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Abstract. Flaky tests can seemingly nondeterministically pass or fail
for the same code under test. Flaky tests are detrimental to regression
testing because tests that pass before code changes and fail after code
changes do not reliably indicate problems in code changes. An important
category of flaky tests is order-dependent tests that pass or fail based
on the order of tests in the test suite. Prior work has considered the
problem of counting test orders that pass or fail, given relationships
of tests within a test suite. However, prior work has not addressed the
most general case of these relationships. This paper shows how to encode
the problem of counting test orders in the Alloy modeling language and
how to use propositional model counters to obtain the count for test
orders. We illustrate that Alloy makes it easy to handle even the most
general case. The results show that this problem produces challenging
propositional formulas for the state-of-the-art model counters.

1 Introduction
Flaky tests [17] can seemingly nondeterministically pass or fail for the same code
under test. They are detrimental to regression testing because tests that pass
before code changes and fail after code changes do not reliably indicate problems
in code changes. For example, Harman and O’Hearn point out problems of flaky
tests at Facebook [6], and several other companies point out similar problems,
including Apple [12], Google [4, 18,24], Huawei [10], and Microsoft [7, 8, 14,15].

An important category of flaky tests is order-dependent tests that pass or
fail based on the order of tests in the test suite. More specifically, the tests
deterministicaly pass in some test orders and deterministically fail in other test
orders. Before establishing that the tests depend just on the order, the developers
may view them as nondeterministically passing or failing in various runs. While
running tests in a random order is not the default for most test frameworks, it
can be used to find order-dependent tests [5, 16].

Shi et al. [19] have categorized several roles for order-dependent tests. Each
order-dependent test itself can be either a victim, which passes when run by itself
but fails when run after some other tests in the test suite, or a brittle, which
fails when run by itself but passes when run after some other test in the test
suite. Each victim test fails when run after (not necessarily immediately after)
a polluter test, unless a cleaner test runs between the polluter and the victim.



Each brittle test passes when run after (not necessarily immediately after) a
state-setter test. We focus on victim tests, because the analysis for brittle tests
comes out as a special case.

Wei et al. [22] have recently considered the problem of counting the num-
ber of test orders for which a victim fails. This problem is important because
it allows computing the flake rate, i.e., the probability that a test fails if the
test order is a uniformly sampled permutation of the test suite. In turn, the
flake rate allows researchers to compare various algorithms for detecting order-
dependent tests [22]. Wei et al. [22] have derived analytical formulas for some
cases of victims, namely when all polluters have the same set of cleaners, but
have not addressed the most general case, namely when two or more polluters
have different sets of cleaners.

We show how to encode the problem of counting test orders in the Alloy
modeling language [9], and we use propositional model counters [13,20] to count
the test orders. Alloy has been used for many software analysis and testing
tasks [3, 11], and model counters have seen wide applications in various do-
mains [1, 2]. The Alloy toolset automatically translates the Alloy models into
propositional formulas that are fed into model counters to solve the counting
problems. Yang et al. [23] have presented AlloyMC that connects Alloy with
model counters. However, no prior work has used Alloy to count test orders.

We illustrate how Alloy makes it easy to handle even the most general case
of victims with polluters that may have different cleaners. We show a general
skeleton model to encode the problem of counting test orders; the skeleton can
be instantiated with the specific sets of polluters and cleaners. To evaluate cor-
rectness and scalability of our approach, we use 24 models as our benchmarks.
The benchmarks consider a real scenario from the flaky-test dataset published
by Wei et al. [22] with two polluters where one has a subset of cleaners of the
other. We instantiate our skeleton with an increasing number of cleaners.

We choose Alloy to translate the test-order problem into SAT formula, be-
cause the Alloy analyzer uses the highly optimized constraint-solver Kodkod [21],
which efficiently translates Alloy models into SAT formulas. The SAT formulas
can be counted using any off-the-shelf model counters. We apply state-of-the-art
model counters for both exact counting (ProjMC [13]) and approximate counting
(ApproxMC4 [20]).

The results show that the problem of counting test orders provides challeng-
ing propositional formulas for model counters. In addition, we found that the
exact counter generally runs faster than the approximate counter for all our
non-trivial benchmarks, which is a surprising result because it is unusual that
an exact model counter outperforms an approximate model counter [20].

In summary, this paper makes the following contributions:

– Encoding: We show how to encode the problem of test orders in Alloy.
– Evaluation:We evaluate our encoding on a number of challenging problems.

The initial results are promising but point out to scalability issues.
– Challenges: We obtain a number of interesting and challenging problems

for propositional model counters.



1. open util/ordering[Test]

2. abstract sig Test {}
3. one sig Victim extends Test {}
4. abstract sig Cleaner extends Test {}
5. abstract sig Polluter extends Test { cleaners: set Cleaner }
6. fact { Polluter.cleaners = Cleaner }
7. pred Pollutes[p: Polluter] {
8. p in prevs[Victim]
9. and no p.cleaners & prevs[Victim] & nexts[p] }
10. pred Fail[] {
11. some p: Polluter | Pollutes[p]
12. and no p’: nexts[p] & prevs[Victim] & Polluter | Pollutes[p’] }
13. pred Pass[] {
14. !Fail[] }
15. pred Pass2[] {
16. all p: Polluter & prevs[Victim] |
17. some p.cleaners & prevs[Victim] & nexts[p] }

18. one sig c_1, c_2, c_3 extends Cleaner {}
19. one sig p_1, p_2 extends Polluter {}
20. fact Matrix {
21. p_1.cleaners = c_1 + c_2
22. p_2.cleaners = c_1 + c_2 + c_3 }

23. run Fail
24. run Pass
25. run Pass2

Fig. 1: An example of modeling flaky test orders in Alloy

2 Modeling Flaky Test Orders Using Alloy

We illustrate our approach for modeling flaky test orders in Alloy using an ex-
ample. Through the example we also introduce the aspects of the Alloy language
required to understand the modeling. Figure 1 shows an example Alloy model
which encodes the problem of counting test orders.

We order of tests in a test suite using the Alloy library util/ordering, which
defines a linear order (line 1). The signature (sig) Test declares a set of atoms
that represent tests (line 2). The set of tests is partitioned (using keyword
extends) into three subsets: a singleton (one) set for the victim (line 3), a set of
cleaners (line 4), and a set of polluters (line 5). We do not model neutral tests,
which have no impact on the victim, because their presence does not affect the
flake rate [22]. The field cleaners in sig Polluter introduces a binary relation
cleaners: Polluter x Cleaner to represent the matrix that relate polluters to
cleaners (line 5). A fact introduces a constraint that must be satisfied in all mod-
els; the stated fact uses relational composition (‘.’) to require that the relational



image of Polluter under the relation cleaners equals the set of all cleaners, i.e.,
models have no extraneous cleaners (line 6).

A predicate (pred) introduces a parameterized formula that can be invoked
elsewhere. The predicate Pollutes enforces two constraints on its parameter p
that is a polluter (lines 7-9). One, p appears before the victim in the test order;
prevs[i] (likewise, nexts[i]) is a library function that represents the set of atoms
in the linear order before (likewise, after) i, and in is the subset operator. Two,
no cleaner for p is between p and the victim; the quantifier no is the negation of
existential quantifier some, and ‘&’ is set intersection.

The predicate Fail defines the failing test order using the existential quan-
tification: there is some atom in the set of polluters such that it pollutes (lines
10-12); in quantified formulas, ‘|’ separates variable bounding from the subfor-
mula using the variable. The additional constraint (line 12) requires that p be
the last such test before the victim, which rules out duplicate solutions where
the difference is not based on the test order but based on which polluter is a
witness to failure. (More formally, this constraint ignores from the model the
new variable arising from Skolemization.) The predicate Pass defines the passing
test order as the negation of the constraints for failing test order (lines 13-14).
We also evaluate the predicate Pass2 that defines another encoding for the pass-
ing test order, stating more directly that all polluters before the victim have a
cleaner between the polluter and the victim; we expect this encoding to enable
faster model counting.

The test suites in a general model contain 1 victim, n polluters, and k clean-
ers. Figure 1 (lines 18-22) shows one example containing 2 polluters and 3 clean-
ers. The Matrix (fact) states the cleaners for each polluter. In this example,
polluter p_1 has two cleaners c_1 and c_2, and polluter p_2 has three cleaners
c_1, c_2, and c_3. We can change the number of polluters and cleaners sim-
ply by changing the declarations in lines 18-19, and change the relations be-
tween polluters and cleaners by changing the Matrix. The run command (lines
23-25) defines the constraint-solving problem, which is to solve the predicate
Fail/Pass/Pass2 subject to all applicable constraints on the sets and relations
declared in the Alloy model. Each model represents one test order, and counting
the number of models thus counts the number of test orders.

3 Experimental Evaluation

18. one sig c_1, c_2, ..., c_k extends Cleaner {}
19. one sig p_1, p_2 extends Polluter {}
20. fact Matrix {
21. p_1.cleaners = c_1 + c_2 + ... + c_(k/2)
22. p_2.cleaners = c_1 + c_2 + ... + c_k }

Fig. 2: The template for our benchmark generation



Table 1: Counting results of our benchmarks (‘-’ denotes timeout)

Benchmarks ProjMC ApproxMC

time count time count error (%)

k=1, Fail 0.01 15 0.00 15 0.00

k=2, Fail 0.02 56 0.01 56 0.00

k=3, Fail 0.09 270 0.21 260 3.85

k=4, Fail 0.87 1800 1.22 1856 3.11

k=5, Fail 6.79 12096 15.27 13056 7.94

k=6, Fail 93.21 104832 204.67 110592 5.49

k=7, Fail 937.31 907200 1040.32 884736 2.54

k=1, Pass 0.01 9 0.00 9 0.00

k=2, Pass 0.02 64 0.01 64 0.00

k=3, Pass 0.13 450 0.45 496 10.22

k=4, Pass 1.23 3240 5.21 3456 6.67

k=5, Pass 13.71 28224 72.80 31744 12.47

k=6, Pass 256.93 258048 547.60 278528 7.94

k=7, Pass 3197.09 2721600 >5000 - -

k=1, Pass2 0.01 9 0.00 9 0.00

k=2, Pass2 0.02 64 0.01 64 0.00

k=3, Pass2 0.14 450 0.44 496 10.22

k=4, Pass2 1.22 3240 4.74 3456 6.67

k=5, Pass2 12.33 28224 80.05 31744 12.47

k=6, Pass2 217.80 258048 555.24 278528 7.94

k=7, Pass2 2905.76 2721600 4700.48 2359296 15.36

3.1 Setup

Model counters. We study how both exact model counting and approximate
model counting perform on the generated propositional formulas. We apply Pro-
jMC [13], which is the state-of-the-art exact model counter, and ApproxMC4 [20],
which is the state-of-the-art approximate model counter.
Benchmarks. As our benchmarks, we want to generate propositional formulas
for Fail, Pass, and Pass2 predicates introduced in the above Alloy model (Fig-
ure 1) with various test combinations. To do so, we replace lines 18-22 of our
Alloy model with a simple template shown in Figure 2. The template introduces
2 polluters and k cleaners: the first polluter has half of all cleaners as its cleaners,



and the second polluter has all the cleaners as its cleaners. In our experiments,
we range k from 1 to 8, generating 8 propositional formulas for each predicate.
In total, we generate 24 benchmarks for our evaluation. We choose this template
because it resembles a case in the real-world flaky-test dataset by Wei et al. [22].
Metrics. The two key metrics we use in our evaluation are the model counts
and the actual wall time to compute them. In line with ApproxMC, we report
the error rate of the approximate model counting as max(approxexact ,

exact
approx ) − 1,

based on multiplicative guarantees. We use timeout of 5000sec, as commonly
done in work on model counting [20].
Platform. All the experiments are conducted on a machine with Intel Core
i7-8700k CPU (12 logical cores in total) and 32-GB RAM.

3.2 Results

We apply both model counters on all the generated propositional formulas (with
k ranging from 1 to 8) for all the three predicates (i.e., Fail, Pass, and Pass2).
Our experimental results show that the limit of ProjMC for all three predicates
is k = 7; the limit of ApproxMC for Fail and Pass2 is k = 7 and for Pass is k = 6.
Thus, the propositional formulas generated with our Alloy model are generally
difficult, providing a challenging dataset for future work on model counters.
For many other domains, model counters can count orders of magnitude more
models [20], so the counting is not limited simply by the number of models.

Table 1 shows the detailed results of the benchmarks encoding all the three
predicates with k up to 7. Our results provide a way to sanity check the cor-
rectness of our proposed Alloy model: the exact counts of Pass/Pass2 should
be the same, and the sum of the exact count of Fail and the exact count of
Pass/Pass2 should be (k + 3)!, the total number of permutations of all the tests
(i.e., k cleaners, 2 polluters, and 1 victim). With the exact counts reported by
ProjMC, we confirm that our proposed model passes the sanity check. We also
manually check that correct models (not just count) are generated for k = 1.

Moreover, the results show that ProjMC generally runs faster than Ap-
proxMC for all the non-trivial benchmarks (k ≥ 3), which is quite surprising.
It is unusual that an exact model counter outperforms an approximate model
counter. Hence, our non-trivial benchmarks pose additional value for model-
counting community. Our hypothesis is that SAT formulas for counting test
orders offer few opportunities for optimization, not favoring the advanced steps
performed by the approximate model counters such as ApproxMC. We also find
similar results in our initial experiments using a direct SAT encoding, confirming
that the interesting results are not simply due to the encoding done by Alloy.

Besides, we can also observe that ApproxMC sometimes over-approximates
and sometimes under-approximates, with the error rate ranging from 0.00% to
15.36%; interestingly, ApproxMC approximates with lower error for the Fail
predicate than for the Pass/Pass2 predicates. Lastly, the results show that the
Pass predicate is generally harder to solve than the Pass2 predicate for both
counters. Therefore, we confirm that different encoding for the same problem
can result in different counting efficiency.



4 Conclusions
This paper presents a general way of encoding the problem of counting flaky test
orders using the Alloy modeling language. We illustrate how Alloy makes it easy
to handle even the most general case of victims with polluters that have differ-
ent cleaners. We provide a general skeleton Alloy model that can be instantiated
with the specific sets of polluters and cleaners. To evaluate our encoding, we
generate 24 problems of different sizes. The results show that our Alloy encod-
ing provides interesting and challenging propositional formulas that could help
advance development of the state-of-the-art model counters.

Our future work is to evaluate more encodings of passing and failing test
orders to try to improve scalability of the approach. We hope that we can push
the approach to k = 10. Such values would cover many real cases [22] and also
provide inspiration to develop analytical formulas for the number of test orders.
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