
Ctest4J: A Practical Configuration Testing Framework for Java

Shuai Wang
University of Illinois
Urbana-Champaign

Urbana, USA
swang516@illinois.edu

Xinyu Lian
University of Illinois
Urbana-Champaign

Urbana, USA
lian7@illinois.edu

Qingyu Li
University of Illinois
Urbana-Champaign

Urbana, USA
qingyul2@illinois.edu

Darko Marinov
University of Illinois
Urbana-Champaign

Urbana, USA
marinov@illinois.edu

Tianyin Xu
University of Illinois
Urbana-Champaign

Urbana, USA
tyxu@illinois.edu

ABSTRACT

We present Ctest4J, a practical con�guration testing framework for

Java projects. Con�guration testing is a recently proposed approach

for �nding both miscon�gurations and code bugs. Ctest4J addresses

the limitations of con�guration testing scripts from prior work,

including lack of parallel test execution, poor maintainability due

to external dependencies, limited integration with modern build

systems, and the need for manual instrumentation of con�guration

API. Ctest4J is a uni�ed framework to write, maintain, and execute

con�guration tests (Ctests) and integrates with multiple testing

frameworks (JUnit4, JUnit5, and TestNG) and build systems (Maven

and Gradle). With Ctest4J, Ctests can be maintained similarly to

regular unit tests. Ctest4J also provides a utility for automated

code instrumentation for common con�guration API. We evaluate

Ctest4J on 12 open-source projects. We show that Ctest4J e�ectively

enables con�guration testing for these projects and speeds up Ctest

execution by 3.4X compared to prior scripts. Ctest4J can be found

at https://github.com/xlab-uiuc/ctest4j.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Con�guration testing, Software testing, Software reliability

ACM Reference Format:

Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu. 2024.

Ctest4J: A Practical Con�guration Testing Framework for Java. In Compan-

ion Proceedings of the 32nd ACM International Conference on the Foundations

of Software Engineering (FSE Companion ’24), July 15–19, 2024, Porto de Gal-

inhas, Brazil. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3663529.3663799

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663799

1 INTRODUCTION

Con�guration testing [10, 14] is a recently proposed approach for

rigorously testing software con�gurations, similar to how software

code is tested today. The keymotivation is to test production system

con�gurations before deploying them. Con�guration testing con-

nects con�gurations to software tests so that con�guration changes

can be tested in the context of code a�ected by the changes. A

con�guration test (Ctest) is a test that takes as input a system con-

�guration and checks the con�guration with the code. In many

projects, con�gurations are key-value pairs that map con�guration

parameters to their values. Prior work [10] has shown that con�g-

uration testing outperforms previous approaches [1, 11, 16–18] for

detecting failure-inducing con�gurations, including sophisticated

miscon�gurations and valid con�gurations that trigger dormant

software bugs. Regression test selection [10, 12] and test case pri-

oritization [2] have been developed to make con�guration testing

more e�cient for continuous delivery and deployment.

However, despite the active research on con�guration testing

from several groups [2, 4, 6, 10, 12, 14], including con�guration

tests for fuzzing [4] and unsafe parameter detection [6], there is

no practical, systematic framework for con�guration testing. Prior

research developed ad hoc scripts [7], which are very limited and

de�cient for practical use cases—they do not support parallel test

execution, have poor maintainability due to external dependencies

(requiring a �le that speci�es the mapping between con�guration

parameters and the tests that use them), work only for JUnit4 and

Maven, and require manual instrumentation of the con�guration

API. Such de�cient support makes it harder to adopt con�guration

testing in practice and even hampers research. For example, all

prior papers [2, 4, 10, 12, 14] evaluated con�guration testing on a

�xed set of �ve or six open-source projects.

We present Ctest4J, a practical con�guration testing framework

for Java projects. Ctest4J provides new annotations so that develop-

ers can write and maintain Ctests similarly to regular unit tests. It

connects the con�guration values under test with the correspond-

ing Ctests. Ctest4J also provides automated code instrumentation

for common con�guration API. The instrumentation is required to

enable Ctests. Ctest4J supports the most popular Java-based test

frameworks (JUnit4, JUnit5, TestNG) and build systems (Maven,

Gradle). In sum, Ctest4J provides the following features:

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

562

https://creativecommons.org/licenses/by/4.0/
https://github.com/xlab-uiuc/ctest4j
https://doi.org/10.1145/3663529.3663799
https://doi.org/10.1145/3663529.3663799
https://doi.org/10.1145/3663529.3663799

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu

• Parallel test execution. Ctest4J supports running Ctests with

di�erent con�gurations in parallel, addressing the limitation of

sequential-only execution of prior Ctest scripts (due to a design

limitation of sharing static con�guration objects). Also, Ctest4J

incurs a low runtime overhead; a Ctest runs only ∼3% slower on

average than a regular unit test.

• Maintainability. Ctest4J provides source-code annotations to

make Ctests easy tomaintain. Ctest4J allows developers to specify

the mapping between Ctest and con�guration parameters as

annotations inside the test code, without creating a dependency

on separate, external �les. For backward compatibility, Ctest4J

supports original mapping �les for projects that use prior scripts.

• Automation. Con�guration API instrumentation is a necessary

step to enable Ctests. Ctest4J uses AspectJ to automate the instru-

mentation, thereby easing the adoption of con�guration testing

for existing projects. With our automation, enabling Ctests takes

only 20 lines of code on average across 12 Java projects.

Ctest4J is available at https://github.com/xlab-uiuc/ctest4j and re-

leased in the Maven Central Repository.

2 USAGE

We present a high-level overview of con�guration testing with

Ctest4J. More details are in the code documentation on GitHub.

2.1 Writing Ctests

Ctest4J provides two source-code annotations for developers to

mark Ctest classes and methods:

• @CtestClass marks that a class is a Ctest class;

• @Ctest marks that a method is a Ctest method;

These annotations specify the con�guration parameters of the cor-

responding Ctest(s) in a class or a method. Making the con�guration

parameter usage explicit (1) substantially aids debugging (as devel-

opers gain insights into which con�guration parameters are utilized

by a Ctest), (2) enhances the capabilities of test selection [10, 12] and

prioritization [2], and (3) enables more e�cient Ctest fuzzing [4].

Both annotations can specify con�guration parameters used

by the Ctest(s) as a list of parameters and a regular expression to

match the parameters. For backward compatibility with the original

Ctest scripts [7], @CtestClass can also specify a �le that contains

the mapping between con�guration parameters and Ctest methods.

Lists, regexes, and �les can be provided together, and Ctest4J unions

the mappings into one �nal mapping. Besides these annotations,

Ctest4J’s Ctest runner needs to be speci�ed within the Ctest class.

For example, Ctest4J’s CtestJUnitRunner is added through the usual

@RunWith annotation in JUnit4.

Figure 1 is a simpli�ed Ctest example from Hadoop YARN. We

annotate the existing class TestFSDownload with the Ctest4J’s run-

ner CtestJUnitRunner (line 1) and @CtestClass (line 2), and the

test method testDownload with @Ctest (lines 8-10). @CtestClass

speci�es the class-level con�guration parameter used by all the

Ctest methods in the class. The class-level con�guration param-

eters mostly come from the test setup and teardown executions.

In this example, the method getRecordFactory() (line 6) uses the

parameter yarn.ipc.record.factory.class, making it a class-level

con�guration parameter. @Ctest speci�es the method-level con-

�guration parameters used in the execution of the Ctest method

1 @RunWith(CtestJUnitRunner.class)

2 @CtestClass ({"yarn.ipc.record.factory.class"})

3 public class TestFSDownload {

4 private Configuration conf = new Configuration ();

5 static final RecordFactory recordFactory =

6 RecordFactoryProvider.getRecordFactory(null);

7

8 @Ctest(regex="fs.(client.resolve.remote.symlinks|" +

9 "permissions.umask -mode|local.block.size|" +

10 "AbstractFileSystem.file.impl)")

11 public void testDownload () {

12 // Create FileContext with parameters in @Ctest

13 FileContext files =

14 FileContext.getLocalFSFileContext(conf);

15 ...

16 // Start downloading

17 FSDownload fsd = new FSDownload(files , ...)

18 Path path = fsd.download(...);

19 ...

20 // Check whether the download is done

21 assertTrue(path.isDone ())

22 ... // Check other properties of the downloaded file

23 }

24 }

Figure 1: A Ctest in YARN with Ctest4J. The con�guration

parameters in the code snippet will be instantiated by values

from the con�guration under test (not shown in the �gure).

body. In this example, testDownload uses four method-level con-

�guration parameters, speci�ed for illustration through a regular

expression. These parameters are used by various methods, e.g.,

createFileSystem() method invoked by getLocalFSFileContext()

uses local.block.size. During Ctest execution, Ctest4J instantiates

every con�guration parameter used by each Ctest method with the

con�guration under test, e.g., a production con�guration.

2.2 Con�guration API Instrumentation

To enable Ctests in a Java project, developers need to instrument the

con�guration API with Ctest4J so that Ctest4J can instantiate Ctests

with the con�guration under test at runtime. Ctest4J also provides

APIs to track the usage of con�guration parameters during the

execution of Ctests; the tracking is important for debugging, main-

tenance of the input con�guration parameters for each Ctest, and

adequacy measurement (e.g., coverage of con�guration parameters

of a Ctest suite).

Ctest4J focuses on common con�guration API patterns in Java

projects, many of which use a uni�ed con�guration class with two

basic API abstractions, con�guration GET and SET APIs [5, 8–

10, 13, 15, 19, 20]. The GET APIs of the form “<T> get(String

parameter)” take a parameter name and return a value; SET APIs

of the form “void set(String parameter, <T> value)” set the

value of the given parameter with the input value. Con�gura-

tion APIs built on top of the common java.util.Properties and

org.apache.commons.configuration all follow such a pattern.

2.2.1 Instrumenting Configuration API. Without Ctest4J, all test

executions would use only the default con�guration provided with

the project. Ctest4J modi�es the execution so that tests run with the

con�guration under test (e.g., a production con�guration). Ctest4J

instruments the con�guration API with connectProdConfig, which

connects the con�guration under test to the con�guration ob-

jects used by the Ctests. The connectProdConfig method is a static

method that takes the con�guration SET API as input; typically,

563

https://github.com/xlab-uiuc/ctest4j

Ctest4J: A Practical Configuration Testing Framework for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

connectProdConfig is added to the constructor of the con�guration

class to initialize the con�guration object with the con�guration

under test. The following snippet shows how to instrument the

con�guration API of Apache Hadoop YARN.

1 public Configuration () {

2 this(true);

3 + Ctest4J.connectProdConfig(

4 + (name , value) -> set(name , (String) value));

5 }

For projects that do not have a uni�ed con�guration class where

Ctest4J can modify the SET API, Ctest4J supports a lazy instrumen-

tation mode that modi�es the con�guration GET API to use the

con�guration under test.

2.2.2 Tracking Configuration Parameters. Ctest4J also provides an

API (a static markParamAsUsed method) to track the usage of con�g-

uration parameter values during the execution of Ctests. Ctest4J

calls markParamAsUsed upon the invocation of a con�guration GET

API, as shown in the following snippet (from Hadoop).

1 public String get(String name) {

2 + Ctest4J.markParamAsUsed(name);

3 String [] names = handleDeprecation(deprecationContext.get

(), name);

4 String result = null;

5 for(String n : names) {

6 + Ctest4J.markParamAsUsed(n);

7 result = substituteVars(getProps ().getProperty(n));

8 }

9 return result;

10 }

For projects that have multiple di�erent con�guration GET APIs,

markParamAsUsed is expected to be placed for every API to ensure

the completeness of tracking.

Ctest4J provides an AspectJ [3] based utility to instrument the

con�guration API (by specifying the fully quali�ed name of the

APIs), if source-code changes are not preferred.

2.3 Running Ctests

Running a Ctest is similar to running a regular unit test. For example,

with Maven, Ctests can be run with Maven Sure�re (mvn test).

Ctest4J provides three modes to run Ctests:

• debug: run the Ctest with the default con�guration and check

whether all the required con�guration parameters are used dur-

ing the test execution. This mode helps in developing and debug-

ging Ctests;

• prod: run the Ctest with the con�guration under test;

• default: run the Ctest with the con�guration under test and

check whether all the required con�guration parameters are

used during the test execution.

Ctest4J supports running Ctests in parallel with di�erent con-

�guration �les. Ctest4J also supports input con�guration through

command-line arguments. If no con�guration �le or command-

line argument is speci�ed, Ctest4J runs the Ctest with the default

con�guration; in this case, a Ctest falls back into a regular unit test.

Ctest4J implements parameter-aware Ctest selection [10]. We

plan to develop advanced test selection algorithms such as uRTS [12]

and test case prioritization algorithms [2] in Ctest4J.

Annotation

Library

Parameter

Tracker

ConfUT

Connector

Ctest Runner

C
te

st
4

J

Ctest Source

Code

Mapping Files

(Optional)

Configuration

Under Test

Figure 2: Overview of Ctest4J.

3 IMPLEMENTATION

The current Ctest4J implementation has ∼5000 lines of Java code.

Ctest4J takes three inputs: (1) the Ctest code, (2) the con�guration

under test (ConfUT), and (3) optionally a mapping �le between

the parameters and the Ctest that uses them (the original Ctest

scripts [7] required such �les). Ctest4J processes the test annotations

(with explicit parameter list or the �le name) and instantiates the

execution of Ctests. Figure 2 shows the four main components of

Ctest4J. We next brie�y describe their implementations.

3.1 Annotation Library

The annotation library processes the annotations in the test code.

The annotations are conceptually similar to the @Test annotation for

regular unit tests. @CtestClass and @Ctest mark that the annotated

class or method, respectively, is a Ctest. As described in §2.1, both

annotations specify the con�guration parameters of the Ctest using

a list or a regex. To get a precise set of con�guration parameters

from a regex, Ctest4J does not accept patterns with match-any

operators ".*" or ".+", which could match too many parameters.

@CtestClass can also specify con�guration parameters from a

mapping �le in JSON that has two �elds: class-level parameters (a

list of con�guration parameters required by all Ctests in the class)

and method-level parameters (a map between Ctest method names

and con�guration parameters required by the method).

3.2 ConfUT Connector

The con�guration connector connects the ConfUT with Ctests, ef-

fectively to run each test with the con�guration under test (rather

than the default con�guration). The original Ctest scripts [7] im-

plemented the connector by writing the ConfUT to a dedicated

con�guration �le and changing the code for the initialization of the

con�guration object to read the dedicated �le and instantiate the

Ctest for execution. However, the dedicated �le was shared among

all Ctests, and Ctests could not run concurrently with di�erent con-

�gurations. As di�erent Ctests may be suitable for testing di�erent

scenarios, some projects (e.g., HDFS) have various con�guration

�les (e.g., in test/resources) for di�erent tests.

Ctest4J’s con�guration connector directly writes the ConfUT

into the con�guration object via the con�guration SET APIs, with

no dedicated con�guration �le. For each Ctest run, it creates a map

with each con�guration parameter and its value from the ConfUT.

To create con�guration objects during Ctests run, the instrumented

con�guration API invokes the Ctest4J’s connectProdConfigmethod.

The connector uses the SET API to instantiate each con�guration

parameter with the corresponding value. The design enables Ctest4J

to support parallel execution of Ctests with distinct con�gurations.

564

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu

3.3 Parameter Tracker

The parameter tracker monitors the usage of con�guration parame-

ters during Ctests runs. For a given Ctest class, the tracker manages

two levels of parameter usage list: (1) class-level list records the

con�guration parameters used by all Ctest methods within the class,

including the Before and After methods; and (2) method-level list

records the con�guration parameters used by each Ctest method.

Invocations of the instrumented con�guration GET APIs call the

tracker. To record the parameter in the class- and method-level

lists, the tracker distinguishes whether the test execution is in the

shared, class-level setup and teardown (BeforeClass, Before, After,

and AfterClass methods) or in the method-level body execution.

3.4 Ctest Runner

The Ctest4J runner launches the Ctests using the ConfUT connector

and the parameter tracker. For each test class, the runner �rst checks

if the class is annotatedwith @CtestClass. If not, the runner executes

the test as a regular unit test but issues a warning about the missing

Ctest annotation. Otherwise, the Ctest4J runner executes the test

class as a Ctest and proceeds to extract the required con�gurations

for both the Ctest class and its methods from the annotations.

For each Ctest class, the runner creates a new connector and

a new tracker. The isolation is important, as it ensures that the

execution of one Ctest class does not interfere with the others.

The runner fails Ctests under any of the following conditions:

• missing parameter usage: the Ctest fails if the tracker identi�es a

required parameter that was not used during the Ctest run;

• exceptions or errors: the Ctest fails if it encounters an exception

or error during execution (as for a regular unit test);

• timeout: the Ctest fails if its execution fails to �nish within a

speci�ed timeout (as for a regular unit test).

3.5 Integration with Testing Frameworks

We integrated Ctest4J with JUnit4, JUnit5, and TestNG. To support

JUnit4, we implement the Ctest runner as a custom JUnit4 run-

ner that extends the BlockJUnit4ClassRunner class and implements

the CtestRunner interface. We integrated Ctest4J with JUnit5 as a

JUnit5 extension and with TestNG as a TestNG listener. To inte-

grate with a new testing framework, one needs to implement the

CtestRunner interface, which involves invoking the connector and

tracker methods in the target framework’s runner or listener.

4 EVALUATION

Weevaluate Ctest4J using 12 open-source Java projects, including all

�ve projects used in prior Ctest work [2, 4, 10, 12] (Alluxio, HBase,

HCommon, HDFS, ZooKeeper) and seven new projects (Figure 3).

These projects use di�erent testing frameworks (eight JUnit4, three

JUnit5, one TestNG) and di�erent build systems (ten Maven, two

Gradle). We report our experience of enabling Ctests using Ctest4J

for the 12 projects and the performance of Ctest4J.

4.1 Enabling Ctests

We enabled Ctests for 12 mature, widely used Java projects using

Ctest4J. The main e�ort is to understand each project’s con�gura-

tion API to instrument the con�guration API (see §2.2). It took us

35

40

45
VanillaRunner
Ctest4J
OldScripts

Allu
xio

Cam
el

Flin
k

HBase

HCom
mon

HDFS
JM

ete
r

Map
Red

uc
e

PalD
B

YARN

Zep
pe

lin

Zoo
Keep

er
0.0

2.5

5.0

N
or

m
al

iz
ed

 T
im

e

Figure 3: Execution time of running Ctests with Ctest4J, the

Ctest scripts [7] (OldScripts), and the vanilla runner such as

JUnit4 (VanillaRunner), normalized by VanillaRunner.

on average around one hour to �nd the correct con�guration API

for each project. We were able to use our Ctest4J’s AspectJ utility

to instrument the con�guration API. Note that no paper author

is a developer on any evaluated project, so we expect developers

more familiar with the con�guration API of their projects to add

Ctest4J’s instrumentation even faster. With the instrumentation in

place, we transform existing tests that use con�guration parameters

into Ctests following the original approach [10]. We write scripts

to automatically add the Ctest4J annotations in the Ctest code.

4.2 Performance

We measure the Ctest running time using Ctest4J and compare it

with the original Ctest scripts [7]. We also measure the overhead of

Ctest4J by comparing the running time with and without Ctest4J

(using default con�guration). Note that we only use the original

scripts to run ten projects because the scripts do not support Gradle.

We use the default parallelism con�gured in the projects. Ctest4J

supports parallel execution, not requiring tests to run sequentially.

Figure 3 shows that Ctest4J can speed up the Ctest execution by

up to 41.3X times (3.4X on average), compared to the original Ctest

scripts. The speedup mostly comes from the parallel execution

of Ctest4J, while the original scripts need to run Ctests one by

one. Therefore, for projects that con�gure high parallelism for test

execution (e.g., Alluxio, Camel, and Flink), the speedup is signi�cant;

for projects that run tests sequentially, the di�erence is smaller.

The overhead of Ctest4J is negligible. It mainly comes from

the con�guration usage tracking and additional checking logic in

Ctest4J that checks whether all the required parameters are used

during test execution. In Figure 3, the execution time of Ctest4J

compared with VanillaRunner is up to 1.27X and 1.03X on average.

5 CONCLUSION

We present Ctest4J, a practical con�guration testing framework

for Java. Ctest4J can help Java projects enable con�guration test-

ing with modest manual e�ort and low runtime overhead. Ctest4J

provides direct support for writing and maintaining con�guration

tests. We aim to broaden con�guration testing research and reduce

the barrier to adopting con�guration testing in practice.

Acknowledgements. We thank the reviewers for their useful com-

ments. This workwas supported in part by NSF grants CCF-1763788,

CCF-1956374, and CNS-2145295. We acknowledge support from

Meta, Microsoft, and Qualcomm.

565

Ctest4J: A Practical Configuration Testing Framework for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.

2020. Understanding and Discovering Software Con�guration Dependencies in
Cloud and Datacenter Systems. In Proceedings of the 2020 ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20). https://doi.org/10.1145/3368089.3409727

[2] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-
Case Prioritization for Con�guration Testing. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’21).
https://doi.org/10.1145/3460319.3464810

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP’01).

[4] Junqiang Li, Senyi Li, Keyao Li, Falin Luo, Hongfang Yu, Shanshan Li, and Xiang
Li. 2024. ECFuzz: E�ective Con�guration Fuzzing for Large-Scale Systems. In
Proceedings of the 46th International Conference on Software Engineering (ICSE’24).
https://doi.org/10.1145/3597503.3623315

[5] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking Load-time Con-
�guration Options. In Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE’14). https://doi.org/10.1109/TSE.2017.
2756048

[6] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang. 2021. Finding
heterogeneous-unsafe con�guration parameters in cloud systems. In Proceed-
ings of the Sixteenth European Conference on Computer Systems (EuroSys’21).
https://doi.org/10.1145/3447786.3456250

[7] OpenCtest. 2020. Research Artifact for “Testing Con�guration Changes in Con-
text to Prevent Production Failures”. https://github.com/xlab-uiuc/openctest.

[8] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Con�gura-
tion Options. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11). https://doi.org/10.1145/1985793.1985812

[9] Mohammed Sayagh, Zhen Dong, Artur Andrzejak, and Bram Adams. 2017. Does
the Choice of Con�guration Framework Matter for Developers? Empirical Study
on 11 Java Con�guration Frameworks. In 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM’17). https://doi.
org/10.1109/SCAM.2017.25

[10] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. 2020. Testing Con�guration Changes in Context to Prevent
Production Failures. In Proceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation (OSDI’20).

[11] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Con�guration Management at Facebook. In Proceedings of the 25th ACM Sympo-
sium on Operating System Principles (SOSP’15). https://doi.org/10.1145/2815400.
2815401

[12] Shuai Wang, Xinyu Lian, Darko Marinov, and Tianyin Xu. 2023. Test Selection
for Uni�ed Regression Testing. In Proceedings of the 45th International Conference
on Software Engineering (ICSE’23). https://doi.org/10.1109/ICSE48619.2023.00145

[13] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Con�guration Errors to Reduce
Failure Damage. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16).

[14] Tianyin Xu and Owolabi Legunsen. 2019. Con�guration Testing: Testing Con-
�guration Values Together with Code Logic. CoRR abs/1905.12195 (July 2019).
https://doi.org/10.48550/arXiv.1905.12195

[15] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Mis-
con�gurations. In Proceedings of the 24th ACM Symposium on Operating System
Principles (SOSP’13). https://doi.org/10.1145/2517349.2522727

[16] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con-
�guration Errors: A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).
https://doi.org/10.1145/2791577

[17] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection of
SilentMiscon�gurationswith Deep Interaction Analysis. In Proceedings of the 36th
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’21). https://doi.org/10.1145/3485517

[18] Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Miscon�guration Detection. In Proceedings of the
19th International Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS’14). https://doi.org/10.1145/2644865.2541983

[19] Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Con-
�guration Errors. In Proceedings of the 35th International Conference on Software
Engineering (ICSE’13). https://doi.org/10.1109/ICSE.2013.6606577

[20] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and
Tianyin Xu. 2021. An Evolutionary Study of Con�guration Design and Imple-
mentation in Cloud Systems. In Proceedings of the 43rd International Conference
on Software Engineering (ICSE’21). https://doi.org/10.1109/ICSE43902.2021.00029

Received 2024-01-29; accepted 2024-04-15

566

https://doi.org/10.1145/3368089.3409727
https://doi.org/10.1145/3460319.3464810
https://doi.org/10.1145/3597503.3623315
https://doi.org/10.1109/TSE.2017.2756048
https://doi.org/10.1109/TSE.2017.2756048
https://doi.org/10.1145/3447786.3456250
https://github.com/xlab-uiuc/openctest
https://doi.org/10.1145/1985793.1985812
https://doi.org/10.1109/SCAM.2017.25
https://doi.org/10.1109/SCAM.2017.25
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1109/ICSE48619.2023.00145
https://doi.org/10.48550/arXiv.1905.12195
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2791577
https://doi.org/10.1145/3485517
https://doi.org/10.1145/2644865.2541983
https://doi.org/10.1109/ICSE.2013.6606577
https://doi.org/10.1109/ICSE43902.2021.00029

	Abstract
	1 Introduction
	2 Usage
	2.1 Writing Ctests
	2.2 Configuration API Instrumentation
	2.3 Running Ctests

	3 Implementation
	3.1 Annotation Library
	3.2 ConfUT Connector
	3.3 Parameter Tracker
	3.4 Ctest Runner
	3.5 Integration with Testing Frameworks

	4 Evaluation
	4.1 Enabling Ctests
	4.2 Performance

	5 Conclusion
	References

