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Abstract. Container classes such as lists, sets, or maps are elementary data struc-
tures common to many programming languages. Since they are a part of stan-
dard libraries, they are important to test, which led to research on advanced
testing techniques targeting such containers and research on comparing testing
techniques using such containers. However, these techniques have not been thor-
oughly compared to simpler techniques such as random testing. We present the
results of a larger case study in which we compare random testing with shape ab-
straction, a systematic technique that showed the best results in a previous study.
Our experiments show that random testing is about as effective as shape abstrac-
tion for testing these containers, which raises the question whether containers are
well suited as a benchmark for comparing advanced testing techniques.

1 Introduction

Automation of test generation is an important and still open issue, regularly leading
to new techniques and refinements of existing techniques. The empirical evidence on
research in this area often focuses on container classes [4-7,10,12,14,17,19,22,23,26,
27,29-31,33,34]—containers are an important part of many standard libraries, and bugs
in these containers could significantly affect applications, so directing testing efforts
to these containers is worthwhile. Testing containers is not only important but also
challenging to achieve with some advanced testing technique such as those based on
symbolic execution [30].

Automating testing for containers is convenient because they usually do not in-
teract with the environment and can be tested without construction of complex input
data [21]. Any results achieved on containers for one language easily carry over to
other languages, as the data structures are generic and implemented for many different
languages. However, precisely these aspects of containers also mean that simple tech-
niques such as random testing could be able to achieve good results. Unfortunately, the
literature offers little evidence on how more advanced techniques compare to random
testing. In fact, excluding comparisons with search algorithms, we are aware of only one
study that compared random testing to systematic techniques, by Visser, Pasareanu, and
Pelanek [30]; we will refer to this study as the VPP study.



The VPP study proposed several advanced techniques for test input generation for
Java container classes and compared these techniques against one another and with ran-
dom testing on four container classes. The comparison metrics were basic block cover-
age and a simplified version of predicate coverage [11] that measures how many combi-
nations of program predicates are covered (which differs from the traditional condition
or MCDC coverages [3]). The results showed that among the advanced techniques the
best was shape abstraction (described in detail in Section 4.2). The results in the VPP
study also showed that shape abstraction was the same as random testing for basic block
coverage but even better than random testing for predicate coverage.

In this paper, we perform a larger set of experiments to compare random testing and
shape abstraction, which remains the best technique in systematic test generation for
containers. Our study substantially extends on VPP in several important aspects:

Number of containers: We use a total of /3 different container classes in our eval-
uation, four from VPP and nine more that were used previously in various other
studies [17,25].

Types of containers: We consider containers implemented with both pointer-based,
linked structures and array-based structures, whereas VPP (and several other stud-
ies) used only containers implemented with pointer-based structures.

Metrics: We use mutation score [3], in addition to predicate coverage, for compari-
son of techniques. To the best of our knowledge, this is the first study that relates
predicate coverage and mutation scores. We also measure predicate coverage more
thoroughly than the VPP study which considered only a few manually selected
program points whereas we use a semi automated tool to consider all branches. To
make it easier for other researchers to experiment with predicate coverage, we made
our instrumented code publicly available at http://mir.cs.illinois.edu/coverage.

Statistical Analysis: We perform a rigorous statistical analysis of the results, as op-
posed to VPP which had no statistical analysis.

Results: The experiments show that although random testing is much faster than shape
abstraction, random testing still achieved comparable predicate coverage and mu-
tation scores to those achieved by shape abstraction. Specifically, random testing
was better for four containers, shape abstraction was better for five containers, and
the results were inconclusive for four containers. In contrast, the VPP study found
shape abstraction better than or equal to random testing for all four containers con-
sidered. Our experiments also raise the concern that containers should not be used
as a de facto benchmark for comparing advanced testing techniques because ran-
dom testing can work very well for containers.

Bugs: While the goal of our study was to compare random testing and shape abstrac-
tion but not necessarily look for bugs, we still found three real bugs in two contain-
ers used in previous studies [17,25]. All three bugs were found by random testing,
were missed by the advanced techniques used in previous studies, and were con-
firmed by the original authors of the respective container code.

One relevant aspect in which our study evaluates less than the VPP study is that we
test only two basic methods/operations for each container (namely, add and remove),
whereas the VPP study tested a larger number of methods/operations for two of their
four containers.



Table 1. Sample recent papers that use containers among subjects in the case studies.

Authors Year Reference #Subjects #Containers %Containers
Tonella 2004 [27] 6 5 83%
Visser et al. 2004 [29] 1 1 100%
Xie et al. 2004 [33] 11 9 81%
Xie et al. 2005 [34] 7 7 100%
Visser et al. 2006 [30] 4 4 100%
Wappler and Wegener 2006 [31] 4 4 100%
d’ Amorim et al. 2006 [14] 16 12 75%
Inkumsah and Xie 2008 [19] 13 10 T77%
Arcuri and Yao 2008 [10] 7 7 100%
Andrews ef al. 2008 [4] 2 1 50%
Arcuri 2009 [6] 1 1 100%
Ribeiro et al. 2009 [22] 2 2 100%
Ribeiro et al. 2010 [23] 2 2 100%
Baresi et al. 2010 [12] 15 9 60%
Arcuri 2010 [7] 6 6 100%
Andrews ef al. 2010 [5] 34 34 100%
Staats and Pasareanu 2010 [26] 6 4 66%
Galeotti et al. 2010 [17] 6 6 100%

2 Related Work

A number of studies compared advanced techniques for test generation or test selection
with random testing [14—16,18,32], but these studies did not provide conclusive answers
either way (sometimes random testing looked better and sometimes worse than more
advanced techniques), and they did not focus on containers. Several recent techniques
use random generation for object-oriented unit tests [1, 13,21] but target shallower ex-
ploration of larger codebases and can generate complex test data inputs, while testing
containers focuses on deeper exploration of smaller codebases and typically requires
only simple data inputs. In this paper we focus on test generation for containers.

While clearly not all testing studies use only containers for evaluation [21], contain-
ers are still widely used in many recent studies on testing. Table 1 shows a sample of
18 papers that either propose techniques specifically for testing containers or use con-
tainers as subject code to evaluate new or existing testing techniques. As can be seen,
containers are a large percentage of subjects used for evaluations, even when the number
of subjects is not very high. Our evaluation uses 13 containers. While several of these
studies evaluate effectiveness of random testing in various scenarios [5-7,10,14,30,33],
only the VPP study [30] directly compares random testing and advanced systematic
techniques (not based on search). In terms of metrics used, branch coverage is the most
represented. The only exceptions are predicate coverage used in the VPP study [30],
statement coverage [5], MCDC [26], and an unspecified “structural coverage” [22,23].
We use not only predicate coverage, which subsumes branch coverage, but also muta-
tion score. Only a few of these studies use statistical analyses [5—7, 10]. We also present
a statistical analysis of our experimental results.



public class TreeSet {
int size;
TreeSetEntry root;

public class TreeSetTest {
public void test1() { // length 1
TreeSet s = new TreeSet();

public TreeSet() { ... } s.add(3);

public boolean add(int aKey) { ... }

public boolean remove(int aKey) { ... } public void test2() { // length 1

TreeSet s = new TreeSet();
} s.remove(5);

}
public void test3() { // length 2

class TreeSetEntry { TreeSet s = new TreeSet();

intkey; s.add(5);
boolean color; s.remove(21);
TreeSetEntry left; } ’ ’
TreeSetEntry right;

TreeSetEntry parent;

(a) Parts of the TreeSet class (b) Example tests for TreeSet

Fig. 1. This is a typical example of a container class, where testing focuses on a few selected
methods (add and remove in this case). A test case starts with the default constructor for the
container, which creates an empty instance. Then, on this container the add and remove methods
are repeatedly called. The length of the test case is the number of such calls.

3 Example

We next describe an example that illustrates the problem of test generation for contain-
ers. Figure 1(a) shows partial code for the TreeSet container class that we obtained
from a previous study by Galeotti et al. [17]. This class implements a set of integer
values using red-black trees. Each Treeset object has a number of nodes and a pointer
to the root node. Each TreeSetEntry node stores a value, a color (which can be red
or black), and pointers to the left and right children and a parent. The methods for the
TreeSet class include those to create the empty set, add an element to the set, and
remove an element from the set.

Figure 1(b) shows an example of automatically generated tests for the TreeSet
class. Each test creates an empty set and has a sequence of add and remove operations.
The tests are written in the JUnit format [2], but note that these tests have no assertions,
i.e., they do not assert that the methods should return certain values. The assumption in
this automated generation of test inputs is that outside oracles are used to validate the
execution; in the simplest case, one can use a generic oracle that requires each test to ter-
minate regularly, i.e., without throwing an uncaught exception. The goal of generation,
hence, is to produce tests that achieve high coverage for some testing criteria.

While the goal of our experiments was to compare the coverage obtained by ran-
dom testing and shape abstraction, we still found some bugs. For example, using ran-
dom testing, we found two bugs in the Treeset code from [17]. These bugs resulted in
NullPointerExceptions. Note that they were missed by the advanced testing tech-
niques [17] because these techniques did not generate appropriate test inputs.



4 Test Generation for Container Classes

Our aim is to provide more empirical evidence on how random testing compares to
shape abstraction in the context of testing containers. To this extent, we generate test
suites with the goal to maximize predicate coverage, and also use mutation score for
comparison of techniques.

A test suite S consists of n test cases, S = {t1, .. .,t, }. In general there are different
ways to represent and encode a test case. Because we focus on container classes, we
use a simple representation that is common in the literature (e.g., [30]): A test case is
a sequence of operations such as add and remove on a container instance created with
its default constructor. For the input data, we only consider integer values bounded in
[1,R], where R is a fixed constant. The length [(t) of a test case ¢ is the number of
operations. We do not consider the default constructor in the length. For a test suite S,
we define its length as [(S) = >, ¢ I(t).

4.1 Random Testing

Random testing (RT) is a fast testing technique, in which test cases are simply sampled
at random from the input domain. Although RT is often considered a naive testing
strategy [20], it can be very effective in many testing scenarios [9, 15]. When the test
cases have a variable length representation, there can be different ways to sample test
cases at random [9]. However, in this paper we fix the length and number of test cases
in each sampled test suite.

Based on the problem definition from Section 4, we analyze the following strategy
to generate test suites .S. First fix a number n of test cases for S and generate n test
cases ¢ with a fixed length I(¢) = k. The generated test suite S will have length I(S) =
n X [(t) = nk. In a random test case, each operation is uniformly chosen (i.e., add or
remove), and the input data is uniformly chosen in [1,R], where R is a constant.

Generating and running a small test suite of n test cases is quite fast for container
classes. When the goal is to maximize predicate coverage, an option would be to run
RT z times and then output the test suite with highest coverage out of the z runs. How
to choose z? This depends on the available testing budget (i.e., for how long a software
tester is willing to wait to obtain test data). We can consider two options: (1) run RT
for a predefined number of runs z, or (2) run RT several times and stop it after some
amount of time (e.g., one second). In practical contexts, option (2) would be preferable
and easier to apply. However, option (1) is easier to apply in empirical analyses, because
it does not have to deal with the actual execution time (e.g., side effects of implementa-
tion/code details, unpredictable delays due to other processes running in parallel, etc.).
In this paper, we use only option (1), although we still report indicative times to give a
better picture of the techniques’ performance.

Once we obtain a test suite of length nk, many method calls might be redundant.
Manually verifying the behavior of each operation (e.g., writing assert statements)
would likely be too tedious/difficult if no automated oracle is available. Therefore, an
approach to deal with this problem is to minimize the output test suite S generated by
RT, but with the constraint of maintaining the same coverage of the original test suite.
We use the following simple minimization algorithm [7]: Remove one method call at



1 // inputs: container C, length limit L, values bound R

2 void SA() {

3 Queue<MethodSequence > ToExplore = empty_queue;

4 ToExplore.enqueue(empty_sequence);

5 Set< AbstractState> Explored = empty_set;

6 for (inti=1;i<=L;i++) {

7 Queue<MethodSequence > NextToExplore = empty_queue;
8 foreach (MethodSequence s: ToExplore) {

9 for (Operation op: {”add”, “remove”, .. .}) {

10 int[] p = randomPermutationOfRange(1, R);
1 for (int v: p) {
12 MethodSequence s’ = append(s, op(v));
13 Container c = create empty C and execute sequence s’;
14 if (execution covered a new predicate combination)
15 print(s’); // a new test is generated
16 AbstractState a = abstract(c);
17 if (a & Explored) {
18 Explored = Explored U {a};
19 NextToExplore.enqueue(s’); } } }
20
}

21 ToExplore = NextToExplore; }
22

}

Fig. 2. Pseudo-code for shape abstraction (SA) exploration.

a time and re-execute the test case; if the coverage decreases, then re-introduce that
method call in the test case. Given a total of nk method calls, this minimization algo-
rithm would require the execution of nk test cases. However, in cases in which we want
to make fair comparisons against other techniques, we might want the total length to be
at least m function calls. When we minimize a test suite, we can simply stop once the
size has reached m.

4.2 Shape Abstraction

The VPP study introduced (explicit execution with abstract matching based on) shape
abstraction (SA) as a technique for test generation of containers. Unlike RT that pro-
duces random sequences of method calls, SA attempts to find that certain sequences are
equivalent and hence need not be generated. The original exposition of SA [30] was
based on explicit-state model checking, and SA was one of six techniques in the same
general framework. We provide a new exposition that directly describes the exploration,
focuses solely on SA, and allowed us to obtain a faster implementation of SA without
relying on a model checker.

Figure 2 shows the pseudo-code for SA. It takes as input the container code with
operations (such as add and remove), the maximum length of sequences of the oper-
ations, and the bounds for the values for those operations. It produces as the output
tests (i.e., method sequences) whose execution increases predicate coverage. SA per-
forms a breadth-first search (up to length L) with randomized choices of values (from
1 to R). Line 10 randomly permutes the values to be explored. SA maintains a queue



ToExplore of method sequences that still need to be explored and a set Explored of
abstract states that were already encountered.

The key novelty of SA was to compute abstract states using shape abstraction, i.e.,
ignoring the concrete values in the containers and taking into account only the shape in
which the container nodes are connected. For example, two red-black TreeSet objects
that have the same shape of nodes (i.e., the same underlying connection starting from
the root node and following the 1eft and right pointers) would map into the same
abstract state even if they had different values in those nodes. As a concrete example,
consider two balanced trees that each have three nodes and the same red-black colors,
one tree with the values 2 in the root, 1 in the left child, and 3 in the right child, and the
other tree with the values 4 in the root, 2 in the left child, and 6 in the right child. SA
would map these two trees into the same abstract shape.

SA starts the exploration with a queue that has only the empty sequence and with
the empty set of abstract states. For each sequence s in the queue (line 8), it randomly
chooses an operation and value to apply (lines 9 and 10), extends the sequence to s’, ex-
ecutes this sequence®, prints the sequence if it covered some new predicate combination
(lines 14 and 15), and checks if the exploration encountered a new abstract state that
should be explored in the future (line 17). Notice that the sequence s’ is included in the
output test suite whenever its execution increases predicate coverage, even if s’ results
in an abstract shape that has been already explored and thus s” will not be extended.

5 Case Study

5.1 Subject Containers

Table 2 shows some basic statistics for the 13 subject containers used in our study. For
each subject we list a brief identifier, the reference from which we directly obtained
the source code, the number of lines of code, the number of mutants generated by the
Javalanche mutation tool, and the parameter values for shape abstraction. While we
obtained the code directly from three studies [17, 25, 30], all the containers were used
previously in many other studies and were originally taken from various sources in-
cluding Java libraries, textbook implementations done by students, and open source.
We included some examples of different implementations of the same containers to see
if there are differences in the results.

5.2 Predicate Coverage

Following the VPP study [30], our experiments use a simplified version of the pred-
icate coverage testing criterion. The full predicate coverage, proposed by Ball [11],
is a strong criterion that measures how many combinations of all program predicates
are covered at all program points. The predicates are taken from conditional statements
and program assertions. For TreeSet, for example, the predicates include t == null,

* The original exposition in VPP [30] assumed a stateful model checker whereas we present SA
based on re-execution of method sequences, which does not allow reusing a container from
the previous exploration as it may have been modified.



Table 2. Statistics of the subject containers used in our evaluation. For shape abstraction, we set
the same value for the length of sequence (L) and the bound for method values (R).

Container Id Reference LOC Mutants L = R
AvlTree C1 [17] 160 335 20
BinomialHeap C2 [30] 225 289 33
BinTree C3 [30] 94 126 13
FibHeap Cc4 [30] 245 285 13
FibonacciHeap C5 [25] 319 295 15
HeapArray C6 [25] 75 122 25
IntAVLTreeMap C7 [25] 160 199 20
IntRedBlackTree C8 [25] 228 279 22
LinkedList Cc9 [17] 176 335 3
NodeCachingLinkedList C10 [17] 172 159 6
SinglyLinkedList Cll1  [17] 76 167 5
TreeMap C12  [30] 404 651 21
TreeSet Cl13 [17] 248 360 22
aKey == t.key,t.left != null, and many others. Unlike the traditional branch,

condition, or MCDC coverages [3] that consider values of predicates only near where
they are used in the code, predicate coverage considers values of predicates at all pro-
gram points, including far from where they are used in the code. Predicate coverage re-
quires using proper variables in scope; for instance, the remove method has a variable
TreeSetEntry p, and predicate coverage would evaluate p. left != null (and all
other predicates) although there is no such condition in that method.

To make the measurement tractable, the VPP study used only some program predi-
cates, and we follow the same approach. However, unlike the VPP study that evaluated
predicate coverage at some manually selected branches, we use semi-automated instru-
mentation to evaluate predicate coverage at all branches. Our instrumentation is not
fully automatic as we manually select the variables for predicates. Describing the pred-
icates and variables we used would be hard, so to enable comparative studies, we made
our instrumented code publicly available at http://mir.cs.illinois.edu/coverage.

5.3 Mutation Analysis

Mutation analysis [3] is the process of systematically seeding syntactic changes into a
program to determine whether the test cases can detect the resulting semantic program
mutants. Undetected (“live”’) mutants can guide the tester in improving a test suite,
while detected (“killed”’) mutants are used to quantify the effectiveness of a test suite in
terms of its mutation score that is calculated as the ratio of killed mutants to all mutants.

With appropriate mutation operators, mutation analysis subsumes several traditional
coverage criteria such as branch coverage [3]. We are not aware of any study on rela-
tionship of mutation analysis and predicate coverage. But an important difference to
code coverage is that mutation analysis does not simply check whether some piece of
the code has been executed: To (strongly) kill a mutant means to propagate the infected
state to an observable output.



We consider output as follows. Given a test case that calls methods on an instance
of a container class, we record the state of the container after execution on the original
program, and compare it with the state of the container after execution on a mutant
program. If there are observable differences in the state, this mutant is considered killed
by the test case.

We have implemented this mechanism as an extension to the Javalanche [24] mu-
tation system: Each test case is instrumented automatically with additional instructions
that record and compare the state of a container at the end of a test case. To compare
states with each other, we simply use the tost ring method, which is commonly over-
ridden by the container classes. In addition, we make sure that all potential instance-
specific substrings (e.g., @ followed by a hexadecimal number) are removed from this
output to prevent false positives.

5.4 Experimental Design

For each of the 13 containers, we compare random testing (RT) against shape abstrac-
tion (SA). We first run SA, and as shown in Figure 2, it takes two parameters: L is the
length of method sequence, and R is the bound for method values. Following the VPP
study, we set L = R, and we choose the smallest value for L such that (1) the predicate
coverage remains constant across 10 different random seeds for L and (2) this predicate
coverage is the same for 10 seeds for L — 1. The values for L and R are shown in
Table 2. We then run the SA experiments for 100 seeds with these bounds.

‘We run RT as follows. We use 2,000 iterations. For each iteration, a test suite of size
n = 5 is generated, where each test case has length k = 200, so the total length of a
test suite is equal to 1,000. Integer inputs are randomly chosen in [1,R], where R = 20.
After these 2,000 iterations, the test suite with maximum predicate coverage is selected.
If several test suites have the same maximum coverage, one test suite is selected at
random. This test suite is then minimized, setting the lower bound m for its total length
to be the average (across 100 seeds) test suite length obtained with SA on the same
container class. (This is the reason why we run SA first.) With successful minimization,
this implies that the resulting test suite lengths will be, on average, about the same for
both RT and SA. (Note that, in theory, a minimization could even increase predicate
coverage while reducing the length of the test case/suite.) Because RT is affected by
chance, to obtain enough data to reach reliable conclusions, for each of the 13 containers
we ran RT for 100 seeds.

Notice that running RT for more than 2,000 iterations would likely lead to better
results because we select from all the iterations one test suite with the highest predicate
coverage. For example, we could run RT for the same amount of time that SA takes.
However, the problem with doing that would have been the fairness of the comparisons.
If two testing techniques (such as RT and SA) are run for the same amount of time,
then the worse quality (e.g., measured with predicate coverage) of one technique could
be just due to some inefficiencies in the technique’s implementation. If a technique has
better quality, to increase confidence in the validity of such results, the technique should
be also faster. On our machines, running RT for 2,000 iterations takes on average a few
seconds, whereas SA is roughly seven times slower. In other words, RT consumes less
computational resources, and thus its better quality (if any) would have strong validity.
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Fig. 3. Average predicate coverage for both random testing (RT) and shape abstraction (SA).

5.5 Results for Predicate Coverage and Mutation Score

Figure 3 shows, for each container, the average predicate coverage divided by the max-
imum coverage obtained for that container. Specifically, for each container, we first cal-
culated the highest coverage M out of the 200 test suites (100 generated by RT and 100
generated by SA). Then, we divided by M the average predicate coverage for RT (100
test suites) and for SA (100 test suites). The reason for using M is twofold: (1) many
predicate combinations could be simply infeasible, and we cannot know how many are
feasible, and (2) the number of predicate combinations in various containers is very
different, and plotting them without normalizing the data would have led to graphs that
are difficult to compare.

Figure 4 presents the results for the mutation analysis, where the average number
of killed mutants is reported for each container and testing technique. In contrast to
the results for predicate coverage, we did not normalize the data for mutation score.
The low mutation score for containers (C1, C3, C4, C9, C10, C11) is partly due to our
test generation focusing only on the methods for add and remove operations, whereas
many mutants of these containers are also contained in other methods; likely, extending
test generation to include other methods would increase the mutation score. In addi-
tion, there is always a number of equivalent mutants which cannot be killed. Because
detecting equivalent mutants is an undecidable problem, we included these equivalent
mutants in the total number of mutants that was used to calculate the mutation scores.

To analyze these data by taking into account the random components of the tech-
niques, we followed a rigorous statistical procedure [8]. For both comparisons based on
predicate coverage and based on mutation score, for each container, when we compare
RT against SA, we used a Mann-Whitney U-test to assess whether the effectiveness of
these two techniques is statistically different. The resulting p-values of these statistical
tests indicate the probability of Type I error, i.e., the probability of wrongly stating that
there is a difference in quality when actually there is no difference.
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Fig. 4. Average mutation score for both random testing (RT) and shape abstraction (SA).

To assess the magnitude of the difference in a standardized way (i.e., the so called
effect size), we use the Vargha-Delaney Ay, statistic [28] to compare the quality of RT
against SA. In our context, this effect size is an estimate of the probability that a run of
RT would give better result than a run of SA. If there is no difference, then we would
expect /112 = 0.5. On one hand, if we obtain /112 = 1, this would mean that in all
the 100 runs of RT we obtained better results than in all the 100 runs of SA. On the
other hand, if /112 = 0, then it would mean that SA was always better than RT. Table 3
reports the obtained p-values (for the Mann-Whitney U-test) and the Ay9 measures (for
the Vargha-Delaney statistic).

5.6 Random Testing vs. Shape Abstraction

The experiments show that RT and SA are about equally effective for these 13 contain-
ers and the two metrics. For predicate coverage, A12 > (.5 for five cases, A12 < 0.5
for six cases, and Alz = 0.5 for two cases. For mutation score, A12 > 0.5 for six cases,
and A15 < 0.5 for seven cases. Considering the relative behavior of RT against SA, the
results for predicate coverage are largely similar to those for mutation score. However,
in three of the 13 cases the technique that gives higher predicate coverage does not also
give higher mutation score.

Consider first C1. For predicate coverage, the difference is very small (A2 close
to 0.5), and the p-value is rather high, which we can interpret as RT and SA basically
behaving similarly. For mutation score, however, the difference is still small (/112 close
to 0.5), but the p-value is rather low, which we can interpret as RT being better than SA
for mutation score and thus for C1 overall.

Consider then C4 and C5. They are particularly interesting as RT is always better
than SA for predicate coverage, but quite the opposite holds for mutation score. On
average, SA achieves 1.38% and 6.24% higher mutation scores for C4 and CS5, respec-
tively. Looking at the difference in the sets of mutants killed by SA and RT for these
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Table 3. Results of the statistical analysis. The last column shows if random testing is better (RT),
shape abstraction is better (SA), both are about equal (=), or the results are inconclusive (<>).

Container Id Predicate Coverage M utation Score Better

p-value Alz p-value /112 Quality
AvlTree Cl1 0512 0.487 0.059 0.564 RT
BinomialHeap C2  0.001 0.555 0.001 1.000 RT
BinTree C3  0.001 0.420 0.158 0.490 SA
FibHeap C4  0.001 1.000 0.001 0.191 <>
FibonacciHeap C5  0.001 1.000 0.001 0.005 <>
HeapArray c6 0.013 0.530 0.001 0.821 RT
IntAVLTreeMap C7  0.001 0.279 0.006 0.388 SA
IntRedBlackTree C8  0.001 0.064 0.001 0.086 SA
LinkedList Cc9  1.000 0.500 0.514 0.524 ~
NodeCachingLinkedList C10 0.000 0.785 0.001 0.937 RT
SinglyLinkedList C11 1.000 0.500 0.322 0.505 =~
TreeMap C12 0.001 0.144 0.001 0.069 SA
TreeSet C13 0.001 0.076 0.001 0.052 SA

two containers revealed that every single mutant killed by a SA test suite was also killed
by at least one of the RT suites. This indicates that RT has a greater variance in mutation
score even if it is relatively stable for predicate coverage, which is not surprising as our
RT minimization focuses on predicate coverage and not all mutants are directly related
to predicates.

Note that C4 and C5 are one example of different implementations of the same
data structure. Recall that we intentionally included such implementations among our
subjects to evaluate whether the differences between RT and SA depend on the details of
the implementations. We find that they largely do not. For example, C4 and C5 behave
the same way: RT is better for predicate coverage and SA for mutation coverage. All
of C8, C12, and C13 are based on red-black trees, and for all three SA is better than
RT (for both predicate coverage and mutation score). C9 and C11 are very similar list
implementations, and RT and SA are approximately the same for both. In contrast, C10
is a more complex list implementation, and we find that RT is better than SA (which is
consistent with the differences seen for C9 and C11, although those differences are too
small to conclude that RT is better). Interestingly, for C1 and C7, which are both based
on AVL balanced trees, RT is better than SA for C1, but SA is better than RT for C7.

Recall also that our subjects include not only pointer-based, linked structures (as in
the VPP study) but also a container implemented with an array-based structure, namely
C6. The results for C6 show that RT is clearly better than SA for this case, but we cannot
generalize to all array-based structures.

To summarize, in the context of our study, we cannot identify a superiority of one of
the two testing techniques with respect to either predicate coverage or mutation score.
However, there is indication that SA performs better for tree-like structures that require
complex shapes for coverage (C3, C7, C8, C12, C13), whereas RT performs better for
structures that require longer sequences for coverage (C1, C2, C6, C10).
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5.7 Bugs

While the goal of our study was to compare RT and SA but not necessarily look for
bugs, we still found three real bugs in two containers used in previous studies [17,25].
Specifically, we found two bugs in the Treeset code from TACO [17] and one bug
in the HeapArray code from one of our previous studies [25]. The first two bugs led
to NullPointerExpections, while the third bug led to an infinite loop. We found
all three bugs using RT, and all three bugs were missed by the advanced techniques
used in previous studies because those techniques focused on more thorough testing
with shorter tests and failed to generate longer tests necessary to reveal these bugs. We
reported all three bugs to the original authors of the respective container code, and the
authors confirmed them as real bugs and corrected them. The first two bugs were due to
a copy-paste mistake, and the third bug was an error of omission.

We also found three bugs that we introduced by mistake in the testing infrastructure
that exercised the container code. Specifically, we found one bug in FibHeap that re-
sulted in an infinite loop because the test driver was removing a node that did not exist
in the structure, and two bugs in AvlTree that resulted in NullPointerExpections
because our semi-automated instrumentation for measuring predicate coverage changed
the original code. We corrected all these bugs, and all our experiments reported above
were run with the corrected code.

6 Threats to Validity

Threats to internal validity might come from how the empirical study was carried out.
To reduce the probability of having faults in our testing tools, we tested them and in-
spected surprising results. Furthermore, randomized algorithms are affected by chance.
To cope with this problem, we ran each experiment 100 times, and we followed rigorous
statistical procedures to evaluate their results.

Threats to construct validity are on how the quality of a testing technique is defined.
We measured not only predicate coverage but also mutation score.

Threats to external validity regard the generalization to other types of software,
which is common for any empirical analysis. However, in this paper we specifically
target container classes and the implementation instances that are commonly used as a
benchmark in the literature. The fact that random testing is very efficient in generating
effective test cases for container classes will likely not hold for many other types of
software. Note that shape abstraction does not apply to all types of software.

7 Conclusion

Containers are important and challenging to test, and many advanced testing techniques
were developed for containers. However, there has not been much comparison of these
advanced testing techniques with simpler techniques such as random testing. We pre-
sented a larger case study that compared random testing with shape abstraction, a state-
of-the-art systematic technique. Our experiments showed that random testing achieves
comparable results as shape abstraction, but random testing uses much less computation
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resources than shape abstraction. We hope that our results provide motivation for future
testing studies to (1) compare newly proposed advanced techniques to random testing
and/or (2) evaluate newly proposed advanced techniques not (only) on containers but
(also) on other code where random testing does not perform well.
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