.

Aspects are modular units of crosscutting implementation. As-
pects are defined by aspect declarations, which have sifoitais
of class declarations. Aspect declarations may includetpoi, ad-
vice, and intertype declarations, as well as method de@asathat
are permitted in class declarations.

The AspectJ compiler [1,11] usaspect weaving to compose the
code of the base classes and the aspects to ensure thaablgplic
advice runs at the appropriate join points. After aspectvingg
these base classes are then caleden classes and the methods in
these classes are calladvised methods.

During the weaving process, each aspect in an AspectJ pnogra
is compiled into a standard Java class (cadiggbct class) and each
piece of advice declared in the aspect is compiled into aigubl
non-static method in the aspect class. The parameterssgiubiic
method are the same as the parameters of the advice, poissibly
addition to some hi sJoi nPoi nt parameters. The body of this
public method is usually the same as the body of the adviceneSo
calls to the advice are inserted at appropriate locatiortkeobase
class. At each site of these inserted calls, a singletorcobjean
aspect class is first obtained by calling the static metispedct Of
that is defined in the aspect class. Then a piece of advicedked
on the aspect object.

Each intertype method declaration in the aspect is compiked
a public static method (calldédtertype method) in the aspect class
and each intertype field declaration is compiled into a fialthie
base class. The parameters of this public method are the aame
the parameters of the declared method in the aspect exeephéh
declared method’s receiver object is inserted as the firstnpeter
of the intertype method. A wrapper method is inserted in tseb
class which invokes the actual method implementation inathe
pect class. Moreover, all accesses to the fields insertdueibdase
class are through two public static wrapper methods in thecs
class for getting and setting field respectively. For moferma-
tion about AspectJ weaving, refer to [11].

2.2 Automated Test Generation

There are two main types of automated test generation fectbj
oriented programs: specification-based (black-box) teséeration
and program-based (white-box) test generation. Spedticiased
test generation takes advantage of specifications durstggen-

Pathfinder [13, 22] generates valid object states by usingslic
execution implemented upon its explicit-state model che¢k1].
Program-based test generation takes advantage of impl@men
tions during test generation. For example, both Parasest [l 6]
and JCrasher [8] generate random method sequences forage cl
under test. Buyet al. [7] use dataflow analysis, symbolic execu-
tion, and automated deduction to produce method sequences f
the class under test. Both Java Pathfinder [22] and Rostr@423
(developed in our previous work) generate method sequences
exploring the concrete-object-state space. Symstra {ihjgloped
in our previous work) uses symbolic executions to produca-sy
bolic states instead of concrete states produced by cenexetu-
tions in Rostra. Then Symstra checks the subsumptionoakttip
among symbolic states and prunes the state space basedstatéhe
subsumption. Symstra can effectively generate tests fuegiag
higher structural coverage faster than Rostra.

3. EXAMPLE

We next illustrate Wrasp by using a simple integer stack gtam
adapted from Rinaret al. [17]. Figure 1 shows the implementation
of the class. This class provides standard stack operai®psblic
non-constructor methodgiush andpop. The class also has one
package-private methodt er at or returns an iterator that can be
used to traverse the items in the stack. The implementafitimeo
iterator class is shown in Figure 2.

The stack implementation accommodates integers as staok.it
Figure 3 shows three aspects that enhance the stack impgkemen
tion. TheNonNegat i veAr g aspect checks whether a method ar-
guments are nonnegative integers. The aspect containga gfie
advice that goes through all arguments of an about to be teecu
method to check whether they are nonnegative integers. diiesa
is executed before a call of any method. TiwenNegati ve as-
pect checks the property of nonnegative items: the aspetiios
a piece of advice that iterates through all items to checkthére
they are nonnegative integers. The advice is executed doefor
execution of &t ack method.

The PushCount aspect counts the number of timestaack’s
push method is invoked on an object since its creation. The aspect
declares an intertype fieldount for the St ack class. The field
keeps the number of timessaack’s Push method is invoked. The
aspect declares a public intertype methadr easeCount for the
St ack class. The method increases thaunt intertype field of
St ack. Note that we declare this intertype method as public for
illustration purpose. Then a client can invoke ther easeCount
method to increaseount without invokingpush. The aspect also
contains a piece afr ound advice that invokes thst ack’s inter-
type method ncr easeCount declared in the aspect. The advice
is executed around any executionSdfack’s push method.

4. FRAMEWORK

We propose the Wrasp framework for generating both integra-
tion and unit tests for AspectJ programs. Integration testsest
inputs to the base classes woven with aspect clasaégch can

Lintegration tests for the base classes woven with aspesstedaan
also be seen as unit tests for the base classes when our $auuis i
the interaction between the base classes and aspect classes

class Cell {

int data; Cell next;
Cell(Cell n, int i) {
next = n;
data = i;
}
}
public class Stack {
Cel | head;
public Stack() {
head = nul|;

}

public bool ean push(int i) {
head = new Cel | (head, i);
return true;

}
public int pop() {
if (head == null)
t hrow new Runti meException("enpty");
int result = head. data;
head = head. next;
return result;

Iterator iterator() {
return new Stackltr(head);
}
}

Figurel: Aninteger stack implementation

interface Iterator {
public bool ean hasNext ();
public int next();

}

public class Stackltr inplenments Iterator {
private Cell cell;
public Stackltr(Cell head) {
this.cell = head;

public bool ean hasNext () {
return cell !'= null;

g)ublic int next() {

int result = cell.data;
cell = cell.next;
return result;

}
}

Figure2: Stack Iterator

be generated to test the integration of advised methodi&gednd
intertype methods. Unit tests are test inputs to advice peets
classes, which are generated to test advice in isolation.

4.1 Generation of Integration Tests

The Wrasp framework for integration testing consists of two
components. The first component synthesizes a wrapperfotass
base class (Section 4.1.1). The second component adagtsishe
ing test generation techniques by treating the wrappes eaghe
class under test (Section 4.1.2).

411 Wrapper Synthesis

Several automated test generation tools generate testd bas
Java bytecode instead of source code. For example, botedPara
Jtest [16] and JCrasher [8] generates random method sesgifanc
the class under test based on its bytecode. Based on Jacadbyte
our previous work developed Rostra [23, 24] and Symstraf@5]
generating only method sequences that produce differpotsrior
methods under test. To generate tests for AspectJ progveatsn
simply feed their woven bytecode to these existing test igeioa
tools and use these tools to generate tests for the woveoduge

However, we need to address two issues to reuse these gxistin

test generation tools to generate tests for AspectJ pragram
e When a piece of advice is relateddal | join points, such

aspect NonNegativeArg {

before() : call(* *.*(..)) {
Obj ect args[] = thisJoinPoint.getArgs();
for(int i=0; i<args.length; i++) {
if ((args[i] instanceof Integer) &&

(((I'nteger)args[i]).intValue() < 0))
throw new Runti nmeException("negative arg of " +
t hi sJoi nPoi nt . get Si gnat ure().toShortString());

}

aspect NonNegative {
before(Stack stack) : execution(* Stack.*(..)) &&
&& target(stack) {
Iterator it = stack.iterator();
while (it.hasNext()) {
int i =it.next();
if (i <0) throw new Runti meException("negative");
}
}
}

aspect PushCount {
int Stack.count = 0;
public void Stack.increaseCount() {
count ++;

bool ean around(Stack stack):
execution(* Stack.push(int)) && target(stack) {
bool ean ret = proceed(stack);
stack. i ncrenment Count () ;
return ret;

}
}

Figure3: NonNegat i veAr g, NonNegat i ve, and PushCount as-
pects

as the advice in th&lonNegat i veAr g aspect, the existing
test generation tools cannot execute the advice duringsts t
generation process, because the advice is to be woven in call
sites, which are not available before test generation.

e Although we can use the AspectJ compiler [1, 11] to weave
the generated test with the aspect classes in order to execut
advice related te@al | join points, the compilation can fail
when the interfaces of woven classes contain intertype-meth
ods and the generated test code invoke these intertype meth-
ods, such as the intertype method in thehCount aspect.

In addition, weaving the generated test classes with the as-
pect classes could introduce unwanted advice into the test
classes. For example, weaving test classes with the advice i
theNonNegat i veAr g aspect introduces unwanted argument
checking for other methods invoked in the test classes.
To address these issues, we synthesize a wrapper clasffor ea
base class under test. There are six steps for generateggatiopn
tests based on the wrapper class:

1. Compile and weave the base class and aspects into class byt
code using the AspectJ compiler.
2. Synthesize a wrapper class for the base class based on the
woven class bytecode.
3. Compile and weave the base class, wrapper class, andsaspec
into class bytecode using the AspectJ compiler.
. Clean up unwanted woven code in the woven wrapper class.
5. Generate tests for the woven wrapper class using thérexist
test generation tools based on class bytecode.
. Compile the generated test class into class bytecodg usin
the Java compiler [3].

In the second step, we synthesize a wrapper class for the base
class under test. In this wrapper class, we synthesize aperap
method for each public method in the base class. This wrapper

i

(o]

method invokes the public method in the base class. In thépwr
per class, we also synthesize a wrapper method for eachcpubli
intertype method woven into the base class. This wrappenadet
uses Java reflection [3] to invoke the intertype method,; retlse,

the compilation in the third step can fail because intertypah-
ods are not recognized by the AspectJ compiler before caiigil
Figure 4 shows the wrapper class synthesized fostleek class
(Figure 1) woven with the three aspects (Figure 3).

In the third step, we use the AspectJ compiler to weave thp-wra
per class with the base class and aspects. This step ensairéset
advice related t@al | join points is executed during test genera-
tion process, because the invocations to the advice areniote
the call sites (within the wrapper class) of public methaushie
base class.

In the fourth step, we need to clean up unwanted woven code in

the woven wrapper class. For example, suppose that we cltiamge
cal | join point of theNonNegat i veAr g aspect to amexecut i on
join point, the wrapper method for thush method ofSt ack is
also advised by thexecuti on advice. The advice is unwanted
by the wrapper method; otherwigaysh’s arguments are checked
twice during test generation, one time in the wrapper metatl
the other time in the advised method. We scan the bytecodeeof t
woven wrapper class and remove the woven code that are fareadv
related toexecut i on join points. Note that we need to keep the
woven code that are for advice relatecttd | join points.

In the fifth step, we feed the woven wrapper class to the exist-
ing test generation tools based on bytecode, such as Paitesif
JCrasher, Rostra, and Symstra. These tools export geti¢ests
to test code, usually as a JUnit test class [12]. The nextosect
discusses how we adapt the existing test generation taasigr
testing AspectJ programs.

In the final step, we use the Java compiler [3] to compile the
exported test class. We do not use the Aspect] compiler teevea
the exported test class with the wrapper class, base clesspects,
because the weaving process can introduce unwanted woden co
into the test class.

41.2 Test Generation

In our previous work [26], we proposed Aspectra, a framework
for detecting redundant tests for AspectJ programs. Aspels-
tects a redundant subset of automatically generated tedtssting
three levels of units in AspectJ programs: advised mettautisce,
and intertype methods. In this work, Wrasp further expldres
to generate integration tests effectively for testing ttiegration of
these three levels of units in AspectJ programs.

When generating tests for advised methods, Wrasp enaldes th
existing test generation techniques to take into accoengffiect of
advice on the advised methods because the code under tagt (wr
per class) eventually invokes woven advice, even advicateel
to cal I join points. The existing test generation tools based on
concrete-state exploration, such as Java Pathfinder [PAngRos-
tra, can directly operate on the wrapper class produced tasjVr
For example, thélonNegat i veAr g advice has been woven in the
wrapper classt ackW apper , in particular in the call sites of the
three publicst ack methods. Although thsonNegat i veAr g ad-
vice does not directly alter the states oftaack object, when the
argument ofpush is a negative integer, the advice alters the con-
trol flow of the method execution by throwing an exceptionysth
changing the method execution’s effect on thewck object state.
Without using Wrasp, tools such as Java Pathfinder and Rzstra
not take into account the effect of thenNegat i veAr g advice
during state exploration.

When generating tests for advice, Wrasp proposes techsitque

public class StackWapper {
St ack s;
public StackWapper() {
s = new Stack();

}
public bool ean push(int i) {
return s.push(i);

}

public int pop() {
return s.pop();

}

public void increaseCount() {
Class cls = O ass. forName("Stack");
Met hod neth = cls. get Met hod("i ncreaseCount",
nmet h. i nvoke(s, null);

null);

}
}

Figure4: Thewrapper classfor St ack

adapt the existing test generation tools such as Rostra amd S
stra. Because a piece of advice often reads only a subset of th
base class’ fields, only these fields are relevant for affgctihe
behavior of the advice. We can use Rina&tdal.’s static analy-
sis [17] to determine which fields of the base class can belrgad
the advice. Then during the concrete-state explorationasftia,
we can project the whole concrete state of the base classen th
fields. With this state projection technique, Rostra can d&geb
guided to explore different inputs for the advice. For exemihe
PushCount advice reads only the intertype fietdunt . During
the concrete-state exploration of Rostra, we can consideobject
states to be equivalent for tRreashCount advice if these two states
have the same value ebunt (even if the stack elements in the
state are different). When focusing on testing flaghCount ad-
vice, Rostra can effectively generatesh’s inputs (receiver states
and arguments) whose executions eventually produce eliffén-
puts for thePushCount advice.

In order to achieve structural coverage for advice, Wrasp ex
tends Symstra to also apply symbolic execution on the aaade.
For example, thélonNegat i veAr g advice contains a conditional
((args[i] instanceof Integer) &&
(((Integer)args[i]).intValue() < 0)). After the sym-
bolic execution of the\onNegat i veAr g advice, Symstra can use
a constraint solver to generate both negative and non-segate-
gers for thepush method’s argument.

When generating tests for a public intertype method of a base
class, Wrasp treats the intertype method as a regular pulelicod
of the base class; in particular, Wrasp synthesizes a pulohp-
per method in the wrapper class for the intertype method laeidl t
generates tests to exercise the wrapper method. In addit®oan
also use Rinardt al.’s static analysis [17] to determine which in-
tertype fields or fields of the base class can be read by theyipée
method, and then focus on these read fields during state match
ing and exploration. For example, thacr easeCount intertype
methods defined in theushCount aspect reads only thunt in-
tertype field; therefore, we can explore and generate offfigrdit
values ofcount in the receiver object state foncr easeCount .

4.2 Generation of Unit Tests

The Wrasp framework for unit-test generation producesitest
puts to directly exercise advice in an aspect class in isolaWrasp
treats an aspect class as the class under test and advioeddefin
the aspect class as the methods under test. For examplewafte
use the AspectJ compiler [1, 11] to compile the aspect claisse
Figure 3, we can get the interfaces of the compiled aspesteta
shown in Figure 5. We do not list those helper methods such as
aspect O andhasAspect ; these helper methods are the same for
all aspect classes and it is not necessary to invoke them tekeng

cl ass NonNegativeArg {
public NonNegativeArg();
public void
aj c$bef or esNonNegat i veAr g$1$8d7380d7(Joi nPoi nt j);

}

cl ass NonNegative {
publi c NonNegative();
public void
aj c$bef or e$NonNegat i ve1d9be608f (St ack s);

}

aspect PushCount {
public PushCount ();
public static int
aj c$i nt er Met hod$PushCount $St ack$i ncr ement Count (St ack s);
public int
aj c$ar ound$PushCount $1$69ee3a63(St ack s, AroundC osure c);

}

Figure 5; The interfaces of the compiled aspect classes of
NonNegat i ve, NonNegat i veAr g, and PushCount

advice in isolation. In addition, we do not list a dispatchtineel for
the intertype methodncr easeCount and several dispatch meth-
ods for initializing, getting, setting the intertype fieddunt ; it is
not necessary to invoke these dispatch methods when testince
in isolation.

We feed the complied aspect classes to the existing testagene
tion tools such as Parasoft Jtest. Jtest then generatetesisitfor
the public methods in the compiled aspect classes. For deamp
one of the unit tests generated by Jtest forkheNegat i ve as-
pect class is as follows:

public void testNonNegativel() {
Stack t0 = new Stack();
NonNegative THI S = new NonNegati ve();
THI S. aj c$bef or esNonNegat i ve$1$d9be608f (t 0) ;

}

One of the unit tests generated by Jtest forriiiehCount aspect
class is as follows:

public void testPushCount1() {
Stack t0 = new Stack();
PushCount . aj c$i nt er Met hod$PushCount $St ack$i ncr ement Count (t 0) ;

}

However, Jtest is not able to generate meaningful testshéor t
bef or e advice method in thBonNegat i veAr g aspect or thar ound
advice method in theushCount aspect because the types of their
method arguments includei nPoi nt or Ar oundCl osur e. These
two classes belong to the AspectJ runtime environment asd Jt
cannot create appropriate objects for them. In future waorg,
plan to use automatically created mock objects [18] to sateuthe
method calls on these objects based on the execution hifoing
integration testing.

5. RELATED WORK

The Wrasp framework is complementary to Aspectra (proposed
in our previous work [26]), a framework for detecting redantl
tests for AspectJ programs. Aspectra operates on any setiefg
ated tests for AspectJ programs and reduces the size of tiee-ge
ated tests for inspection when specifications are not wrftieAs-
pectJ programs. Wrasp automatically generates tests foechs
programs, which can be minimized by Aspectra for inspection

Souteret al. [19] developed a test selection technique based on
concerns. A concern is the code associated with a partiowdar-
tenance task. An aspect in Aspect] programs can be seen as

concern. To reduce the space and time cost of running tests on
instrumented code, they proposed to instrument only thearos
for collecting runtime information. They also proposed étest or
prioritize tests for the selected concerns. In particuley selects
a test if the test covers a concern that has not been beerisexkrc
by previously selected tests. Zhetial. [30] also used the same
technique for selecting tests for an aspect. These twodbstton
approaches assume that there already exist a set of tesis fs-
pectd program (or just for the base classes in the Aspeagigm),
whereas Wrasp focuses on automatically generating tesis fs-
pectJ program during the unit and integration testing ob@ects
and base classes in the AspectJ program.

Xu et al. [27] presented a specification-based testing approach
for aspect-oriented programs. The approach creates aspstite
models by extending the existing FREE (Flattened Regularés«
sion) state model, which was originally proposed for testihject-
oriented programs. Based on the model, they developed the te
niques for testing aspect-oriented programs. The firstnigcie
transforms an aspectual state model to a transition tregamer-
ates tests based on the tree. The second techniques ctmsimdc
searches an aspect flow graph for achieving statement gevaral
branch coverage. Their work focuses on testing aspeattede
programs based on abstract state models, whereas Wrasg$ocu
mainly on automatically generating integration and urstséased
on implementations.

Alexanderet al. [2] developed a fault model for aspect-oriented
programming, including six types of faults that may occuaspect-
oriented systems. Their fault model provides useful guidan de-
veloping testing coverage tools for aspect-oriented uog; whereas
Wrasp proposes an automated approach for generatingdestsieve
structural coverage and object-state coverage.

Zhao [28, 29] proposed a data-flow-based unit testing approa
for aspect-oriented programs. For each aspect or classapthe
proach performs three levels of testing: intra-modulesrimhodule,
and intra-aspect or intra-class testing. His work focusediit
testing of aspect-oriented programs based on data flow,eaber
Wrasp focuses on automatically generating both unit arebmat
tion tests for AspectJ programs based on primarily objetest

Rinard et al. [17] proposed a classification system for aspect-
oriented programs and developed a static analysis to supper
tomatic classification. Their system characterizes theraations
between advice and advised methods based on field accesses. D
velopers can use the classification system and analysieutigte
their understanding of the aspect-oriented programs. pVuass
Rinardet al.’s static analysis to determine whether a piece of advice
reads one field in the aspect or base class. Based on thimafor
tion, Wrasp can focus on these read fields during state eatmar
for test generation and thus effectively explore differiaputs for
the advice.

6. CONCLUSION

We proposed Wrasp, a novel framework for automatically gen-
erating tests for AspectJ programs. For integration tgskiirasp
synthesizes a wrapper class for each base class under test. T
wrapper mechanism allows test generation tools to indjreser-
cise advice related toal | join points during test generation. At
the same time, the mechanism prevents the methods in getierat
test classes from being advised by unwanted advice. Wrasp al
adapts the existing test generation techniques for gengrests
for testing the integration of three types of units in Asgegto-
grams: pieces of advice, advised methods, and intertypkaust
For unit testing, Wrasp feeds compiled aspect classes texise
&g test generation tools and generates unit tests to bjireatrcise

advice. In future work, we plan to implement Wrasp and evalua
it on generating tests for a variety of AspectJ programs.

Acknowledgments

This work was supported in part by the National Science Foun-
dation under grant ITR 0086003 and the Japan Society for Pro- [1g]

motion of Science under Grand-in-Aid for Scientific ResbaIC)

(N0.15500027). We acknowledge support through the High De-

pendability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

7. REFERENCES

[1] Aspectd compiler 1.2, May 2004.
http://eclipse.org/aspectj/.

[2] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards
the systematic testing of aspect-oriented programs. Teahn
Report CS-4-105, Department of Computer Science,
Colorado State University, Fort Collins, Colorado, 2004.

[3] K. Arnold, J. Gosling, and D. Holmedhe Java
Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[4] B. Beizer.Software Testing Techniques. International
Thomson Computer Press, 1990.

[5] L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filteGommun. ACM,
44(10):51-57, 2001.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: autoetht
testing based on Java predicatesPioc. International
Symposium on Software Testing and Analysis, pages
123-133, 2002.

[7] U. Buy, A. Orso, and M. Pezze. Automated testing of
classes. IrProc. the International Symposium on Software
Testing and Analysis, pages 39—48. ACM Press, 2000.

[8] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Jaoftware: Practice and
Experience, 34:1025-1050, 2004.

[9] Foundations of Software Engineering, Microsoft Reshar
The AsmL test generator tool.
http://research. mcrosoft.com fse/asm/
doc/ AsniTester. htm .

[10] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state
machines. IrProc. International Symposium on Software
Testing and Analysis, pages 112-122, 2002.

E. Hilsdale and J. Hugunin. Advice weaving in Aspecty. |
Proc. 3rd International Conference on Aspect-Oriented
Software Devel opment, pages 26—35, 2004.

[12] JUnit, 2003 ht t p: // www. j uni t. org.

[13] S. Khurshid, C. S. Pasareanu, and W. Visser. Genedhlize
symbolic execution for model checking and testingPtoc.
9th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 553-568,
April 2003.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. IrProc. 11th European Conference on
Object-Oriented Programming, pages 220-242. 1997.

K. Lieberherr, D. Orleans, and J. Ovlinger. Aspeceated
programming with adaptive methodSommun. ACM,
44(10):39-41, 2001.

[11]

[14]

[15]

[16] Parasoft. Jtest manuals version 4.5. Online manuai] Ap
2003.ht t p: / / www. par asoft.com .

M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programBrado.
12th International Symposium on the Foundations of

Software Engineering, pages 147-158, 2004.

D. Saff and M. D. Ernst. Automatic mock object creatian f
test factoring. IrProc. the Workshop on Program Analysis

for Software Tools and Engineering (PASTE' 04), pages
49-51, June 2004.

A. L. Souter, D. Shepherd, and L. L. Pollock. Testinghwit
respect to concerns. Proc. International Conference on
Software Maintenance, page 54, 2003.

P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutitbn
degrees of separation: multi-dimensional separation of
concerns. IfProc. 21t International Conference on Software
Engineering, pages 107-119, 1999.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. IRroc. 15th |EEE International
Conference on Automated Software Engineering (ASE),
pages 3-12, 2000.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder.Rnoc. 2004 ACM

S GSOFT International Symposium on Software Testing and
Analysis, pages 97-107, 2004.

T. Xie, D. Marinov, and D. Notkin. Improving generatio
object-oriented test suites by avoiding redundant tests.
Technical Report UW-CSE-04-01-05, University of
Washington Department of Computer Science and
Engineering, Seattle, WA, Jan. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A frameworkrfo
detecting redundant object-oriented unit testdroc. 19th
IEEE International Conference on Automated Software
Engineering, pages 196-205, Sept. 2004.

T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. IfProc. the International Conference

on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2005), April 2005.

T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting
redundant unit tests for AspectJ programs. Technical Repor
UW-CSE-04-10-03, University of Washington Department of
Computer Science and Engineering, Seattle, WA, Oct. 2004.
D. Xu, W. Xu, and K. Nygard. A state-based approach to
testing aspect-oriented programs. Technical Report
NDSU-CS-TR04-XUO03, North Dakota State University
Computer Science Department, September 2004.

J. Zhao. Tool support for unit testing of aspect-orésht
software. InProc. OOPSLA 2002 Workshop on Tools for
Aspect-Oriented Software Development, Nov. 2002.

[29] J. Zhao. Data-flow-based unit testing of aspect-oeidnt
programs. IrProc. 27th |EEE International Computer
Software and Applications Conference, pages 188-197, Nov.
2003.

Y. Zhou, D. Richardson, and H. Ziv. Towards a practical
approach to test aspect-oriented softwardraoc. 2004
Workshop on Testing Component-based Systems (TECOS
2004), Net.ObjectiveDays, Sept. 2004.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequa@dCM Comput. Surv., 29(4):366-427,
1997.

[17]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[30]

[31]

