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Abstract

This thesis describes a theoretical framework for building compilers that generate
formal guarantees that they work correctly. Traditional compilers provide no such
guarantees—given an original source program, a traditional compiler generates only
a transformed executable program. The only way to investigate the correctness of a
compilation is to run the transformed program on some sample inputs. Even if the
transformed program generates expected results for these inputs, it does not ensure
that the transformed program is indeed equivalent to the original program for all
inputs.

Most previous research on compiler correctness focused on developing compilers
that are guaranteed to correctly translate every original program. It is extremely
difficult, however, to verify that a complex code, which implements a compiler, is
correct. Therefore, a novel approach was proposed: instead of verifying a compiler,
verify the result of each single compilation. We require the compiler to generate a
transformed program and some additional information that enables a simple verifier
to check the compilation. We call this approach credible compilation.

This thesis presents a formal framework for the credible compilation of imperative
programming languages. Each transformation generates, in addition to a transformed
program, a set of standard invariants and contexts, which the compiler uses to prove
that its analysis results are correct, and a set of simulation invariants and contexts,
which the compiler uses to prove that the transformed program is equivalent to the
original program. The compiler has also to generate a proof for all the invariants
and contexts. We describe in detail the structure of a verifier that checks the com-
piler results. The verifier first uses standard and simulation verification-condition
generators to symbolically execute the original and transformed programs and gen-
erate a verification condition. The verifier then uses a proof checker to verify that
the supplied proof indeed proves that verification condition. If the proof fails, the
particular compilation is potentially not correct. Our framework supports numerous
intraprocedural transformations and some interprocedural transformations.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor
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Chapter 1

Introduction

Compilers translate programs from one language to another. Typically, a compiler
takes an input program written in a high-level programming language and generates
an output program in a target machine language. A compiler usually consists of a
front end, which translates the source program to some intermediate representation,
a middle end, which transforms the program so that it executes more efficiently, and
a back end, which translates the program from the intermediate representation to the
machine language.

In most modern compilers, the middle end is structured as a sequence of optimiza-
tion passes. Each optimization pass transforms the input program to an equivalent
output program that is expected to execute faster or require less memory. It is well
known that the optimizations are rarely optimal by any measure. We therefore call
the optimization passes transformations. We distinguish transformations from trans-
lations. We use the term translations to refer to compiler phases, such as parsing or
code generation, that translate the program from one representation to an essentially
different representation.t

1.1 Traditional Compilation

Traditional compilers offer no formal guarantees that they operate correctly. Even the
most reliable compilers can fail to compile a program correctly. The main problem
with traditional compilers is that they fail silently; the compiled program is produced
in a highly encoded form suitable for machine execution and not designed to be read
by programmers. The only reasonable way a programmer can observe an incorrect
compilation is by executing the compiled program and observing an incorrect execu-
tion. Executions are usually incorrect because of errors in the source program, and
the programmer first inspects the source program. When the error is due to the com-
piler, it takes significantly more time and effort to discover that the error is actually
not in the source program.

'In many compilers, low-level optimizations such as register allocation take place in the back end.
It is possible to perform these optimizations without significantly changing the program representa-
tion. We therefore view even these low-level optimizations as transformations, not translations.



Additionally, the execution of the program depends on its input data, and the
programmer can test the program only for some sample input data. If the execution
is correct for those input data, it does not guarantee that the compiled program is
correct for all input data. Furthermore, compiling the same source program with
different optimizations produces, in general, different compiled programs. If one of
those programs is tested and found correct, there is no guarantee that all of them
are correct. Any compiler optimization may potentially introduce an error in the
compiled program, and the programmer has to test each compiled program.

Compiler failures are terrible for programmers, but in practice, programmers infre-
quently encounter compiler errors. Production-quality compilers are among the most
reliable software products and almost never incorrectly compile a program. However,
producing an extremely reliable compiler requires a large development time. The re-
sult is that industry compilers are almost always many years old. They lag behind the
advances in programming languages, compiler research, and computer architecture.
Compiler maintainers rarely and slowly add new transformations to optimizing com-
pilers. The reason is that a transformation can be added to traditional compilers only
when it is correctly implemented to work for all input programs. A compiler trans-
formation usually requires a complex implementation that is extremely difficult to
formally verify using standard program verification techniques. Therefore, compiler
developers only test the implementation for some large class of input programs and
add the transformation to the compiler when they believe that it is working correctly.

1.2 Credible Compilation

This thesis presents a fundamentally different approach to building optimizing com-
pilers: implement compiler transformations which, given an input program, generate
an output program and some additional information, including a machine-verifiable
proof, that the output program is equivalent to the input program. After each trans-
formation, an automated verifier checks whether the supplied proof indeed guarantees
that the transformed output program is equivalent to the given input program. If the
proof fails, the transformed program is potentially not equivalent, and the compiler
should not use this transformation for this input program. The compiler may still be
able, though, to compile this input program to the final machine form by omitting
this transformation, and this transformation may work correctly for other input pro-
grams. Thus, at each pass the verifier checks only one particular transformation for
one particular input program and either accepts or rejects the output program. We
call this approach credible compilation.

We next briefly mention the results on which we directly build our work. Martin
Rinard [41] introduced the name credible compiler and described basic techniques for
building a compiler that generates equivalence proofs. We advance these previous
techniques and this thesis presents a more elaborate theoretical framework for cred-
ible compilation. This framework supports credible compiler transformations, and
not translations. Rinard [41] also briefly describes credible code generation. In prin-
ciple, the approach of generating equivalence proofs for each single compiler run and



checking them automatically can be used for building a whole compiler, including
the translations from one representation to another. The idea of credible transla-
tions appeared first in papers by Cimatti et al. [12] and Pnueli et al. [40]. These two
papers consider simple programs, consisting of only one loop, and non-optimizing
translations, whereas our work considers more complex programs and compiler opti-
mizations. We review the related work in detail in Chapter 7.

We next present the motivation for our work. Credible compilation would provide
many practical benefits compared to traditional compilation. Since a transformation
has to produce a proof that it operated correctly, the compilation failures are not
silent any more. It is immediately visible when a transformation operates incorrectly.
This gives the programmer a much higher level of confidence in the compiler and
saves the programmer time because she never mistakes a compiler bug for a bug in
her own program.

Since credible transformations need to produce a proof, an implementation of
a credible transformation is somewhat more complex than an implementation of a
traditional transformation. Nevertheless, credible compilation would make compiler
development faster, because it is easier to find and eliminate compiler errors. It
would also allow adding new transformations into the compilers more aggressively;
compiler developers could add a transformation even when the implementation is not
correct for all possible input programs. There is no need to verify and trust the
implementation of a transformation. It is only an implementation of a verifier for a
credible compiler that needs to be trusted, and the verifier is much simpler to build
than compiler transformations.

1.3 Non-Credible Compilation Example

In this section we try to clarify two common misunderstandings about credible com-
pilation. The first misunderstanding is that the added complexity of credible compi-
lation is unnecessary because traditional compilers are extremely reliable. We address
this misunderstanding by presenting an example program that exposes a bug in an
existing industrial-strength compiler. The second misunderstanding is that people do
not clearly distinguish safety proofs of the output program from equivalence proofs
that involve both the input program and the output program. We address this misun-
derstanding by presenting an example of a safe output program that does not preserve
the semantics of the input program.

Figure 1-1 shows our example C program. The compiler is the Sun Microsystems
C compiler, version WorkShop Compilers 4.2 30 Oct 1996 C 4.2.2 This compiler
is over three years old, but it is still the default C compiler on the main server of the
Computer Architecture Group at MIT.

The program contains three loops of the form:

for (i = 0; i < 10; i++) *p = (xp) + 1i;

2We have reported the bug, but it had already been observed earlier and corrected in the next
versions.



We wrote the loop body in a verbose mode® to point out that we do not use any
potentially unsafe pointer arithmetic operation. All the loop does is add the numbers
1 to 10 to the variable pointed to by the pointer p. In the three loops we vary where
p can point to.

#include <stdio.h>
int 1, j, x;
void main() {

int *p;

p = &x; /* p->x */
*p = 0; for (i = 0; i < 10; i++) *p

(xp) + i;
p = &i; /% p—>i */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;
J

=1;

if (x > 0) p = &i; else p = &x; /* p—>x or p->i; actually p->i */
*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

printf("i=)2d, j=%2d, x=)%2d\n", i, j, x);

Figure 1-1: Non-Credible Compilation Example Program

If the compiler detects that p can point to only one variable, say x, within the
loop, it can replace the dereferencing *p with the direct referencing of that variable:

for (1 = 0; 1 < 10; i++) x = x + 1i;

This transformation generates an equivalent program even when p can point only to
the loop index variable i.

Even when the compiler cannot detect where p exactly points to, but p does not
change within the loop?, the compiler may still be able to optimize the program. The
compiler can hoist dereferencing, which is invariant, out of the loop by using a new
temporary variable t:

t = *p; for (i = 0; 1 < 10; i++) t =t + i; *p = t;

However, the question is: are the two loops equivalent in all cases? The answer is:
no; if p can point to i, the transformed loop does not produce the same result as the
original loop. This is exactly what the example program exploits. In the first loop,

3In C, it would be usually written just as *p+=i.
4In C, it is possible to make, using type-unsafe casting, a pointer that points to itself and writing
to *p would change p itself in that case.
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p points to x, in the second loop p points to i, but in the third loop p is written so
that it may point to either i or x, although it actually always points to i.

We first compiled the program without any optimizations. Running the resulting
executable gives the expected output:

i=15, j=15, x=45

We then compiled the program with a high optimization level (-x04). Running the
resulting executable now gives a different output:

i=45, j=15, x=45

We looked at the assembly code generated by the compiler to find the cause for the
different outputs. As expected, the reason is that the compiler aggressively applied
dereference hoisting in the third loop. In the first and the second loop, the compiler
correctly found that p can point only to x, respectively i, and replaced *p with x,
respectively i. However, in the third loop, the compiler failed to find that p can
point only to i. Even worse, the compiler incorrectly assumed that p cannot point
to i, and performed the transformation with a new temporary variable as described
above. This example shows that even a production-quality compilers can incorrectly
optimize a program.

We next point out the difference between a compiler that generates equivalence
proofs for the input program and the output program and a compiler that generates
proofs only about the properties of the output program. One such property is safety, in
particular type and memory safety, of the output program. Some research compilers,
such as Necula and Lee’s Touchstone [38] and Morrisett et al.’s Popcorn [31], generate
an evidence of the safety of the compiled program. These compilers are useful in
situations where code consumers, who run the compiled programs, do not trust code
producers, who produce these compiled programs. Code producers can use these
compilers to compile the original programs and to obtain the evidence together with
the compiled program. Code consumers can then receive the compiled program and
the evidence from untrusted sources, for example, by downloading the program from
the Internet. Before running the program, the code consumer can use the evidence
to verify the safety of the program. But, the fact that the compiler has generated
the correct evidence of the safety of the compiled program does not imply that the
compiler has generated a compiled program that is equivalent to the original program.

For instance, in the presented example, checking only the type safety would not
detect the compiler bug.® The reason is that the incorrect transformation does not
violate type safety. Both the loop with *p and the incorrectly transformed loop
with t type-check—type is preserved, but the values are changed. Therefore, even a
compiler that uses strongly typed intermediate representation could make the same
error. Further, a compiler that generates evidence of the safety of the transformed

5The full C language is not type-safe, but observe that the example program does not use any
low-level, unsafe C features, such as arbitrary pointer arithmetic or type casts. Hence, this example
can be regarded as a program in a type-safe subset of C.

11



program could generate correct evidence for the incorrectly transformed program. In
contrast, a compiler that generates equivalence proofs could not generate a correct
proof for the incorrectly transformed program. In conclusion, compilers that generate
guarantees only about the transformed program are good for sending the transformed
program to code consumers. However, such compilers are not good enough for code
producers; code producers need credible compilers.

12



Chapter 2

Overview

In this chapter we present in more detail the structure of a credible compiler. The
main idea of credible compilation is that the compiler generates a proof that it cor-
rectly transformed the input program. We first define when a compiler transformation
is correct. We next describe the organization of a credible compiler and what exactly
the compiler has to prove. Finally, we summarize the results of our work.

2.1 Transformation Correctness

In this section we define more precisely our requirement for a correct transformation.
So far we have used the intuitive notion of the equivalence between the output program
and the input program. We first argue that the requirement that the programs be
equivalent is too strong for transforming non-deterministic programs. We then define
our requirement for a correct transformation to be that the output program simulates
the input program.

Usually, a transformation is defined to be correct if it preserves the meaning of
the program, as defined by the semantics of the language. Informally, a transfor-
mation is considered correct if the transformed program is semantically equivalent
to the original program—for all possible inputs, the two programs, given the same
input, produce the same output. What is considered as input and output depends
on the semantics of the programs. We discuss several examples, and additionally the
requirements that could be imposed on a compiler:

e If the programs are non-deterministic, then the original program could itself
generate, for the same input, different results in different executions. We could
then require the transformed program to be able to also generate all those
results, or only some of them.

e The original program may not terminate for some input. We could require the
transformed program also not to terminate for that input. Conversely, we could
require the transformed program to terminate whenever the original program
terminates.

13



e The original program may end up in an error state for some input (e.g., because
of the resource bound violation when the program executes on a real machine).
We could require the transformed program to also end up in the error state.
Conversely, we could require the transformed program to end up in the error
state only if the original program ends up in the error state.

e The output of a program, or more precisely, the observable effects of a program
execution, may include more than the final state. We could require the compiler
to preserve all the observable effects, or only some of them.

Clearly, the correctness criterion should specify that the transformed program
can generate only the results that the original program can generate. However, we
do not require the transformed program to be able to generate all the results that
the original program may generate. This allows the transformed program to have less
non-determinism than the original program. The reason is that the compiler trans-
formations bring the program closer to the final executable form, and the programs
execute mostly on deterministic machines. Therefore, the compiler need not preserve
the non-determinism that might be present in the original program.

We specify our requirement using the notion of simulation. Informally, program
P, simulates program P, if P; can generate only the results that P, generates. More
precisely, for all executions of P;, there exists an execution of P, which generates the
same output (for the same input). Additionally, if P, may not terminate (i.e., P, has
an infinite execution) for some input, then P, also may not terminate for that input.
We require the compiler to generate a transformed program that simulates the original
program. We give a formal definition of simulation in Section 4.4. Our framework
can easily support a stronger notion of correctness, namely bi-simulation. Programs
P, and P, bi-simulate each other if P; simulates P, and, conversely, P, simulates P;.
We could require the compiler to prove that the transformed program bi-simulates
the original program by proving both that the transformed program simulates the
original program and that the original program simulates the transformed program.

In general, simulation is not a symmetric relationship between programs. If P;
simulates P,, then P, may generate more results than P, and therefore P, need not
simulate P;. This means that when P, simulates P;, the two programs need not be
equivalent in the sense that they can generate the same set of results. However, if
programs are deterministic, they can generate only one result. Therefore, when the
transformed program simulates the original program that is deterministic, the two
programs are equivalent.! In our basic framework, presented in Chapter 4, we consider
almost deterministic programs. We call the programs almost deterministic because
the result of a program execution may depend on the unknown values of uninitialized
local variables, although we consider a language without non-deterministic constructs.
Therefore, we will sometimes use the term equivalence, instead of simulation, to refer
to the correctness requirement.

1Observe that P, and P, are equivalent if P; bi-simulates Ps.

14



2.2 Credible Compiler Structure

In this section we first compare the general structures of a traditional compiler and a
credible compiler. The main difference is that a credible compiler has a verifier that
checks the results of the compiler. The verifier uses some additional information that
the compiler generates beside the output program. We briefly discuss the additional
information, and we describe the general structure of the verifier.

Figure 2-1 shows the simplified structure of a traditional optimizing compiler.
First, the front end translates the input program from the source language to the
intermediate representation. Next, the transformations, which include the optimiza-
tions and the back end passes that are not highly machine dependent, transform the
program within the intermediate representation. Finally, the code generator pro-
duces the machine code. Clearly, for a compilation to be correct, all passes need to
be correct and to produce an output program that simulates the input program. In
traditional compilation there is no checking of the results generated by any of the
passes; they are all blindly trusted to be correct.

Transformations

Code Machine
Generator Code

Intermediate
Representation

Front
End

Source
Language

Figure 2-1: Structure of a Traditional Compiler

Figure 2-2 shows the simplified structure of a credible compiler. It differs from a
traditional compiler in that there is checking of the results generated by the transfor-
mation passes. Since the transformations are not blindly trusted, we represent them
as a “black box” in the figure. After each transformation, the verifier checks that
the output program simulates the input program. To check the simulation of the
two programs, the verifier uses the additional information that the transformation
generates beside the output program. We first argue why it is necessary that the
transformations generate some additional information, and then we describe how the
verifier uses that information for checking.

At first glance, it seems possible that a transformation need only generate the out-
put program, and the verifier can check the simulation of the two programs. However,
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\ Output Program

] Input Program
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Intermediate
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Front
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Figure 2-2: Structure of a Credible Compiler

directly building such a powerful verifier for arbitrary programs in sufficiently expres-
sive languages is not a good idea. First, from theory we know that it is undecidable
to determine the equivalence/simulation of two arbitrary programs. Hence, a verifier
for the general case cannot be built. In practice, it is possible to build a big verifier
that would check the results of common compiler transformations. However, building
a big verifier which is itself not verified only shifts the possibility of introducing er-
rors from the compiler implementation to the verifier implementation. Additionally,
such a verifier may need to be modified each time a new transformation is added
to the compiler. Therefore, credible compiler transformations need to generate some
additional information that allows their results to be checked with a relatively simple
verifier. We explain later what we mean by relatively simple.

We next present the additional information that a credible compiler transforma-
tion generates. Conceptually, the compiler generates a set of contexts and a proof
that those contexts hold. A compiler usually applies a transformation in two steps:

e In the analysis step, the compiler analyzes the input program to determine the
properties relevant for the transformation.

e In the transformation step, the compiler changes the input program, taking into
account the results of the analysis, and generates an output program.

Our approach to credible compilation supports this two-step organization. For each
step, a credible compiler generates a set of contexts:

e Standard contexts express properties of only one program. The compiler uses
the standard contexts to represent the analysis results.

e Simulation contexts express the correspondence between two programs. The
compiler uses simulation contexts to represent the simulation relationships be-
tween the input and output programs.

16



Each context contains a set of invariants. (Contexts also contain some other addi-
tional information, which we present later in the text.) More precisely, each standard
context contains a set of standard invariants and each simulation context contains
a set of simulation invariants. (We introduce several other concepts that have both
standard and simulation form; we omit standard and simulation when it is clear from
the context or when we refer to both.)

The standard and simulation invariants are formulas in a logic. (We present in
Section 4.2 the details of the logic that we use, which is an extension of first-order
predicate logic.) If all the invariants hold, then all the contexts hold, and the output
program simulates the input program. The verifier does not try to prove that the
contexts hold. Instead, the input to the verifier consists of the two programs, the
contexts, and additionally a proof that those contexts hold for those programs. The
verifier only checks that the proof indeed shows that the contexts hold.

Both the contexts and the proof are conceptually generated by the compiler. In
practice, a credible compiler consists of two parts: a part that actually performs the
transformations and generates the output program and the contexts and a part that
proves that the contexts hold. We call the latter part the proof generator. We use this
term, instead of the common theorem prover, to point out that a credible compiler
does not use a general purpose theorem prover but a very specialized one.

2.2.1 Credible Compiler Verifier

We next describe the organization of a verifier for a credible compiler and what
exactly the proof generator has to prove. Figure 2-3 shows the detailed structure of
the credible compiler transformations. The module that performs the transformations
and the proof generator are shown as “black boxes” because they can be implemented
in any arbitrary way. They are not trusted, but the verifier checks their results.
The verifier, however, needs to be trusted. The verifier consists of two parts: the
verification-condition generator and the actual proof checker. Before we proceed to
describe the verifier parts, we explain what a relatively simple verifier means. On
the one hand, the proof checker, and thus the verifier, cannot be too simple since
the expected proofs are non-trivial. On the other hand, the verifier should still be
simpler to implement and verify, using standard program verification techniques, than
the compiler transformations.

The verification-condition generator (VCG) for a credible compiler consists of two
parts. We call them the standard verification-condition generator (StdVCG) and the
simulation verification-condition generator (SIimVCG). The StdVCG takes as input
one program at a time (be it compiler input or output) and standard contexts for
that program. We postpone the details of how the StdVCG works for the example
in Section 3.1.1 and we give the full algorithm in Section 4.3.3. Suffice to say that
the StdVCG symbolically executes the given program. The output of the StdVCG is
the standard verification condition (StdVC) for the given program and its standard
contexts. The StdVC is a logic formula whose validity implies that the given contexts
hold for the given program. Namely, the results of the compiler analysis are correct
if the StdVC is valid.
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Figure 2-3: Verifier for a Credible Compiler

The SimVCG takes as input two programs (both the compiler input and output
programs) and simulation contexts for them. Again, we postpone the details of how
the SimVCG works for the example in Section 3.2.1 and we give the full algorithm in
Section 4.4.3. Suffice to say that the SimVCG symbolically executes both given pro-
grams. The output of the SimVCG is the simulation verification condition (SinVC)
for the given two programs and their simulation contexts. The SimVC is a logic
formula whose validity implies that the given contexts hold for the given program.
Namely, the result of the compiler transformation is correct (i.e., the output program
simulates the input program) if the SimVC is valid.

The verifier for a credible compiler works as follows. It first takes the compiler
input and output programs and attached contexts, and uses the VCG to generate
the standard and simulation verification conditions for those programs. We call the
conjunction of those verification conditions the verification condition (VC) for those
two programs. The VCG does not prove that the VC is valid. The VCG only performs
syntactic (and static semantic) checks on the programs and the contexts; the VCG
rejects the programs if the compiler output is ill-formed. The verifier next uses the
proof checker to verify that the proof provided by the proof generator actually proves
the particular VC. If the proof checker rejects the proof, the compiler considers the
transformed program to be incorrect and continues transforming the input program.
Otherwise, the transformed program simulates the input program, and the compiler
continues transforming further the transformed program.
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2.3 Summary

In this section we first briefly present the previously published results on credible
compilation [41,42]. The initial work on credible compilation did not use VCG. We
describe how using VCG in the verifier reduces the size of the proofs that the compiler
needs to generate. We next present the scope of this thesis and we finally list the
contributions of the thesis.

Rinard [41] describes the basic techniques for building credible compilers. The
main idea is that the compiler generates a set of standard and simulation invari-
ants together with the output program. The compiler then proves that it correctly
transformed the input program by proving that these invariants hold for the input
and output programs. Rinard devised a set of rules for proving that standard and
simulation invariants hold for two programs.

The rules for standard invariants use a variation of the Floyd-Hoare rules [16,23]
for proving properties about one program. These rules propagate an invariant back-
ward (opposite to the flow of control) through the program until another invariant is
reached, at which point the compiler should prove that the reached invariant implies
the propagated invariant. The rules for simulation invariants work in a conceptu-
ally similar way. However, those rules propagate simulation invariants through both
programs. To the best of our knowledge, the simulation invariants and related rules
were first introduced for proving compiler optimizations correct in [41]. The simula-
tion invariants are similar to the (bi-)simulation relations in concurrency theory, but
the techniques and applications used in that context are completely different. An
overview of concurrency theory can be found in the article by Milner [30].

The initial work on credible compilation presented the rules for standard and
simulation invariants as proof rules in a logic. The rules were derived from the
structure of the programs, and therefore involved syntactic elements, for instance:
a program contains a particular statement. In general, it is possible to encode the
proofs directly using those rules, without using a VCG in the verifier. However, using
a VCG dramatically decreases the size of the proofs. The reason is that the VCG
performs syntactic checks on the programs and the invariants while generating the
VC. The compiler can encode the proofs of VC using rules which do not include
(many) syntactic elements from programs. The drawback of using a VCG is that the
verifier, whose implementation needs to be trusted, gets larger.

We used the original rules for invariants as a guidance for making VCG, in partic-
ular the algorithm for the SimVCG. As described, the original rules for the simulation
invariants did not give a precise algorithm for their application; they are just proof
rules. This is somewhat analogous to type reconstruction—the typing rules provide
a way to check the well-typedness of a program given the types of variables, but the
rules do not provide a direct way to come up with those types when they are not
given. However, an algorithm for type reconstruction infers those types, whereas the
algorithm for the SimVCG does not try to infer any properties. The SimVCG simply
requires the compiler to provide more additional information.

Our approach to using the VCG is motivated by Necula’s PhD thesis [35]. In fact,
the original incentive came through personal communication with George Necula at
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the PLDI ’99 conference. Necula attributes the verification-condition generation to
Floyd and King; the term “verification condition” is itself introduced by Floyd [16],
and the concept of verification-condition generation is explained by King [27]. Those
verification-condition generators are for only one program, or, in terms of credible
compilation, they are standard verification-condition generators, whereas our VCG
also includes a SimVCG. Recently, Necula [36] presented his work on verification of
compiler transformations which uses a strategy similar to SimVCG. We compare that
work to ours in Chapter 7, after we describe the details of our approach.

2.3.1 Scope

This thesis describes a theoretical framework for credible compilation. We next list
questions that arise in the context of credible compilation and we explain how we
address those questions in this thesis. We also briefly present our initial experience
with a small prototype of a credible compiler.

e What is the language that is compiled?

We present a framework for compiling imperative programming languages. The
intermediate representation that we use can be considered as a subset of the
C programming language [26]. The introductory paper on credible compila-
tion [41] described a framework for a rather simple language: the programs
consisted of only one procedure and operated only on simple integer variables.
Rinard and Marinov [42] then extended the language with C-like pointers.

In the basic framework, presented in Chapter 4, we extend the initial language
for credible compilers with procedures?. Adding procedures to the language is
important because it makes the language more realistic. In our basic language
we consider the simple semantics of programs that execute on an idealized ab-
stract machine without error states. The state of an execution is observed only
at the end of the execution, if the program terminates at all. In Chapter 6 we
discuss how to extend the basic framework to handle other common constructs
of imperative programming languages. We point out that the framework which
we present can formally handle only a subset of a C-like language. The main
obstacle for a formal treatment of the full C language is the semantics of “un-
defined” C constructs, such as out-of-bound array accesses. We also discuss in
Chapter 6 some limitations of our current framework.

e What transformations are supported by the framework?

We say that a framework supports a transformation if that framework allows the
compiler to prove that the results of that transformation are correct. Clearly,
a framework which supports more transformations is preferable to a framework

2We use the term procedure to refer to subprograms because, for simplicity, we consider only
the subprogram calls which are statements, and not expressions. The procedures do not return a
result directly, but they can modify the memory state. We use the term function to refer to the
meta-language objects.
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which supports fewer transformations. Due to fundamental undecidability con-
straints, we cannot hope to develop a general framework which would allow
the compiler to automatically prove that all possible transformations are cor-
rect. However, we want to develop a framework that allows the compiler to
prove at least that the results of “standard transformations” are correct. The
term “standard transformations” loosely refers to the common transformations
performed by industry quality optimizing compilers.

The framework that we present supports numerous “standard” intraprocedural
transformations, ranging from constant propagation to induction variable elim-
ination to loop unrolling. Although it is presumptuous to say that a framework
supports all transformations, we are not aware of any “standard” transforma-
tion that is not supported. The framework also supports some interprocedural
analyses and whole program transformations.

In general, the compiler can transform any number of procedures to generate the
transformed program. Our framework is designed so that the compiler proves
the simulation relationships between pairs of procedures. To prove that the
transformed program simulates the original program, the compiler then has to
prove that the starting procedure® of the transformed program simulates the
starting procedure of the original program.

The use of multiple standard contexts allows the compiler to prove correct even
the results of some context-sensitive interprocedural analyses. (We describe the
concept of standard contexts through the example in Section 3.1, and we formal-
ize standard contexts in Section 4.3.) The use of simulation contexts allows the
compiler to prove correct the results of some interprocedural transformations,
such as procedure specialization. (We introduce the concept of simulation con-
texts through the example in Section 3.2, and we formalize simulation contexts
in Section 4.4.) Simulation contexts also support reordering accesses to global
variables across the procedure calls.

The framework, however, does not support procedure inlining and related trans-
formations that change the structure of the call graph. The “culprit” is the
simulation verification-condition generator. It operates on two procedures at a
time and requires that whenever the transformed procedure reaches a call site,
the original procedure also reaches a call site. (We present details on this later in
the text.) Since procedure inlining is an important optimization, we can extend
the framework to support it by adding a specialized part to the verifier that
separately checks only inlining. In principle, support for any transformation
can be added as a specialized check for that transformation. However, doing so
for every transformation would make the verifier prohibitively large, as large as
the compiler itself.

e Can the compiler transformations generate the invariants (and other required

3The starting procedure for a program is the procedure where the execution of the program starts;
in C, the starting procedure is called main.
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additional information, except for the proof)?

The compiler can generate the standard invariants simply by generating the
formulas that represent the compiler analysis results. It is only that the language
used for formulas should be expressive enough so that the compiler can indeed
represent its results. The compiler is also able to automatically generate the
simulation invariants, because intuitively the compiler “knows” how it performs
the transformation and which entities in the output program correspond to
which entities in the input program.

The approach in which the compiler generates some additional information is
also explained by Morrisett et al. [32], who credit Necula and Lee [34,37]. They
used the approach to build their compilers, Touchstone [38] and Popcorn [31].
However, both of these compilers prove only the properties of the output pro-
gram, more precisely the type safety of the output program. In terms of credible
compilation, the additional information that those compilers generate is only a
set of standard invariants. In contrast, credible compilers also generate a set of
simulation invariants. The simulation invariants are crucial for the concept of
credible compilation because they allow the compiler to prove that the output
program simulates the input program.

Can the proof generator automatically generate a proof?

The proof generator that accompanies a credible compiler generates proofs for
the standard and simulation verification conditions. The main requirement for
the proof generator is that it needs to be fully automatic. For each compiler
transformation and analysis, there needs to be a decision procedure that can
prove the SimVC and StdVC, respectively, generated for every possible input
program. Note that the compiler developer can determine the general structure
of the verification conditions for each transformation and analysis. Namely,
each VC is a formula that depends on the invariants (and on the VCG). From
the placement of the invariants and the general structure of their formulas, it
is possible to find the general structure of the VC.

We believe that it is possible to develop a decision procedure that can prove all
verification conditions of the particular general structure. The reason is that
the compiler developer knows why a transformation is correct, and potentially
has a meta-proof that shows the transformation to be correct for all input
programs. Developing a decision procedure is then a matter of translating the
meta-proof into an algorithm that generates a proof for each possible instance
of verification conditions. The complexity of the decision procedures depends
on the particular transformations. The whole proof generator, which combines
the decision procedures, needs only to be as powerful as the transformations
whose results it needs to prove.

For example, consider a proof generator that needs to prove the results of con-
stant propagation, constant folding, and algebraic simplifications. The proof
generator for constant propagation requires only a relatively simple decision
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procedure that uses a few logic rules, such as the congruence rule for equality,
and does not need to “know” anything about the numbers. The proof gener-
ator for constant folding needs a more sophisticated decision procedure that
uses arithmetic rules. Further, the proof generator for algebraic simplifications
needs an even more sophisticated decision procedure that uses algebraic rules.
However, this does not imply that every new transformation requires a new
decision procedure. Many compiler transformations may have the same general
structure of the verification conditions and can thus share the same decision
procedure. For instance, the explained proof generator could prove the results
of copy propagation and even common subexpression elimination. We do not
consider the proof generator further in this thesis.

An implementation of a credible compiler can answer the last two of the listed
questions: is it possible for a credible complier to generate the required additional
information and to automatically prove the verification conditions. Additional prag-
matic issues in the context of credible compilation are the difficulty of generating
the proofs, the size of the generated proofs, and the difficulty of checking the proofs.
To explore these issues, we have started developing a prototype of a credible com-
piler. We have implemented a small system for the language without procedures, but
with pointers. We have used the Java programming language [8] for implementing a
flow-sensitive pointer analysis and constant propagation analysis/transformation.

For proof representation and verification we use Athena [5,6], a denotational proof
language [7] developed by Kostas Arkoudas at MIT. Athena is a flexible logical frame-
work that allows a compact, procedural representation of proofs. This makes it possi-
ble to balance the division of labor between the proof generator and the proof checker,
while retaining the full soundness guarantee. It also simplifies the construction of the
compiler by simplifying the proof generator and allowing the compiler developer to
easily generate proofs. Based on our initial positive experience with Athena, we be-
lieve that a key enabling feature to obtaining reasonable proof sizes and compiler
complexity is the use of such a flexible logical framework. We do not present the
prototype implementation in this thesis.

2.3.2 Contributions

The main contribution of the previously published work on credible compilation [41,
42] is introduction of a theoretical framework in which a compiler, using simulation
inwvariants, can prove that it correctly transformed an input program. The contribu-
tions of this thesis to the existing work on credible compilation are the following:

e We extend the language for credible compilers with procedures.

e We use standard contexts and we introduce simulation contexts that allow the
compiler to prove that the results of interprocedural analyses and transforma-
tions are correct.

e We present an algorithm for the verification-condition generator, in particular
for the stmulation verification-condition generator.
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Chapter 3

Example

In this chapter we give an example of a credible compiler transformation. We ex-
plain what the compiler generates and how a verification condition-generator (VCG)
generates a verification condition (VC). The compiler proves that it correctly per-
formed the transformation by supplying a proof that the VC is valid. For clarity of
presentation, we use a simple program fragment given in Figure 3-1. The fragment
presents a procedure p in a program with a global variable g. Procedure p has two
local variables i and c. We show a simple transformation on this example procedure,
namely constant propagation. The example is written in C, but at the present time
we can handle only a small subset of a C-like language within the credible compilation
framework. On the other hand, our framework supports many other transformations
that change the procedure structure in more complex ways. More examples can be
found in [42].

int g;
void p() {
int i, c;
i=0;
c = 3;
do {
g =2 * i,
qO;
i=1+c;
} while (i < 24);
}

Figure 3-1: Example Program Fragment

We use an intermediate representation based on control flow graphs. Figure 3-2
shows the graph for the example procedure. The graph contains several nodes, each
with a unique label. Most of the nodes have syntax and semantics as in C. For
example, the node with label 3 assigns the value of the expression 2xi to variable
g. Node 4 is a procedure call node. Control flows from this node to the beginning
of the called procedure q. When (and if) the called procedure returns, the execution
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continues from the next node. Node 6 is a conditional branch node. If the value of
variable i is less than 24, the control flows to node 3; otherwise, the control flows to
the procedure return node 7.

1: 1i=0 1: 1 =0
Y Y
2: ¢c=3 2: ¢c=3
Y Y
3: g=2%1i 3: g=2%i
Y Y
4: q0O 4: q0)
Y Y
5: 1 =1i+c b: 1 =143
Y Y
6: br (i<24) 3 6: br (i<24) 3
Y Y
7: ret 7T: ret

Figure 3-2: Original Procedure Figure 3—.3: Procedure After Constant
Propagation

Figure 3-3 shows the graph after constant propagation. To perform such an opti-
mization, the compiler first analyzes the code to discover certain properties. In our
example, the compiler discovers that the variable ¢ always has value 3 before the node
with label 5 executes. The compiler next performs the transformation of the code.
In our example, the compiler propagates the definition of variable ¢ at node 2 to the
use of the same variable at node 5. In addition to generating the transformed code,
a credible compiler also generates standard and simulation invariants. The standard
invariants are used to prove that the analysis results are correct, and those results,
together with the simulation invariants, are used to prove that the transformation
is correct. We next describe the invariants that the compiler may generate in this
example, and how VCG uses the invariants to generate VC.
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3.1 Compiler Analysis

After performing an analysis, the compiler presents its results in the form of stan-
dard invariants. The invariants are assertions about the program state at different
program points. In the language that we consider, an invariant is a relationship be-
tween variables at different nodes in the control flow graph. The compiler claims
the relationship to be true whenever control reaches the corresponding node. The
verifier uses the standard verification-condition generator (StdVCGQG) to generate the
standard verification condition (StdVC) for the assertions. If the compiler can prove
the StdVC, then the claimed assertions always hold; they are indeed invariants, and
thus the results are correct.

Each standard invariant consists of a formula' and the label of a node in the
control flow graph. The main invariant in our running example is that the value of
the variable ¢ is always 3 at the node with label 5. We use the formula ¢ = 3 to
represent the predicate on c, and we denote the whole invariant as 5:inv ¢ = 3.
The compiler usually generates several invariants to represent the analysis results
at different nodes. The compiler may also need to generate additional invariants to
be able to prove the results. The reason is that the StdVCG requires at least one
invariant for each loop in the procedure. Otherwise, the StdVCG cannot generate the
StdVC and marks the compiler output as incorrect. In this example, the invariant
5:inv ¢ = 3 is sufficient for the StdVCG to generate the StdVC. For expository
purposes, we consider two invariants: 3:inv ¢ = 3 and 5:inv ¢ = 3.

We next describe how the compiler presents the summary results for a procedure
in the form of standard contexts. The StdVCG uses standard contexts at call sites.
A (standard) context for a procedure is a pair consisting of a standard input context
and a standard output context:*

e a (standard) input context is a formula that can contain only the global program
variables and the procedure parameters; it represents a relationship between the
values of these variables that the compiler assumes to hold at the beginning of
the procedure;

e a (standard) output context is a formula that can contain only the global pro-
gram variables; it represents a relationship between the values of these variables
that the compiler claims to hold at the end of the procedure.

!Formulas are predicates from the logic that we present in detail in Section 4.2. We use a
slightly different syntax for the logic formulas than for the program expressions; in particular, we
use typewriter font for the program syntax entities, such as variables or labels.

2In program verification, a standard context is traditionally called a procedure specification and it
consists of a procedure precondition and a procedure postcondition. A precondition for a procedure
is formally a predicate on the program state at the beginning of the procedure. We call such a
predicate a standard input context because a credible compiler proves the correctness of program
analysis results, and the predicate represents the (program) context which the compiler assumes at
the beginning of the procedure. A postcondition for a procedure is, in general, a relationship between
the program states at the beginning and at the end of the procedure. We call such a relationship
a standard output context, and we use, in our basic framework, a simplified version in which the
relationship is only unary on the state at the end of the procedure.
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The compiler proves that the results (invariants and the output context) for a given
context are valid assuming that the input context holds. The compiler may generate
many contexts for the same procedure. This allows the compiler to prove that the
results of context-sensitive interprocedural analyses are correct.

In our example, the analysis of the procedure p does not assume any initial values
for variables; the results hold for all input contexts, and the analysis does not generate
any result for the output context. Hence, both input and output contexts are simply
true; we will use truefi» and truef+t to point out which formula we refer to. In this
example, for the call to procedure q we also take both input and output contexts to
be true, in notation true? and true?. The reason is that the analysis of p does
not require any result from q, except that q does not modify the local variable c of
p. The semantics of our language guarantees that the callee cannot access the local
variables of the caller. Procedure q may still modify the global variable g.

In our example, all of the formulas for the contexts are simply true. In general,
the procedure input and output context can be arbitrary formulas that include the
global variables and the parameters of the procedure. For instance, the compiler
might express that when g is even before the call to procedure q, then g is 0 after
the call. The input context would be g%2 = 0 and the output context g = 0. The
compiler would need to prove that this context indeed holds for procedure q.

3.1.1 Standard Verification-Condition Generator

We next illustrate how the StdVCG uses the standard invariants and contexts to
generate the StdVC for our example. The StdVCG symbolically executes the whole
procedure in the same direction in which the control flows through the procedure
graph. The symbolic execution uses a symbolic state that maps each program variable
to an expression representing the (symbolic) value of that variable. The StdVCG
propagates the symbolic state from a procedure node to all its immediate successors.
The StdVCG splits the execution at branch nodes into two independent paths. The
effect of each node is modeled by appropriately changing the symbolic state and/or
generating a part of StdVC.

When the symbolic execution reaches an invariant for the first time, the StdVCG
generates the part of StdVC that requires the invariant to hold in the current state.
The StdVCG then generates the invariant as a hypothesis for proving the rest of the
procedure. The execution finishes when it reaches an invariant for the second time,
or when it gets to a return node. At return nodes, the StdVCG adds the standard
output context to the StdVC. The StdVC is a formula in the logic which we present
in Section 4.2. In our logic formulas we distinguish the program variables from the
variables introduced in the formulas by quantification. We call the latter variables
logic variables. (Not related to the logic variables used in logic programming.)

In our running example, the symbolic execution proceeds in the following steps:

e The execution starts from node 1 and a fresh symbolic state. All program
variables are mapped to fresh logic variables that symbolically represent the
(unknown) values of the program variables at the beginning of the procedure. In

27



this case, for the program variables i, ¢, and g, we use the logic variables it, ¢!,
and g', respectively. We use superscripts to distinguish different logic variables
that represent the values of the same program variable at different program
points. (The numbers in the superscripts are not related to procedure labels.)
These symbolic values represent all possible concrete values of the variables,
and therefore the StdVCG generates a StdVC that universally quantifies over
these logic variables. The analysis results should hold for all the initial values
that satisfy the standard input context. In this example, it is just truePir, so
the StdVC starts as: Vil. V. Vgl. truePin = ..., and the rest of the symbolic
execution generates the rest of the StdVC. We abbreviate several consecutive
universal quantifications to: Vil,c!, gt. truefin = .. .

The execution of an assignment node does not generate any part of the StdVC;
the StdVCG only modifies the symbolic state: node 1 assigns the expression 1
to i, and node 2 assigns the expression 3 to c.

The execution next reaches the invariant 3:inv ¢ = 3 for the first time. The
StdVCG substitutes the program variables occurring in the formula of the in-
variant (only c in this case) with the symbolic values of those variables in the
current state (3 in this case) and generates the substituted formula as part of
the StdVC. Intuitively, this part requires that the invariant holds in the base
case of the induction. The StdVCG then generates a fresh symbolic state and
substitutes the program variables in the invariant with fresh logic variables.
The substituted invariant becomes the assumption used in the StdVC for prov-
ing the rest of the procedure. This part can be regarded as an inductive step;
the StdVCG uses a fresh state because the invariant has to hold for all succes-
sive executions that reach this node. Therefore, the StdVC is extended with:
.3 =3AVi3, A ¢ F=3= ...

The execution continues at node 3 which modifies the symbolic state by map-
ping g to 2 x 2. The execution next reaches node 4 which is a call node. At
call sites, the StdVCG performs an operation similar to the operation for the
invariants. The StdVCG uses the current symbolic state to substitute the appro-
priate expressions for the global variables and the procedure parameters of the
callee in the input context of the callee. In our example, this simply generates
true?~. Next, the StdVCG generates a new symbolic state, but replacing only
the symbolic values of the global program variables with fresh logic variables (g
becomes ¢3); local procedure variables do not change (i and c remain i* and ¢?,
respectively). The StdVCG then substitutes the program variables occurring in
the output context of the callee with fresh logic variables from the new symbolic
state. In our example, it again generates just true?+t and thus the execution
of this node extends the StdVC with: ...true%" AVg3. truet = .. ..

The execution reaches the other invariant 5:inv ¢ = 3, and the StdVCG does
the same as for the first invariant. The difference is that the symbolic value
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of ¢ is ¢® (and not 3) at this point. Thus, ¢* appears in the StdVC: ...¢* =
3AVS, 3¢t 2 =3= ...

e The next node is the assignment node 5, and the symbolic state before this
node maps i to 73, and ¢ to ¢3. After the node executes, i gets mapped to the
expression ° + 2.

e The conditional branch node 6 splits the execution in two branches:

— For the true branch, the StdVCG adds the branch condition (after appro-
priate substitutions) as the assumption to the StdVC and the execution
continues at node 3. At this point, the invariant 3:inv ¢ = 3 is reached
again. The substitution of the invariant is performed as before, and it is
added to the StdVC. However, the execution of this branch finishes here
because the invariant is reached for the second time.

— For the false branch, the StdVCG adds the negation of the branch condition
(after appropriate substitutions) as the assumption to the StdVC and the
execution continues at node 7. This is the return node, so the StdVCG
performs the appropriate substitution on the standard output context and
adds it to the StdVC. The execution finishes at the return node.

Finally, the whole StdVC for this example of a standard context is:

Vil, ¢!, gt truePin =
3=3AVi’, 2 ¢ . t=3=
true’ic A Vg3, true®t =
A =3AV¢, 3¢t 3 =3=
(P+P<24=cF=3)A
(=(i% + ¢ < 24) = truePeut).

The compiler has to prove that this StdVC holds to show that the analysis results are
correct. The compiler generates a proof using the proof rules for the logic presented
in Section 4.2.

3.2 Compiler Transformation

In this section we describe the simulation invariants that the compiler generates to
prove that the transformed procedure p simulates the original procedure with the
same name p. To avoid repeating transformed and original, we use subscript 1 for
the entities from the transformed procedure (program), and subscript 2 for the en-
tities from the original procedure (program). Therefore, we describe the simulation
invariants for proving that p, simulates p,. The compiler generates the simulation
invariants together with the transformed program and the standard invariants.?

3Note, however, that the reasons for generating the standard invariants differ slightly from the
reasons for generating the simulation invariants. Namely, the standard invariants both represent the
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The simulation invariants represent a correspondence between the states of the
two programs at particular program points. Each simulation invariant consists of a
formula that represents a relationship between the variables from the two programs
and two labels of nodes in procedures p; and p,. For example, the compiler might
express that variable g, at node 3; has the same value as variable g, at node 3,.
We denote such relationship as 3;,3;:sim-inv g, = g,. Simplified, this simulation
invariant holds if for all executions of p, that reach 3;, there ezists an execution of p,
that reaches 35 such that g, = g, holds. We define precisely when a set of simulation
invariants hold for some procedures later in the text.

In our example, we use the simulation invariant that additionally claims that i,
has the same value as iy: 3;,32:sim-inv g, = g, A i; = is. The compiler usually
needs to generate a set of simulation invariants. This is analogous to the standard
invariants, where the StdVCG executes one procedure to generate the StdVC; for
the simulation invariants, the SimVCG executes both procedures to generate the
SimVC. There should be enough simulation invariants for the SimVCG to perform
the executions. Otherwise, the SimVCG marks the compiler output as incorrect. In
our running example, the simulation invariant 3,,32:sim-inv g, = g, Ai; = iy is
sufficient® for generating a SimVC and we will use only that one invariant.

We next describe how the compiler presents the summary results for the simulation
of two procedures in the form of simulation contexts. As each standard context is
a pair of a standard input context and a standard output context, each simulation
context is a pair of a simulation input contert and a simulation output context:

e a simulation input context represents a relationship that the compiler assumes
to hold between the states of the two programs at the beginning of the two
procedures;

e a simulation output context represents a relationship that the compiler claims
to hold between the states of the two programs at the end of the two procedures.

As for the standard contexts and standard invariants, the compiler proves that the
simulation invariants hold for a particular simulation context.

The compiler is free to choose arbitrary simulation contexts for any pair of proce-
dures within two programs as long as it can prove that those contexts hold. The only
requirement is that the compiler has to prove that the transformed program simu-
lates the original program by proving that the starting procedure of the transformed
program simulates the starting procedure of the original program for the simulation
context which consists of:

e the simulation input context that states that the global variables of the two
programs and the parameters of the respective starting procedures have the
same values, and

(analysis) results and are used by the StdVCG to generate the StdVC to prove those results. On
the other hand, the simulation invariants are not a result by themselves, but a means for generating
the SimVC to prove simulation relationships.

4Actually, it is possible to generate a provable SimVC using only 3;,3;:sim-inv i; = i,.
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e the simulation output context that states that the global variables of the two
programs have the same values.

Intuitively, this way the compiler proves that the two programs generate the same
output, given that they have the same input.

In our example, suppose that p is the starting procedure of the two programs and
g is the only global variable in the two programs. Then, the compiler has to prove the
simulation context for procedures p, and p, with input formula g, = g, and output
formula g, = g,. Additionally, procedure p calls procedure g, or, in general, p, calls
q;, and p, calls q,. The compiler needs to use some simulation context to represent
the effect of those calls on the global variables g, and g,.

We assume that for the pair q;, and q,, the compiler also uses the simulation
context with both input and output contexts being g, = g,.> The compiler could
come up with this context in several ways. For example, procedures q; and q, can
be identical procedures, i.e., procedure q from the program where the compiler has
optimized p, if the compiler has not transformed q. Alternatively, q, can be generated
by the compiler by transforming q,. In this case the compiler would need to prove
that the simulation context it claims for q; and q, indeed holds. Finally, calls to q,
and q, might be calls to the same library procedure.

3.2.1 Simulation Verification-Condition Generator

We next illustrate how the SimVCG uses the simulation invariants and contexts to
generate the SimVC in our example. The SimVCG concurrently executes both pro-
cedures p; and p,. The executions are symbolic and similar to the symbolic execution
that the StdVCG performs. For each procedure, the SimVCG uses a symbolic state
that maps variables from that procedure to symbolic expressions representing the val-
ues of the variables. The SimVCG propagates the symbolic states through the nodes
of the respective procedures and appropriately changes the symbolic states and/or
generates a part of SimVC. The SimVCG executes the nodes from p, and p, inde-
pendently, except for pairs of nodes that are related, such as call nodes, return nodes,
or simulation invariants. The SimVCG needs to simultaneously execute the related
nodes. Also, the SImVCG needs to interleave the executions of other nodes from p,
and p,.

We allow the compiler to specify an arbitrary interleaving of the executions of p,
and p,. An interleaving is described with a sequence of actions that the compiler
generates in addition to a set of simulation invariants. The SimVCG starts the
executions of p; and p, from the beginning nodes and then consecutively uses the
actions from the sequence to determine which node(s) to execute next. For example,
the action execute; instructs the SimVCG to execute a node from p;. We next
explain the action executey B, where B is a boolean value; this action is used for
conditional branch nodes of p,. We discuss other actions in detail later in the text.

5The simulation contexts that the compiler generates need not be only the equality of the two
program states. For instance, even in this example, the compiler can generate the simulation input
context just true and prove that the simulation output context g, = g, holds.
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While executing the procedures, the SimVCG encounters the branch nodes. There
are two possible paths from a branch node. For procedure p,, there is an implicit
universal quantification over the control paths—each simulation invariant must hold
for all paths in p, that lead to that simulation invariant. The SimVCG therefore splits
the execution at branch nodes of p, into two independent executions. For procedure
p,, there is an implicit existential quantification over the control paths—for each
simulation invariant in p,, there ezists a path in p, that leads to a corresponding
simulation invariant. The SimVCG therefore follows only one path after a branch
node of p,. (the SimVCG could follow both paths, but that would make the SimVC
unnecessarily long.) The SimVCG does not try to determine by itself which path
to follow. Instead, the compiler needs to generate the action executes B, which
instructs the SImVCG to execute the branch node and to follow the branch B (taken
or not-taken).

In this example, we assume that the action sequence is such that the SimVCG
interleaves the executions of p, and p, using the following strategy:

o first, execute procedure p, until it gets to one of the simulation invariants,
procedure call nodes, or return nodes;

e then, execute procedure p, until it gets to one of the simulation invariants,
procedure call nodes, or return nodes;

e finally, execute simultaneously the related nodes from p, and p, and continue
the execution again from p, unless the executions finish.

The SimVCG finishes the executions when a simulation invariant is reached for
the second time, or when both procedures get to return nodes. At return nodes,
the SimVCG also adds the simulation output context to the SimVC. When both
executions reach a simulation invariant for the first time, the SiImVCG generates the
part of SimVC that requires the invariant to hold in the current states. The SimVCG
then generates the invariant as a hypothesis and continues executing the rest of the
procedures. When both executions reach a call site, the SimVCG uses the simulation
context of the callees to generate a part of SimVC and then continues the executions.
Note that the actions determine only when, and not how, the SimVCG executes
particular nodes.

In our running example, the symbolic executions proceed in the following steps:

e The executions start from nodes 1; and 1, with fresh symbolic states for both
procedures. All program variables are mapped to fresh logic variables that sym-
bolically represent the values of the program variables at the beginning of the
procedure. In this case we use the logic variables i}, c¢i, and g{ for the pro-
gram variables iy, ¢y, and g, and i}, ¢}, and g3 for the program variables i,
co, and g,. These symbolic values represent all possible concrete values of the
variables. The SimVCG generates a SimVC that universally quantifies over the
logic variables representing all program variables from program 1. However, for

the variables from program 2, the SimVCG universally quantifies only the logic
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variables representing values of global variables in program 2 and procedure pa-
rameters of p,, but the SimVCG only existentially quantifies the logic variables
representing local variables of p, which are not parameters of p,. We explain
later why the SimVCG existentially quantifies the values of local variables of
Pa-

The SimVCG starts generating the SimVC for a simulation context by substi-
tuting the logic variables for the appropriate program variables in the simulation
input context of that context. In this example, the simulation input context
is g, = g, and the substitution gives g; = g¢3. Thus, the SimVC starts as:
Vgi,i1,cl, 95 Fiy,c5. g1 = g3 = ..., and the rest of the symbolic executions
generate the rest of the SimVC.

e The SimVCG first executes nodes 1; and 2; from procedure p,, modifying its
symbolic state. Node 1, assigns the expression 1 to iy, and node 2; assigns the
expression 3 to c;. The execution of this path reaches a simulation invariant.
The SimVCG next executes p,, and nodes 15 and 2, modify the symbolic state
of ps.

e The executions reach the simulation invariant 3,,3;:sim-inv g, = g, Ai; = is
for the first time. The SimVCG substitutes the program variables occurring in
the formula of the invariant (g, g,, i1, and iy in this case) with the symbolic
values of those variables in their respective states (g1, g5, 0, and 0 in this case)
and generates the substituted formula as the part of SimVC. Similar to the part
of StdVC, this part intuitively requires that the invariant holds in the base case
of induction. The SimVCG then generates a fresh symbolic state and substitutes
the program variables in the invariant with fresh logic variables. The substituted
invariant becomes the assumption used in the SimVC for proving the rest of
the simulation. This part can be regarded as an inductive step; the SimVCG
uses a fresh state because the invariant has to hold for all successive executions
that reach this node. This means that the SimVCG now universally quantifies
over all logic variables in both procedures. Thus, the SimVC is extended with:
i = ga NO=0AVg, 02, c2 92,15,c5. gF = g2 N2 =105 = ...

e The compiler can use the analysis results to prove the transformation correct.
In this example, the compiler specifies with the action use-analysis, that it
uses the standard invariant 3:inv ¢ = 3 from p,.® The SimVCG adds the
invariant (after the appropriate substitution) as an assumption to the SimVC
and extends it with: ¢ =3 = ...,

e The execution of p, continues at node 3; which modifies the symbolic state of
p,, and then the execution reaches node 4; which is a call node. The execution
of p, continues at node 35. Both executions are now at call sites, and the
SimVCG performs a similar operation as the StdVCG. The SimVCG uses the

The original procedure is p, because we are showing that p,, the transformed procedure, simu-
lates p,.
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current symbolic states to substitute the appropriate expressions for the global
variables and the procedure parameters of the callees in the simulation input
context of the callees. In our example, this generates 2 x i = 2 % 3. Next, the
SimVCG generates for each procedure a new symbolic state, but replacing only
the symbolic values of the global program variables with fresh logic variables;
local procedure variables do not change. Then, the SimVCG substitutes the
program variables occurring in the simulation output context of the callees
with the fresh logic variables from the new symbolic states. In our example,
gi = gi. The execution of call nodes extends the SimVC with: ...2 % ¥ =
212 AVg, g5 gl =g5 = ...

The next node is the assignment node 5;, and the execution modifies the sym-
bolic state by mapping i; to i? + 3. The global execution reaches branch node
61 and splits into two paths:

— For the true branch, the SimVCG adds the branch condition (after appro-
priate substitutions) as the assumption to the SimVC and the control flows
to node 3;. At this point, an invariant is reached. The SimVCG next exe-
cutes node 55 and reaches branch node 65. At this point, the SimVCG uses
additional information provided by the compiler to decide which branch to
take. In this case, the SimVCG also follows the true branch and adds the
branch condition (after appropriate substitutions) as the part of SimVC.
The difference is that this part is not used as an assumption, but as a
consequence. The reason is that for each path in p,, there should be one
appropriate path in p,, but the compiler has to prove that this appropriate
path is indeed taken. At this point, both programs reach, for the second
time, the invariant 3;,3;:sim-inv g, = g, A i; = i,. The substitution of
the invariant is performed as before, and it is added to the SimVC. The
executions finish here because the invariant is reached for the second time.

— For the false branch, the SimVCG adds the negation of the branch con-
dition (after appropriate substitutions) as the assumption to the SimVC
and the execution of p, continues at node 7,. This is a return node, so the
SimVCG continues executing p,. After the SInVCG executes node 5,, it
again reaches branch node 6,. In this case, the SiImVCG takes the false
branch of that node, and adds the negation of the branch condition (after
appropriate substitutions) to the SimVC. At this point, both procedures
are at return nodes. The SimVCG performs the appropriate substitution
on the simulation output context and adds it to the SimVC. The execution
of this path finishes at return nodes.
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Finally, the whole SimVC for this example of a simulation context is:

Vgivl}vc%ag%' Eliévcé'g% :g% =
91 = g NO=0AVgi,il,cf,03,335,¢5. gl = gi Nif =i => 5 =3 =
2502 =2%i2 AVgl, g3, 2 = g3 =
(2+3<24=B+E<24NG =g N2 =i2) A
(~(2+3<24) = ~(i2+c3<24) ANg} =g3).

In this example, we have not described all the details of the actual SImVCG
(presented in Section 4.4). The actual SimVCG expects the compiler to provide some
more additional information and, for this example of a simulation context, the actual
SimVCG generates a different, but equivalent, SimVC. We next illustrate some more
details and show the actual SimVC.

Additional Information for Simulation Verification-Condition Generator

We next discuss some additional information that the SimVCG requires the compiler
to generate and we show how the SimVCG uses that information to generate the
SimVC. We present two extensions to the SimVCG presented so far, and we also
describe the actions for the SimVCG in more detail.

The first extension to the presented SimVCG regards generating related symbolic
states for the two procedures. In the example, we have used the simulation invariant
3;,32:sim-inv g, = g, A i; = i, that asserts that the values of g, and i, are the
same as the values of g, and i, respectively. In general, simulation invariants mostly
assert that the variables from one program have the same values as the corresponding
variables from the other program. Instead of using two different fresh logic variables,
say w1 and w9, for those two program variables, the actual SiImVCG uses the same logic
variable for both program variables in their respective symbolic states. That way the
SimVCG does not need to generate x; = x9 = ... in the SimVC. Additionally, when
substituting the program variables in the invariants with the logic expressions, the
SimVCG checks (syntactic) equality of the logic expressions, and does not generate
them if they are equal. These changes result in a much shorter SimVC. (We present
all the details of related symbolic states in Section 4.4.)

The second extension to the presented SimVCG regards the existentially quantified
logic variables representing local variables of p,. We first explain why the SimVCG
does not universally quantify those variables. Recall first that the StdVCG starts the
symbolic execution with a fresh symbolic state, which maps all program variables to
fresh logic variables, and that the StdVCG universally quantifies all those logic vari-
ables in the resulting StdVC. The SimVCG similarly starts the symbolic executions
with fresh symbolic states for both procedures. The state for p, maps variables from
program 1 to fresh logic variables, and the state for p, maps variables from program 2
to fresh logic variables. However, the SimVCG does not universally quantify all these
variables in the SimVC. The reason is that, in general, the resulting SimVC would
not hold and thus would not be provable, although p, simulates p,. The problem is
that uninitialized local variables lead to the non-determinism in the following sense:
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different executions of a program may generate different results for the same input,
where we regard as program input only the values of the global variables (and the
procedure parameters) at the start of the execution.”

Consider, for instance, two identical procedures without parameters that only set
global variable g to the value of (uninitialized) local variable 1 and return. We would
like to have a framework in which we can prove that one of those procedures simulates
the other. (Although the equivalence of two programs is undecidable in general, we
want at least to be able to prove that two identical procedures are equivalent, no
matter what they do!) If we used a SimVCG that universally quantifies over all
logic variables, we would obtain as SimVC (for the context stating that g, is the
same as g, at the end of the procedures) Vi, 3. [} = 13, which clearly does not hold.
Therefore, we require that the SimVC be universally quantified over all logic variables
representing possible inputs to the procedures (i.e., global variables and parameters).
But, for local variables, we require only that for all possible initial values of the local
variables of p,, there exist some initial values of the local variables of p, such that
the SimVC holds. In the case of the {g = 1;ret} procedures, it gives Vi{. 3. I} =13,
which clearly holds.

The actual SimVCG requires the compiler to provide the initial expressions for
the local variables of p,. These expressions are usually just equalities of the local
variables of p, with the corresponding local variables in p;. (We present all the details
in Section 4.4.) In the initial symbolic state for p,, the SimVCG then maps the local
variables of p, to the expressions provided by the compiler. Therefore, the SInVCG
does not introduce fresh logic variables for the initial values of the local variables of
p,, and the generated SimVC has no existential quantification. This makes it easier
for the proof generator to prove the SimVC.

The actual SimVCG, which uses related symbolic states and logic expressions for
the initial values of local variables of p,, generates, for the previous example of a
simulation context, the following SimVC:®

Vgi,ii, cl. true =
true A Vg2, 4%, 2, cl. true = ¢} = 3 =
true A V¢3. true =
(1 +3 <24 =i*+c) <24 Atrue) A
(—(1? +3 < 24) = —(i* + ) < 24) A true).

We next describe the actions for the SimVCG in more detail. We first explain why
the compiler generates actions. As mentioned, the compiler uses a sequence of actions
to guide the SimVCG in performing the symbolic executions of procedures. This is
different from the StdVCG, which has a fixed structure in its symbolic execution.

Since the programs have no non-deterministic constructs, the result of an execution is determined
by the state of the (whole) memory in which the program starts the executions. But, considering
as program input also the values of the uninitialized local variables would disallow many compiler
transformations, e.g., the compiler could not add temporary variables.

8In practice, the SimVCG does not even generate “true” in “true = F”, “true A F”, or
“F A true”.
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Namely, the StdVCG starts the execution from the beginning of the procedure, and
the execution proceeds sequentially until one of the following is reached: a branch
node, a standard invariant, a call node, or a return node. At branch nodes, the
execution splits into two paths and each of them follows the same algorithm. When
a standard invariant is reached, depending on whether it is the first time it is reached
or not, the execution either proceeds from the next node or finishes. When a call
node is reached, a standard context is used for generating a part of StdVC, and the
execution always continues from the next node. Finally, the execution always finishes
at a return node.

The SimVCG differs from the StdVCG in that the SimVCG executes two proce-
dures, and has to interleave the symbolic executions of the nodes from those proce-
dures. It is possible to use a fixed structure for this interleaving; in particular, the
SimVCG could follow the general strategy that we described in the example: first
execute p; until a “switch” node, then execute p, until the corresponding node, and
then execute two nodes simultaneously. However, there are pairs of procedures for
which following this fixed structure would generate unnecessarily long SimVCs. We
therefore allow the compiler to describe an arbitrary interleaving. Note that it is not
necessary that the compiler itself generate all the steps describing the interleaving.
The compiler can generate only the set of simulation invariants and potentially some
guidelines for the interleaving, and a different module, following those guidelines, can
generate the full sequence of the interleaving steps.

We next present the actions that the SimVCG performs while generating the
SimVC in our example of a simulation context. We represent the actions in the
following way: ex; and exy instruct the SimVCG to execute nodes from p,and p.,
respectively; ex-b instructs the SimVCG to execute nodes from both procedures;
and any instructs the SimVCG to include the results of the analysis of p,. The full
sequence of actions is:

exy, X, €Xy, Xy, €X-b, any, ex;, Xy, ex-b, ex, exy, exs, exy 1, ex-b, exy, exy F ex-b.

Recall that the SimVCG splits the execution of p,; at branch nodes. In this example,
the last ex; action in the sequence instructs the SimVCG to execute a branch node.
The next three actions in the sequence—ex,, ex, T, ex-b—correspond to one path of
the execution, and the last three actions—exs, exy F, ex-b—correspond to another
path. We can therefore represent the sequence of actions as an action tree:

exs, exs Fex-b
exj, €x1, €Xy, €Xo, €xX—b, any, ex;, Xy, €x-b, ex;, ex; <
exs,eXxs 1, ex-b

The action tree describes the interleaving of the symbolic executions of p, and p,.
Note that we can make an action tree from a sequence of actions by knowing the flow
graphs of the procedures and the placement of simulation invariants. We use actions
trees in the presentation of the actual SimVCG in Section 4.4.
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Chapter 4

Basic Framework

In this chapter we describe a formal framework for credible compilation. We first
define a language for which we build the basic framework. For clarity of presentation,
we use a simple language that we call the basic language (BL). In Chapter 6 we
describe some extensions to BL and how to handle them in the framework. We also
present some limitations of the current credible compilation framework.

We first define the syntax and semantics of BL in Section 4.1. We next define
syntax and semantics of the logic formulas for credible compilation in Section 4.2.
The logic that we use is a first-order predicate logic with simple integer variables
and an extension for referring to program variables within the formulas. The logic
formulas are used for two purposes: for representing the (standard and simulation)
invariants and for representing the verification conditions.

In Section 4.3 we describe the standard contexts in detail and formally define when
the standard contexts hold for some program. We also present how the standard
verification-condition generator uses the standard contexts to generate the standard
verification condition. In Section 4.4 we describe the simulation contexts in detail and
formally define when one BL program simulates another. We also present how the
simulation verification-condition generator uses the simulation contexts to generate
the simulation verification condition.

The notation that we use for the meta-language mostly follows the notation from
the unpublished textbook used in the MIT Programming Languages course [46]. In-
stead of using the juxtaposition fs to denote the application of a function f to an
element s, we use the more traditional notation f(s). We will also use common in-
fix notation for standard binary functions. We explain other abbreviations as we
introduce them.

4.1 Basic Language

In this section we first define the syntax of BL and then its formal operational se-
mantics. We make a number of simplifications in designing BL; we present some
alternatives later in the text.

BL is a toy imperative language that describes a compiler intermediate represen-
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tation based on control flow graphs. BL can be regarded as a small subset of the
C programming language [26]. However, BL is not a high-level language for writing
source programs. We discuss credible compiler translations, in particular translation
from a source language to an intermediate representation, in Section 6.3. BL is not
a low-level language, either. More specifically, variables have symbolic names, and
programs do not operate only with registers and memory as in an assembly language.
(In Section 6.1.1 we show how to model registers with variables with special names
and memory accesses with pointer accesses.)

4.1.1 BL Syntax

Figure 4-1 shows the abstract syntax of BL. The main syntactic elements are pro-
grams, procedures, nodes, and expressions. Each program () consists of a sequence of
declarations of global variables and a sequence of procedures. Each procedure P con-
sists of a sequence of formal parameters, a sequence of declarations, and a sequence
of nodes. In the abstract grammar we use z* to denote a possibly empty sequence
and 2T to denote a sequence with at least one element. In the concrete grammar we
use “;” or “,” for sequencing. Thus, a more concrete way to describe a procedure is:
P=proc I(Iy,...,I,) Dy;...;D,p {Ny;...;Np}. We use “=” to denote syntactic
equality.

Each node N has a unique label L for identification. There are four groups of
nodes, and their informal semantics is the following:

e An assignment node I=FE evaluates the expression F, assigns its value to I, and
the execution continues at the next node.

e A branch node br (£) L’ evaluates the expression E and if it is true, the execu-
tion continues at the node with label L'; otherwise, the execution continues at
the next node.

e A return node ret finishes the execution of the current procedure and the
execution continues in the procedure that called this procedure; if there is no
such procedure, then the program terminates.

e A call node I(FE1, ...,E,) evaluates the expressions F; to E,, passes their
values as actual parameters to procedure I, and the execution continues at the
first node of procedure I.

Expressions are constructed from variables, integer and boolean constants, and
operators. We use expressions without side effects to simplify the presentation. Thus,
procedure calls are not expressions, but statements; procedures do not return a result,
but they can change the global variables. We consider expressions with side effects
in Section 6.1.4. Declarations of BL program variables have no types. We assume
that programs operate on integers. We adopt the C convention for boolean values: a
non-zero integer represents true, and zero is false. We present some extensions to the
language in Section 6.1.
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Syntactic Domains :
@ € Program

P € Procedure

D € Declaration

N € Node

L € Label

E € Expression

I € Identifier

U € Unary-operator = {!, -}

O € Binary-operator = {+,-, %, /, %} U {==,1=,> < >= <=} U {&&, | |}

B € Boolean-literal = {TRUE, FALSE}
Z € Integer-literal = {...,-2,-1,0,1,2,...}

Production Rules :

E=7Z

| B

| I

| E1 O E,

| U B,
L=1I

| Z
N=L:I=F

| L:or(E)L'

| L:ret

| L:1(E%)
D=1

P =proc I(I*) D* {N*}

Q) =prog D* P+

[Integer Literal]
[Boolean Literal]
[Variable Reference]
[Binary Operator]
[Unary Operator]

[Textual Label]
[Numerical Label]

[Assignment Node]
[Branch Node]
[Return Node]
[Call Node]
[Implicit Size]

[Procedure]

[Program)]

Figure 4-1: Abstract Syntax of BL
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We introduce some additional notation and describe semantic checks for BL pro-
grams. We write P € @) to denote that procedure P is in program () and N € P
to denote that node N is in procedure P. We write P(L) for the node with label L
in procedure P. We require that target labels of all branches in P be labels of some
nodes in P. For a node with label L in procedure P, the label of the next node is
denoted L +p 1. This is the label of the node following L in the static sequence of
nodes, not necessarily in the execution. There is exactly one next node for each node
except the last node. We require that the last node be a return node. We write the
label of the starting node of procedure P as start-label(P) or P°.

Each procedure P = proc I(I*) D* {N'} has three sets of variables in the scope;
we denote these sets as: locals(P) for the local variables of P (variables in D*),
params(P) for the parameters of P (variables I*), and globals(P) (or globals(Q)) for
the global variables of the program () that contains P. We require that params(P) N
locals(P) = {}. We use vars(P) = params(P)Ulocals(P)Uglobals(P) for the set of all
variables in the scope of P. Therefore, locals(P)Uparams(P) is a set of all non-global
variables of P and vars(P) — locals(P) is a set of all non-local variables of P. We
require that all variables used in a procedure/program be declared. Also, we require
that procedures in all call nodes be procedure (not variable) identifiers and that the
number of actual parameters be the same as the number of formal parameters.

4.1.2 BL Semantics

In this section we present the formal semantics of BL. We use a structured operational
semantics which is formally a five-tuple (C, —, F,Z, O). C is a set of configurations
that represent the state of a machine executing a BL program. — is a relation
describing transitions between configurations. F is a set of final configurations in
which a program can finish its execution. Z is an input function that maps a program
and its input data to an initial configuration. O is an output function that maps a
final configuration to a program’s output.
Before we define C, we introduce some additional domains:

V' € Value = Integer-literal
Address = Integer-literal
m € Memory = Address — Value
p € Alloc-Pointer = Address
One-Environment = Identifier — Address
a € Environment = One-Environment x One-Environment
h € History = (Label x Procedure x Environment)*.

The Value domain represents the values to which BL expressions can evaluate; BL
programs operate on integers. The values of program variables are stored in a mem-
ory. Memory locations have addresses from the domain Address. The Alloc-Pointer
domain represents the values of the (stack) pointer used for memory allocation. The
domain Memory contains functions that map addresses to values stored at those ad-
dresses. The domain One-Environment contains functions that map variable names
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to the memory addresses where values of those variables are stored. We use a pair of
environments to represent separately the environments for global and local variables.
We will use superscripts ¢ and [ to refer to the global and local parts; for example,
a? denotes the first component of pair @, and a' denotes the second component.

Elements of the History domain basically represent (control) stacks. They are
sequences of triples. Each triple consists of the information necessary to resume the
execution after a procedure call returns: the label of the next node to be executed
after the return, the procedure in which that node is, and the environment for that
procedure. Data stacks, namely the values of the local variables and procedure pa-
rameters, are stored in memory.

We next define configurations of BL operational semantics. They are six-tuples
consisting of the label of the node to execute, the current state of the memory, the
environment for the current scope, the value of the stack pointer, the history of
procedure calls, and the current procedure:

C = Label x Memory x Environment x Alloc-Pointer x History x Procedure.

To be even more precise, we should include in the configurations the program that is
executing. However, the program does not change during the execution, and we omit
it. Also, during the execution of a fixed procedure activation, the stack pointer, the
history, and the procedure do not change! except at call sites, and we abbreviate the
configurations to triples (L, m, a).

We next explain the stack allocation in BL. The basic function that allocates space
for a local variable I is:

alloc!({(m, a,p), I) = (m, (a?,d'[I — pl),p+ 1).

This function only extends the local environment and increments the stack pointer;
the memory remains the same. To initialize the value of the local variable we addi-
tionally change the memory location:

alloc-init!((m, a, p), I, Z) = (m[p = Z],{a?, d'[I ~ p]),p+ 1).
We also define an analogous function for initializing a global variable:
alloc-init?((m, a,p), I, Z) = (m[p = Z], (a*[I = p|, '), p + 1).

We will use these functions for sequences of variables (and their initial values when
appropriate). In particular, function alloc-locals is a map of alloc! over a sequence I*:

alloc—locals((m, aap>7 [ ]) = <m7 aap>
alloc-locals((m, a, p), I.I*) = alloc-locals(alloc'((m, a, p), I), I*).

Similarly, alloc-params((m, a,p), I*, Z*) and alloc-params((m, a,p), I*, Z*) are maps

!Environment a also does not change, but it is used for evaluating expressions.
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of alloc-init’ and alloc-init?, respectively.
The stack deallocation in BL does not change the stack pointer; the functions that
deallocate space simply return their input p:

dealloc-locals(p, D*) = p
dealloc-params(p, I*) = p.

We explain later why we do not decrease the value of p.

We next present how a program starts and finishes its execution. We also present
what is input and output data for a program. To start a program execution, we need
to give two sequences of values: one for the global variables of the program and one
for the actual parameters of the starting procedure. The input function Z maps a
program and two sequences to an initial configuration:

Q. 2. 7)) =
matching () > prog D* P* |
let (my, ps) be random-memory() in
let a; be empty-environment() in
let (my, ag,p,) be alloc-globals({m, as, ps), D*, Z;) in
let P be head(P*) in
matching P > proc I([*) D* {N*} |
let (m,,ap,p,) be alloc-params((my, ay,p,), I*, Z;) in
let (m,a,p) be alloc-locals((my, ag, py), D*) in
(P°,m,a,p,[],P)

endmatching

endmatching.

The initial state of the memory, before the execution starts, is completely arbitrary,
and the environment is empty. The function alloc-globals first creates an environment
for the global variables and initializes the memory locations for those variables. Next,
the starting procedure P of the program is obtained. Space for the parameters of P
is allocated in memory, and those locations are initialized to the input values. Space
is also allocated for the local variables of P, but those locations are not initialized.
Execution starts with the first node in P and an empty history.

The program finishes its execution when the starting procedure gets to the return
node. At that point, the history is empty. The output of the program is only the
sequence of values of its global variables, not the state of the whole memory:

F={(L,m,a,p,[],P)|P(L) = L:ret}
O({L,m,a,p,[], P),Q) = matching Q > prog D* P* |
extract-output(m, (a?, empty-environment()), D*)
endmatching,
where
extract-output(m, a,

[
extract-output(m, a, I. m(a(I)).extract-output(m, a, I'*).
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The value of variable I in memory m and environment a is denoted m(a(l)). We
use a(I) to denote the address of the variable I in the environment a: if I is in the
domain of a!, then a(I) = a'(I); otherwise, a(I) = a?(I).

We use notation m(a(FE)) to denote the value of expression E in memory m and
environment a. Figure 4-2 defines the value of BL expressions. The definition uses
the helper function calc-value. This function takes a syntactic representation of the
operator and operands, and returns an integer literal which is the result of applying
that operator to those operands. The operations give the same results as in C, except
for division and modulo operations. We define that they evaluate to 0 if their second
operand is 0. This way expression evaluation cannot end up in an error state. We
discuss the absence of error states after presenting completely the semantics of BL
programs.

E, O EQ)_ = calc-value(O, m(a(Ey)), m(a(E>)))
U calc-value(U, m(a(F)))

S
[

Figure 4-2: BL Expression Evaluation

Figure 4-3 defines the rewrite rules for BL. We present a high-level operational
semantics [4], without specifying the details of expression evaluation? on a machine
that is executing the programs. Instead, in each step the machine evaluates all the
expressions occurring in the current node and makes a transition to the next node.

The rule for I=FE evaluates the expression, updates the memory, and the execu-
tion continues at the next node. The rules for br (E) L' evaluate the condition, and
depending on its truth value, the execution continues at the next node or the node
with label L’. The execution of I (E*) first evaluates the values of parameters. Next,
it allocates space in memory for the parameters and initializes them with the values.
Finally, it allocates space for local variables of I and the execution continues from
the first node of I. The rule for ret deallocates the space for local variables and
parameters, and the execution continues in the caller, at the node after the call.

We now discuss the stack deallocation. We use deallocate functions that do not
change the stack pointer p; they simply return p’ that has the same value as p. This
may look surprising, since the expected behavior would be that the deallocate func-
tions decrease p (opposite of the allocate functions). We do not change p because we
model local variables that have arbitrary initial values for every call. If we decreased
p, the initial values of local variables would be the final values of local variables in pre-
vious calls. We want to eliminate such dependencies in the language for two reasons:
they do not formalize properly the intuitive notion of uninitialized local variables and
they make compiler transformations more difficult.

2This is easy to do because expressions have no side effects.
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(L,m,a,p,h,P) = (L+p1,m[V — V'], a,p,h, P) [assign]
where P(L) = L:I=E
and V =a(l) and V' = m(a(E))

(L,m,a,p,h, Py — (L', m,a,p,h, P) |branch-true]
where P(L) = L:br(E)L’
and m(a(E)) £ 0

(L,m,a,p,h,P) = (L+p1,m,a,p,h,P) [branch-false|
where P(L) = L:br(E)L’
and m(a(E)) =0

(L,m,a,p,h, Py — (start-label(P"), m’,a',p', (L +p 1, P, a).h, P") [calll
where P(L) = L:1(E*)
and P’ = proc I(I*) D* {N'}
and V* = m(a(E"))
and (m/,d’, p') = alloc-locals(alloc-params((m, a, p), I*, V*), D*)

(L,m,a,p, (L', P' a').h, P) — (L',m,d ,p', h, P") [return]
where P(L) = L:ret
and P = proc I(I*) D* {N*}
and p’ = dealloc-params(dealloc-locals(p, D*), I'*)

Figure 4-3: BL Operational Semantics Rewrite Rules
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We allow programs that read uninitialized local variables.> However, such a pro-
gram can generate different results in different executions, depending on the state
of the memory at the beginning of the execution. As we pointed out, the execution
starts with a completely arbitrary memory. That is why we call BL programs almost
deterministic—the output is determined uniquely by the input and the initial state
of the memory, but that state is arbitrary. For example, consider a simple program
that has only one global variable and only one parameterless procedure. Further, let
the procedure set the global variable to an unknown value of a local variable. This
program can generate any output, no matter what the value of the global variable at
the beginning is.

We next argue that not decreasing the stack pointer p in the deallocate functions
does not affect “well-behaved” programs. We call a program “well-behaved” if it
does not read uninitialized variables, and its output is therefore determined solely
by its input. Consider the execution of BL programs on a realistic machine that
would decrease p on a return from a callee. The execution of a BL program on such
machine would generate one of the results that the executions of the same program
can generate on a machine that does not decrease p. If a program can generate only
one result (for a given input) on a machine that does not decrease p, then the program
generates the same result on the machine that decreases p. Therefore, not decreasing
p does not affect the result of the “well-behaved” programs as they can generate only
one result.

For the original programs that are not “well-behaved” and read uninitialized vari-
ables, we could define the result to be “undefined.” We could then allow the compiler
to generate any transformed program; however, we do not do that. We require, in-
stead, the compiler to generate a transformed program that can generate only the
results that the original program can generate. We present details later in the text.

Finally, we point out that BL semantics has no error states. There are no stuck
configurations: each configuration is either final and the execution finishes, or the
execution can make a transition from the configuration to its successor. BL programs
thus either generate a regular output or do not terminate. This is a simplification
that we make in the basic framework. We consider extending the semantics with error
states in Section 6.1.3.

Partial Executions

We next define partial executions of BL programs and procedures using the rewrite
rules for BL. We also define quantification of partial executions, which we use to
specify the compiler requirements.

Definition 1 A partial execution of a program Q is a sequence of configurations
(P’ m,a,p,[],P) — ... = (L,m',d,p, h, P") such that:

e the first configuration is the initial configuration for an execution of Q: the cur-
rent procedure P is the starting procedure of Q, the current label P° is the label

3It is undecidable in general to check if a BL program reads an uninitialized local variable.
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of the starting node of P, the history is empty, and m, a, and p are, respectively,
the memory, the environment, and the stack pointer at the beginning of P; and

e cach successor configuration is obtained from the preceding configuration by a
rewrite rule.

The configurations in a partial execution of a program can have different current
procedures. The current procedure changes between two consecutive configurations
when a call node or a return node is executed. More precisely, a procedure can call
itself, and it is the activation of the procedure that changes. Each configuration in a
partial execution of a program belongs to some procedure activation. All configura-
tions that belong to a fixed procedure activation form a sequence of configurations,
which is a subsequence (not necessarily consecutive) of the sequence of configura-
tions for the partial execution of the program. We usually refer to a sequence of
configurations that belong to a fixed procedure activation as a partial execution of a
procedure.

Definition 2 A partial execution of (an activation) of a procedure P is a sequence
of configurations (P°,m° a,p°, h, P) % ... =5 (L,m,a,p, h, P) such that:

e the first configuration consists of the label of the starting node of P, the starting
memory m® at the entry of the procedure, the environment a for the particular
procedure activation, and the stack pointer p° and the history h at the entry of
the procedure; and

e cach successor configuration is obtained from the preceding configuration:

— if the preceding configuration is not a call node, the successor is obtained
by one rewrite rule, and

— if the preceding configuration is a call node, the successor is obtained by
several rewrite rules, none of which is a return from a configuration with
history h; and

e all configurations have the same environment a, history h, and procedure P.

We usually refer only to the first and the last configuration in a sequence representing a
partial execution. Therefore, we denote a partial execution as (P°, m°, a, p°, h, P) R
(L,m,a,p,h, P). We next describe another abbreviation that we use.

Procedure P can call other procedures during an execution. The environment,
a history, and current procedure temporarily change at a call site, but are restored
after the called procedure returns. (Therefore, h and P are the same for all config-
urations in a partial execution of an activation, but h and P can be the same even
for different activations.) On the other hand, the memory is not restored, and for
BL programs, the stack pointer is also not restored: p is increased at call sites, but
not decreased on returns. The expression evaluation, however, does not depend on
the stack pointer. Therefore, during the execution of a fixed procedure activation, we
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abbreviate the configurations (L, m, a,p, h, P) to triples (L, m,a), and we represent
a partial execution of an activation of a procedure P as (P°,m°, a) 5 (L, m,a).
We next explain quantification of partial executions. We use the terms “for all
partial executions” and “there exists a partial execution” to specify the correct-
ness requirements for compiler analyses (Section 4.3.2) and compiler transforma-
tions (Section 4.4.2). We first introduce quantification of starting configurations
(P°, m°, a,p’ h, Py for an activation of a procedure P = proc I([*) D* {N*}.
Any p° is possible at the beginning of any P. Let p’ = p’ — |locals(P)| and p" =
p' — |params(P)], i.e., p' is the value of the stack pointer before the allocation of the
local variables of P and p” is the value of the stack pointer before the allocation of

the parameters of P. We say that environment a and history h are possible for p°
and P if:

e local environment a' maps I* to addresses from p” to p' — 1 and a' maps D* to
addresses from p' to p’ — 1, and

e global environment a¢ is the same for all environments in h = (L', P',a')* and
a? maps the global variables of the program that P is in to addresses less than
some p?, and

o if h = (L', P',d’).I', then there exists some p° < p” such that o' and h' are
possible for p and P'; otherwise if h =[], then p? < p".

Basically, an environment and a history are possible for a procedure if they represent
a possible stack state.
We define the quantification of starting configurations based on memory m®:

e “for all starting configurations of P” means: for all p°, and for all a and h
possible for that p°, and for all m?; and

e “there exists a starting configuration of P” means: for all p°, and for all a and
h possible for that p°, and for all values of m® locations with addresses less than
p' (the locations “below” the local variables of P), there exist some values of
other m® locations (the locations for the local variables of P and “above” the
local variables).

Finally, we define the quantification of partial executions:

+
-—>

e “for all partial executions (P° m°, a) (L,m,a)” means:

— for all starting configurations of P, and

— for all sequences of configurations from (P° m°, a) to (L, m,a) such that
each configuration is the successor of the preceding configuration;

: : . +
e “there exists a partial execution (P°, m°® a) --» (L, m, a)” means:

— there exists a starting configuration of P, and

— there exists a sequence of configurations from (P° m°, a) to (L, m,a) such

that each configuration is the successor of the preceding configuration.
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4.2 Basic Logic

This section presents the logic for credible compilation for the basic language (BL)
introduced in the previous section. We use first-order predicate logic with simple
integer variables [4]. In logic formulas, there needs to be a way to refer to the variables
from both the original program and the compiler transformed program. To this end,
we add special constructors to logic expressions. We describe in detail the relationship
between the program and logic expressions. We finally define semantics of the logic
formulas, and discuss briefly proof rules for those formulas.

4.2.1 Syntax of Logic Formulas

Figure 4-4 shows the syntax of the logic formulas.* We use the meta-variable F' for
the elements of the syntactic domain of the logic formulas. The formulas consists
of boolean expressions G° and logical operators connecting them. The formulas can
also be universally or existentially quantified; in the basic logic, only integer logic
variables can be quantified.

Boolean expressions are constructed from boolean constants, operators that take
either boolean or integer expressions and produce boolean expressions, and the integer
to boolean conversion function. i2b(G?) could be also written as G* # 0. Integer
expressions are constructed from integer constants, integer variables, operators that
produce integer results, and the boolean to integer conversion function. b2i(G®)
represents the function that takes a boolean value, and if it is true, returns 1, otherwise
0.

There are two groups of variables in the logic formulas: logic variables, for which
we use the meta-variable x, and program variables, for which we use the meta-variable
I. We use the integer expression constructors H(I) to denote values of program
variables. We introduced these special constructors for two reasons.

First, H(I) constructors provide a way to refer, within a logic formula, to the
program variables not visible in the lexical scope of the part of the program enclosing
the formula. For example, consider a program () that has a global variable named
v and a procedure P that itself has a local variable named v. Referring to v within
P accesses the local variable; there is no way to access the global v. In the formulas
in P, the compiler might also need to refer to the global v. That is the intended
meaning of the constructors glob (to denote the global variables) and loc (to denote
the local variables).” (We also use loc to denote the procedure parameters. Unless
noted otherwise, we always treat the procedure parameters in the same way as the
local variables.) For example, the formula loc (v) = glob(v) denotes that the local
v has the same value as the global v; depending on the values of the two different
variables (with the same name), the formula can be true or false.

“We use different notation for logic expressions (common mathematical symbols in a proportional
font) than for program expressions (common programming languages symbols in a fixed-width font).

> Another way to make a distinction between the variables would be to require disjoint sets of
names for the global and local variables.
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Syntactic Domains :
F € Formula
G € Boolean-expression
G € Integer-expression

H € Program-variable = {loc,glob} U {loc;,glob,, locs, glob,}

I € Identifier

x € Logic-identifier

O° € Arithmetic-operator = {+, —, x, /, %}

O! € Logical-operator = {A,V, =, <}

O" € Relational-operator = {=, #, >, <, >, <}
Z € Integer-constant = {...,—2,—1,0,1,2, ..

3

Production Rules :

G'=7 [Integer Constant]
| = [Logic Variable]
| H(I) [Program Variable]
| G O* G%  [Arithmetic Operator]
| -G [Unary Minus]
| b2i(G®)  [Boolean Conversion]
G’ = true [Constant True]
| false [Constant False]
| G4 O' GY  [Logical Operator]
| —GY [Negation]
| G} O" G [Relational Operator]
| i2b(G*)  [Integer Conversion]
F =G° [Boolean Expressions]
| F; O' F, [Logical Operator]
| —F' [Negation]
| Va. F' [Universal Quantification]
| Jx. F' [Existential Quantification]

Figure 4-4: Abstract Syntax of the Logic Formulas
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The second reason for introducing H (I) constructors is for the formulas that de-
scribe a correspondence between two programs. Such a formula refers to the variables
from both programs.® We use the constructors with indices to denote the program
variables: loc; and glob, for the variables from program 1 and locy and glob, for
the variables from program 2. Although the syntax for formulas allows combining
constructors loc and glob with loc;, glob,, locy, and glob,, we use those two
groups exclusively. There are two groups of formulas: formulas that describe prop-
erties of only one program and formulas that describe correspondences between two
programs. The formulas from the first group can contain only the constructors loc
and glob without indices, and the formulas from the second group can contain only
the constructors with indices.

The majority of the formulas that describe correspondences between two pro-
grams are conjunctions stating that some variables from one procedure/program have
the same values as the corresponding variables from the other procedure/program.
We introduce a special form for such formulas. We use meta-variable J for the
pairs consisting of a logic formula and a sequence of pairs of program variables:
F,(H,(I),Hy(I3))*. Such a pair represents conjunction F' A A\ H,([}) = Hy(ly),
where /\ ranges over the pairs of variables in the sequence. We require that a variable
can appear in only one pair of variables, i.e., in the sequence of the first components
H,(1,)*, all the variables have to be different, and in the sequence of the second
components Hy(I3)*, all the variables have to be different. We write var-pairs(J) for
the set of pairs of variables from formula .J.

We introduce one notational convention for referring to the entities from two
programs (); and ;. We use index /5 to mean “1 and 2, respectively.” For exam-
ple, we say “variables H,,(I1/2) from programs ()1/2” to mean “variables H;(l;)
and Hy(l3) from program (); and program ()s, respectively.” We also write only
“variables H, (I}) and H,([ly) from programs (); and ;" referring to the respective
entities, without mentioning it explicitly.

4.2.2 Relationship between Program and Logic Expressions

We next describe the relationship between expressions in BL. programs and expres-
sions in the logic formulas. The program and logic expressions have a similar struc-
ture. The main difference is in the way of referring to the program variables. In
programs, the variables are referred to simply by their name. In logic expressions,
program variables are referred to by using expression constructors from H. In logic
expressions, there are also logic variables introduced by quantification of logic formu-
las. These variables are referred to simply by their name. Another difference between
program and logic expressions is typing. Whereas program expressions are untyped
(all expressions have integer type), logic expressions have types and they can be either
integer or boolean.

6 Again, one way to make a distinction between the variables would be to require that the two
programs use different names for the variables. Although this might be acceptable for global and
local variables within one program, it is less acceptable for variables from two programs.
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We introduce functions for translating expressions from program form to logic
form. Figure 4-5 shows the definition of the translation functions. These functions
use a symbolic environment e in translation. The symbolic environment e is similar
to the environment a used in the operational semantics. However, ¢ does not map
variable names to the memory addresses, but to the appropriate logic expressions
for those variables. For example, a symbolic environment for one program maps the
variables in the following way: for each local variable I;, e(I;) = loc (I;), and for each
global variable Iy, e(I,) = glob (I,).

translate(E, e) = to-type(translate-type(FE, ), int)
translate-bool(E, e) = to-type(translate-type(F, e),bool)
translate-seq(E.E*, ) = translate(E, e).translate-seq(E*, e)
translate-seq([ |, e) =[]

translate-type(Z, ) (Z,int)
translate-type(TRU ) (true, bool)
translate-type(FALSE, e) = (false, bool)
translate-type(Z, ) ( (1), int)

translate-type(-E1, e) =
let G be to-type(translate-type(E, €), int) in (=G, int)
translate-type(! E, e) =
let G be to-type(translate-type(E), e), bool) in (-G, bool)
translate-type(E; O Ey,e) =
let O be translate-op(O) in
let G} be to-type(translate-type(E}, €), opl-type(O®)) in
let G, be to-type(translate-type(Es, €), op2-type(O®)) in
(G O Gy, ret-type(O7))

to-type((G, int), int) = G
to-type((G, int), bool) = b2i (G)
to-type((G, bool), int) = i2b(G)
to-type((G, bool), bool) = G

Figure 4-5: Functions for Translating Program Expressions to Logic Expressions

When translating a program expression, we need to obtain either an integer
logic expression or a boolean logic expression. The function translate, given pro-
gram expression F and symbolic environment e, returns an integer logic expres-
sion G* representing E. For example, if the variable v is local in the environ-
ment e, then the expression v+1 would be translated to loc(v) + 1. The function
translate-bool produces a boolean logic expression G®. In the example, the result
would be translate-bool(v+1,e) = i2b(loc(v) + 1). Finally, translate-seq is used
for translating a sequence of program expressions into a sequence of integer logic
expressions.

We next describe substitutions for the defined logic formulas. The special con-
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structors for program variables do not change the way free and bound variables are
defined for the logic expressions. In particular, program variables are always free,
whereas logic variables follow the standard rules for bound variables. We use the
common notation F'[G/z] to denote the substitution of the expression G for the logic
variable x in formula F'. This substitution follows the usual rules of renaming bound
variables. We use F[G/H (I)] to denote the substitution of the expression G for the
program variable [ in formula F'. For example, glob(v) = loc(v)[0/glob(v)] =
0 = loc (v) and glob(v) = loc(v)[0/loc(v)] = glob(v) =0.

We also define a multiple substitution of logic expressions for program variables in
a formula. Verification-condition generators symbolically execute BL programs and
perform multiple substitutions on invariants to produce verification conditions. A
symbolic execution uses a symbolic state, which is a mapping from program variables
(a set of H(I)) to logic expressions (a set of G*). For a symbolic state s, we denote
by subst(F, s) the logic formula obtained by substituting the logic expressions from
s for the appropriate program variables in F'. For example, if s maps glob(v) to 0,
and loc (v) to 1, then subst(glob(v) = loc(v),s) gives 0 = 1.

4.2.3 Semantics of Logic Formulas

We next define the semantics of the logic formulas. The semantics consists of a set of
semantic domains and a set of valuation functions. Figure 4-6 presents the semantic
domains that we use. The basic semantic domains Int and Bool are the usual integer
numbers and truth values. We use the domain One-Contert to represent a pair
of an environment and a memory. These pairs are used to define the meaning of
program variables. As explained, there are two groups of logic formulas: formulas
with variables from only one program and formulas with variables from two programs.
For the first group, we use a context that consists of one environment-memory pair,
and for the second group, we use two such pairs. The same meta-variable ¢ ranges
over both groups of contexts. When we want to specify a context, we abbreviate
(m,a) to m,a and {{(my, a1), (ma,as)) to my,ay, ms,as.

zelnt={...,-2,-1,0,1,2,...}
b € Bool = {true, false}
One-Context = Memory X Environment
¢ € Context = One-Context + One-Context X One-Context

Figure 4-6: Semantic Domains for Logic Formulas

Figure 4-7 presents the signatures of the valuation functions used in the semantics.
Z maps integer constants used in the syntactic representation of the logic formulas to
the integer numbers used in the semantic domain. The valuation functions O%, O,
and O' map the syntactic representation of operators to their semantic equivalents.
The functions G?, G, and F are used for the meaning of the expressions and formulas
in the logic. We define the meaning only of the expressions and formulas with no free
logic variables. (The program variables are always free, and they get their meaning
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from the context.) We write G/[G?] ¢ to denote the value of integer expression G in
context ¢. Similarly, we write F[F] ¢ to denote the value of formula F' in context c.
We are mostly interested in the valid formulas, and we abbreviate F[F] ¢ = true to
¢ E F and say that formula F holds in context c.

Z : Integer-constant — Int

Q% : Arithmetic-operator — Int — Int — Int
O" : Relational-operator — Int — Int — Bool
O' : Logical-operator — Bool — Bool — Bool
G : Integer-expression — Context — Int

G : Boolean-expression — Context — Bool
F : Formula — Context — Bool

Figure 4-7: Signatures of the Valuation Functions

Figure 4-8 presents the valuation functions for integer and boolean expressions
and validity of logic formulas. These functions define the meaning for all expressions
and formulas with no free logic variables. (To obtain total meaning functions, we
assign 0 as the meaning of operations not defined on integers, such as division by
0.) Bound logic variables are substituted with integers, as shown in the meaning of
quantified formulas.” Program variables get their meaning from the context. There
are two groups of contexts and two groups of formulas. Formulas have a meaning
only for the appropriate contexts. Figure 4-8 shows the valuation functions for all
meaningful combinations. If a formula F' holds in all meaningful contexts, we write

=P

4.2.4 Proof Rules for Logic Formulas

We need a set of proof rules for proving the validity of logic formulas. We do not
specify the exact set of rules, but we assume the existence of rules for proving the
formulas of the presented first-order predicate logic with integer variables. This set
includes the standard rules for introduction and elimination of logical operators in
the natural deduction style, the reflexivity and the congruence rules for the equality,
and a group of rules for integer arithmetic. We write = F' to denote that formula
F with no free (logic) variables is provable using those rules. The proof system is
required to be sound, namely for all F', if - F, then = F.

4.3 Compiler Analyses

In this section we present the verification of the results generated by a credible com-
piler analysis. The compiler expresses the analysis results in the form of standard

"The substitution is used in a slightly informal way; we would actually need to substitute Z, or
use a context for logic formulas, which we want to avoid for simplicity of presentation.
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G|zl c=2[z] o
GGt 00 G e = Gi[Gi] ¢ 0°[0°] Gi[G] e
G[-Gi] e = ~G'IGH] ¢

G'[b2i (G®) ]] = if G’[G’] ¢ then 1 else 0 fi

G’[true] ¢ = true

G[false] c = false

GG} 07 GY] ¢ = G'[GY] ¢ O'[0'] G*[GY]
G'[-CH] = ~GTCH] ¢

¢°lG1 0" Gy e = G'[Gi] ¢ OT[0"] G'[G3] ¢
GPli2b(G)] ¢ = G°[G* # 0] ¢

ckEGb iff G°[GY] ¢ = true

cERANF, iff cE=F andckE=F)
cEFRVEFE iff cEForckEF

cEF = F, iff ¢ F) implies ¢ E F
cEFR < F iff cEFl=FandckEF=F
clE=F iff not ¢ = Fy

cEYe. F' iff ¢ | F'[z/x] for all z € Int
cE3Jx. F'iff ¢ | F'[z/x] for some z € Int

G'[10c (D] (m,a) = m(d'(I))
gf[[glob (D] (m,a) =m(a?(I))
G'[Loc; ()] <m17a17m27a2> =my(a
QZ:[[glob1 (D] (m1, a1, ma, az) = my
G'[Loco (D] (my, a1, me, ag) = mao(a
G'lgloby, (D] (my, a1, ma, az) = mo(ad(1))

Figure 4-8: Valuation Functions for Expressions and Validity of Formulas
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contexts. We first describe standard contexts and then formally define when they are
correct. We finally present the standard verification-condition generator (StdVCG).
The verifier for the compiler uses the StdVCG to generate a standard verification
condition (StdVC) for a set of standard contexts. To prove that the analysis results
are indeed correct, the compiler needs to prove that the StdVC holds.

4.3.1 Standard Contexts and Standard Invariants

We next describe the form in which the compiler presents analysis results. To allow
separate compilation of procedures, we need support for modularity. It is usually
obtained using procedure specifications, each of which consists of two formulas: a
precondition formula and a postcondition formula. A precondition for a procedure P
describes what P is allowed to assume at its entry, and a postcondition for a procedure
P describes what P must preserve at its exit. We call a formula at the entry of a
procedure a standard input contexrt. It describes the context in which the procedure
is called; we write F'*" for such formulas. We call a formula at the exit of a procedure
a standard output context. It describes the return context of the procedure; we write
Fout for such formulas. We refer to a pair of a standard input context and a standard
output context as a standard context.

Both groups of formulas F™* and F°“! represent properties of only one program.
Therefore, they can contain only loc and glob logic expression constructors. Further,
the variables that appear in F™ for procedure P can be only the global variables of
the program that contains P and the formal parameters of P, i.e., vars(P)—locals(P).
In Fou only the global variables of the program, i.e., globals(P), can appear.

The compiler may generate several contexts for the same procedure. This allows
the compiler to express the results of context-sensitive interprocedural analyses. For
each context of a procedure, the compiler generates a set of standard invariants. A
standard invariant consists of a logic formula and a label. The formula represents an
expression that the compiler claims to be true whenever the execution reaches the
program point represented by the label. There should be at least one invariant in
each loop to ensure that the StdVCG, which symbolically executes the procedure,
terminates. One way to guarantee this is to place an invariant at every backward
branch in the procedure. We do not explicitly require this placement, but we require
that there be enough invariants.

We represent a standard invariant syntactically as L:inv F'; meta-variable 7'
ranges over standard invariants. For each context the compiler generates at least £,
Fout and a sequence T*. These are the analysis results that the compiler needs to
prove. The compiler also needs to generate more information to guide the StdVCG
in generating the StdVC. For each context, the compiler generates a sequence K*.
This sequence represents the indices of the callee contexts that the compiler used at
each call site in the analysis of the current context. We present more details after
introducing some additional notation.
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For procedure P for which the compiler generates n contexts, we write:

P =proc I(I*) D* {N*}
std-invariants Fj" FY“ T} K}
Py BTy K

Fin Fout T* K,

We define several functions for standard contexts: contexts(P) returns the set of
context indices for procedure P (in the general case, it is {1...n}), in-context(P, k)
returns the formula for the input context k of P (F}"), out-context(P, k) returns the
formula for the output context k of P (F2*'), context(P, k) returns a pair of input and
output contexts. Also, the function std-invariant(P, k, L) returns the formula F' from
the standard invariant® 7' = L:inv F from context k of P. (We often use, instead
of procedures, procedure identifiers as function arguments, e.g., contexts(I) returns
a set of context indices for procedure named I.)

We next explain why we require the compiler to generate the sequence K*. FEach
K = L:Z consists of the label L of a call node L:I(E*) from P and an integer
literal Z that represents the index of the callee context for that call site. We write
context-index (L, K*) for the context index Z of label L in K*. The StdVCG uses
context(/, Z) at call site L to generate the StdVC. In general, the StdVCG cannot
determine which callee context the compiler used at the call site (if the compiler
generated several callee contexts). The StdVCG could generate a StdVC that includes
all callee contexts (either context 1 is used, or context 2, or up to the total number of
callee contexts), but the resulting StdVC would be prohibitively long. Therefore, we
simply require the compiler to generate more additional information which represents
which context the analysis used at each call site.

The compiler may use different contexts of the same callee procedure at different
call sites. We illustrate this situation using an example. Suppose that the compiler
analyzes some procedure p that has two calls to another procedure q. Suppose that
q has one formal parameter i, and that the actual parameter of q is 0 for the first
call, and 1 for the second call. Additionally, the compiler performs a context-sensitive
interprocedural analysis and separately analyzes q for these two input contexts. Fur-
ther, assume that these input contexts have different output contexts. For instance,
a global variable g is 3 at the end of an execution of q in the first context, and it is
8 in the second context. In this example, the compiler would generate two contexts
for procedure q: Fi"* = loc(i) = 0, F™ = glob(g) = 3, and Fi" = loc(i) =1,
Fg'' = glob(g) = 8. In K* for p, the compiler would represent that it used the first
context for the first call, and the second context for the second call.

The compiler need not perform a context-sensitive analysis. It can perform a
context-insensitive analysis and generate only one context for each procedure. For
instance, in the previous example of procedure q, the compiler could generate the

8If there are many invariants with the same label, std-invariant returns the conjunction of all the
formulas.
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following context: F = loc(i) = 0V loc(i) = 1 and F°* = glob(g) = 3V
glob(g) = 8. K* would in this case represent that at both call sites the same context
of q is used. Finally, the compiler need not perform an interprocedural analysis at
all. It can always use for any procedure a context that represents that for all possible
inputs to the procedure (F™ = true), the output can be anything (F°“ = true).
This corresponds to an intraprocedural analysis, which (in terms of dataflow analyses)
kills all the information at call sites.

4.3.2 Analysis Correctness

We next discuss the notion of correct compiler analysis results. Most compiler anal-
yses generate results that satisfy only partial correctness—a result is guaranteed to
be correct if the program execution reaches the point of the result, but the program
execution is not guaranteed to reach that point. Therefore, we require the compiler
to prove that the generated standard invariants are only partially correct.

Formally, we first define when the standard invariants are correct for a standard
context.

Definition 3 A standard context k holds for a procedure P in a program Q, in no-
tation = std-invs (k, P,Q), iff for all partial ezecutions (P°,m°, a) 2 (L,m,a) of
P for which m® a |= Fi", the following is satisfied:

o for all L' :inv F from T}, if L= L', then m,a = F; and
e for all L':ret from P, if L = L', then m,a = F™.

In other words, if the input context holds at the beginning of an execution, then
each invariant should hold when the execution reaches it and the output context
should hold when the execution reaches a return node. We extend the definition to
procedures and programs.

Definition 4 Standard invariants are correct (hold) for a procedure P € @), in nota-
tion = std-invs (P, Q) , iff all contexts k of P hold.

Definition 5 Standard invariants are correct (hold) for a program @, in notation
= std-invs(Q), iff standard invariants hold for all procedures P € Q.

The compiler does not prove directly that = std-invs(Q). Instead, the verifier
uses the StdVCG to generate the StdVC for the invariants of all contexts of all
procedures in program (). We write F¢y for the logic formula representing the StdVC
of program (). We present a sound StdVCG such that the validity of F{)° implies that
the invariants of () are correct, i.e., if = F{), then |= std-invs(Q). (We show in
Section 5.1 that the StdVCG is sound.) The compiler generates a proof - Fj) using
the proof rules from the logic. By the soundness of the proof rules, if = FgF, then
= Fge. Therefore, the compiler actually proves that the StdVC holds for program
(2, which then implies that all the standard invariants for program () hold, and the
compiler analysis results are thus correct.
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4.3.3 Standard Verification-Condition Generator

We next present the algorithm for generating standard verification conditions. The
StdVCG generates the StdVC for a program () and a set of standard contexts for
procedures in () by symbolically executing each of those contexts. We first explain
how those parts of the StdVC for each context combine in the whole StdVC. We then
describe the algorithm that consists of two phases: the initial phase and the main
phase.

Figure 4-9 shows the algorithm that generates Fi/% , a part of the StdVC for one
context k € contexts(P) = {1...n} of procedure P € ). The conjunction of the
verification conditions for all contexts of procedure P is the verification condition for
that procedure, and the conjunction of the verification conditions for all procedures
of program () is the verification condition for that program:

Fzg,cQ = /\ke{l...n} Fkv,CP,Q and chc = /\PeQ Fzg,cQ-

The StdVC for a program is the whole Fgf; we also refer to Fy'% o as StdVC.

The 5StdVCG generates F{%, o by symbolically executing the context & of procedure
P. We first describe the initial phase of the StdVCG, which prepares the procedure for
the execution, and then the main phase of the StdVCG, which performs the execution
using the main function Std.

In the initial phase, the StdVCG first uses the helper function merge-invariants
to merge the invariants 7} into the procedure P, generating procedure P’. The
invariants in 7} have the same labels as nodes in P; merge-invariants makes the labels
unique and inserts the invariants in front of the appropriate nodes.” We assume that
the function merge-invariants also checks that there are enough invariants so that
the symbolic execution terminates.!® If there are not enough invariants, the results
are marked as incorrect. The StdVCG next creates a symbolic environment e for
procedure P € (). This environment maps each local variable I; of P to the logic
expression loc ([;) and each global variable I, of () to the logic expression glob (/).
The StdVCG then creates a fresh symbolic state s° that maps all variables from the
environment e to fresh logic variables. The sequence of all these fresh logic variables
is in z*, and F% o is universally quantified over 2.

Standard Verification-Condition Generator Main Function

The function Std performs the symbolic execution of procedure P’. This function
takes three arguments: the label L of the current node to execute, the symbolic state
s, and the set i of already (symbolically) executed standard invariants.

The execution starts from the first node of procedure P with a fresh state and

9The change is done so that the branches to a node in P are now branches to the first invariant
in front of that node in P’.

10We use this organization only for an easier explanation of the StdVCG; in practice, the checks
are done during the symbolic execution. The StdVCG keeps track of the nodes already symbolically
executed on each path, and if a node is reached twice, there is a loop without invariant.
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P =proc I(I*) D* {N*}
std-invariants (F™ Fou T* K*)*

Fkv,CP,Q -
let P’ be merge-invariants(7}, P) in
let e be sym-environment(P, () in
let (s°, z*) be fresh-sym-state(e) in
letrec Std be AL s .
matching P'(L)
> L:I=E |
let s’ be translate-assign(I, E, s, €) in
Std(L +p 1,5, 1)
> Libr(E) L |
let G be translate-branch(E, s, e) in
(G = Std(L, s,7)) A
(=G = Std(L +pr 1, 5,1))
> L:ret |
subst(F2*, s)
> L:I(E") |
let G* be translate-call(£*, s, e) in
let &' be context-index(L, K}) in
let (F'™, F°'') be context(l, k') in
let (s',z*) be fresh-globals(s) in
subst(F*, set-params (I, G*, s)) A
Va*. subst(F s') = Std(L +p/ 1, 5',7)
> L:inv F |
if member-first(L,7) then
subst(F, s)
else
let (s',2*) be fresh-sym-state(e) in
subst(F, s) A
Va*. subst(F, s") = Std(L +p 1, s, union((L, s'), 7))
fi
endmatching in
Vz*. subst(F;", s°) = Std(start-label(P’), s°, {})

Figure 4-9: Verification-Condition Generator for Standard Invariants
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the empty set of invariants. This execution generates a part of F}% , that captures
the correctness of all the invariants and the output context of context k. Since the
invariants and the output context are required to be correct only for the appropriate
input context, the whole Fy/%: , is an implication—input context, substituted in the
initial state, implies the result of the execution starting from that initial state.

We next describe how the algorithm executes each group of nodes. (Figure 4-10
shows the helper functions that the algorithm uses during the execution.)

NI.

N2.

N3.

N4.

Nb.

The execution of an assignment node /=FE changes the symbolic state using the
function translate-assign. This function changes only the symbolic expression
representing the value of variable I; the rest of the state is unchanged. The
execution proceeds from the assignment node to the next node.

The execution of a branch node br(F) L’ first translates the branch condition
E using the function translate-branch. After that, the execution splits into two
branches generating the appropriate condition on each branch.

The execution of a return node ret generates the formula representing the
output context in the current state and finishes this branch of the execution.

The execution of a call node I (£*) is more involved. The StdVCG first creates
expressions G* that symbolically represent the values of the actual parameters
at the call site. These expressions will be replaced with the formal parameters
in the callee input context. The StdVCG next decides, based on the sequence
K}, which callee context k' to use for this call. The StdVCG generates the
part of Fys o that requires the input context F™ for context k' of I to hold for
this call. This is done using the function set-params, which extends s with the
mapping from the formal parameters of procedure I to the expressions G*.

The call to procedure I can change the global variables in an arbitrary way.
Therefore, the StdVCG creates a state s’ in which all global variables from s
are mapped to fresh logic variables x*, while all local variables from s remain
the same as before the call. The StdVCG next generates the part of Fy%
that requires the output context F°“ for context k' of I to hold in state s'.
The symbolic execution continues with the state s’ from the node after the call
node.

The execution of a standard invariant L:inv F' depends on whether the invari-
ant has been already executed or not.

N5.1. If the label L is in i (more precisely, in the first component of one of the

pairs in ), the invariant is reached for the second time during this branch
of the execution. The StdVCG substitutes the current symbolic state in
the invariant, generates the resulting formula as a part of F}% , that needs
to be proven, and the execution of this branch finishes.

N5.2. If label L is not in ¢, then the invariant is reached for the first time. The

StdVCG similarly substitutes the current symbolic state in the invariant

61



and generates the resulting formula as a part of F}% , that needs to be
proven, but continues the execution. The execution continues from the
node after the invariant with a fresh symbolic state s’ and the pair (L, s")
added to the set of executed invariants. (For this StdVCG, i can be a set
of labels only; we add the states technically to prove the soundness of the
StdVCG.) The rest of this execution can assume that the invariant holds
in state s'.

translate-assign(/, £, s, e) = s[translate([, ) — subst(translate(E, e), s)]
translate-branch(E, s, e) = subst(translate-bool(E, e), s)
translate-call(E*, s, €) = subst-seq(translate-seq(E™*, e), s)

Figure 4-10: Translation Functions for Verification-Condition Generators

4.4 Compiler Transformations

In this section we present the verification of the results generated by a credible com-
piler transformation. After performing the transformation on an original program,
the compiler generates a transformed program and additional information in the form
of simulation contexts. We first describe simulation contexts and then formally define
the simulation of BL programs. We call the two programs ), and ()2, and we specify
when () simulates Q2. (Depending on the required (bi-)simulation correspondence,
programs Q1 and ), can be the transformed and original programs and /or the original
and transformed programs.) We finally present the simulation verification-condition
generator (SimVCG). The verifier uses SImVCG to generate a simulation verification
condition (StdVC) for a set of simulation contexts. To prove that ); simulates @,
the compiler needs to prove that the SimVC holds.

4.4.1 Simulation Contexts and Simulation Invariants

We next describe the additional information that the compiler transformation gener-
ates beside the transformed program. Similarly as the compiler generates a standard
context to summarize the analysis results for a procedure, the compiler generates a
simulation context to represent a simulation relationship between a pair of procedures.
A simulation context consists of two formulas that we call a stmulation input context
and a stmulation output context. Simulation input contexts represent the correspon-
dence between the states of the two programs at the entries of the two procedures.
Simulation output contexts represent the correspondence between the states of the
two programs at the exits of the two procedures.

Both simulation input and output contexts are formulas representing correspon-
dence between two programs. Therefore, they can contain only the indexed con-
structors H for accessing program variables in logic expressions (loc;, glob,, loca,
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glob,). We write J™ and J°“* for the simulation input and output context, respec-
tively. (Recall that we use J for formulas that explicitly represent pairs of vari-
ables that have the same value.) For procedures P, and P,, only the variables from
globals(P;) U params(P;) U globals(P,) U params(P,) can appear in J™, and only the
variables from globals(P;) U globals(P;) can appear in J.

The compiler may generate several simulation contexts involving the same pro-
cedure or pair of procedures. (This allows, for instance, the compiler to express the
results of procedure specializations.) For each simulation context, the compiler gen-
erates a set of simulation invariants that represent relationships between the two
programs. A simulation invariant consists of a logic formula and two labels, one from
each program. We represent a simulation invariant syntactically as Ly, Ly :sim-inv J,
where the first label L, is a label from P; and the second label L, is a label from P»;
meta-variable S ranges over simulation invariants.

The set of simulation invariants S* for one simulation context may contain several
invariants with the same first label, e.g., L, L, :sim-inv J', or the same second label,
e.g., L', Ly:sim-inv J'.}' We denote by set-sim-inv(L;, S*) the set of the simulation
invariants whose first label is L;. Informally, a set of simulation invariants for P; and
P, holds if for all partial executions of P, that reach label L; of one of the invariants
from the set, there exists a partial execution of P, that reaches label Ly of one of the
invariants Ly, Ly:sim-inv J € set-sim-inv(Lq, S*), such that formula J holds for the
states of the two procedures. We formalize this in Section 4.4.2.

Similar to the placement of standard invariants for the StdVCG, there should be
enough simulation invariants so that the SimVCG can execute both procedures to
generate the SimVC. These executions require that for each path in Py, there exist an
appropriate path in P. Therefore, there should be at least one simulation invariant
in each loop in P;. We do not require any particular placement of these invariants.
Additionally, for each path from one invariant to another in P, there should be a
path between the corresponding points in P. The placement of these invariants
depends on the change that the transformation performs on the control flow graph of
the procedure.

We have presented so far the formulas J™ and J°“ and a sequence S* that the
compiler needs to generate for each simulation context. Analogous to the standard
contexts, the compiler also needs to generate which simulation contexts the SimVCG
should use for calls. We represent this as a sequence K* where each K = Ly,Ly: 7
consists of the labels L; and Ly (of call nodes L;:1; (E) from P; and Ly: I, (E3)
from P,) and an integer literal Z that represents the simulation context index for
procedures I; and I,. We write sim-context-index(Lq, Lo, K*) for the context index
Z of labels Ly and L, in K*. We next present the other additional information that
the verifier requires the compiler to generate for each simulation context.

The compiler may use the analysis results to perform the transformation. For
different simulation contexts, the compiler may use different analysis results. The
compiler represents the analysis results as standard contexts. Since there can be

1In general, there can be even many invariants with both labels being the same, e.g.,
Ly,Ly:sim-inv J', but they can be replaced with: L;,Ls:sim-inv J A J'.
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many standard contexts, the compiler needs to represent, for each simulation context,
which standard contexts it uses for the two procedures. The compiler represents these
contexts by their indices, as integer literals Z' and Z2.

The compiler also generates the expressions for the initial values of local vari-
ables of P,. The StdVCG and the SimVCG introduce fresh logic variables during
the symbolic executions that generate verification-condition formulas. The StdVCG
always universally quantifies the formulas over the new logic variables. We showed in
Section 3.2.1 that the SimVCG needs to existentially quantify over the logic variables
that represent the initial values of the variables from locals(P,). To avoid existential
quantification in the SimVC, we require the compiler to generate, for each simulation
context, a sequence of integer logic expressions G* that represent the initial values
of local variables of P,. These expressions can contain global variables from both
programs, procedure parameters from both procedures, and local variables from P;.
Usually, the expression for a local variable from P, is that the initial value is the same
as the initial value of the corresponding local variable from P, or that the initial value
can be anything, e.g., the constant 0.

Finally, the compiler generates, for each context, a sequence of actions A* to
guide the SimVCG in generating the SimVC. We present the actions in detail later
in the text. In summary, for procedures P, and P, for which the compiler generates
n simulation contexts, we write:

P, = proc I; (I7) Di {N"}
P, = proc I,(13) D; {N,)}
sim-invariants Ji" Jou St K} Z1 Z? G} At
Jon J3t Sy Ky Zy Z3 Gy Ay

Jin gout S [x 71 72 G Ax.
We define several functions for simulation contexts: sim-contexts(P;, P2) returns a
set of simulation context indices for procedures P; and P, (in the general case,
it is {1...n}), sim-in-context(P;, Py, k) returns the formula for the simulation in-
put context k of procedures P; and P, (Ji"), sim-out-context(Py;, P, k) returns the
formula for the simulation output context k of procedures P, and P, (J2*'), and
sim-context(P;, Py, k) returns a pair of simulation input and output contexts.

4.4.2 Transformation Correctness

We discussed the notion of correct compiler transformations in Section 2.1. We require
the compiler to generate a transformed program that simulates the original program.
This means that the transformed program is (), and the original program is ()s.
Informally, @), simulates )5 if (1 can generate only the results that () can generate.
The result of a BL program execution is the values of the global variables at the end
of the starting procedure. Therefore, we require the two programs to have the same
number of global variables, and we additionally require corresponding global variables
to have the same name.
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We next define formally when one BL program simulates another. We first define
the notion of simulation for a simulation context.

Definition 6 A procedure P, € @), simulates a procedure Py € Qs for a simulation
context k, in notation P, Q1 >y, Py, Qq, iff for all partial executions (P, m®, a;) R
(L1, mq,a1) of Py, there exists a partial execution (Py,mY, as) R (Lg, my, az) of Py
such that if m?, ay,my, az = Ji", then the following is satisfied:
o forall L' ,L,:sim-inv J' from S, if Ly = L, then there exists Ly, Ly :sim-inv J
from set-sim-inv(Ly, S§) such that Ly = LY and my, a1, my,ay = J; and

e if P(Ly) = Ly:ret, then Py(Ly) = Ly:ret and my,a;, mq, az = JP™; and

e if the partial execution of Py does not terminate, then the partial execution of
P, also does not terminate.

We extend the definition to procedures and programs.

Definition 7 A procedure P, € @ simulates a procedure Py € @y, in notation
P1,Q1 > P, Qs, iff for all simulation contexts k € sim-contexts(Py, P), Pi, Q1 >y

P27Q2-

Definition 8 A program ), simulates a program Qo, in notation Q1 > Qs iff:

e for all pairs of procedures P, € Q1 and Py € Qo for which there are simulation
contexts, Py, Q1 > Py, Qs; and

e one of the simulation contexts for the starting procedures for programs Q1 and
Q- is the following:

— the simulation input context states that the two programs start with the
same input at the beginning:

Jn = /\globl(I-") = glob, (I9) A /\locl(I{’) = locy (15)

for all global variables I9 from @, (and Q2) and for all parameters I} of
the starting procedure of Q1 and their corresponding parameters' I of the
starting procedure of Q,'* and

12The exact order of quantifications in the definition is: for all a; possible at the start of P;, for
all m?, for all as possible at the start of P, and for all values of mJ locations “below” the local
variables of P», there exist some values of the other mJ locations such that if m{,a;,m3,as J,i”,
then for all (L;,m;,a;) in the execution sequence of P;, there exists a corresponding (Lo, ms, az) in
the execution sequence of P.

13Gince the values for the parameters of the starting procedures are supplied to the programs,
we require the starting procedures to have the same number of parameters, but corresponding
parameters need not have the same name. In general, two procedures need not even have the same
number of parameters when there is a simulation context for those procedures.

14 Additionally, the requirement for the simulation input context of the starting procedures implies
that the simulation holds for all possible input values because the standard contexts Z! and Z?2, for
this simulation context, need to have their input contexts true.
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— the simulation output context states that the two programs generate the
same output at the end:

Jout = /\glob1 (I9) = glob, (1Y)

for all global variables IY from @ (and Q).

This definition for ), > )2 formalizes the intuitive notion of the simulation—
program (), simulates program @), if (), can generate the same output data as )y
generates, provided that the two programs have the same input data. The simulation
also requires termination simulation—GQ)o does not terminate if (); does not terminate.
The definition for Q1> (more specifically, P, Q1> P», ()2) additionally requires the
simulation invariants to hold. Finally, the way that the SimVCG generates the SimVC
also requires that the execution of )y reaches a call site whenever the execution of
(2, reaches a call site.

Analogous to the compiler analysis results and = std-invs (@), the compiler does
not prove directly that Q) > ()2. Instead, the verifier uses the SimVCG to generate
the SimVC for the simulation invariants of all simulation contexts of all procedures in
programs (), and (2. We write F¢)¢ o, for the logic formula representing the SimVC
of programs @ and ();. We design a sound SimVCG such that the validity of F{) o,
implies that @); simulates Q)9, i.e., if &= Fg o,y then Q1 > Q2. (More precisely, the
standard verification conditions for @Q; and @) also need to hold: if | Fg: o, and
F Py and = F§S, then Q) > Q2. We show in Section 5.2 that the SimVCG is sound.)
The compiler generates a proof = Fy  using the proof rules from the logic. By the
soundness of the proof rules, if = Fg¢ o, then = F¢¢ . Therefore, the compiler
actually proves that the SimVC holds for programs (), and ()s; that implies that
program (J); simulates program (), and therefore ); can generate only the results
that ()2 can generate.

4.4.3 Simulation Verification-Condition Generator

We next present the algorithm for generating simulation verification conditions. The
SimVCG generates the SimVC for two programs (); and (); and a set of simulation
contexts for procedures in (); and ()s by symbolically executing each of those sim-
ulation contexts. We first explain how those parts of the SimVC for each context
combine in the whole SimVC. We then describe the algorithm that consists of two
phases: the initial phase and the main phase.

Figures 4-11 and 4-12 show the algorithm that generates F{/% o, p, o,, @ part of
SimVC, for one simulation context k € sim-contexts(P;, ) = {1...n} of procedures
P € @ and P, € (). Similar to the standard contexts, the conjunction of the
verification conditions for all simulation contexts of procedures P; and P, is the
verification condition for those procedures, and the conjunction of the verification
conditions for all pairs of procedures (for which there is a simulation context) of
programs ()1 and ()9 is the verification condition for those programs:

Ve _ ve ve — Ve
FP17Q1,P2,Q2 - /\ke{l...n} Fk;PleI;P2:Q2 and FQI:Q2 - /\P1€Q1,PZEQ2 FP1,Q1,P2,Q2'
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The SimVC for two programs is the whole Fg 5 we also refer to Fip o, p, o, a8
SimVC.

The SimVCG generates F{'% o p, o, by symbolically executing the simulation
context k for procedures P; and P,. We first describe the initial phase of the SimVCG,
which prepares the procedures for the executions, and then the main phase of the
SimVCG, which performs the executions using the main function Sim.

In the initial phase, the SImVCG first uses the function merge-sim-invariants to
merge the simulation invariants S} into procedures P/, generating procedures P| /2
This is similar to the way in which the StdVCG merges the standard invariants,
but there are several differences. Merging the simulation invariant L, Ls:sim-inv J
in P, only adds the node’® L;:sim-inv that represents that there is a simulation
invariant at Ly. In P,, merging adds the node Ly:sim-inv .J, L; to record the actual
formula of the invariant. The reason for this is that there can be many invariants for
the same node Ly in P, and they all share the same L;:sim-inv node. We call each
of the nodes L;:sim-inv and L, :sim-inv J,L; a half of the simulation invariant.

We explained in Section 3.2.1 the most notable difference between the StdVCG
and the SimVCG-—the SimVCG uses a sequence of actions to guide the symbolic ex-
ecutions, whereas the StdVCG has a fixed structure of the symbolic execution. After
the function merge-sim-invariants generates P, /25 the SimVCG applies the function
action-tree to Aj to obtain an action tree t°. The action tree contains the whole
step-by-step description for the interleaving of the symbolic executions of P| /- We
describe action trees and all actions later in the text.

The SimVCG next applies the function check-std-contexts. This function returns
the indices Z} of P, and Z? of P, after checking that those indices are correct for the
standard contexts of P, and P,. The standard invariants from standard contexts k;
and ko can be used in the simulation context k.

The SimVCG next creates symbolic environments ey /5 for procedures P /s € Q1/2.
These environments map local variables I; of their respective procedures to logic
expressions locy/, ([;) and global variables I, of their respective programs to logic
expressions glob, ,, (I;). The SimVCG next creates the initial symbolic states 9 and
sy for the two procedures using the following algorithm:

e first create s? that maps all variables from vars(P;) to fresh logic variables and
put those logic variables in z*;

e then create sJ that maps all variables from vars(P;) —locals(P,) to the following
logic variables:

— if variable I, appears in some pair H; (1), Hy(l3) in var-pairs(J;"), map
H,(I3) in sY to the logic variable that H; (I;) is mapped to in s, and

— if variable I does not appear in any pair in var-pairs(.J;"), map Ho(l3) in
s9 to a fresh logic variable, and add that logic variable to z*;

15 A label renaming is also performed to make all the labels unique.
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P, = proc I, (UI7) Di {N;"}
Py = proc I,(I}) Dj {N,'}
sim-invariants (J™ JoU' S* K* Z' Z? G* A*)*

Flg,cpl,Ql,Pz,Qz -
let (P], P}) be merge-sim-invariants(S;, P, P») in
let t° be action-tree( A}, P, Py) in
let (ki, k2) be check-std-contexts (P, Z}, P2, Z?) in
let (e, e2) be sim-sym-environments(Py, @1, P, Q2) in
let (59,9, 2*) be initial-sim-sym-states(e;, eq, Ji"*, P, G}) in
letrec Sim be AL, s; Ly s9 1 t.
matching root(t)
[> execute; |
matching P/(L;)
> Ly I=F |
let s’ be translate-assign(/, E, s1,€;) in
Slm(L1 +P{ 1, SI, LQ, S, i, left(t))
> Ly :br(E) L |
let G be translate-branch(E, s;,e;) in
(G = Slm(L,, s1, Lo, 89,1, left(t))) N
(=G = Sim(Ly +p; 1, 51, Ly, 5, 0, right(t)))
endmatching
> executey B |
matching P;(L,)
> Ly:I=F |
let s’ be translate-assign(/, E, so, €2) in
Sim(Ly, 51, Lo +p; 1,5, 3, left(t))
> Lo:br(E)L |
let G be translate-branch(E, sq, €2) in
if B = true then
G A Sim(Ly, s1, L', s9,1,left(t))
else
-GN Slm(Ll, S1, L2 +P§ 1, Sa, i, left(t))
fi
> Lo:sim-inv J,L; |
Sim(Ll, S1, L2 +Pé ]., S92, i, left(t))
endmatching
> ... continued in Figure 4-12
endmatching in
Vz*. subst-sim(J/", 59, s9) =
Sim(start-label(P)), s, start-label(Py), 53, {}, %) A
subst (in-context (P, k1), s7) A subst(in-context (P, ko), s3)

Figure 4-11: Simulation Verification-Condition Generator, Part 1
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letrec Sim be AL; s; Ly sy @ t.
matching root(t)
> ... continued from Figure 4-11
> stop |
false
> split F' |
let ' be subst(F, s;) in
(F" = Sim(Ly, sy, Lo, so, 1, left(t))) A
(=F" = Sim(Ly, sy, Lo, 59,1, right(?)))
[> use-analysis, |
subst(std-invariant(Py, k1, L1), s1) = Sim(Ly, s1, Lo, 9, 0, left(t))
> use-analysis, |
subst (std-invariant( Py, ko, Ly), so) = Sim(L1, s1, Lo, 9, 0, left(t))
> execute-both |
matching P;(L,)
> Ly:ret |
subst-sim(J2", 51, s9)
> Ly:I,(E3) |
let G be translate-call(Ej, s9, €2) in
matching P/(L;)
> L1 211 (Eik) I]
let G be translate-call(E£}, s1,e;) in
let k' be sim-context-index(L,, Lo, K}) in
let (J™, J°) be sim-context(l;, Iy, k') in
let (s}, s, 2*) be fresh-sim-globals(sy, s2, J°) in
subst-sim(J™, set-params(/;, G}, s1),
set-params([z, G5, s2)) A
Va*. subst-sim(Jo%, s, s4) =
Sim(Ly +p; 1,81, Lo +p; 1, 85, 0, left(t))
endmatching
> Ly:sim-inv J,L; |
if member-first((Lq, L), i) then
subst-sim(.J, s1, $2)
else
let (s}, 55, 2*) be fresh-sim-sym-states(sy, s2, J) in
subst-sim(.J, s1, s9) A
Va*. subst-sim(.J, s, s5) =
Sim(Ly +pr 1,81, Ly +p; 1, 55,
union(((L1, Lo), (s1, s2), left(t)), ), left(t))
fi
endmatching
endmatching in

Figure 4-12: Simulation Verification-Condition Generator, Part 2
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e finally map the local variables of P, in s to the logic expressions obtained by
substituting the program variables appearing in G}, with the appropriate logic
variables from s? and s9.

The sequence of all fresh logic variables is in 2%, and Fp o p, o, 18 universally
quantified over all those variables.

The algorithm for the SimVCG uses the function subst-sim to perform substi-
tutions. For a formula J = F,(H,(l,),H,(I3))* and symbolic states s; and so,
subst-sim(.J, s1, s5) does the following:

e substitute all program variables in formula F' using the mappings s;/9; call the
result F' = subst(subst(F, s1), s2), and

e for all pairs Hy([1),Hs(ly) from var-pairs(.J), check if the logic expressions
G'1/2 to which sy, map Hy/,(113) are syntactically identical, and:

— if the expressions are identical, do not add anything to F’ for this pair; or

— if the expressions are not identical, add G; = G5 as a conjunct to F’, and
e finally return the whole conjunction F".

This way the SimVCG performs several rules from the logic, most notably the con-
gruence rule for equality, which results in a much shorter SimVC.

Simulation Verification-Condition Generator Main Function

The function Sim performs the symbolic executions of procedures P; and Pj. This
function takes six arguments: the label L; of the current node to execute in P/, the
symbolic state s; of P/, the label Ly of the current node to execute in Py, the symbolic
state sy of Pj, the set i of already (symbolically) executed simulation invariants, and
the action tree t.

The executions start from the first nodes of procedures P; and P, with the created
initial symbolic states, the empty set of invariants, and ¢ obtained from A}. The
executions generate a part of Fi's o p, o, that captures the correctness of all simu-
lation invariants and the simulation output context of context k. Since the invariants
and the output context are required to be correct only for the appropriate input con-
text, the whole )% o) p, o, 18 an implication—the input context, substituted in the
initial states'®, implies the result of the executions starting from the initial states.
Additionally, we require the simulation input context to imply the input contexts for
standard contexts k; for P, and ky for Ps.

We next describe how Sim uses the action tree . At each step, Sim performs the
action from the root of the action tree. We write root(¢) for the action from the root.
At the branch nodes in P/, Sim splits the execution into two paths. That is where

16The input context J" is substituted in s and s3 using the function subst-sim. For the initial
states, all pairs of variables that appear in J;" have the same value, and their equality is not added
to Fi'%, 0,.p,.0, Put it is still represented within the symbolic states.
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Sim uses the subtrees of the action tree to continue the executions of the two paths.
We write left(#) and right(¢) for the left and right subtree, respectively. For most
other actions, Sim does not require ¢ to be a tree, but only a list. In those cases, Sim
continues the execution with all the actions but the root. We also write left(t) for
that list of actions. All the functions that operate on a tree ¢ generate an error if ¢

does not have the appropriate form.

17

Finally, we describe how Sim performs each group of actions from the root of the
action tree t.

Al. The action execute; executes the current node in P/. This action can be used
only when the current node is an assignment node or a conditional branch node.
(Otherwise, matching fails and the SimVCG signals an error.) The SimVCG
executes assignment and branch nodes similarly as the StdVCG does.

Al.1.

Al.2.

The execution of an assignment node changes the state s; and the execution
continues from the next node in Pj.

The execution of a branch node splits the execution of P/ into two branches
and each of them generates an implication with the appropriate condition.
These conditions represent formulas that hold when the particular branch
is taken.

A2. The action execute, executes the current node in Pj. This action can be used
when the current node in Pj is an assignment node, a conditional branch node,
or a half of a simulation invariant.

A2.1.

A2.2.

A2.3.

The execution of an assignment node changes the state sy and proceeds
from the next node in Pj, analogously as the execution for execute;.

The execution of a branch node in Pj is different than the execution in P].
Since the simulation condition requires for all paths in P that there exist
a corresponding path in Pj, only one branch is taken in Pj. The action
represents with B the branch that the SimVCG should take. Further, the
branch conditions of P are used as assumptions in the SimVC, whereas
the branch conditions of P, are used as conclusions—the compiler needs
to prove, when P] takes some branches, that P; indeed takes the branches
that the compiler claims Pj takes.

The execution of half of a simulation invariant only moves past the invari-
ant. This is sound because the execution of Pj has to reach any half of a
simulation invariant in P} (corresponding to the half in P)); it need not be
the first half that the execution gets to.

1TWe use action trees only technically to prove that the SimVCG is sound. In practice, the
SimVCG uses a mutable list ! that is initialized to Aj. At each step, instead of root(t), the SinVCG
applies head!(l) that returns the head of the list and sets the list to the tail. If the list is empty,
head!() generates an error; the SInVCG always terminates because the list is finite.
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A3

A4

Ab.

AG6.

. The action stop can be used at any point; it generates false as a part of

SimVC that needs to be proven and finishes the execution. In general, false
can be proven only if it is implied by false. Therefore, the compiler uses this
action only when it knows that the path taken by the symbolic execution of P
is not possible during the concrete execution of P;. For example, the path that
branches from L, :br (FALSE) L’ to L' during the symbolic execution is actually
never taken. (The compiler usually does not need to use stop to prove that the
transformed program simulates original program. However, if we also required
the other simulation direction, the compiler would have to use stop when the
compiler, for example, eliminated a branch that cannot be taken.)

The action split can also be used at any point. The compiler uses split F' to
instruct the SimVCG to split the execution of Pj into two paths, although there
are no conditional branch nodes. (The SimVCG otherwise splits the execution
of P/ only at conditional branch nodes.) Both paths continue from the next
node, but one of them has the condition F' and the other has the negation
of F' (with proper substitutions). For example, the compiler uses this to prove
that Li:z=x*y;L: simulates Ly :br (y==0) L';z=x*y;br (TRUE) L; L' :2z=0;L:. If
x and y are the same in both programs before these sequences, then z is the
same after the sequences. The compiler would use split loc;(y) = 0 to create
two paths of execution of P/, each of which implies the corresponding path in
the longer program sequence Pj. (The compiler uses split, in general, when it
merges two branches into one.)

The actions use-analysis, and use-analysis, include the results of compiler
analyses of procedures P; and P, in the SimVC. This can be done at any point
at which there is a standard invariant in context k; (for P) or ky (for ).
(Note that the program variables in the standard invariants are represented
with H constructors without indices, whereas states s; and s, map variables
with indices. Therefore, to be precise, we should replace H/,, for H in the
invariants before the substitution.)

The action execute-both simultaneously executes a node from each procedure.
The two nodes can be both return nodes, both call nodes, or both halves of some
simulation invariant.

AG6.1. If both nodes are return nodes, the SimVCG adds to the SimVC the sim-
ulation output context substituted into the current symbolic states of the
two procedures.

A6.2. If both nodes are call nodes, the process is more involved, but similar
to the generation of the StdVC. The SimVCG first creates G and G5
that symbolically represent the actual parameters of callees at the call
sites. These expressions will be replaced for the formal parameters in the
simulation input context of the two callees. The SimVCG next decides,
based on the sequence K, which simulation context k' to use for these
call nodes. Next, the SImVCG generates a part of SimVC that requires
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the simulation input context J™ for context k' of I; and I, to hold for
these calls. The function set-params extends the mappings s;/, with the

mappings from the formal parameters of procedures I/, to expressions

*
1/2

Callees can arbitrarily change the global variables of the programs. There-
fore, the SimVCG creates new states s} and s/, to represent the states of the
programs after the calls. This is done using the function fresh-sim-sym-states,
which first maps all global variables from s; to fresh logic variables, and
then, based on the pairs of variables in J°“, maps global variables from
s9 to either the appropriate logic variables in s; or to fresh logic variables.
The sequence of all the introduced logic variables is returned in x*. All
the local variables in s; and s, remain the same as they were before the
call. Finally, the SimVCG generates a part of the SimVC that requires the
simulation output context J°“ for context k&' of procedures I /2 to hold in
states s} /25 and the symbolic execution continues from the nodes after the
call nodes.

Observe that the part of the SimVC generated for call nodes requires only
that the simulation input context k' for procedures I/, hold. That simu-
lation context is valid only for some standard contexts for I;,. However,
the SimVC does not explicitly require those standard contexts to hold at
every call site. Instead, the SimVC requires the simulation input context
to imply the standard contexts in which the simulation context is valid.
This is included in the SimVC only once for each simulation context, as
shown at the bottom of Figure 4-11. Similarly, the SimVC for call nodes
does not include the output contexts of the standard contexts, but those
relationships are represented in the simulation output context.

A6.3. If both nodes are halves of a simulation invariant, the execution depends
on whether the invariant has been already executed during this branch of
the execution.

A6.3.1. If the pair of labels (L;, Ly) is in ¢ (more precisely, in the first compo-
nent of one of the triples in ¢), the simulation invariant has been al-
ready executed. The SimVCG substitutes the current symbolic states
s1 and so in the invariant formula J. The resulting formula is gener-
ated as the part of SimVC that needs to be proven, and the executions
of these paths finish.

A6.3.2. If the pair of labels (L, Ly) is not in i, then the simulation invariant
is reached for the first time. The SimVCG similarly substitutes the
current symbolic states in the invariant and generates the resulting
formula as the part of SimVC that needs to be proven. The execu-
tions do not finish, though, but move past the invariant halves in P|
(the node L, :sim-inv) and Pj (the node Ly:sim-inv J,L;). The ex-
ecutions continue with fresh symbolic states s/ /2 created with respect
to .J, and the triple ((L1, Lo), (s}, 55),t) added to the set of executed
invariants. (For this SimVCG, i can be a set of label pairs (L;, Lo)

73



only; we add the states and the action tree technically to prove the
soundness of the SimVCG.) The rest of the executions can assume
that the invariant holds in states 3’1/2.
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Chapter 5

Soundness Proofs

In this chapter we prove the soundness of the standard verification-condition generator
(StdVCG) and the simulation verification-condition generator (SimVCG) presented
in Chapter 4. The StdVCG generates a standard verification condition (StdVC) for a
program () and a set of standard contexts for @); the StdVCG is sound if the validity
of the StdVC implies that those contexts indeed hold for program (). The SimVCG
generates a simulation verification condition (SimVC) for a pair of programs ¢); and
(2> and a set of simulation contexts for those programs; the SimVCG is sound if the
validity of the SimVC implies that (); simulates (),. Our proof of the soundness of the
StdVCG follows a proof by Necula [35, Appendix A], and our proof of the soundness
of the SimVCG combines the techniques from the proof by Necula and a proof by
Rinard [41].

Before presenting the soundness proofs, we introduce some additional notation and
present lemmas that we will use in the proofs. For the brevity of the presentation, we
will consider logic expressions without the constructors H. Each program variable I is
represented in logic expressions simply by its name /. We assume that local and global
variables have different names. Symbolic execution of a procedure P uses a symbolic
state s that maps all program variables from P to logic expressions. We represent
a symbolic state as {I* — G*}; usually, the logic expressions are just logic variables
and s = {I* — z*}. The notation with sequences represents a mapping between
corresponding elements: s = {I(V) s 20 . 1 s 2™ where 2™ denotes the
n-th element of sequence z*. We denote by subst(F,s) the logic formula obtained
by substituting the logic expressions from s for the appropriate program variables in
formula F. For a variable I that occurs in s, we write s(/) for the logical expression
corresponding to I.

In the course of the proofs, we show properties of partial executions of procedures.

Recall that (P°, m°, a) N (L, m, a) represents a partial execution of an activation of
procedure P, and we therefore use the abbreviated form (L, m,a) of configurations
(L, m,a,p,h, P). We refer to the execution of BL programs on a machine with config-
urations (L, m,a) ((L,m,a,p, h, P)) as the concrete execution, to distinguish it from
the symbolic execution. The concrete execution operates on the concrete state, which
consists of the memory m and the environment a, whereas the symbolic execution
operates on the symbolic state s.
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Each symbolic state s corresponds to a set of the concrete states m,a. A sym-
bolic state s = {I* — G*} maps program variables to logic expressions, whereas
an environment ¢ maps the variables to the addresses, and a memory m maps the
addresses to the concrete values from the Value domain so that m(a(I)) = Z. The
logic expressions G* in the symbolic state s include logic variables. Let all those vari-
ables be from a set/sequence z*. In the proofs, we use substitutions that map logic
variables to integer values. We represent a substitution that maps the logic variables
x* to some concrete values Z* as {z* — Z*}; each such substitution specifies one
particular mapping from s to m, a.

We use the meta-variable 7 to represent substitutions. We denote by 7" U {z* —
Z*} the union of a substitution 7’ (which does not map any variable from some z*) and
a mapping from z* to Z*. We denote with 7(F") the formula obtained by substituting
the integer values from 7 for the appropriate logic variables in F'. We usually apply a
substitution 7 for logic variables after substituting the program variables in a formula
F with the logic expressions from a symbolic state s: 7(subst(F,s)). We say that a
symbolic state s and a concrete state m, a coincide (with respect to a substitution 7)
for some variables I* if = 7(s(I)) = m(a(I)) for all variables I from I*.

We use several lemmas to prove the main soundness theorems. The first two
lemmas (for one program or for two programs) assert that if the symbolic states
coincide with the concrete states for all program variables in a formula, then the
formula is valid in the symbolic states if and only if it is valid in the concrete states.
(We break each equivalence into two implications for easier referral later in the text.)
We omit the details of the proofs of the lemmas.

Lemma 1 (Standard Congruence) Let P be any procedure and F' be any formula with
program variables from I* C vars(P). Let m and a be any memory and environment
for P. Let the symbolic state be s O {I* +— G*}, and let x* be all logic variables that
occur in G*. If a substitution T 2O {x* — Z*} is such that = 7(s(I)) = m(a(I)) for
all I that occur in F', then:

if m,a = F, then |= 7(subst(F), s)) (5.1)
and
if = T(subst(F, s)), then m,a = F. (5.2)
Proof: Structural induction on the formula F' (actually the formula subst(F) s)).

Lemma 2 (Simulation Congruence) Let P, and P, be any pair of procedures and J
be any formula with program wvariables from I C vars(Py) and I; C vars(P,). Let
mys2 and ayse be any memory and environment for Py. Let the symbolic states be
S172 2 {If/2 > G}‘/Q}, and let x* be all logic variables that occur in G} or G5. If a
substitution T 2 {x* > Z*} is such that |= 7(s1/2(112)) = maja(a1/2(L1/2)) for all I
that occur in J, then:

if my, a1, ma, as = J, then = 7(subst-sim(J, sy, s2)) (5.3)
and
if E 7(subst-sim(/J, s1, $2)), then my,ar, ma,as = J. (5.4)
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Proof: Structural induction on the formula J (actually subst-sim(.J, sy, s2)).

The next three lemmas (for assignment, branch, and call nodes) assert that the
translation functions for program expressions (Figure 4-5) are correct with respect to
expression evaluation (Figure 4-2). The proofs of all three lemmas are by structural
induction on the particular expressions. We omit the details of these proofs.

Lemma 3 (Assignment Translation) Let P be any procedure and E be any expression
that can occur in an assignment node in that procedure. Let e and s be, respectively,
the symbolic environment and a symbolic state for a symbolic execution of P. Let
a and m be, respectively, an environment and a memory for a concrete execution of
P. If a substitution 7 is such that = 7(s(I)) = m(a(l)) for all I € vars(P), then
= 7(subst(translate(E, e), s)) = m(a(E)).

Proof: Structural induction on the expression E.

Lemma 4 (Branch Translation) Let P be any procedure and E be any expression
that can occur in a branch node in that procedure. Let e and s be, respectively, the
symbolic environment and a symbolic state for a symbolic execution of P. Let a and
m be, respectively, an environment and a memory for a concrete execution of P. If a
substitution T is such that |= 7(s(I)) = m(a(l)) for all I € vars(P), then m(a(E)) # 0
if and only if = 7(translate-branch(E, s, e)).

Proof: Structural induction on the expression F.

Lemma 5 (Call Translation) Let P be any procedure and E* be any sequence of
expressions that can occur in a call node in that procedure. Let e and s be, respectively,
the symbolic environment and a symbolic state for a symbolic execution of P. Let
a and m be, respectively, an environment and a memory for a concrete execution
of P. If a substitution 7 is such that = 7(s(I)) = m(a(l)) for all I € vars(P),
then = 7(G™) = m(a(E™)) for each E™ from the sequence E* and the respective
expression G™ from the sequence G* = translate-call(E*, 5, €).

Proof: Induction on the length of the sequence E* and application of Lemma 3 for
each of those expressions.

5.1 Soundness of Standard Verification-Condition
(zenerator

In this section we prove that the standard verification-condition generator (presented
in Section 4.3) is sound: for every program () and every set of standard contexts
(invariants) for @, if the standard verification condition for that program and those
contexts is valid, then those standard contexts indeed hold for that program; in nota-
tion: if = F, then = std-invs(Q)). By the definition (page 58), = std-invs (Q)
if = std-invs(P, Q) for all procedures P € ). Further, = std-invs(P, Q) if
= std-invs (k, P, Q) for all standard contexts k of P. We therefore prove the stan-
dard soundness theorem as follows.
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Theorem 1 (Standard Soundness) If = F()°, then = std-invs (k, P, Q) for all con-
texts k of all procedures P € Q.

Proof: Pick any procedure P € () and any context k of P:

P =proc I(I*) D* {N"}
std-invariants (F Fou T* K*)*.

Since = F® and F)° = \pcq Fpo, by the definition of conjunction (Figure 4-8),
we get = Fplo. Further, Fpl = Aycqy oy Fiipg» for contexts(P) = {1...n}, and
therefore = Fy% o, i.e., the standard verification condition for the context k of P
holds. From the algorithm for Fj% , and Std (Figure 4-9), we have:

= Va*. subst(F;", s°) = Std(start-label(P’), s°, {}), (5.5)

where s = {I* — z*} for all I € vars(P) and s° is the starting symbolic state for the
symbolic execution of P’ = merge-invariants(k, P). The symbolic execution uses a
symbolic environment e that maps program variables to logic expressions representing
those variables.

We need to show that for all partial executions (P°,m®, a) —=» (L, m,a) of P for
which m® a = F{™, the following is satisfied:

e for all L':inv F from T}, if L = L', then m,a = F; and
e for all L':ret from P, if L = L', then m,a | F".

The proof is by induction on the length of the partial execution of P. We prove the
induction using an induction hypothesis that we call the standard induction hypoth-
esis (StdIH). The StdIH relates a configuration (L, m, a) of the concrete execution of
P to the parameters of the symbolic execution Std(L', s, i) of P'. We first informally
describe a relationship between each program point L of the concrete execution and
a corresponding program point L’ of the symbolic execution. We then formally state
the StdIH and prove the base case and the induction step. The proof proceeds by
an induction on the structure of the symbolic execution of P’ corresponding to the
concrete execution of P.

The correspondence between the symbolic execution of P’ and the concrete execu-
tion of P is as follows. Each node (with label) L’ from P’ has a unique corresponding
node (with label) L from P. The nodes in P" are obtained by adding the standard
invariants to the nodes from P. Each node from P’ that is not an invariant corre-
sponds to the appropriate original node from P. Each standard invariant L:inv F'
from T} is added to P’ in front of the node with label L, with a proper label renam-
ing. We say that an invariant L:inv F' corresponds to the node with label L from
P. (The merging of the invariants only adds new nodes, and the program variables
do not change: vars(P) = vars(P’).) Conversely, each node from P has one or more
corresponding nodes from P’: the copy of the original node and, in general, a set of
invariant nodes! that precede the copy of the original node. Therefore, each concrete

'In practice, there is at most one standard invariant for any node.
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execution of a node from P has a corresponding sequence in the symbolic execution
of P'—this sequence consists of the symbolic execution of the corresponding nodes
from P'.

5.1.1 Standard Induction Hypothesis
The standard induction hypothesis (StdIH) relates a configuration (L, m,a) of the

partial execution (P° m°, a) 5 (L,m,a) of procedure P to the parameters of the
symbolic execution Std(L',s,i) of P’ started with the symbolic state s°. Formally,
the StdIH is a relation with ten arguments StdIH(L,m, a, L', 5,1, 7, P,m°, s°), where
7 is a mapping from logic variables to values. We will abbreviate the StdIH to seven
arguments StdIH(L, m, a, L', s,7,T), because the procedure and the starting states do
not change for a fixed procedure activation. We define that the StdIH holds if the
following is satisfied:

StdIH1. the standard verification condition is valid: = 7(Std(L', s,1)), and

StdIH2. the symbolic state and the concrete state coincide for all I € vars(P): |
7(s(I)) = m(a(I)), and

StdIH3. the substitution 7 is correct with respect to i: either

StdIH3.1. ¢ = {} and for the initial symbolic state s° = {I* — z*}:
StdIH3.1.1. all logic variables are in the substitution, i.e., 7 O {z* — Z*}, and
StdIH3.1.2. = 7(s°(I)) = m®(a(1)) for all I € vars(P); or
StdIH3.2. i =14, U {(L",s')}, where s’ = {I* — 2™} for some z*, and
StdIH3.2.1. P'(L") = L":inv F, and
StdIH3.2.2. 7 =7 U {a* — Z*}, and
StdIH3.2.3. x* are fresh variables, i.e., for all z from z*, x & 7, U4y, and
StdIH3.2.4. = 7 (Va*. subst(F, s') = Std(L" +p 1, ',4)), and
StdIH3.2.5. 71 is correct with respect to i1, as defined by StdIH3.

We now prove that for all (L,m,a) in (P° m° a) TN (L,m,a) of P, where
m® a | F{" and for all L' € P’ corresponding to L € P, there exist a symbolic
state s, a set of symbolically executed invariants ¢, and a substitution 7 such that
StdIH(L,m,a, L', s,i,7) holds. We also show that this implies that the standard
invariants and the output context of the context k& hold:

e if P'(L')=L':inv F, then m,a = F; and
e if P/(L') = L':ret, then m,a E F.
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5.1.2 Standard Base Case

The initial configuration for the concrete execution of P is (P° m°, a), where m° a =
F{™. The symbolic execution starts with L' = start-label(P’), s = s = {I* — 2*},
where z* are fresh variables, and ¢ = {}. We need to show that there exists a substi-
tution 7 such that StdIH(P°, m°, a, L', s, {}, 7) holds. Let 7 = [J{s(I) — m°(a(I))},
where | J ranges over all I € vars(P), i.e., 7 = {z* — m°(a(I*))}. This choice imme-
diately implies StdIH2 and StdIH3 (part StdIH3.1). We next prove that StdIH1 also
holds.

From 5.5, we have = Vz*. subst(F}", s°) = Std(L', s, {}). Using the definition of
universal quantification (Figure 4-8), we obtain = 7(subst(F", s%) = Std(L', s, {})).
By the definition of implication, this simplifies to: if = 7(subst(F}",s%)), then
= 7(Std(L, 5% {})). Since StdIH2 holds, we can apply the Standard Congruence
Lemma, implication 5.1, and from m° a = F{™, we have |= 7(subst(F{", s°)). There-
fore, = 7(Std(L', s°, {})), i.e., E 7(Std(L’, s,7)), which is StdIH1.

5.1.3 Standard Induction Step

The concrete execution of the node at label L in P has a corresponding sequence in
the symbolic execution of P’. The node at L' in P’ corresponds to the node at L
in P. We do a case analysis of the last node, at L', executed during the symbolic
execution of P’. We show that if the StdIH holds before the last node is executed,
then the StdIH also holds after the node is executed.

N1. The last node is an assignment node: P'(L') = L':I=E. Before this node
is executed, from the induction hypothesis, there exist s, 7, and 7 such that
StdIH(L,m,a, L', s,i,7) holds. When the node is executed, the concrete exe-
cution makes a transition (L,m,a) — (L +p 1,m’,a), where m' = m[a(I) —
m(a(E))]. The symbolic execution continues at the next node Std(L' +p/ 1, ¢, %)
with the new symbolic state s = s[I + subst(translate(E, e), s)]. We need to
show that StdIH holds in the new states. We use the same substitution 7 to
prove that StdIH(L +p 1,m’,a, L' +p 1,5, i, 7) holds.

StdIH3 holds in the new states because StdIH3 holds in the previous states,
and 7 and ¢ do not change. That StdIH1 holds in the new states, namely
= 7(Std(L' 4+p 1,¢,1)), is also easy to prove: it follows from StdIH1 of the
induction hypothesis, namely = 7(Std(L/,s,7)), because 7 does not change
and the symbolic executions before and after the assignment node generate
the same verification condition. To prove StdIH2 in the new states, namely
E=7(s'"(I") = m/(a(I")) for all I' € vars(P), we analyze two cases.

First, for all variables I' different than I, the symbolic state and the memory
do not change, i.e., for all I' # I, s'(I') = s(I) and m'(a(I")) = m(a(])).
Therefore, for those variables, = 7(s'(I")) = m/(a(I")) follows from StdIH2 of
the induction hypothesis. Second, for I' = I, to show = 7(s'(I')) = m/(a(I")),
we need to show |= 7(subst(translate(E, e), s)) = m(a(F)). The equality holds
by Lemma 3 because = 7(s(I)) = m(a(I)) for all I € vars(P), by StdIH2 of
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N2.

N3.

N4.

the induction hypothesis. Therefore, StdIH2 also holds in the new states for all
variables.

The last node is a conditional branch node: P'(L') = L':br(E)L". There
are two paths from this node, and the concrete execution takes only one of
them depending on the value of the branch condition. However, the symbolic
execution takes both paths, and from StdIH1 of the induction hypothesis, we
have:

= (G = Std(L", 5,0)) A (-G = Std(L' +p 1,5,4))), (5.6)
where G' = translate-branch(F, s, e).

We next show that StdIH holds after the branch node when the branch is
taken during the concrete execution; the case when the branch is not taken is
analogous. The branch is taken, and the concrete execution makes a transition
(Lym,a) — (L",m,a),if m(a(E)) # 0. We use the same substitution 7 from the
induction hypothesis to show that StdIH holds after the branch is taken. Since
m(a(F)) # 0 and, by StdIH2 of the induction hypothesis, = 7(s(I)) = m(a(I))
for all I € vars(P), we have, by Lemma 4, = 7(G).

From 5.6 and the definition of conjunction (Figure 4-8), we obtain that both
= 7(G = Std(L", s,i)) and = 7(=G = Std(L' +p: 1, s,i)). From the former we
further obtain: if = 7(G), then = 7(Std(L”, s,4)). Therefore, when the branch
is taken, then = 7(Std(L", s, 7)) which is StdIH1 in the new states. StdIH2 and
StdIH3 in the new states trivially follow from the induction hypothesis because
m, s, i, and 7 remain the same.

The last node is a return node: P'(L') = L':ret. It is the final node in the
concrete execution of a procedure activation, and therefore we do not show that
StdIH holds after the return node. We still need to show that the standard
output context holds at the return node. From StdIH1 of the induction hy-
pothesis, there exists 7 such that = 7(Std(L', s,4)), i.e., & 7(subst(F¢",s)).
Since StdIH2 of the induction hypothesis holds, by the Congruence Lemma 5.2,
we obtain m,a E F".

The last node is a procedure call node: P'(L') = L':I1(E*). Let the callee
procedure be P" = proc I(I*) D* {N*}. The concrete execution makes a
transition to the first node of P", allocating memory for the parameters and
local variables of P":

(m™, a™, p™) = alloc-locals(alloc-params({m, a, p), I*, m(a(E*))), D*).

When and if the execution of P” returns, the concrete execution continues
from (P(L +p 1),m’,a), where m’ is the memory after the call. For all non-
global variables of P, the values remain the same: m’(a(l)) = m(a([l)) for all
I € locals(P) U params(P).

The symbolic execution continues, after the return node, with the new symbolic
state s = s[I* — z*| for all I* € globals(P), where z* are fresh logic variables.
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From StdIH1 of the induction hypothesis, there is a substitution 7 such that:

= 7 (subst(F"™, set-params(I, G*, 5))) (5.7)
and
= 7 (Va*. subst(F°", s') = Std(L' +p/ 1,5, 1)), (5.8)

where G* = translate-call(E*, s, €), and (F™, F°“) is one of the contexts of
procedure P”. We use s™ to denote the symbolic state for the formula F™:
s = set-params(I, G*, s) = s[I* — G*] for parameters I* of procedure I/P".
We need to show that the StdIH holds after the call. We use the substitution
T =71U{z* —» m'(a(I*))} to show that StdIH(L +p 1,m',a, L' +p 1,5 ,i,7")
holds.

StdIH3 is easy to prove: from StdlH3 of the induction hypothesis, 7 is correct
with respect to i. After the symbolic execution of the call node, ¢ remains the
same and 7 C 7'. Therefore, 7" is correct with respect to 7. To show StdIH2, we
analyze two cases. First, for all non-global variables I € locals(P)Uparams(P),
the following holds: = 7'(s'(1)) = 7'(s(I)) = 7(s'(I)) = m(a(I)) = m/(a(I)).
Second, for all global variables I € globals(P), from the choice of 7" immediately
follows: = 7'(s'(I)) = m/(a(I)). Therefore, = 7'(s'(I)) = m/(a(l)) for all
I € vars(P). We still need to prove that StdIH1 holds in the new states.

We first show that = 7(s(I)) = m™(a™(I)) for all variables I € globals(P")U
params(P") that can occur in F™. We analyze two cases: I € globals(P")
and I € params(P"). First, for all global variables I, s(I) = s(I) and
m*(a™(I)) = m(a(I)). From Std[H2 of the induction hypothesis, = 7(s(I)) =
m(a(I)) for all I € vars(P). Since P and P" have the same global variables,
E 7(s™(I)) = m™(a™(I)) for all those global variables. Second, for each pa-
rameter I from the sequence I*, s™(1™) = G™, where G™ is the respective
expression from the sequence G* = translate-call(E*, s,e). By Lemma 5, |
7(G™) = m(a(E™)), since = 7(s(I)) = m(a(I)) for all I € vars(P), by StdIH2
of the induction hypothesis. Further, m™(a™(I)) = m(a(E™)) by the defi-
nition of the alloc-params function (Section 4.1.2). Therefore, = 7(s™(I™)) =
m™(a™(1™)) for all parameters of P”, and thus |= 7(s™ (1)) = m™(a™(I)) for
all variables I that can occur in F™.

We next show that m/,a | F°. From 5.7, we have = 7(subst(F™, s™)).
Since = 7(s™(I)) = m™(a"™(I)) for all variables I that can occur in F"™, by
the Congruence Lemma 5.2, we obtain m®™, ¢™ = F*. This means that the
input context F" holds at the beginning of P”. For every context k” of every
procedure P” in @), if the input context holds at the beginning of an activation
of P", then the output context holds at the end of that activation. (Note that it
appears that we assume the actual statement that we try to establish, namely
= std-invs (Q)). We show later how to correct this apparent error.) Therefore,
meUt q = FoU where m° is the memory at the end of the activation of P”,
and a® = @' is the environment for the particular activation of P”. Memory

m° = m' because the concrete execution of the return node in P" does not
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change the memory. Additionally, the environments a* for P” and a for P map
the global variables to the same addresses. Since F°“’ can contain only global
variables, we have m', a | F°.

Finally, we show that = 7/(Std(L' 4+p 1,5',4)). From 5.8 and the choice
of 7/, we have = 7/(subst(F*" s') = Std(L' +pr 1,5',4)). We have already
proven that StdIH2 holds in the new states: | 7/(s'(1)) = m/(a(I)) for all
I € vars(P). From m',a | F°“, we obtain, by the Congruence Lemma 5.1,
that = 7'(subst(F°", s")). Therefore, = 7/ (Std(L' +p 1,5, 4)), which is StdIH1
in the new states. This concludes the proof that the execution of any call node
preserves the StdIH.

We next show how to correct the apparent error that we used = std-invs(Q)
to prove = std-invs(Q). More precisely, while proving = std-invs (k, P, Q),
we assumed, at call sites in P, that = std-invs(k”, P", Q) for all contexts
k" of all procedures P”. If the procedure P is recursive, we cannot make such
an assumption. The correct proof of call nodes requires, besides the induction
on the length of the partial execution of P, an additional induction on the
height of the procedure call tree. A procedure call tree is a directed tree whose
nodes represent activations of procedures called during a (concrete) program
execution, and whose edges represent call relationships—there is an edge from
one activation to another if the former calls the latter. The root of the whole call
tree for a program execution is the initial activation of the starting procedure of
the program. Each activation is also the root of a subtree of calls made starting
from that activation.

We next describe only informally how the induction on the height of the pro-
cedure call tree would proceed. The induction hypothesis would state that
= std-invs(k, P, Q) for all activations (of all contexts k of all procedures
P) whose subtrees have height n. The base case considers activations which
make no calls. (The proof for this case is by induction on the length of
the partial execution without call nodes.) The induction step assumes that
= std-invs (k, P, Q) for all activations whose subtrees have height at most n,
and derives that = std-invs(k, P, @) for all activations whose subtrees have
height at most n + 1. (The proof for this case is again by induction on the
length of the partial execution, and the hypothesis for height at most n is used
for call nodes.) This induction would correct the proof.

Observe that this induction proceeds from the leaves of the tree toward the root.
Therefore, if a tree has finite height, then clearly |= std-invs (k, P, Q) for all ac-
tivations. However, even if a tree has infinite height, still = std-invs(k, P, Q)
for all activations. The reason is that we require partial correctness—the out-
put contexts should hold only if the execution reaches a return node. When a
subtree of the call tree has infinite height, it means that the activation of the
root of that subtree never terminates. Since the execution of that activation
does not reach a return node, any result for the output context is allowed. For
example, consider a parameterless procedure that has only a recursive call to
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Nb.

the same procedure and a return node. For this procedure, the context with
F™ = true and F°“ = false holds because no execution can reach the return
node. Otherwise, the output context false does not hold for any concrete state,
and would not be correct/provable if an execution could reach the return node.

The last node is an invariant: P'(L') = L':inv F. There are two cases de-
pending on whether the invariant has been already symbolically executed or
not:

N5.1. The invariant L':inv F is executed for the first time, i.e., (L' s') ¢ i for
any s'. From StdIH1 of the induction hypothesis, there is a substitution 7
such that:

= 7(subst(F) s)) (5.9)
and
| 7(Va*. subst(F,s') = Std(L' +p/ 1, 5',4")), (5.10)

where s’ = {I* — z*} is a fresh symbolic state with fresh logic variables
x* for all I € vars(P) and i = (L', s") Ui.

From StdIH2 of the induction hypothesis, = 7(s(I)) = m(a(I)) for all
I € vars(P). We can therefore apply the Congruence Lemma 5.2, and
from 5.9, we obtain m,a = F, which is one of the requirements for =
std-invs (k, P, )). We need additionally to show that StdIH holds after
the symbolic execution of the invariant. (There is no concrete execution of
the invariants—the invariants only correspond to certain program points
and describe the program state at those points.) We use the substitution
=71 U{z* = m'(a(I*))} to show that StdIH(L, m,a, L' +p 1,5 ', 7")
holds after the invariant.

StdIH2 is trivial to prove; from the choice of 7: |= 7/(s'(I)) = m(a([l)) for
all I € vars(P). Since StdIH2 holds, and also m, a = F', by the Congruence
Lemma 5.1, we have |= 7/(subst(F, s')). Further, from 5.10 and the choice
of 7, we have:

= 7' (subst(F, s') = Std(L' +p 1,¢,i")), (5.11)

which means that = 7/(Std(L'+p/1, ¢',i")) if = 7/(subst(F, s')). Therefore,
= 7'(Std(L +pr 1,s',4")), which is StdIH1. We need still to prove StdIH3,
i.e., that 7’ is correct with respect to . We prove that StdIH3.2 holds.
StdIH3.2.1-StdIH3.2.3 follow from the choice of 7'. StdIH3.2.4 holds be-
cause of 5.10 (ry is 7). StdIH3.2.5 follows from StdIH3 of the induction
hypothesis.

N5.2. The invariant L':inv F' has been previously executed, i.e., (L', s") € i for
some symbolic state s’. From StdIH1 of the induction hypothesis, there is
a substitution 7 such that = 7(subst(F,s)). From StdIH2 of the induction
hypothesis, = 7(s(I)) = m(a(l)) for all I € vars(P). We can therefore

84



apply the Congruence Lemma 5.2 to obtain m, a = F', which is one of the
requirements for = std-invs (k, P, Q). We need additionally to show that
StdIH holds after the invariant. We show that there exists 7/ such that
StdIH(L, m,a, L' +p 1,s',i,7") holds.

From (L', s') € i, we have that i = {(L',s')} Uiy, where s’ = {I* — 2*}
for all I € vars(P). From StdIH3.2.2 of the induction hypothesis, we know
that 7 = 7 U {o* — Z*} for some 7y such that by StdIH3.2.3, none of
from z* is in 7. Therefore, we can use 7 = 7, U {z* — m(a(l*))}, and we
prove that StdIH holds for that 7.

StdIH2, namely | 7/(s'(I)) = m(a(I)) for all I € vars(P), follows directly
from the choice of 7/. StdIH3 follows from StdIH3 of the induction hypoth-
esis. We need still to show that StdIH1 holds: = 7/(Std(L' +p 1, ¢',1)).

From StdIH3.2.4 of the induction hypothesis, we have:
E 7 (Va*. subst(F,s') = Std(L' +p 1,5, 1)). (5.12)
Further, by the definition of universal quantification, we get:
E 7' (subst(F, s') = Std(L' +p 1,5',7)). (5.13)

As we have already shown that StdIH2 holds and m,a = F, by the Con-
gruence Lemma 5.1, we obtain = 7'(subst(F,s’)). Therefore, from 5.13,
we finally have that | 7'(Std(L' +p/ 1,5',7)).

5.2 Soundness of Simulation Verification-Condition
(Generator

In this section we prove that the simulation verification-condition generator (presented
in Section 4.4) is sound: for every pair of programs (); and @y and every set of
simulation contexts for those programs, if the simulation verification condition for
those programs and those contexts is valid, then (); simulates ()»; in notation: if
E FYS g, then Q1 > Q2. (More precisely, we also need the standard verification
conditions for programs @, and @, to be valid: if = Fg , and = F and |= Fg,
then Q) > (Q2.) By the definition (page 65), Q1 > @ if:

e P.Q1> P, () for all pairs of procedures P, € ()1 and P, € () for which there
are simulation contexts, and

e one of the simulation contexts for the starting procedures for programs ¢, and
(2 requires that the two programs generate the same output given that they
start with the same input.

Further, Py, Q1 > P», Q2 if P, Q1 >k Py, Q2 for all contexts k € sim-contexts(P;, P).
We therefore prove the simulation soundness theorem as follows.
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Theorem 2 (Simulation Soundness) If = Fg. ,, and = Fg and = Fg;, then
P, Q1 > Py, Qo for all simulation contexts k of all pairs of procedures P, € Q1

and Py € Q5.

Proof: Pick any pair of procedures P, € @)1 and P, € (), for which there is a
simulation context, and pick any simulation context k& of P, and Ps:

Py =proc I; (I7) D {N;"}
Py = proc I,(I3) Dj {N,}
sim-invariants (J™ Jo“ S* K* Z1 7% G* A*)*.

Since | FY o, and F& o, = Ap co, pco, FPro1,ps0,0 PY the definition of con-
junction (Figure 4-8), we get = B 0,0, Further, by the definition, Fi& 5 p, o, =
/\ke{l...n} F,f"j:,hQ}’PQ,QQ,.for s%m—conte?ct.s(Pl, Py) ={1...n}, and thus = F\/% o p, 0,
i.e., the simulation verification condition for the context k£ of P, and P, holds. From
the algorithm for FY%, o p, o, and Sim (Figure 4-11), we have:

= Va*. subst-sim(Jj", sY, s9) =
Sim(start-label(P)), s!, start-label(Py), 59, {}, %) A (5.14)
subst (in-context (P, k1), s7) A subst(in-context(Ps, k3), s3),

where: sY = {I} — a7} for all I} € vars(Py), s5 = {I; — G*} for all I, € vars(P),
sV and s9 are the starting symbolic states for the symbolic executions of procedures
(P], Py) = merge-sim-invariants(k, P, ), and ¢° = action-tree( A}, P/, Py) is the ac-
tion tree for the interleaving of the symbolic executions of P{ and Pj. The symbolic
executions use symbolic environments e/, that map program variables from proce-
dures P/, to logic expressions representing those variables.? We use a variable name
with an index to represent which program the variable is from.

The starting symbolic expressions G* for s are created in the following way:
e for each I, € vars(P,) — locals(P;):
— if (I}, I) € var-pairs(J{™) for some I, then I, is mapped to s;(I); other-
wise,
— I, is mapped to a fresh variable x,, and the sequence of all such fresh

variables, x5, concatenated to z] gives z*; and

e for each I, € locals(P,), the symbolic expression for I is obtained by substitut-
ing o™ for the appropriate program variables in expressions G, provided by the
compiler transformation.

2In general, e1/2 maps each I; € locals(P 2) U params(P;2) to logic expression locyy (I;) and
each I, € globals(P;/2) to logic expression glob, ,, (I). For the brevity of the proof presentation,
we use logic expressions without the special constructors H. Therefore, e, /» is the identity: it maps
each variable I /5 € vars(Py /2) to itself. We assume that the variable names in two procedures are
different: vars(Py) N vars(Pz) = {}.

86



The compiler transformation also provides indices for standard contexts of pro-
cedures: k; of P, and ky of P,. By assumption, the standard verification conditions
for programs @, and Q) are valid: |= Fj$ and |= F;. Therefore, by Theorem 1, all
standard contexts of all procedures from programs ¢); and @) hold. In particular,
contexts k; of P, and k, of P» hold:

): std—invs(kl,Pl,Ql) (515)
and
= std-invs (kg, P2, (Q)2). (5.16)

We need to show that for all partial executions (P, m!, a;) -5 (L1, mq,aq) of

Py, there exists a partial execution (P2, m3, ay) -5 (Lg,my, ay) of Py such that if
m{, a;,m3, ay = Ji", then the following is satisfied:

o forall L, L :sim-inv J' from S}, if L; = L, then there exists Ly, L} :sim-inv J
from set-sim-inv(Ly, S;) such that Ly = L and my, a;, mg, ay = J; and

o if Pi(L;) = Ly:ret, then Py(Ly) = Ly:ret and my, ay, my,ay = J2; and

e if the partial execution of P, does not terminate, then the partial execution of
P, also does not terminate.

The proof is by induction on the length of the partial execution of ;. We prove
the induction using an induction hypothesis that we call the simulation induction
hypothesis (SimIH). The SimIH relates configurations (L1, my, a;) and (Lg, ms, as) of
the concrete executions of P, and P, to the parameters of the symbolic executions
Sim(L}, s1, LY, s9,1,t) of P{ and P;. Similar to the standard induction hypothesis, the
simulation induction hypothesis relates the program points Ly 5 of the concrete execu-
tions to the program points L} /2 of the symbolic executions. Additionally, the SimIH
includes an action tree t that guides the symbolic executions. We first describe the
correspondence between the actions of the tree and the concrete executions. We next
describe how the SimIH uses a substitution 7 to relate the concrete states my /s, a2
to the symbolic states s1/o. We then present a lemma that shows certain substitutions
to be well-defined for symbolic states that are related by a formula J. Finally, we
state the SimIH and prove the base case and the induction step.

The correspondence between the nodes of P| /2 and the nodes of P, is as follows.
Each node (with label) L’ from either P{ or Py has a unique corresponding node (with
label) L from the respective P, or P,. The nodes in Pl’/2 are obtained by merging the
halves of simulation invariants to the nodes from P, /5. Each node from Pl’/2 that is
not a half of an invariant corresponds to the appropriate original node from P, ;. For
each simulation invariant L;, Ls:sim-inv J from Sj, the node L, :sim-inv is added
to P/ in front of the node with label L; and the node Ly:sim-inv J, L, is added to
Pj in front of the node with label L, as explained in the initial phase of the SimVCG
(page 67). The nodes L;:sim-inv and L,:sim-inv J,L; represent two halves of a
simulation invariant.

87



Similar to the standard invariants, each node from P/, has one or more corre-
sponding nodes from Pl’/Z: the copy of the original node and, in general, a set of halves
of simulation invariants that precede the copy of the original node.?> The soundness
proof for the standard invariants is, conceptually, by an induction on the length of the
concrete execution of the procedure. Technically, we do an induction on all possible
symbolic executions (corresponding to the concrete execution) that implies the induc-
tion on the length of the concrete execution. Similarly, the soundness proof for the
simulation invariants is, conceptually, by an induction on the length of the concrete
execution of P;. We actually do an induction on all possible symbolic executions of
P| and Pj corresponding to the concrete execution of P;.

The action tree ¢ guides the interleaving of the symbolic executions of P| and P;.
Each concrete execution of a node L; from P; has a corresponding sequence of actions
from the tree. This sequence ends with the action that executes in P/ the copy of the
node L; depending on the node, the action can be either execute; or execute-both.
The sequence starts with the action that immediately follows the end of the previous
sequence, except that the sequence for the first node starts with the first action of the
tree. We show in the induction step that any sequence corresponding to the concrete
execution of a node preserves the simulation induction hypothesis.

More precisely, we consider only correct sequences of actions, i.e., correct action
trees. An action tree t is correct with respect to L, L}, and ¢ if the application
Sim(L}, s1, L}, s9,1,t) does not generate an error. In general, an error occurs if there
are not enough actions in the tree (i.e., ¢ is empty when Sim performs root(t)), or
the root action is not allowed for the nodes L] and/or L) (e.g., execute-both for a
return and a branch node). The SimVCG invokes the function Sim with the initial
tree t° and we know that it generates a SimVC, and not an error, since we also know
that the SimVC is valid. Thus, t° is correct for the respective starting labels. In
the base case of the induction, we also use the tree t°. If a tree is correct before
some action, then the appropriate subtrees are correct for the executions after the
action. In the induction step, we consider the same subtrees as the function Sim, and
therefore the subtrees are correct for the respective executions. Whenever we write
Sim(L}, s, LY, s9,1,t) in the rest of the proof, we understand that it is for a correct t.

We next show the correspondence between the symbolic states s;/o and the con-
crete states 1/, a;/2. Each of the symbolic states s/, = {11*/2 — GI/2} corresponds
to a set of the concrete states my;y,a1/2. We can specify one such correspondence
with a substitution 7 = {z* — Z*}, where x* are all logic variables in the expres-
sions G /2 The SimIH uses 7 such that the symbolic states and the concrete states
coincide: |= 7(s1/2(11/2)) = maj2(a1/2(11/2)) for all I 5 € vars(Py/2). In general, there
are symbolic and concrete states for which no such 7 exists, even if s; = {I] — 7}
for all I; € vars(P;) and some sequence x} of different logic variables. (If s, can be
arbitrary, then there is no 7, e.g., for sy = {I = x1,I' = 21} and my, a; such that
my(a1(L1)) # mi(ai(I').) We next show that a substitution 7 exists for all states
that satisfy certain conditions.

3Recall that in P/, there is at most one L; :sim-inv before any original node because the simu-
lation invariants with the same first label share that node.
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Lemma 6 (Well-Defined Substitution) Let J be any formula for two programs (a
simulation invariant, a simulation input context, or a simulation output context),
and let my,ay, my,as be any concrete states such that my, a1, mg,ay = J. Let sy =
{I} = 7} for all I} € vars(Py) and some sequence x} of different logic variables.
Let sy = {I; — G*} for all I € vars(Py), where G* are any expressions such that:
for any variable I and any variable I' £ I that can occur in J (all variables, non-
local variables, or global variables, depending on J), sqo(I) is a logic variable and
so(I) # so(I'). Let x5 be all logic variables that are images, in sy, of variables that
can occur in J. (Note that some variables from x5 may be identical to some variables
from x75.) Let o* = x7 U} be a sequence of all unique variables from x5 and xh.
If s1(1) = s2(l2) for all (Iy,15) € var-pairs(J), i.e., the symbolic states si/o are
related by (the pairs of variables in) J, then there exists a substitution T = {7} —
mi(ai (7))} U {5 = ma(az(l3))}, denoted as {z* — muj(aij2(l7),))}, such that:
= T(s1/2(11/2)) = maja(aij2(Ly2)) for all Iy that can occur in J.

Proof: We give only an outline of the proof. The main result to show is that the
substitution 7 is well-defined: for each x from z*, there exists a unique Z such that
T(x) = Z. Let p = {z — my(a1(I}))} and 7 = {a} — ma(az(I3))}. We have that
T =1 UTy, and we need to show that 7y (z) = m(z) for all variables = that are both
in z1 and x,. It is easy to show that those logic variables are images, in s/,, of the
program variables that appear in var-pairs(.J). Further, it is easy to show, by the
definition of conjunction, that my(ai(l;)) = me(az(1y)) for all (I, I,) € var-pairs(J)
follows from my, ay, my, as |= J. This concludes the proof of the lemma.

5.2.1 Simulation Induction Hypothesis

The simulation induction hypothesis (SimIH) relates configurations (L, my, a;) and

(Ly, ms, as) of the partial executions (P?,m?, a,) —=» (Ly,m1,a) and (P2, m3, as) —»
(Lg, my, ay) of procedures P, and P, to the parameters of the symbolic executions
Sim(L}, sy, LY, 89,1, t) of P{ and Pj started with the symbolic states s and s9. For-
mally, the SimlH is a relation with many arguments:

. ! / . 0 .0 0 .0
SlmIH(Lla my, i, L27 ma, Az, L]_7 S1, L27 82,1, ta T, Pla my, S1, P27 my, 52)7

where 7 is a mapping from logic variables to values. We will abbreviate the SimIH
to SimIH(Ly, mq,aq, Lo, ma, as, L, 1, LY, s9,1,t,7), because the procedures and the
starting states do not change for a fixed pair of procedure activations. We define that
the SimIH holds if the following is satisfied:

SimIH1. the simulation verification condition holds: |= 7(Sim(L}, s1, L)), 59, i, 1)), and

SimIH2. the symbolic states and the concrete states coincide:

SimIH2.1. for all I; € vars(P;): = 7(s1(11))
SimIH2.2. for all I, € vars(F): = 7(s2(l2))

my (Cll (Il)), and
mo(as(I3)); and
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SimIH3. the substitution 7 is correct with respect to i: either

SimIH3.1. i = {} and for the initial symbolic states s} = {I} + 7} and s =
{I; — G*}, where z* are all variables that occur in z} or G*:

SimIH3.1.1. all logic variables are in the substitution, i.e., 7 O {z* +— Z*}, and
SimIH3.1.2. = 7(sY(11)) = mY(ay (1)) for all I; € vars(P;), and
SimIH3.1.3. |= 7(s3(15)) = m3(ax (1)) for all I, € vars(P,); or

SimIH3.2. ¢ =4, U {((L7, Ly), (s}, s), ')}, where s} = {I] — 27} and s, = {5 —

a3} for some x* =z} U zh, and
SimIH3.2.1. P{(L}) = L}:sim-inv and Py(L}) = L} :sim-inv J, L, and
SimIH3.2.2. 7 =7 U {2* — Z*}, and
SimIH3.2.3. z* are fresh variables, i.e., for all x from z*, © € 7 U4y, and
SimIH3.2.4. |= 71 (V™. subst-sim(J, s}, s5) = Sim(L{+p;1, s, Ly+p; 1, 85,14, '),
and

SimlIH3.2.5. 7q is correct with respect to ¢y, as defined by SimIH3.

We now prove that for all configurations (L, my, a;) in sequences (P, m? a;) -5
(Ly,my,ay) of Py, there exists a configuration (L, ma, as) in a sequence (P, m3, as) R
(La, My, ag) of Py, where m?, ay, m3, as = Ji", such that for all L] € P| corresponding
to L, € P, there exists a label L}, € Pj corresponding to Ly € P, and there exist sym-
bolic states s; and s», a set of symbolically executed simulation invariants ¢, an action
tree ¢, and a substitution 7 for which SimIH (L, my, a1, Lo, mo, ay, LY, s1, L}, 2,4, ,T)
holds. We also show that this implies that the simulation invariants and the simula-
tion output context of the context k hold, as well as that the termination simulation
is satisfied:

e if P/(L}) = L} :sim-inv, then Py(L}) = L) :sim-inv J, L} and my, a;, my, as =
J; and

e if P[(L}) = L) :ret, then Py(Ly) = L} :ret and my, ar, ma, ag = J2*; and

e if the execution of P, does not terminate, then the execution of P, also does
not terminate.

5.2.2 Simulation Base Case

The initial configurations for the concrete executions of P; and P, are (PP, m?, a;) and
(P, mY, ay), Where m{, a;,m3, ay = Ji". (Recall that by the simulation requirement,
the memory m! for the execution of P1 is universally quantified, whereas the memory

9 for the execution of P, is existentially quantified.) The symbolic executions start
With L} = start-label(P)), s; = s = {I} — a1}, L}, = start-label(Py), so = 55 =
{I; — G*}, i ={}, and ¢ = t°. Let z* be all logic variables that occur in z} or G*.
We need to show that there exists a substitution 7 for all variables in z* such that
SimIH(PY, m?, ay, PY,m3, as, L, s9, L, s, {},°, 7) holds.
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By the Well-Defined Substitution Lemma, we know that there exists 7 = {z* —
mY o(a1/2(15)5)) } such that = 7(s} 5 (I172)) = mY jy(a1j2(112)) for all I, € vars(Pryz) —
locals(P;/2). We first show that for this 7, SimIH2 holds. SimIH3 (part SimlH3.1)
then trivially follows from SimIH2. To conclude the proof that SimIH holds, we
then show that SimIH1 holds. Finally, we show also that the standard invariants
of standard contexts ki, of P/; hold during the concrete executions started with
m(l)/27 /2.

SimIH2.1 holds from the choice of 7. To prove SimIH2.2, we still need to prove
that = 7(s3(ly)) = m3(ax(Iy)) for all I, € locals(P,). More precisely, since m3 is
existentially quantified, we need to show that there exist values m3(ay(l3)) for all
I, € locals(P) such that = 7(s5(Iy)) = m3(ay(13)). From the algorithm that creates
the starting symbolic expressions G* (page 86), we have that for all I, € locals(P),
s5(I3) = subst-sim(Gy, sY, s9) for the appropriate Gy, which cannot contain local

variables of P,. Therefore, we can choose m3(ax(ly)) = G'[7(s5(12))] mY, a1, m3, as

for all I, € locals(P,), since the evaluation G’ does not require the values of local
variables of P,. This choice implies directly that SimIH2.2 holds. Note that at this
point, we specify the values of memory locations of m3 only for the local variables of
P. Because of the existential quantification of m3, we can still specify the values of
the locations “above” the locations for the local variables; we use this for call nodes.

We next prove that SimIH1 holds. From 5.14, we obtain:
= 7(subst-sim(Jj", 89, s9) =
Sim(L1, 51, Ly, s3, {},1") A
subst (in-context (P, k1), s) A subst(in-context(Ps, k), s9)).

This further simplifies to: if = 7(subst-sim(J}", s9, s9)), then

= 7(Sim(LY, s7, L, 55, {},1°)) (5.17)
and

= 7(subst (in-context (P, k1), s9)) (5.18)
and

= 7 (subst (in-context (P, k»), s5)). (5.19)

Since SimIH2 holds, we can apply the Simulation Congruence Lemma, direction 5.3,
and from m?, a;, md, a; = Ji", we have |= 7(subst-sim(J}", 59, s9)). Therefore, 5.17
also holds, i.e., = 7(Sim(L}, s1, L}, s9,,t)) which is SimIH1.

Additionally, 5.18 and 5.19 hold. We next prove that the standard invariants of
context k; hold during the concrete execution of P started with m?, a;; by anal-
ogy, the standard invariants of context ks also hold. From 5.15, we know that the
context k; holds. Therefore, if we prove that the standard input context F,gf =
in-context(Py, k;) holds for m?,a;, then all standard invariants of k; hold. From
SimIH2.1, we have that |= 7(s%(I;)) = m{(a1(I;)) for all variables I; that can occur
in F,g? Therefore, we can apply the Standard Congruence Lemma 5.2, and from 5.18,
we obtain m{, a; = F}", which concludes the proof.
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5.2.3 Simulation Induction Step

The concrete execution of the node at label L; in P, has a corresponding sequence of
actions from the action tree t. We show that any such sequence of actions preserves
the SimIH. At each step, the SimVCG performs the action from the root of the tree.
We do a case analysis of the last action performed during the symbolic executions of

procedures

Pl

/2 We show that if the SimIH holds before the root action from the

tree t is performed, then the SimIH also holds after the action is performed.

Al. The last action is execute;, which symbolically executes an assignment node
or a branch node from P].

Al.1.

Al.2.

The node is an assignment node: P[(L}) = L} :I=E. Before this node
is executed, from the induction hypothesis, there exist s, so, i, t, and
7 such that SimIH(Lq, mq, ay, Loy, mo, as, LY, s1, L}, s9,4,t,7) holds. When
the node is executed, the concrete execution of P; makes a transition
(Ly,my,a) — (Ly +p, 1,m}, a), where m} = my[a1(I) = my(ai(E))]. The
symbolic execution continues at the next node Sim (L} +p; 1,5, Ly, s, i, t)
with the new symbolic state s| = si[I + subst(translate(E, e;), s;)]. We
need to show that SimIH holds in the new states. We use the same 7 to
prove that SimIH(L; +p, 1,m}, a1, Ly, ma, ag, L) +pr 1, 81, Ly, 59, 1, left(t), 7)
holds.

SimIH1 and SimIH3 follow directly from the induction hypothesis because
7 and ¢ do not change, and the symbolic executions before and after the
assignment node generate the same verification condition. We need to
prove that SimIH2 holds. SimIH2.2 follows directly from SimIH2.2 of the
induction hypothesis because 7, s, and ms do not change. The proof
that SimIH2.1 holds is analogous to the proof for assignment nodes for the
StdVC (page 80): we analyze two cases, I' Z I and I' = I, and we use
Lemma 3 in the latter case. We omit the details of the proof.

The node is a branch node: Pj(L}) = L|:br(E£)L". There are two paths
from this node, and the concrete execution of P, takes only one of them
depending on the value of the branch condition. However, the symbolic
execution takes both paths, and from SimIH1 of the induction hypothesis,
we have:

E 7((G = Sim(L", s1, L, s9, i, left(¢))) A (5.20)
(—|G:> Slm(L'l +P{ ].,S]_,LIZ,Sg,i,right(t)))), '

where G' = translate-branch(E, sy, €;).

From the induction hypothesis, there exists a substitution 7 such that
SimIH holds before the branch node. The proof that SimIH holds after
the branch node is analogous to the proof for branch nodes for the StdVC
(page 81). We give an outline of the proof for the case when the branch is
taken. We show that SimIH(L", my, ay, Ly, mo, ag, L", s1, LY, so, 0, left(t), 7)
holds after the branch is taken. SimIH2 and SimIH3 follow directly from
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the induction hypothesis because my, s1, mo, S9, 7, and 7 remain the same.
SimIH1, namely | 7(Sim(L", sy, L}, s9,1,left(t))), follows from 5.20, by
the definitions of conjunction and implication and by Lemma 4.

A2. The last action is executey B, which either symbolically executes an assignment
node or a branch node from Pj or moves past a simulation invariant from P;.

A2.1.

A2.2.

A2.3.

The node is an assignment node: Py(L,) = L', : I=E. The proof that SimIH
holds after the executions of an assignment node in Py and P, is analogous
to the proof that SimIH holds after the executions of an assignment node
in P and P, (page 92).

The node is a branch node: Pj(L}) = L!,:br (£)L". The symbolic execu-
tion of a branch node in P; differs from the symbolic execution of a branch
node in P/. In P], the symbolic execution splits at a branch node and
follows both paths. In Pj, the symbolic execution follows only one path,
either branch-taken or branch-not-taken, depending on B. We prove that
the corresponding concrete execution also takes the same path. We give a
proof that these executions preserve the SimIH for the branch-taken case;
the branch-not-taken case is analogous. From the induction hypothesis,
SimIH(Ly, mq, a1, Lo, mo, ag, LY, s1, L}, $2,4,t,7) holds (for some values of
the existentially quantified arguments) before the node is executed. We
show that SimIH(Ly, my, ay, L, may, ag, L}, sy, L", s9, 4, left(t), 7) holds after
the node is executed.

SimIH2 and SimIH3 are trivial to prove. We show that SimIH1 holds.
From the induction hypothesis,

E 7(G ASim(Ly, s, L", 9,1, left(t))), (5.21)

where G = translate-branch(E, s9, €2). From 5.21, we have |= 7(G). Fur-
ther, by Lemma 4, mo(az(E)) #Z 0 which proves that the concrete execu-

tion of P, makes the branch-taken transition: (Lo, mo,as) — (L, ma, as).
From 5.21, we also obtain = 7(Sim(Ly, sy, L", s9, ¢, left(¢))) which is SimIH1.

The node is a half of a simulation invariant: Pj(L}) = L} :sim-inv J, LY.
From the induction hypothesis, we know that there exists a symbolic execu-
tion of Py such that SimIH(L,, my, ay, Ly, mo, ag, LY, 51, L}, s9,4,t, 7) holds.
The symbolic execution of the half of an invariant only moves past it.
We prove that SimIH(Ly, my, ay, Lo, ma, az, LY, s1, Ly +p; 1, 59,1, left(t), 7)
holds. Since the states and the substitution do not change, SimIH2 and
SimIH3 follow directly from their counterparts in the induction hypothesis.
SimIH1 also follows from SimIH1 of the induction hypothesis because the
symbolic executions before and after the half of an invariant generate the
same simulation verification condition.

A3. The last action is stop, which finishes the symbolic executions. We need to
prove that ¢f SimIH holds before stop, then SimIH holds after stop. We
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A4

Ab.

show that this implication is valid by showing that SimIH cannot hold for any
substitution 7 before this action. By contradiction, assume that there exists
a substitution 7 (as well as the other arguments of the induction hypothe-
sis relation) such that SimIH holds before stop. Since the execution of stop
generates false, we obtain, from SimIH1, = 7(false). For all substitutions
7(false) = false, and we have = false which cannot hold, by the definition
of the valuation function for false (Figure 4-8). Hence, SimIH does not hold
before action stop. (This means that stop cannot be used on some path during
a symbolic execution of P/ if that path is possible during a concrete execution of
P;. If a path is not possible during any concrete execution, stop can be used.)

The last action is split F', which splits the symbolic execution of P/ into two
paths. This action can be used at any point in the symbolic execution. Before
the action, from the induction hypothesis, there exist sy, so, 4, ¢, and 7 such
that SimIH(Ly, my, ay, Ly, ma, as, LY, s1, L}, 59,1, t,7) holds. From SimIH1 of the
induction hypothesis, the following holds:

= 7((F' = Sim(L}, s1, LY, so, 1, left(t))) A (5.22)
(=F" = Sim(L', s1, L), s9, 1, right(t))) ), '

where F' = subst(F, s1).

We next show that SimIH holds after the action if my,a; | F’; the case when
my,ay = —F is analogous. (Note that by the definition of valuation functions,
either F' or = F holds for any my, a;.) The proof is similar to the proof for branch
nodes. We use the same s1, sg, i, and 7 from the induction hypothesis and
t" = left(t) to show that SimIH(Ly, my, a1, Ly, mg, as, LY, s1, LY, s9, 1,1, 7) holds.
SimIH2 and SimIH3 follow directly from their counterparts in the induction
hypothesis. For SimIH1, we need to show = 7(Sim(L}, s, L, s, 1, left(t))).
From 5.22, we have that SimIH1 holds if = 7(F"). Further, = 7(F') from
the assumption my,a; = F, by the Standard Congruence Lemma 5.1, since
= 7(s1({1)) = my(ay (1)) for all I} € vars(Py) from SimIH2.1 of the induction
hypothesis. This concludes the proof of this case.

The last action is use-analysis; or use-analysis,, which includes a stan-
dard invariant in the simulation verification condition. From the induction hy-
pothesis, there is ¢ such that SimIH(Ly, my,ay, Ly, ma, as, L, s1, LYy, so,1,t,T)
holds before the action. We prove that SimIH holds for ¢ = left(t) after
use-analysis; the proof for use-analysis, is analogous. SimIH2 and SimIH3
follow directly from the induction hypothesis. To prove SimIH1, let F' be
the formula from the standard invariant at L; in the context k; of P;: F =
std-invariant( Py, ki, L1). From SimIH1 of the induction hypothesis, we have

= 7(subst(F, s1) = Sim(Ly, s1, Lo, s9, 1, left(t))). (5.23)

We have proven in the simulation base case (Section 5.2.2) that all standard
invariants of context k; hold during the concrete execution of P, and therefore
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AG6.

my,a; = F. Since SimIH2.1 holds, we can apply the Standard Congruence
Lemma 5.1 to obtain: |= 7(subst(F, s1)). From 5.23, we then have that SimIH1
holds: ): T(Sim(Ll, S1, LQ, S92, i, left(t)))

The last action is execute-both, which symbolically executes a node from both
P{ and Pj. The two nodes can be both return nodes, or both call nodes, or
both halves of some simulation invariant.

A6.1.

A6.2.

The nodes are return nodes: P[(L}) = L :ret and Py(L}) = L):ret.
These nodes are the last nodes in the concrete executions of procedure ac-
tivations, and therefore we do not show that SimIH holds after the return
nodes. We still need to show that the simulation output context holds
whenever the procedures reach return nodes. From SimIH1 of the induc-
tion hypothesis, | 7(subst-sim(JZ*, s, s2)) for some 7. Since SimIH2
holds for the same 7, by the Simulation Congruence Lemma 5.4, we obtain
my,ay, me,as = JU

The nodes are call nodes: P{(L}) = L|:I,(E}) and Py(L}) = Ly: [, (E}).
Let the callee procedures be P! = proc I,(I;) D;i {N{'} and P) =
proc I,(I3) D; {N,}. The concrete executions make transitions to the

first nodes of P1"/2= allocating memory for the parameters and local vari-
ables of P/ :

1/2°
(i, p1%,) =
alloc-locals(alloc-params((mi/2, a1/2, p1/2), I} j9, maj2(a1/2(E7 ), D7 ).

When and if the executions of P1”/2 return, the concrete executions con-
tinue from (P /o(L1/2 +Py ) 1),m’1/2,a1/2>, where the memories after the
calls satisfy: m’l/Q(al/g(Il/z)) = my2(a1/2(L1/2)) for all 15 € locals(Py /) U
params(F ). (We show later that the executions of P/), either both re-
turn or both do not return.)

Let k" = sim-context-index(L,, Lo, K} ) be the index of the simulation con-
text for the call nodes at Ly, and let (J*, J**') = sim-context(Iy, I, k")
be the input and output contexts for the simulation context k" of pro-
cedures I3, i.e., P2 The symbolic executions continue, after the re-
turn nodes, with the new symbolic states: s}, = si2[l], = z]] for
all I}, € globals(P/2), where 2* = a7 Uz} are fresh logic variables.
(Some variables in x} can be the same as some variables in z} since
(s}, sh, x*) = fresh-sim-globals(sy, sq, J7).)

From SimIH1 of the induction hypothesis, there is a substitution 7 such
that:

= 7 (subst-sim(J™, set-params(I;, G5, s1),
set-params(Iz, G5, 52))) (5.24)

and
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= 7(Va*. subst-sim(J, s}, sb) =
Sim(Ly +pr 1,81, Ly +py 1, 55,4, left(t))), (5.25)

where G}‘/Q = translate—call(Ei‘/Q,51/2,61/2). We use 31’}2 to denote the
symbolic states for the formula J: 5?}2 = set-params([1/9, Gy, 51/2) =
31/2[11*/2 — G}‘/Q] for parameters I{‘/Q of procedures I;/,. To prove that
SimIH holds after the calls, we use the substitution 7/ = 7 U {z* —

my p(a1/2(17/5))}. (We show later that we can make such a substitution.)
We prove that the following relation holds:

SlmIH(L1+P1 ]-7 m,17 ag, L2+P217 m,27 az, L,1+P{ ]-7 8,17 L’2+P§17 8,27 ia left(t), T,)'

The proof is similar to the proof for call nodes for the StdVC (page 81).
SimIH3 follows from SimIH3 of the induction hypothesis because 7 C 7'
and 7 does not change after call nodes. We need to prove that SimIH1 and
SimIH2 also hold. We prove first that the simulation input context J
holds, next that the simulation output context J°“ holds, and then that
SimIH2 holds* and finally that SimIH1 holds.

We first observe that = 7(s{},(11/2)) = mf{},y(ai}y(l1/2)) for all variables
115 € globals(P/),) U params(P]),) that can occur in J™. The proof that
the states S1/2 and Mg, 01 coincide for all variables in J"" is analogous
(for each procedure) to the proof for the StdVC (page 82), and we do
not repeat it here. From 5.24, we have = 7(subst-sim(J™, s{*, si"). Since
= 7(s1}y(Thy2)) = m{jy(al}y(11y2)) for all variables 1,5 in J™, by the Sim-
ulation Congruence Lemma 5.4, we obtain m!", a{*, m¥* af* = J™. This
means that the simulation input context J** holds at the beginning of P/’
and Py

For every simulation context £” of every pair of procedures P1"/2 in @9, if
the simulation input context holds at the beginning of activations of P1"/2:
then the simulation output context holds at the end of the activations.
Similarly to the proof for the StdVC, the proof for SimVC is informal at
this point and it appears that we assume assumption the actual statement
that we try to establish, namely ()1 > (2. We do not present a full proof
that would require an induction on the height of the procedure call trees
of programs @;/2. (Note that the two programs have isomorphic call trees
because of the simultaneous execution of the call and return nodes.) We
show later that if the activation of P}’ does not terminate, then there exists
an activation of P’ that also does not terminate. We additionally discuss
the existential quantification of the executions of P} after we finish the
proof that SimIH holds.

Since J™ holds at the beginning of P1"/2a then, for all executions of P/,

4For the StdVC we can prove that SimIH2 holds even before we prove that the standard output
context holds because the substitution 7' does not depend on the output context.
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there is an execution of Py such that m/,a}", m},as" = Jo, where m/ /2
are the memories at the end of the activations of P1"/27 and azl% are the
environments for those activations. Additionally, the environments a’l’}Z for
P1”/2 and ay, for P/, map the global variables to the same addresses. Since
J°" can contain only the global variables, we have m}, ay, mb, ay | J.
By the Well-Defined Substitution Lemma, we can then make substitution
{a* = m),(a12(1]),))} and, for that substitution, = 7'(s12(l1/2)) =
m’l/Q(al/Q (11/2)) for all I/, € globals(P, ;). To prove that SimIH2 holds,
we need also to prove that |= 7'(s1/2(11/2)) = m,1/2(a/]_/2(11/2)) for all I/, €
locals(Py/2) U params(P1/,). 1t holds by the following: = 7/(s] ,(11/2)) =
7' (s1/2(112)) = T(51/2(L1/2)) = maj2(ar/2(L12)) = mll/Z(al/Q(Il/Q)) because
the executions of P1”/2 cannot change local variables of P ;. We next prove
that SimIH1 holds.

Since SimIH2 holds, and m/, a;, mb, ay = J°, by the Simulation Congru-
ence Lemma 5.3, we have = 7/(subst-sim(J%, s}, s})). Further, from 5.25
and the choice of 7/, we have:

= 7'(subst-sim (J°, s, s3) = Sim(Ly +p; 1,5}, Ly +p; 1, 55, 3, left(t))),

and therefore |= 7/(Sim(L1+p1, 51, La+py1, 85, 4, left(t))), which is SimIH1.
This concludes the proof that the executions of call nodes preserve the
SimIH.

We now discuss the quantification of the executions of P1”/2 and the termi-
nation simulation between those executions. In the proof for call nodes,
we assume that for the executions of P1"/2: J°% holds at the end if J* holds
at the beginning. Specifically, we use that for all initial values for the local
variables of P/, there exist some initial values for the local variables of
P} such that J°* holds at the end. We need to show that we can indeed
choose these initial values for the appropriate locations in the memory mi"
at the beginning of Py, i.e., those initial values are not already specified

or universally quantified. We next give an outline of the proof for this.

We first recall that the memory and the stack pointer at the beginning
of P, are mY and py. From the simulation requirement, we can choose
the values of memory locations for the local variables of m) and also for
all locations with addresses greater than pJ. In the simulation base case
(Section 5.2.2), we have chosen the values for the local variables of P,. We
now prove by induction that we can choose the values of local variables for
all calls in the call tree starting from FP,. The induction hypothesis is: if the
current memory is my and the stack pointer is py, then we can choose the
values of locations in my with addresses greater than p,. This apparently
holds before the first call in P,. For a call to any Py, the memory and the

stack pointer after the call are:

(m&, ai, pi*y = alloc-locals(alloc-params((my, as, p2), I, m(a(E3))), D3),
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with the local variables of Py being allocated in m3* at addresses greater
than p, and less than pi*. By the induction hypothesis, we can choose
the initial values for those variables. Further, we can choose the initial
values for all locations with addresses greater than p%’. Since the value of
the stack pointer does not decrease after the returns, it follows inductively
that we can choose the initial values for the local variables for all calls from
P} and also for all calls from P, after PJ returns.

Finally, we discuss the termination simulation of the executions of Pl”/Q:
if P/' does not terminate, then P, does not terminate either. A partial
execution of a procedure terminates if it reaches a return node. In the
above proof that call nodes preserve the SimIH, we have used the following:
for every execution of P|’ that terminates, there exists an execution of P
that also terminates such that .J°“* holds at the end of the executions if J*"
holds at the beginning. We explained informally that this can be proven by
an induction on the height of the procedure call trees of programs Q2. For
every execution of (01, with an arbitrary call tree, there exists an execution
of ()2 with an isomorphic call tree because whenever the execution of )y
reaches a call node or a return node, there exists an execution of () that
reaches, respectively, a call node or a return node. We have not shown,
however, what happens if Q; (P]') does not terminate. We next show that
then exists an execution of Q3 (Py) that also does not terminate.

A program does not terminate if it has an infinite partial execution (a
partial execution of infinite length). A partial execution of a program is
infinite in one of the following two cases: the execution has a call tree
of infinite height (infinite recursion) or the execution calls a procedure
which has an infinite partial execution (infinite loop). We analyze the
case of an infinite loop in Section 5.2.4. (We postpone the analysis until
we complete the proof for the simulation induction step, including the
case for simulation invariants.) We next analyze informally the case of an
infinite recursion.

If the execution of (); has a call tree of infinite height, then there exists an
execution of )o that has a call tree of infinite height. The same relation
holds for the subtrees of these call trees: if the subtree (of the call tree for
(1) whose root is the activation of P}’ has infinite height, then there exists
an activation of Pj which is the root of a subtree (of the call tree for (),)
that has infinite height. Therefore, the termination simulation is satisfied
in the case of an infinite recursion. In this case, any simulation output
context is allowed. For example, it is possible to prove that the context
with J = true and J°% = false holds for procedures:

proc 1) {g=1;1; O ;ret;}  proc [,O) {g=2;1,0 ;ret;}

It is also possible to prove that the global variables g have the same value
at the end of the procedures I;/,. The reason is that simulation output
context is required to hold only if the executions of I/, reach the return
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nodes.

A6.3. The nodes are two halves of a simulation invariant: P[(L}) = L} :sim-inv
and Pj(L,) = L,:sim-inv J,L|. There are two cases depending on
whether the simulation invariant L, Ls:sim-inv J has been already sym-
bolically executed or not.

A6.3.1.

A6.3.2.

The simulation invariant is symbolically executed for the first time if
((L', L), (s, s5),t") & i for any s}, s, and ¢'. From SimIH1 of the
induction hypothesis, there is a substitution 7 such that:

= 7(subst-sim(.J, s1, $2)) (5.26)
and
= 7(Va*. subst-sim(J, s, s5) =
Sim(L} +pr 1,81, Ly +p; 1, 55,7, left(t))),(5.27)

where (s}, s5, 2%) = fresh-sim-sym-states(si, s9,J), i.e., for all I/, €
vars(Pz), the states s}, = {Ij, — 27} for some fresh logic vari-
ables ©* = x] Uz} and i' = ((L}, L)), (s}, sb), left(t)) U .

From SimIH2 of the induction hypothesis, for all I,/ € vars(P,s):
= 7(51/2(11/2)) = may2(ai2(l1/2)). We can therefore apply the Simula-
tion Congruence Lemma 5.4, and from 5.26 we obtain my, a;, ms, as =
J, which is one of the requirements for Py, Q1 >, P>, Q2. We need ad-
ditionally to show that SimlIH holds after the symbolic execution of
the invariant. By the Well-Defined Substitution Lemma, we can make
the substitution 7" = 7 U {z* — mj y(a1/2(1]/,))}. We use it to show
that SimIH (L1, my, ay, Ly, ma, ag, L) +pr 1, 84, Ly +p; 1, 84,4, left(t), 7')
holds after the invariant.

SimIH2 follows from the choice of 7/. Since SimIH2 holds, and we have
proven my, aj, mg, as = J, by the Simulation Congruence Lemma 5.3,
we have |= 7/(subst-sim(J, s, })). Further, from 5.27 and the choice
of 7/, we obtain = 7'(Sim(L} +p; 1,5, Ly +p; 1, 85,7, left(t))), which
is SimIH1. We need still to prove SimlIH3, i.e., that 7’ is correct with
respect to i'. We prove that SimIH3.2 holds. SimIH3.2.1-SimIH3.2.3
hold by the choice of 7. SimIH3.2.4 holds because of 5.27 (7 is 7).
SimIH3.2.5 follows from SimIH3 of the induction hypothesis.

The simulation invariant has been previously symbolically executed
if ((L}, L3), (s, s5),t") € i for some symbolic states s}, and some
action tree t'. From SimlIH1 of the induction hypothesis, there is a
substitution 7 such that = 7(subst-sim(.J, s1, s2)). Since SimIH2 of
the induction hypothesis holds, we can apply the Simulation Congru-
ence Lemma 5.4 to obtain my,a;, my,ay = J, which is one of the
requirements for Py, Q1 > P, Q2. We additionally show that SimIH
holds after the invariant by showing that there exists 7' such that
SimIH(Ly, my, a1, Ly, my, ag, Ly +pr 1,84, Ly +p; 1, 55,0, t',7') holds.

Since the invariant has been executed, ¢ = {((L}, L}), (s, s5), ') } Uiy,
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where s}, = {1}, = z1/2} for some z* = 2] U3 and ¢’ is the action
tree for the symbolic execution after the invariant. From SimIH3.2.2
of the induction hypothesis, we know that 7 = 7 U{z* — Z*} for some
71 such that, from SimlIH3.2.3, none of x from z* is in 7;. Therefore,
we can remap z*, and by the Well-Defined Substitution Lemma, we
can make 7' = 7 U {z" — ma(ai2(1),))}. We prove that SimIH
holds for that 7.

SimIH2 follows from the choice of 7/. SimIH3 follows from SimIH3
of the induction hypothesis. We next show that SimIH1 also holds.
From SimIH3.2.4 of the induction hypothesis, we have:

= 7(Va*. subst-sim(J, s, s5) =
Sim(L, +p; 1,8, Ly +p; 1,80, 8),  (5.28)

As we have already shown that SimIH2 holds and my, a;, ms, as = J,
we obtain = 7'(subst-sim(./, s{, s})) by the Simulation Congruence
Lemma 5.3. Therefore, from 5.28, we finally have that = 7'(Sim (L} +p;
1,5y, Ly +py 1,55,4,1")).

This concludes the proof for the simulation invariants and the whole simulation
induction step. We next point out an important property of the symbolic execution
of simulation invariants. Observe that the symbolic execution of an invariant moves
past the halves of the invariant both in P and Pj. In P], the node after the half
of an invariant has to be a non-invariant node. Therefore, between two consecutive
executions of an invariant from PJ, at least one non-invariant node is executed. (The
symbolic execution of such a node corresponds directly to the concrete execution of
the same node.)

Whenever a half of an invariant from P] is executed, a half of an invariant from P;
is also executed. In Pj, there can be many halves of invariants in front of some non-
invariant node. Therefore, several consecutive executions of nodes from Pj can execute
halves of invariants. However, there are finitely many halves of invariants in Pj, and
after finitely many executions of invariants, a non-invariant node has to be executed.
We can formalize this reasoning to prove that for the consecutive concrete executions
of P, that reach a simulation invariant, the length of the corresponding concrete
executions of P, does not decrease, and, in fact, increases after a finite number of
executions. We use this property in the proof of the termination simulation.

5.2.4 Termination Simulation

In this section we complete the proof that the validity of the simulation verification
condition for two programs @, and @y, i.e., = F§) o,, implies the termination simu-
lation of those programs. More specifically, we prove that for any simulation context
k for procedures Py, of programs (J1/2, 1 may not terminate only if P may not
terminate.

An activation of a procedure does not terminate if the activation either contains
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an infinite loop or calls another activation that does not terminate. (Note that the
activation can call, within the loop, other activations that terminate.) If the called
activation does not terminate, it can be again because of an infinite loop or a call
that does not terminate. Eventually, either some activation in the call tree has an
infinite loop or the call tree has infinite height.

We have argued in the proof for call nodes (page 98) that if an execution of P
has a call tree of infinite height, then there is an execution of P, that also has a call
tree of infinite height. Therefore, we analyze only the case of an infinite loop in this
section. An activation of a procedure has an infinite loop if the partial execution of
that activation has infinite length.® We prove the termination simulation theorem as
follows.

Theorem 3 (Termination Simulation) Assume that = F¢ o, for two programs
and Q. If a partial execution (PP, m?, a;) N (L1, my,a1) of Py has infinite length,
then there exists a partial evecution (Py,m3, as) TN (Lo, mgy,ay) of Py such that

if m ay;,mY,ay | Ji, then the partial execution (Py,m9, as) 5 (Ly, mg,as) has
infinite length.

Proof: By contradiction, assume that there exists no infinite partial execution
(P9, mY, as) —» (Ls, ms, as) of Py such that m?, a;, mY, as |= Ji". Since = FY ,, we
have by the proof in the previous section®, that for all (P2, m?, a;) 5 (Ly,my,ay) of
Py, there exists (P, mY, az) —~» (Ly, my, az) of Py such that for all L, , L} :sim-inv J’
from Sj, there exists L, L] :sim-inv J € set-sim-inv(L;, S§) such that Ly = L and
my, a1, me, az = J. In other words, for all partial executions of P; that reach (a half
of) a simulation invariant, there exists an execution of P, that reaches a correspond-
ing (half of) simulation invariant. (Also, whenever the executions reach the invariant,
its formula holds, but we do not need that for this proof.)
Since the partial execution of P, has infinite length, it executes at least one node
in P, infinite number of times. Further, since = F§ q,» the SImVCG could generate
01.0,- and therefore it follows that the execution reaches at least one half of a
simulation invariant infinite number of times. Let the label for that invariant be L;.
We show that the partial executions of P, that reach a corresponding half of the
invariant cannot be all finite, which thus contradicts the assumption that they are all
finite.
We now consider different partial executions of P, (started from the same configu-

ration (P°,m?, a;)) that reach the same L;. Recall that the notation (P?,m?, a;) —»

(Ly,my,a,) is an abbreviation for the sequence (P, m? a;) <5 ... 5 (Ly,my,ay).
We can order the partial executions that reach L; by their length. Let the sequence

5An activation of a procedure has a call that does not terminate if the partial execution of that
activation has a finite length, but the last configuration is a call node and not a return node.

SNote that the proof in the previous section and the current proof should be actually done
simultaneously as described for the call nodes.
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of such executions be:

Note that the memories mi and m? for two different partial executions pei and pe’
may or may not be different.

For each partial execution pe of P;, there is a corresponding partial execution
pel of P,. Let the sequence of such corresponding executions be:

+ +
pe% = <P207m(2)7a2> - -
+ +
pe% = <P207m(2)7a2> T (L%,m%,@)
+ +
pe%:<P207mgaa2>_> -

where L;,L}:sim-inv J® € set-sim-inv(Ly, Si). Note that the labels L} and L}, as
well as the memories m}, and mj, for two different indices i and j may or may not
be different. Further, even the whole partial executions pe’, and pe), and thus their
lengths, may or may not be different. We denote the length of pel, by |pej|.

From Fg: o,» we can prove that the length of the corresponding partial exe-

cutions does not decrease (for all i and for all j > i, |pe}| > |peb|). Even more, we
can prove that the length must increase after a finite number of executions in the
sequence peb (for all i, exists j > i such that |pe}| > |pes|). The proof proceeds as
outlined in the previous section (page 100). Therefore, the maximum length of pe}
cannot be bounded by any finite number, i.e., there is a partial execution of P, that
has infinite length.

This concludes the proof that if the execution of P; does not reach a return node,
then there exists an execution of F» that does not reach a return node either. We
have also proven that if the execution of P, reaches a return node, then there exists an
execution of P, that reaches a return node (and the simulation output context holds).
This completes the proof of all simulation requirements—P, can generate only the
results that P, can generate.

We next give examples of two interesting cases of simulation. First, P, may
generate more results than P;. For example, if P, never terminates, P, can terminate
for some initial values of the local variables, but there definitely exist some initial
values for which P, does not terminate:

proc I1 () {L;:br(TRUE)L,;ret;} proc I, () {Lo:br(i ==0)L,;ret;}

Conversely, if P, always terminates, P, may not terminate for some initial values of the
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local variables, but there definitely exist some initial values for which P, terminates:
proc I; () {ret;} proc Iy () {Ly:br(i ==0)L,;ret;}

In the above examples, the result of P, depends on the uninitialized local variable i.

Second, if neither of procedure terminates, any simulation output context is prov-
able. This is sound because the simulation definition requires the simulation output
context to hold only if the executions reach return nodes. For example, for procedures:

proc I; () {g=1;L;:br(TRUE)L;;ret;} proc I5() {g=2; Ly:br(TRUE) Lo ;ret;}

the compiler can prove that the output context is g, = g, for the input context true.
This clearly would not hold if the executions could reach the return nodes.
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Chapter 6

Extensions and Limitations

In Chapter 4 we presented a framework for credible compilation. The basic frame-
work is for a simple language which we call basic language (BL). BL has only simple
integer variables, the same as the initial language for credible compilation [41]. The
advance is that BL has procedures and therefore supports modularity, whereas the
programs in the initial language consist of only one procedure. However, the ap-
proach is essentially the same for both languages. First, the compiler outputs the
standard contexts (and invariants) for the analysis results and the simulation contexts
(and invariants) together with the transformed program. Next, the verifier uses the
verification-condition generator (VCG), which consists of the standard VCG (Std-
VCG) and the simulation VCG (SimVCG), to generate the standard verification con-
dition (StdVC) and the simulation verification condition (SimVC). These conditions
are logic formulas, and the compiler has the obligation to prove that the formulas
hold. What changes for BL, in comparison with the initial language, is the VCG.

In this chapter we discuss how the framework for credible compilation could handle
more realistic programming languages. The main strategy still remains the same—
the verifier requires the compiler to produce the standard and simulation contexts,
and to prove the verification conditions for those contexts. We extend BL with some
C constructs, such as pointers and arrays. We also discuss some extensions to the
language semantics, in particular adding error states. The changes to the language
syntax and semantics clearly necessitate changes to the verification-condition gener-
ators. For some changes, it is also necessary to change the logic, more precisely, to
extend the formulas with new constructors and new types of variables and expressions.
We present the extensions to the logic along with the extensions to the language.

We also show a group of extensions independent of the language used for inter-
mediate representation of programs. These extensions change the language used for
representing invariants and also require changes in the VCG. We introduce these ex-
tensions to make it easier to express the results of compiler analyses. The changes
to the language for invariants are therefore primarily for standard invariants, but the
changes also propagate to simulation invariants. It is important to point out that
these changes are not fundamental to simulation invariants. As mentioned earlier,
simulation invariants are the crucial concept for our approach to credible compi-
lation. The fact that simulation invariants basically remain the same, in spite of
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changes to the programming language and standard invariants, supports our belief
that simulation invariants are essential for credible compilation in general.

Finally, we present some limitations of the current framework for credible compi-
lation. In particular, the framework does not support translations from one program
representation to essentially different representations. Such translation can involve
both changing the code and the data representation. Additionally, the framework
currently does not support changes in the data layout even within the same represen-
tation. We believe that more general simulation invariants, together with the related
changes in the SimVC, could enable the framework to support some of these changes.

6.1 Language Extensions

In this section we consider how the framework could handle several extensions to
BL. We start by adding C-like pointers to BL. BL is obtained by adding procedures
to the initial language for credible compilation. Even before adding procedures, we
explored [42] adding C-like pointers to the initial language. It may look surprising
that we extend the language first with such low-level constructs as pointers to arbi-
trary memory locations. We first present the motivation and then formalize in detail
changes to the language, the logic, and the VCG.

We next briefly discuss how to add arrays to the language. Array-bounds checking
emphasizes the necessity of a safe language semantics. We then discuss how to extend
the language semantics and the VCG to include error states. Finally, we consider
extending the language with some common constructs from imperative programming
languages, such as expressions with side effects and computed gotos.

6.1.1 Pointers

Before we present the extensions to the language syntax and semantics, we discuss
why we first add arbitrary C-like pointers to the language. Arbitrary pointers are
clearly necessary if the credible compiler has to generate code for unsafe programming
languages like C. They are, however, necessary even for more disciplined languages
that provide a safe high-level memory model, e.g., the Java programming language [8].
Compilers translate the programs from the high-level representation into a lower-
level representation before performing most of the optimizations. The translations
introduce pointers in their full generality, so that the transformations can optimize
the way in which the resulting code accesses memory. Therefore, a framework that
allows the compiler to prove results of such transformations has to support pointers.

Pointers are also essential for an intermediate representation that describes as-
sembly code. Pointers, or their equivalents, are used to represent memory reads and
writes, and special global variables (that pointers cannot point to) are used to repre-
sent machine registers. Finally, we added pointers to the initial language for credible
compilation to find out how the compiler could prove that the results of pointer
analyses are correct. In particular, we developed a framework [42] which allows the
compiler to prove that the results of flow-insensitive pointer analyses [2,44] are cor-
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rect. We discovered that flow-insensitive analyses require a language semantics with
certain guarantees; we present details in Section 6.2.4.

We next extend the language syntax and semantics with pointers. Figure 6-1 shows
the modified program syntax. There are three new forms for program expressions: &/
denotes the address of the variable named I, *E denotes the value stored at memory
location F/, and NULL denotes a special address that is different than possible addresses
of the variables. We introduce a new syntactic domain for left-hand expressions which
have two forms: a variable or a dereference of an expression. The assignment nodes
are changed so that the left-hand side is W instead of 1. We use &W to represent the
syntactic elimination of one level of dereferencing: if W = I, then &W = &[; and if
W = xE, then we define & = F.

SyntacticDomains :

E € Expression

W € L-expression

... € the same as in BL, Figure 4-1

ProductionRules :
E=... [the same as in BL]
| &I Address-of Operation]

[
| *Egerey  [Dereference]
| NULL [Null Pointer Constant]

wW=I [Variable Location]
| *E4erer  [Expression Location]

N =L:W=E [Assignment Node]
| ... [the rest the same as in BL|

Figure 6-1: Extensions to the Abstract Syntax of BL

Note that the syntax allows expressing arbitrary pointer operations that involve
arithmetic and use integers directly as pointers, e.g., *(p+1)=*(q+i)-*8. There are
no types; pointers and integers are syntactically used in the same way. This is (modulo
type casting) the way pointers are used in C. Additionally, pointers are semantically
equivalent to integers in C. It is undecidable, in general, whether a C program is type
and memory safe. We initially wanted to develop a framework in which the compiler
can prove its transformation correct even if the input program is an arbitrary C
program without any safety guarantees. However, trying to prove anything about the
full C language leads to numerous technical problems. Therefore, we consider only a
safer subset of C. In particular, we do not allow programs that apply the address-of
operator to a local variable. We still allow completely arbitrary pointers to the global
variables, more precisely, to the global memory.

We next describe how to modify the operational semantics of BL (Section 4.1.2)
to add arbitrary pointers to non-local variables. The main change is to separate the

106



memory into two parts: the local memory and the global memory. (We discuss in
next sections how this corresponds to realistic machines.) The local variables and
procedure parameters are stored in the local memory. The local memory represents
(data) stack; we disallow pointers in the stack, and thus aliasing of the local variables.
The global variables are stored in the global memory. The global memory represents
static data and can also represent the heap, i.e., dynamically allocated memory.

Formally, we first change the domains of the operational semantics and the allo-
cation functions in the following way:

One-Memory = Address — Value

m € Memory = One-Memory x One-Memory
One-Alloc-Pointer = Address

p € Alloc-Pointer = One-Alloc-Pointer x One-Alloc-Pointer

alloc-init!((m, a, p), I, Z) = ((m9, m ‘[p‘HZ]?

a, (a?,a'[I — pl)
alloc-initY({m, a,p), I, Z) = ((m?[p? — Z],m !

, (9, p'+1))
), <a-"[1 — pl,a :

b (9 + 1, 1),

The Memory domain is now a pair that separately represents the global and local
memories. We use m? and m! to denote the components of a pair m. Similarly,
each memory has a separate allocation pointer p? and p'. For the local memory, p'
is the stack pointer; for the global memory, p? is the heap pointer. The allocation
functions for local and global variables change the respective memories, environments,
and pointers.

The input and output functions of the operational semantics remain the same as
for BL; the only requirement is that the initial value of the p9 pointer be greater than
0. The expression evaluation is also similar as in BL; only the evaluation of a variable
slightly changes as shown in Figure 6-2. We use helper function var-in-loc-env (W, a')
that returns true if the expression W = I, for some I, and the environment a' maps
the variable I; otherwise, var-in-loc-env(W, a') returns false. Figure 6-2 also shows
the evaluation of the new forms of expressions.

a(I)) = if var-in-loc-env(I, a') then m!(a!(I)) else m?(a?(I)) fi
&I)) = a(I) = if var-in-loc-env(I, a') then a'(I) else a?(I) fi

(
(
GE*Ederef)) m(m(a(Ederer)))

Figure 6-2: Extensions to the BL Expression Evaluation

The rewrite rules remain the same as for BL, except that the rule for assignments
is replaced with two new rules. Figure 6-3 shows the new rules for an assignment to
a local variable and an assignment to the global memory. Note that W can be of the
form *FEge,er, where Egeper is an arbitrary expression that can evaluate to an address
different than the addresses of the global variables.
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(L,m,a,p,h, Py = (L+p1,(m? m' [V — V'], a,p,h, P) [assign-loc]
where P(L) = L:W=E
and var-in-loc-env(W, a')
and V = m(a(&W)) and V' = m(a(E))

(L,m,a,p,h, Py = (L+p1,(mfV — V'],m"), a,p,h, P) lassign-glob]
where P(L) = L:W=E
and not var-in-loc-env(W, a')
and V = m(a(&W)) and V' = m(a(F))

Figure 6-3: Extensions to the BL Operational Semantics Rewrite Rules

Logic Extensions for Pointers

We next describe how to extend the logic after we add pointers to the language. There
are several complications in obtaining an effective logic when dealing with pointers
in the intermediate representation. These complications stem from the possibility
that an assignment via a pointer may change a variable that is not syntactically
visible in the assignment statement. The solution is to use logic expressions with
explicit memory; these expressions are different from the program expressions where
the memory is implicit.! We extend the logic with a new group of expressions that
explicitly represent memory. In our presentation, we follow Necula [35, page 64], who
attributes the rules related to these expressions to McCarthy [29].

We first illustrate the main difference between the expressions with explicit and
implicit memory using an example. Consider the assignment i=j in a program with
global variables i and j. No memory m? is syntactically visible in the expressions
i and j. However, the meaning of the assignment is to read (select) the value of
variable j from the memory mY, more precisely from the memory address to which
the current environment maps j, and to write (update) that value to the location in
memory m?¢ to which the current environment maps 1i.

In the logic, we denote the addresses of the variables i and j as addr (i) and
addr (j). Suppose that the logic variable 2™ represents the state of the global memory
before the assignment i=j. The logic expression sel (2™ ,addr (j)) denotes the value
of variable j in memory ™. The logic expression upd (z™,addr (i) ,sel(z™,addr (j)))
denotes the memory whose locations have the same values as in 2™, except that the lo-
cation with address addr (i) has value sel (2™ ,addr (j)). Therefore, the expression
with upd represents the memory after the assignment i=j.

We proceed to formally describe the logic that includes the new expressions with
memory. We first present the syntax of the new expressions. We next describe how to

!'We initially used approximately the same syntax and semantics for the logic expressions as for
the program expressions, and we devised special rules for substitution [42] to model assignments
in the presence of pointers. However, those rules require the compiler to provide pointer-analysis
results and to guide the use of the results in the VCG; otherwise, the VC can get exponentially
large.
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represent the local and global variables with those expressions. The new expressions
necessitate changes to the functions for translating the program expressions to the
logic expressions. We present the new translation functions, and then the semantics
of the new logic expressions, as well as the proof rules for those expressions.

Figure 6-4 shows the modified logic syntax. We use G"™ to range over memory ex-
pressions that have four forms: a logic variable ™ denotes some memory, the constant
mem; denotes the memory that maps all locations to 0, an expression upd (G™,G" ,G")
denotes the result of updating the memory G™ at location G°, with value G*, and
an expression M denotes a program memory. Observe that the new logic has two
types of logic variables: integer logic variables and memory logic variables. We as-
sume that the quantified formulas are extended so that they can quantify over both
types of variables, and additionally that there are formula constructors for equality
and inequality of memory expressions. There are also two new forms for integer logic
expressions: sel(G™,G") denotes the result of selecting the value at location G* in
the memory G™ and H (I) denotes the value or the address of a program variable.

SyntacticDomains :
H € Program-variable = {val,val,,valy} U {addr, addr;, addr,}
M € Program-memory = {mem, mem;, mem, }
G' € Integer-expression
G™ € Memory-expression
. € the rest the same as in Figure 4-4

ProductionRules :
G =... [the rest the same as in Figure 4-4]

| H(I) [Program Variable Value or Address]
| at [Integer Logic Variable]
| sel(G™,G") [Memory Read]

G™ = g™ [Memory Logic Variable]
| mem, [Memory Constant]
| upd (G™,G",G?)  [Memory Write]
| M [Program Memory]

Figure 6-4: Extensions to the Abstract Syntax of the Logic Formulas

We next describe how to represent the program variables and the memory in
the logic formulas. The introduction of pointers in the program expressions and the
introduction of the memory expressions in the logic necessitate a change in the rep-
resentation of the program variables in the logic. In the logic in the basic framework,
the expression H (I) always represents the value of the program variable I'; depending
on the particular constructor H, the variable is local or global, from one program or
from one of the two programs. In the extended logic, we represent the local variables
differently than the global variables: the expression val ([;) represents the value of
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the local variable? I; and the expression addr (I,) represents the address of the global
variable I;. There are still two groups of formulas: the formulas for one program
(the analysis results) that can contain only the constructors val and addr and the
formulas for two programs (the simulation relationships) that can contain only the
indexed constructors val,, and addr; ;.

The logic formulas represent the (standard and simulation) invariants and the
verification conditions. In the verification conditions, the memory is denoted with
arbitrary memory logic expressions. In the invariants, we want to refer, at different
program points, to a particular memory that is the global memory during the program
execution. We use the constructor mem to denote the state of the global memory in the
standard invariants. For instance, to represent that global pointer p points to global
variable x at some node 3, we write 3:inv sel(mem,addr (p)) = addr (x). We use
indexed versions mem; and memy to represent the states of the global memories of
two programs in the simulation invariants. For instance, to represent that the global
variable g, in program 1 at node 3; has the same value as the variable g, in program
2 at node 35, we write 3;,32:sim-inv sel (mem; ,addr; (g)) = sel(memy,addr,(g)).

We also present several other examples of the formulas used in the simulation
invariants. To represent that the two programs have exactly the same memories, we
write mem; = mem,. If the memories have the same values at all locations except for,
say, the location with the address of g,, we can write®:

Va. x # addr; (g) = sel(mem;,z) = sel(memy,x).
We can also represent this without the universal quantification:
mem; = upd (memy,addr; (g) ,sel (mem;,addr;(g))).

In general, the memories can have different values for a set of locations. (We briefly
discuss extending the logic formulas with sets in Section 6.2.3.) The compiler can gen-
erate arbitrary invariants as long as it can prove the verification conditions generated
for those invariants.

We next describe the functions for translating the program expressions with im-
plicit memory to the logic expressions with explicit memory. In the logic in the basic
framework, the translation functions take a symbolic environment that maps variable
names to the appropriate logic expressions for the values of those variables. In the
extended logic, the translation functions take a symbolic environment e that maps
each local variable name to the logic expression for the value of that variable and each
global variable name to the logic expression for the address of that variable. (We use

2The constructor val is the same as loc that we use in the basic framework for local variables.
We avoid the name loc because it might be misinterpreted as “location.” That is, indeed, the name
that McCarthy and Painter use for locations in the first published paper on compiler correctness [29].
They use a binary constructor that takes the name of the variable and the environment. We do not
need to represent the environment explicitly in the verification conditions.

3Note that x is an integer logic variable in this example. We omit the explicit typing of the
variables and expressions when it is possible to infer the types.
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the function var-in-loc-env(7,e) to test if the variable I is local in the environment
e.) Additionally, the new translation functions take an expression G™ that represents
the logic expression to use for the memory.

Figure 6-5 shows the new translation functions. The translation of the address-of
operation is the expression representing the address of the variable in the symbolic
environment. (This translation is used only for global variables.) The translation of
the dereference operation first translates the program expression Fge,.; to the logic
expression (G, and then generates the expression representing a read from location G
of the symbolic memory G™. Similarly, a global variable reference is translated into
the expression representing a read from the symbolic memory at the address of the
variable in the symbolic environment. The other translations are done as before, by
structural induction on the program expressions, passing the symbolic memory and
environment to the translations of the subexpressions.

translate-type(&I, G™, e) = (e([), int)
translate-type(* Egerer, G™, €) =
let G be to-type(translate-type(Egerer, G™, €),int) in
(sel(G™,Q),int)
translate-type(NULL, G™, e) = (0, int)
translate-type(/, G™, e) =
if var-in-loc-env (7, e) then (e(I), int) else (sel(G™,e(I)), int) fi
translate-type(..., G™, e) = the same as in Figure 4-5

Figure 6-5: Extensions to the Functions for Translating Program Expressions to Logic
Expressions

We next define the semantics of the new logic expressions. Figure 6-6 shows the
modifications to the basic logic. We add the domain Store to the domains for the
basic logic (Figure 4-6). The new domain represents memories, i.e., functions from
addresses to values. We also use the new valuation function G for the meaning of
the memory expressions. The meaning of the mem, is the constant function 0. The
meaning of upd (G™,G" ,G") is the meaning of G™, which is a function, o, with a
change that the meaning of G, z,, is mapped to the meaning of G°, z,:

0lzq > 2p] = Az. if z = 2, then z, else o(z) fi.

The meaning of sel(G™,G") is the application of the meaning of G™, o, to the
meaning of G°, z,: o(z,). We define the meaning of the formulas that quantify the
memory variables in the same (informal) way as the meaning of the formulas that
quantify the integer variables. Finally, program expressions (values, addresses, and
memories) get the meaning from the context ¢ that consists of one or two concrete
memory-environment pairs m, a.

We finally present a set of proof rules for the new logic expressions. For the
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o € Store = Int — Int

G™ : Memory-expression — Context — Store

G [memy] ¢ = )\VZ. 0' o -
G"upd (G™,G,,G)] c = (G™[G™] o)[(G'[GL] o) = (G°]G)] ¢)]

G'[sel(G™,G] e = (G™[G™] )(G'[G] ¢)
G'[...] ¢ = the same as in Figure 4-8

cEYa™ F' iff ¢k F'lo/a™] for all o € Store
clEJ2™ F' iff ¢ | F'lo/2™] for some o € Store
cE ... iff the rest the same as in Figure 4-8

val ()] ¢ = m!(d'(1))

addr ()] c=a?(1)
valyz (D] e, ez = mf (af (1))
addr1/2 (I)]] C1,Co = a§/2(1)
mem| ¢ = m?¢

mem 5] ¢1, ¢ = mi’/z

'l
'l
'l
g'l
G'[me
g'l

Figure 6-6: Valuation Functions for Expressions and Validity of Formulas

memory expressions, we use the following two rules, called the McCarthy rules:

- sel(upd(G™,G,G1),G1) = G, [Alias]

-Gl £Gj
- sel(upd(G™,GT,GT),Gh) = sel(G™,GD)

[Non-Alias|

The [Alias] rule states that a read from the memory location with address G returns
value G that has been written to that location. The [Non-Alias] rule states that
a read from the memory location with address G} returns the value that does not
depend on the writes to other memory locations.

We next present several rules that involve the program variable names, i.e., iden-
tifiers. In BL, the identifiers cannot appear in the verification conditions, because the
VCG for BL substitutes the program variables with the logic expressions that repre-
sent their values. Therefore, in the logic for BL, there is no need to have proof rules
that involve identifiers. However, we later show that the identifiers can appear in the
verification conditions for the extended language. In particular, the identifiers of the
global program variables appear in the address-of expressions constructed with addr.
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We introduce the following rules for expressions representing addresses of variables:

- addr (kLI )1 z fddr (1) [Same-Id]
~ addr (Zf)l i fddr (1) [ Diff-Id]
Faddr (1) #0 [Non-Null]
[Same-Env|

l_ addr1 (I) = addr2 (I)

The [Same-Id] rule is an instantiation of the general congruence rule for equality. We
present the rule explicitly because it involves the syntactic equality of the program
identifiers. This requires that a machine-verifiable representation of the proofs have
support for the program identifiers.* The [Diff-Id] rule states that the environments
are injective—they map different identifiers to different memory locations. The [Non-
Null| rule states that the environments do not map any identifier to the value of NULL.
For each of the rules [Same-Id|, [Diff-Id], and [Non-Null|, there are two analogous rules
for the indexed versions of the constructor addr. Finally, the [Same-Env] rule states
that the environments from the two programs map identical identifiers to the same
memory locations. Therefore, we abbreviate all addr; (/) expressions to &I in the
rest of the text. We discuss the relationship between the addresses of the variables
from two programs in the next section.

Verification-Condition Generator Extensions for Pointers

Since we extended the language and the logic, we also need to extend the VCG.
We first describe the small changes to the (standard and simulation) contexts and
invariants, and the analysis and transformation correctness requirements. We then
present the extensions to the StdVCG and SimVCG algorithms for BL. We also show
an example of verification condition generated by the new algorithms.

The (standard and simulation) contexts remain the same; they consist of an input
context, an output context, a set of invariants, and the other additional information.
The input and output contexts and the invariants are similar as the contexts and
invariants in BL. The only change is that these formulas are now from the extended
logic with explicit memory. The analysis and the transformation requirements are

41t is not strictly necessary to use the identifiers. Instead, we can use (distinct) integer constants
to represent (distinct) identifiers from some lexical scope. That, in turn, requires encoding integer
literals and proofs involving them in a machine-verifiable form. The Athena framework, which
we use for proof representation and verification, has a built-in support for both integer literals and
object-level identifiers. We use identifiers as they allow a better readability of verification conditions.
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also similar as in BL. The VCG generates StdVC and SimVC, and the compiler has
to prove that those formulas hold. The only difference is in the simulation context
for the starting procedures of the two programs.

The compiler has to prove that the two programs generate the same output given
the same input. For BL, the input consists of the values of the global variables and
the parameters of the starting procedures, and the output consists of the values of
the global variables. For the extended language, instead of the values of the global
variables, we use the entire global memories. To prove that Q) > ()9, the compiler
has to prove the simulation context whose input context is:

J™ = mem; = memy A /\va11 (D) =valy (1D),

for all parameters IV of the starting procedure of (), and the corresponding parameters
IL of the starting procedure of @5, and the output context is:

J = mem; = mem,.

The compiler can additionally assume that the two programs have the same allo-
cation of global variables; the corresponding global addresses have the same addresses
and thus a{ = af. (This does not allow the compiler to prove that changes in the data
layout are correct.) We need to use the same addresses in both programs and the
whole memories in the simulation requirement because we allow arbitrary pointers.
For instance, consider a program that only increments a global variable g with the
value of some location with address 8: g=g+*8. Even if g has the same value at the
beginning of the two programs, it would not have the same value at the end unless the
value at location 8 is the same. Additionally, if g were mapped to different addresses
in the two programs, and one of the addresses happened to be 8, the value of g would
not be the same at the end of the two programs. Therefore, the compiler can use the
rule - addr, (/) = addr, (/) in the proof, and mem; = mem, in J™.

We next present changes to the StdVCG (Figure 4-9) and the SimVCG (Figure 4-
11) for BL. The StdVCG and SimVCG for the extended language also symbolically
execute procedures and generate the appropriate StdVC and SimVC. However, a
symbolic execution operates on a different symbolic state than the symbolic execution
of BL procedures. A symbolic state s for the StdVCG now maps val ([;), for each
local variable I;, to an integer logic expression representing the value of the variable,
as for BL, but s also maps mem to a memory logic expression representing the global
memory. Analogously, states s/, for the SimVCG map val (I;‘/Q) and mem; /5.

We next describe changes to the helper functions for the StdVCG and SimVCG.
The function fresh-sym-state returns fresh integer logic variables for all val (;) and
a fresh memory logic variable for mem. The function fresh-globals remaps only mem to
a fresh memory logic variable. The substitution of the symbolic state in formulas is
the substitution of the expressions G** for val(/;) and the expression G™ for mem:
subst(F, s) = F[G™ /val (I})][G™ /mem]. The functions for the SimVCG change in a
similar way, taking into account the special form of logic formulas .J that express the
related variables in two programs. (We also allow the pair mem;, mem, to appear in
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the sequence of pairs of related variables.)

Both StdVCG and SimVCG use the same helper functions for the assignment,
branch, and call nodes. Figure 6-7 shows the new functions for the extended language.
Compared to BL, the new functions have an extra argument M that represents the
memory to use for the translations. The modified StdVCG calls these functions with
mem for M, and the modified SimVCG calls with mem; or memy; depending on the
program. In practice, the translations of the expressions from the program form to
the logic form are done while preparing procedures for symbolic executions (both for
BL and the extended language), i.e., while merging the invariants. The executions
then perform only the substitutions in the current symbolic states.

translate-assign(W, E, M, s, e) =
let G be translate(E, M, e) in
if var-in-loc-env(WV, e) then
s[translate(I, e) — subst(Gg, s)]
else
let Gy be translate(&W, M, e) in
s|M > subst(upd (M ,Gw ,GEg),s)]
fi
translate-branch(E, M, s, e) = subst(translate-bool(E, M, e), s)
translate-call(E*, M, s, e) = subst-seq(translate-seq(E*, M, e), s)

Figure 6-7: Changes to the Helper Functions for Verification-Condition Generators

We next show the verification conditions that the modified VCG generates for
an example slightly changed from the example presented in Chapter 3. We change
the original procedure from Figure 3-2 in the following way: there is a new global
variable h, there is a new node 0:h=&g before node 1:1=0, and the node with label
3 is 3:xh=g+2*xi. We consider that the compiler can perform constant propagation
on the input procedure and can transform the nodes 3:*h=g+2%i and 5:i=i+c so
that the output procedure has nodes 3:g=g+2*i and 5:i=i+3. We first describe the
analysis results that the compiler generates and the StdVC for those results. We then
describe the simulation relationships and the SimVC for this example.

The compiler first performs a pointer analysis on the original program. Consider
that the procedure q is such that no execution of q changes the pointer h when h
points to g. The compiler can then generate and prove the standard context for q
with both input and output contexts being sel (mem,&h) = &g. For the procedure p,
we consider the standard context with both input and output contexts being true.
Suppose that the compiler generates only one standard invariant for the analysis
results of this context: 3:inv sel(mem,&h) = &g A val(c) = 3. For this example
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context of p, the StdVCG generates the following StdVC:

Vil, c', mt. truePir =
sel (upd(m!',&h,&g) ,&h) = &g A3 =3 A
Vi ¢?,m?. sel(m?,&h) = &g A c* =3 =
sel (upd (m?,sel(m?,&h),sel(m?,&g) + 2 xi?) ,&h) = &g A
Vm?. sel(m?,&h) = &g =
(i + * < 24 = sel(m?,&h) = &g A =3) A
(=(i% + ¢® < 24) = truePeut).

We next consider, for the original and transformed procedures p, a simulation
context with both simulation input and output contexts being just mem; = mems.
We use the same simulation input and output contexts for the calls to procedure q.
Suppose that the compiler generates only one simulation invariant for the context for
procedures p: 3;,32:sim-inv mem; = memy A val; (i) = val,y(i). Also, the compiler
generates that the initial values for local variables i, and ¢y are the same as for i;
and c;. In this example, the SimVCG generates the following SimVC:

SRV SURSN RN TS R |
Vmy, 11, ¢i, my. my = mgy =

mi =miA0=0AVm?, 2, miid,cddmi=mnii=5=ci=3=
upd (m?,sel(m?,&h) ,sel(m?,&g) +2%12) =
upd (m3,sel (m3,&h) ,sel(m3,&g) + 2 xi3) AVm3, m3. m3 =mj =
(i24+3<24=il+ch<24Am}=m3NiZ =i} A
(—(i1 +3 < 24) = (i3 + 5 < 24) Ami =m3).

Observe that the above example does not show the use of the formulas J with a
sequence of related variables. Using these formulas, the input and output contexts
are just true, (mem;,mem,) (i.e., true A mem; = memy), and the simulation invariant
is 31,3;:sim-inv true, (mem; ,mem,), (val;(i),vals(i)). In this case, the SimVC
is much shorter®:

vm! ', cl. true =
true AVm? i?, ¢, c}. true = ¢y =3 =
true A Vm?®. true =
(12 +3<24= i+ c; <24 A true) A
(=(2 + 3 < 24) = (i® + ¢j < 24) A true).

6.1.2 Arrays

We next briefly show how to add (static) arrays to the BL with pointers. In the
simplest case, we add a new declaration form for (one-dimensional) arrays, I[Z].
The allocation of array I[Z] takes Z consecutive locations in the memory and the
environment maps I to the address of the first location. We also add a new expression
form for array accesses, W/[E;,4e.], both to the left-hand expressions W and to the

®In practice, the SimVCG does not even generate true in true = F or true A F or F A true.
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right-hand expressions /. We allow only global variables to be arrays that are indexed
with arbitrary expressions. Since the language has pointer arithmetic, we can consider
array expressions simply as syntactic sugar: W|[E| = *(&W + E). This concludes the
extensions for arrays with arbitrary indices.

We also point out a useful restricted form of arrays. Namely, if the size of arrays
is known at compile time and arrays can be indexed only with integer constants,
it is trivial to check at compile time that array indices are within bounds. These
arrays can be even local, and we use them to model an activation frame containing
local variables addressed using the frame pointer. Each array element is, essentially,
treated as a separate variable.

We finally argue why it is necessary to have run-time array-bounds checking for
general array indices, as well as more restricted pointers, in the language semantics.
The main reason is to formally model the execution of programs on realistic machines
while still retaining certain guarantees in the language. For example, in the BL with
pointers, a pointer expression involving global variables cannot access local variables.
However, to guarantee that, the semantics presented in Section 6.1.1 requires the
machine to have two separate memories, which is not the case in practice. Running
a program on a machine with one memory could generate a different result than
running the program on a machine with separate memories. Therefore, to model
the execution of programs on realistic machines, we need to change the semantics.
We discuss in next section how to introduce error states in the semantics to restrict
memory accesses that pointer/array expressions can make.

6.1.3 Error States

We next briefly discuss how we could change the framework to support error states in
the language semantics. Error states are added to the semantics as follows. For each
group of nodes in the language, the execution checks whether certain error conditions
are satisfied. For instance, for the nodes that evaluate expressions, there are checks
for whether array indices are out of bounds and for division by zero. If the error
conditions are satisfied, the execution goes to an error state; otherwise, the execution
continues as normal. Error states are final states of a program execution, and an
error is one of the observable results that a program can generate.

We do not formally present error conditions for nodes in the BL with pointers (and
arrays). We assume that these conditions provide certain guarantees for the program
execution. For example, a read/write of a[i] can read/write only an element of
the array a. More precisely, if the execution (evaluation) of a[i] does not end up
in an error state (i.e., the index i is within the bounds of a), then a[i] accesses
an element of a. Note that defining error conditions for arbitrary expressions with
pointer arithmetic is much more involved. For the full C language, the standard [26]
does not formally present semantics (and error conditions), and the paper [21], which
presents formal semantics for C, ignores the issue of errors.

We next consider two approaches that we could use to handle errors in BL ex-
tended with pointers: disallowing programs with errors and extending the framework.
We would disallow errors by requiring that the compiler input program have no errors,
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i.e., that the program be such that its execution can never get into an error state. The
compiler cannot determine whether this holds for an arbitrary BL program. However,
BL is only an intermediate representation in the compiler, and we can restrict the
source language so that the compiler can effectively check whether a source program
has an error. This approach is used in the certifying compilers Touchstone [38] and
Popcorn [31]. The source language for these compilers is a type-safe subset of C, and
each compiler translation (or transformation) preserves type safety and generates ev-
idence that the output program has no errors.® To use this approach for credible
compilation, we would extend BL with static types. Each compiler transformation
would first show that the output program has no errors and then that the output
program simulates, as before, the input program.

The other approach to handling errors is to allow the input program to potentially
have errors, but extend the framework so that the compiler can prove that it correctly
transformed the input program even if it has an error. We extend the definition of
the simulation requirement to include errors—program ), simulates program @), iff
the following holds: an execution of (); can generate an error only if an execution of
(> can generate an error and, as before, an execution of (); can terminate only if an
execution of (J; can terminate with the same output and an execution of )1 does not
terminate only if an execution of () does not terminate. The compiler need prove
only that the output program simulates the input program, and it follows that the
output program has no errors if the input program has no errors.

We next describe how to extend the SimVCG to generate the SimVC for two
programs that can have errors. Conceptually, we introduce, in each procedure from
the two programs, a special node that represents an error state. We can then replace
each original node that can generate an error, when some error condition C' holds, with
two new nodes: a branch node, whose condition is C' and whose target is the special
error node, and a copy of the original node, where the copy now cannot generate an
error. After this, we can use, for the new procedures, a similar SimVCG as we use for
the language without errors. The only change in the symbolic executions is that both
procedures need to simultaneously execute the error nodes (as they simultaneously
execute the return and call nodes). This approach to errors allows us to describe the
semantics of the language using dynamic types in error conditions. We have started
exploring whether it is practical to treat pointers as pairs of a base address and
offset. We believe that this would enable easier modeling of some of the “undefined”
constructs in the C language.

6.1.4 Side Effects

We next briefly consider extending BL by adding expressions that have side effects.
In particular, we discuss how to change the logic and the VCG to support functions.

6In Touchstone, the evidence is a proof; in Popcorn, it is type information for the output program.
The type system is sound— every well-typed program is guaranteed to have no errors. The evidence
is statically checked, and the machine that executes the program does not need to perform run-time
checks.
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Functions are subroutines that return a result, as opposed to procedures, which only
modify the state. To add functions to the language, we add a new expression form for
function calls, I (E*), and we change return nodes to be L:ret E. In the language
semantics, we need to operationally describe the expression evaluation that now takes
many steps, instead of one step as in BL.

We change the VCG similarly; the VCG does not translate in one step the pro-
gram expressions that contain function calls to logic expressions. Instead, the VCG
translates the expressions in several steps and uses a symbolic state that contains a
special element that represents the value of the expression. The compiler provides
(standard and simulation) contexts for functions, and the VCG uses those contexts
for modeling the function calls. As usual, the VCG generates a VC that requires the
input context to hold before the call(s) and assumes the output context to hold after
the call(s). The symbolic state after the call has a fresh logic variable for the global
memory and for the special element representing the value of the expression. In the
logic formulas, we only add a new constructor for representing the return value of
the function, and the compiler can use the new constructor in output contexts. This
concludes the list of sufficient changes to the framework to make it support functions
in the language. (We present in next section another approach, extending the logic
formulas with expressions that represent calls, that can be used to add support for
functions.)

6.1.5 Computed Jumps

We next consider extending BL with jumps that have computed targets. We consider
two groups of “computed jumps”: “computed jumps to subroutine” (subroutine calls
with the subroutine being an arbitrary expression instead of a subroutine identifier)
and “indirect jumps” (branch nodes with the label being an arbitrary expression
instead of a label identifier).

We first consider changing the calls from direct I (E*) to indirect W (E*), where
the expression &W evaluates to the address of the called procedure. (We present the
changes only for procedures as the changes for functions are similar.) We also add
the expression form &/ for taking the address of a procedure named I. For example,
the sequence 1=&p; (¥1) () makes a call to a parameterless procedure p. The change
of the calls in the language requires a change of the VCG. We can change the VCG
to support indirect calls using two approaches: extending the description of contexts
at call sites or extending the logic formulas.

We extend the description of contexts at call sites by allowing the compiler to
generate which procedures might be called. For programs with direct calls, only
one procedure can be called at any call site, and the VCG requires the compiler to
generate only the index of a callee context to use for the call site. (The StdVCG
requires an index of a standard context for one callee, and the SimVCG requires an
index of a simulation context for two callees.) The VCG for direct calls uses the input
and output contexts, for the specified index, to generate a part of VC that requires
the input context to hold before the call and assumes the output context to hold after
the call. The VCG for indirect calls generates a VC that additionally requires that
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before the call, the call expression &W evaluates to one of the procedures specified
by the compiler. The VCG also checks that all those procedure have the context
specified by the compiler.

If the compiler cannot determine which procedures might be called at a call site,
the compiler uses the “default context.” For standard contexts, the default context
has both input and output contexts true, and this context can be used for any pro-
cedure. For simulation contexts, the default context represents that two procedures
generate the same output given the same input, i.e., the default simulation context
has input context mem; = mems A A val; (I{) = valy([5), where A ranges over the
parameters of the procedures, and output context mem; = mem,. This context can
be used only for the pairs of procedures for which it holds. Since it holds if the two
procedures are identical, the SimVCG would generate the SimVC that requires the
(translations of) call expressions to be equal at the two call sites.

The other approach to supporting indirect calls is to extend the logic formulas
with expressions that represent procedure calls. If the memory before the call is G™,
then the memory after the call would be app,(G™,G?,G*), where app, is a family
of memory expression constructors indexed by the number of procedure parameters,
GP is a logic expression representing the procedure that is called, and G* represents
the parameters. The new constructors would be uninterpreted function symbols in
the logic. (The same result is achieved in the previous approach if the compiler uses
“default contexts” at all call sites because the compiler does not perform an interpro-
cedural analysis or transformation.) Extending the logic formulas for indirect calls
does not support interprocedural analyses and transformations in a clean manner.”
Therefore, we prefer extending the compiler description of contexts.

We next consider changing the branches from direct br (E) L to indirect br (£,) Ey,
where the target E; evaluates to the label to branch to if the condition E. evalu-
ates to true. We also change the labels to be integers. For example, the sequence
1:j=1;br(TRUE) j is an indefinite loop. The change of the branches in the language
also requires a change of the VCG. However, we cannot change the symbolic execution
of the VCG to support arbitrary indirect jumps. The reason is that the VCG could
not decide, in general, where to continue the symbolic execution for the branch-taken
path. If we restricted the indirect jumps in some way so that the VCG could deter-
mine what all possible targets are, then we could simply change the VCG to follow
all those paths.

6.2 Invariant Extensions

In this section we discuss several extensions to the language used for representing
invariants. An invariant consists of a logic formula and one program label (for a stan-
dard invariant) or two program labels (for a simulation invariant). We first extend the

"The support can be added by changing the VCG to generate, as assumptions in the VC, formulas
that involve app, and describe contexts. We do not present more details here, but suffice it to say
that this would make the VC much more difficult to prove.
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invariants so that the compiler can represent a set of variables that are not modified
during a loop. We then extend the logic formulas with some new expression construc-
tors, more specifically, constructors that allow the compiler to refer to the program
state at the beginning of an execution and constructors that allow the compiler to
more succinctly express the results of analyses and the simulation relationships. We
finally extend the representation of the program labels in standard invariants to allow
the compiler to more easily express the results of flow-insensitive analyses.

6.2.1 Loop Constants

We next describe how to change standard invariants and the StdVCG to allow the
compiler to represent that some variables have constant values during some loop. We
model this change after the invariants that Necula and Lee use in their certifying
compiler [38].

With the invariants presented so far, the compiler can represent that some vari-
ables have the same values for all executions that reach a program point. The compiler
has to determine these values and to represent them as constants. For example, the
invariant 2:inv sel(mem,&g) = 1 A val(i) = O represents that the global variable
g and the local variable i have the value 1 and 0, respectively, for all executions
that reach the node with label 2. However, the compiler cannot represent that the
value of a variable (in general, the value of an expression) does not change between
the consecutive executions that reach the invariant. More precisely, we refer to the
consecutive executions within the same loop, i.e., the consecutive executions that do
not reach any node before the invariant. The value can change for different loops.

We extend the invariants so that each invariant has, beside a label and a formula,
also a set of expressions that do not change within the innermost loop containing
the invariant. We write such invariant as L:inv F';G*. For example, the extended
invariant 5:inv val(j) > 3;sel(mem,&g),val(i) represents that the value of j
is greater than 3 for all executions reaching the node 5 and that the values of g
and i are constant within the innermost loop containing the node 5. Note that
the compiler can represent that an expression has a constant value within the loop
although the compiler does not determine that value. The compiler can use arbitrary
expressions in G*, e.g., mem in G* represents that the whole memory does not change,
and sel(mem,sel(mem,&p)) in G* represents that the value of the location pointed
to by the pointer p does not change.

The extended invariants require changes in the StdVCG for BL (Figure 4-9).
Figure 6-8 shows the new symbolic execution of the invariants with expressions G*.
The most common expressions in G* are the values of variables (val(Z;) for lo-
cal I; and sel(mem,&I,) for global I,) and the value of the whole memory (mem).
Instead of the helper function fresh-sym-state, the new StdVCG uses the function
fresh-sym-state-related(s, G*) that generates the state s’ from s with respect to G*.
For each expression G (be it val (I;) or mem) that s maps, s’ maps G to a fresh logic
variable if G is not in G*, and s’ maps G to s(G) if G is in G*. The extended StdVCG
also uses the function seq-eq(G*,s,s’) that generates /\ subst(G,s) = subst(G,s'),
where A ranges over all G in G* for which subst(G, s) # subst(G, s'). The soundness
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proof for this StdVCG is similar to the soundness proof for the StdVCG for BL; only
StdIH3 in the induction hypothesis changes. Necula [35] shows a similar proof in
detail.

matching P’'(L)

> L:inv F;G* |
if member((L, s),i) then
subst(F, s) A seq-eq(G*, s, §')
else
let (s',z*) be fresh-sym-state-related(s, G*) in
subst(F, s) A
Va*. subst(F, s') A seq-eq(G*, s,s") = Std(L +p 1, s', union((L, s'), 7))
fi
endmatching

Figure 6-8: Extensions to the Verification-Condition Generator for BL

We have described so far how to extend the standard invariants with sets of
expressions that do not change during a loop. An analogous extension can be used
for standard contexts for procedures. We can allow the compiler to represent in the
input (or the output) context a set of expressions that do not change during the
execution of one activation. (Alternatively, the compiler can represent a set of all
expressions that the procedure may change, i.e., the write-set of the procedure.) The
StdVCG can then generate, at call sites, a symbolic state for the output context with
respect to the symbolic state for the input context. In the next section we present
another extension that allows the compiler to represent relationships between the
states for the input and output contexts.

Finally, the simulation invariants and contexts can be extended in a similar way
as the standard invariants and contexts. Each simulation invariant would relate
not only the states from two programs, but also different states from one program.
The SimVCG would then generate the fresh symbolic states with respect to the old
symbolic states.

6.2.2 Starting States in Formulas

We next describe how to extend the logic formulas so that the compiler can represent
the starting state in them. (By starting state we mean the state of the program
memory at the beginning of the execution of a procedure activation.) Using the
logic formulas presented so far, the compiler can represent in standard invariants
only the current state during the execution. (In simulation invariants, the compiler
can represent two states, but again only the current states of two memories.) The
compiler uses the constructors loc and glob, in the logic for BL (Section 4.2), or
the constructors val and mem, in the logic for BL with pointers (Section 6.1.1), to
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represent the current values of program variables or memory.® (In both logics, there
are also indexed versions of constructors for simulation invariants.) We will use H
to refer to all these constructors. Similar to the formulas for invariants, the compiler
can represent only the current state in the formulas for input and output contexts,
respectively, the state at the beginning and the state at the end of the execution of
an activation.

We extend the logic formulas to allow the compiler to represent in any formula
the starting state m, beside the current state m. We add a set of constructors H°
(one for each appropriate H). The expressions with H° denote the corresponding
values in m°. For example, 2:inv glob(g) = glob’ (g) means that the value of some
global variable g is the same at node 2 as it is in the beginning of the procedure.
Formally, the meaning of the new formulas is defined with respect to the contexts
that consist of two memories and an environment: ¢ = (m° m,a). The translation
functions from program expressions to logic expressions remain the same. We next
discuss the effect of the new expressions on the (standard and simulation) contexts,
and then we describe the changes to the VCG.

Using the new formulas, the compiler can represent in an output context the state
at the beginning of the context. This makes the contexts much more expressive. For
example, consider a simple procedure that swaps the values of two variables x and y.
The compiler can generate only one context for this procedure, namely F™ = true
and F°"' = glob(x) = glob’(y) A glob(y) = glob’(x). Without glob’, the
compiler would need to generate a context with F** = glob (x) = C, Aglob(y) = C,
and F° = glob(x) = Cy, A glob(y) = C, for every two constants C, and C, for
which the compiler uses the fact that the procedure swaps values. In general, the
compiler can now generate only one context for the results of any analysis on any
procedure. We argue that this is not always the best approach.

In the simple example with swap, different input contexts have only different
values of the parameters. However, in more involved examples of context-sensitive
interprocedural analyses, different input contexts may express different relationships
between variables. Consider that such an analysis generates n different input contexts
Fin ..., F" and n corresponding output contexts F{“t, ... F“ for some procedure.
The compiler can combine all these contexts into one: F™ = Fi" Vv ...V F and
Feut = Fin[H/H] = F“* A ... AN F"[H°/H] = F°“. (The compiler has also to
combine the invariants similarly as the output contexts.)

The VCG for the new formulas uses the contexts at call sites in the same way as
the VCG for BL. When a procedure has only one combined context, the new VCG
would use that context for all calls to that procedure. The first problem with the
combined context is that the VCG uses F™" and F°“, instead of F* and Fg** for
some k', and thus a part of VC is (roughly n times) longer at each call site. A much
bigger problem is that the proof generator that proves the VC has to “rediscover”
which of the contexts F}",..., F'™ to actually prove for each call site. Therefore, in
the new VCG, we still allow the compiler to generate many standard contexts for the

8The addresses of global variables do not change during the execution of a program, and thus
addr (I) represents the address of the variable I throughout the execution.
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same procedure. (The compiler can also generate many simulation contexts for the
same pair of procedures.)

The new VCG differs from the VCG for BL only in the substitutions of symbolic
states, both for the StdVCG (Figure 4-9) and for the SimVCG (Figure 4-11). Each
subst(F, s) for a standard invariant is replaced with subst(subst(F, s), s°), and analo-
gously each subst-sim(J, s1, s5) is replaced with subst-sim(subst-sim(.J, sy, s3), 57, 59).
We allow only H? constructors in the input context formulas, and the starting sym-
bolic states (s°, 9, and s3) map the expressions with H° to some logic expres-
sions. The substitution at call sites also changes. The new StdVCG first creates
s = set-params(I, G*, s)[H°/H| and then performs the substitutions subst(F™", s)
and subst (subst(F°%, ), s™); the new SimVCG operates analogously. The soundness
proofs for the new StdVCG and SimVCG proceed in a similar way as for the StdVCG
and SimVCG for BL.

6.2.3 Formula Extensions

We next discuss general extensions to the logic formulas and, in particular, adding
set expressions to the formulas. Generally, adding new predicates and/or types of
logic variables and expressions allows the compiler to generate shorter invariants.
As a simple example, consider an analysis that determines which program variables
have truth values (0 or 1). Using the formulas presented so far, the compiler can
represent the results of the analysis only with expressions val(/) =0V val(/) = 1.
Introducing a new constructor bool allows the compiler to use bool(val (/)) instead.

Adding new constructors requires adding proof rules for the formulas with new
constructors. In the example with bool, it is enough to add only the rule for the
definition of bool (for all z, bool(x) iff z = 0V x = 1), and the compiler could add
such definitions automatically. However, in more complex cases, it is usually necessary
to add several proof rules for the new formulas and to generate a meta-proof that
the new proof rules are sound. Since the compiler cannot generate a meta-proof, we
need to specify, before a compilation, a logic that allows the compiler to efficiently
represent and prove the results of “standard” analyses.

Based on our experience with the implementation of a (flow-sensitive intraproce-
dural) pointer analysis, we find sets (sequences) of constants to be particularly useful
for expressing the results of compiler analyses. In BL extended with pointers, we
regard as constants the addresses of global variables as well as the integer constants
(C ::= addr (I)]Z). We have started extending the logic with the expressions that
denote sets of constants: G* ::= empty|union(C,G*). The predicate in(G*,G*)
denotes that the value of expression G' is in the set G*. For example, the expression
in(val (i) ,union(0,union(1,empty))) denotes that the value of i is either 0 or 1,
ie, val(i) =0Vval(i) = 1. Similarly,

in(sel(mem,&p) ,union(&x,union(&y,empty)))

denotes that the pointer p points either to x or to y. To fully utilize the sets, we
plan to further extend the logic with ways for naming sets and for proving subset
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relationships between sets.”

As mentioned briefly in Section 6.1.1, we can also use a set of addresses of variables
to represent, in simulation invariants, that two memories have the same value in all
locations except for the locations whose addresses are from the set G*:

Vz. in(x,G°) = sel(mem;,z) = sel(memy,x).

Observe that once the formulas involve sets of addresses, it is not possible to prove
that two memories are equal even if the set is empty. We need therefore to add a rule
that mem = mem’ if Vz. sel (mem;,z) = sel(memy,z).

6.2.4 Flow-Insensitive Analyses

We next describe how the compiler represents the results of flow-insensitive analyses
and how a specialized StdVCG generates StdVC for those results. We also discuss
the relationship between those results and the initialization of variables.

Flow-insensitive analyses generate, for one context (a pair F™ and F°!), the same
result (formula F) for all nodes in a procedure. We can represent this result with
only one standard invariant of a special form, e.g., *:inv F'. This invariant represents
that F' holds everywhere.

Further, flow-insensitive analyses do not use the information from the branch
conditions. We can therefore use a specialized StdVCG that does not execute the
branch nodes of the procedure and generates a shorter StdVC.!® The StdVCG for
*x:inv [’ executes only the assignment nodes and the call nodes. The StdVCG first
creates fresh symbolic states s° and s, with logic variables z*° and z*, and then
generates the following part of StdVC for the input and output contexts and the
assignment nodes:

Va*, x*0. subst(F™, s°) = subst(subst(F), s), s°) = subst (subst(F?“, s), s%) A
Aw=pep sSubst(subst(F, translate-assign(W, E,mem, s, e)), s°),

where the conjunction ranges over all assignment nodes in the procedure. The Std-
VCG also generates a similar part of StdVC for the call nodes as for the assignment
nodes.

9Checking the subset/membership relationships using the proof checker requires the relationships
to be encoded in proofs. It is more efficient to check the relationships using a function additional to
the proof checker. The Athena framework, which we use for proof representation and verification,
offers a direct way to add such a function, i.e., to add computation to deduction.

10Gimilarly, we can use specialized StdVCGs for other kinds of analyses. For example, standard
(non-predicated) dataflow analyses do not use the information from the branch conditions. There-
fore, for the results of such analyses, the StdVCG does not need to add the branch conditions to
the StdVC. (Omitting those conditions from StdVC is sound since the conditions are used only as
assumptions in the StdVC. Also, the proof generator can prove the StdVC without the conditions
since the analysis results do not depend on those conditions.) The StdVCG still needs to symbol-
ically execute all nodes of the procedure to generate the StdVC. In general, the compiler has to
execute all nodes and to also generate the branch conditions; otherwise, the proof generator might
not be able to prove the StdVC.
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We next discuss the relationship between flow-insensitive analyses and the initial-
ization of program variables. We show that obtaining effective flow-insensitive analy-
ses requires that the language provides some guarantees. As an example, we consider
a flow-insensitive pointer analysis. A pointer analysis determines where each pointer
can point to. Assume that some procedure (in BL with pointers) has only one pointer
p and two assignments to p: p=&x and p=&y. Usually, an analysis would generate that
val(p) = &x V val(p) = &y everywhere in the procedure. However, this actually
does not hold (and thus cannot be proven) at the beginning of the procedure—p can
have any value in the starting state. Therefore, a flow-insensitive result has to include
the starting value, namely val (p) = &x V val (p) = &y V val (p) = val®(p).

The results become less precise (and thus less useful) after adding the option
that a variable can have the starting value anywhere. For example, even if p could
otherwise point only to x, the compiler could not replace *p with x when p can also
have the starting value p°. Furthermore, if the value p° is unknown, as it is for the
uninitialized local variables in BL, then *p could access any location. This, in turn,
prevents effectively performing a flow-insensitive pointer analysis because variables
that are assigned the value read from *p get an arbitrary value.!!

We showed in [42] how to minimally change the language semantics to enable a
flow-insensitive pointer analysis to generate provably correct results. We require all
variables to be initialized to some value, v, and accessing the location with address v
has special behavior: a read from location v always returns v and a write to location
v does not change the memory. (We use 0 for v, and thus give a special semantics to
null pointer dereferencing.) This still requires that the results of the analyses include
v as a possible value for all variables.

As mentioned, flow-insensitive analyses in general, and in particular pointer analy-
ses such as Steengaards’s [44] and Andersen’s [2], generate results that do not include
the starting values. The assumption under which these analyses operate is “no use
before definition,” i.e., no memory location is read from before it is written to. The
generated results then hold for all uses of a variable, but they need not hold before
the first definition. (Additionally, when the semantics has error states, the results
need not hold if the execution gets to an error, but the results hold if there is no
error.)

For the full C language, as well as for BL, the “no use before definition” assump-
tion clearly does not hold in general. It is, also, undecidable to determine whether
the assumption holds for an arbitrary program. One method to ensure that the as-
sumption holds is to initialize, at run-time, all local variables at the beginning of a
procedure. For efficiency reasons, realistic languages do not require the initialization
of local variables. (They may require the initialization of heap data.) The other
method to achieve that the assumption holds is to accept (for compilation or execu-
tion) only the “correct” programs, i.e., programs for which some analysis determines
that the assumption holds. For example, the Java Bytecode Verifier [28] performs a

1Even the results of flow-insensitive analysis in programs without pointers become less precise
when variables can have starting values anywhere. The reason is that assignments propagate the
starting values; for instance, the assignment x=y necessitates that the result for x also includes y°.
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dataflow analysis to determine that “no local variable is accessed unless it is known
to contain a value of an appropriate type.”

Finally, observe that flow-insensitive analyses cannot, by themselves, determine
whether a procedure is “correct.” Therefore, another method has to first establish
that the procedure is “correct.” The result then cannot depend on the starting
values of the local variables, and the StdVCG can generate StdVC that existentially
quantifies logic variables representing the starting values.

6.3 Limitations

In this section we present some limitations of the current framework for credible com-
pilation. We discuss how the framework could or could not support translations of
programs from one representation to another representation with different syntax and
semantics. As mentioned in Chapter 1, we make a distinction between transforma-
tions and translations.

We use the term transformation for a compiler pass whose input and output pro-
grams are in a similar representation. For example, before register allocation, the
representation of a program includes temporary variables (virtual registers), but no
physical registers. After register allocation, the representation includes physical regis-
ters and spill slots. Although the representations before and after register allocation
are not exactly the same, they are quite similar. In fact, each representation is a
subset of a general representation that includes variables and registers. Therefore,
a VCG can use the same symbolic execution for both input and output programs.
That is exactly what the basic VCG and the extensions presented so far do.

We use the term translation for a compiler pass whose input and output programs
are in essentially different representations. For example, lexical analysis translates the
program from the source code to a sequence of tokens and parsing translates the list
of tokens into an abstract syntax tree. (After these two passes, a compiler front-end
usually performs semantic analysis that checks whether the program satisfies seman-
tic conditions.) A C compiler that uses a BL-like intermediate representation also
needs to translate the syntax tree into a flow graph. Compilers for more advanced
languages usually do not generate a low-level BL-like representation directly from
the syntax tree. Instead, these compilers use several levels of intermediate represen-
tations and translate the program from higher-level to lower-level representations.
These translations involve both transforming code and changing data representation.
Finally, compilers also perform a translation in the back-end where code generation
pass translates the program from an intermediate representation to the machine lan-
guage.

The framework presented so far can support only transformations. It is not clear
how we could extend the framework to support front-end translation passes. The
representations before and after the front-end are completely different, and the source
code is not suited for a symbolic execution. Therefore, the front-end of a credible
compiler has to be trusted. We can say, alternatively, that a verifier can check the
results of the compiler front-end only if the verifier itself has an implementation of the
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same front-end as the compiler has. With tools available for automatic generation of
lexical analyzers and parsers, paranoid programmers could develop their own front-
ends. In general, the front-end is not regarded as an origin of many compiler errors.

At a glance, it seems easier to extend the framework to support translations from
one intermediate representation to another. All we need is a SimVCG with two
different symbolic executions: one for the input program representation and one for
the output program representation. However, we also need simulation invariants that
can express relationships between different program representations. It is not clear
how we could make such simulation invariants in general. The main problem is how
to efficiently express relationships between different data representations.

Consider, for example, a translation from a Java-like program representation to a
C-like representation. Such translation needs to translate data represented with Java-
like classes and objects into a representation with C-like structures. The simulation
invariants would then need to describe which data in one representation corresponds
to which data in the other. As even simpler example, consider a program in BL with
pointers and a transformation that does not change the code but only changes the
data layout, i.e., the addresses of the global variables. Although this change is within
the same representation, the compiler would need to specify a mapping from the new
addresses to the old addresses and to represent, in simulation invariants, that the two
memories are related under the given (re)mapping of the addresses. We believe that
the framework can be extended to support some of these translations using simulation
invariants that would involve mappings from one data representation to another.

We do not explore credible code generation in this thesis, but in principle, it is
not a limitation for the presented framework. Rinard [41] briefly discusses how a
credible compilation framework can support code generation. The idea is that the
compiler first transforms the control flow graph of the program so that each node
closely corresponds to a machine instruction. After that, the compiler uses a simple
translation to generate the actual binary code. This approach requires an interme-
diate representation that models all details of the target instruction set architecture.
Designing such an intermediate representation for a complex architecture, such as
Intel IA-64, is a non-trivial task, but we believe that it can be done by extending the
types of nodes in the control flow graph, as described in [41].

The presented framework can also support “compiling to logic” as done, for in-
stance, in the DeepC compiler developed by Babb et al. [9]. This compiler targets
FPGA-based systems and has a much cleaner code generation than a compiler that
targets some specific instruction set. We believe that this makes it even easier to
develop a credible code generation for DeepC.
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Chapter 7

Related Work

The most widely used compilers today do not provide any formal evidence of correct
compilation. However, there is a large body of research on correct compilation. The
first proof of a compiler correctness can be tracked down to a 1967 paper by McCarthy
and Painter [29]. They present a paper-and-pencil proof that a compiler algorithm
is correct. Even before, McCarthy argued that proofs should be, instead, machine-
verifiable and that computers should be used to check proofs. There is a difference,
though, between checking a specification of a compiler algorithm, or for that matter
any algorithm, and the actual implementation of the algorithm.

Most research on compiler correctness focused on proving translation algorithms
correct [18,22,24,33,47]. There are several aspects in which these projects differ. First,
some projects present proofs for all translation steps from a high-level source language
to a machine language, whereas other projects present proofs only for some parts of
compilers, or do not translate to a realistic machine language. Second, in several
projects mechanical proof verifiers are used to complement the manual proofs or to
substitute them. Finally, implementations of some algorithms are carefully verified
through stepwise refinements. These implementations, however, do not generate run-
time proofs that show the compilation to be correct.

There are several pragmatic drawbacks in implementing a fully verified compiler.
They stem from the fact that the implementation and verification methodology is
not completely automatic. It is therefore possible to have human-introduced errors
in the development process. Also, the effort of changing a compiler is much greater
for a fully verified compiler than for a compiler that generates proofs at run-time.
Furthermore, some changes are almost impossible in practice—it is extremely costly
to extend a fully verified compiler with a transformation from an untrusted source.
This would require checking the whole implementation of the new transformation
before it can be safely added. That is why all fully verified compilers were developed
by small, closed groups of people. Compilers that generate run-time proofs, on the
other hand, offer much more possibility for having an open source compiler to which
anyone can contribute. It is not the compiler program that is checked, but its result.

The concept of checking the equivalence of the input and output programs after
each compiler run appeared in several works at approximately the same time. Cimatti
et al. [10,12] present a system for verifying translations of non-executable “embedded”
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programs to an executable form. These programs consist of only a single loop whose
body is translated. Their verifier checks that the input and output programs satisfy a
particular syntactic equivalence condition, which then implies semantic equivalence.
Cimatti et al. call the syntactic equivalence proof “on-line,” as opposed to the “off-
line” proof which shows the soundness, i.e., that the syntactic equivalence implies
the semantic equivalence for all possible pairs of programs. Pnueli et al. [39, 40]
present a system for translation validation—verifying translations from programs in
synchronous languages to programs in the C programming language. These programs
also consist of a single loop that cyclically computes the values of the output variables
from the values of the input variables. Our approach is designed for imperative
languages with programs that can have arbitrary flow of control.

The general technique of program checking—checking the program run-time re-
sults instead of verifying the whole program code—was first considered by Blum and
Kannan [11]. Clearly, checking the program results is much easier than verifying the
code in many applications. In some applications, it is possible to verify that the
output of the program is correct by checking only that the output itself satisfies some
conditions with respect to the input. In other applications, though, the program
needs to generate the regular output and also additional information which eases,
or enables, the checking. As explained in Section 2.2, this in particular holds for
compilers. It is not possible, in general, to check that the output program is correct
simply by considering the output and input programs.

Goos and Zimmermann [20] present another methodology for developing correct
compilers. This work is a part of the bigger Verifix project which proposed several
approaches for constructing provably correct compilers for realistic programming lan-
guages. The earlier approaches used only the compiler implementation verification,
whereas the new approach [19,20] also uses program checking techniques for the veri-
fication of compiler output. However, the program checking idea is used in the direct
way, without requiring the compiler to generate any additional output besides the
transformed program. The drawback of this technique is that adding a new transfor-
mation requires a new checker which has to be verified itself using standard methods.
Therefore, the compiler cannot be easily extended from untrusted sources. Gaul et
al. [17] report on the use of this methodology for developing compiler back-ends.

Proof carrying code (PCC), introduced by Necula and Lee [34,37], is a general
framework for attaching proofs to the compiled code. Credible compilation can be
regarded as an instance of this framework, with the main goal to deliver proofs that
the transformed code is semantically equivalent to the original code. Necula and
Lee [38] use the name certifying compiler to refer to a pair consisting of a compiler,
which produces code annotated with some additional information, and a certifier,
which uses the annotations to generate the proof and check it. We prefer to use a
different name, because so far certifying compilers have been developed to generate
proofs for properties of one (compiled) program, whereas credible compilers generate
proofs about two programs. We are not aware of any other work with the goal of
generating equivalence/simulation proofs in PCC framework.

Necula describes in his PhD thesis [35] the Touchstone compiler, a certifying
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compiler that translates a type-safe subset of C! into machine code annotated with
invariants. The invariants allow the certifier to prove safety properties, in particular
type safety, of the compiled code. For the proof formalism, Necula uses an extension of
first-order predicate logic. The certifier has a verification-condition generator which
takes the annotated code and generates a verification condition—a formula whose
validity implies the safety of the code. An untrusted theorem prover is then used to
generate the proof of the verification condition, and a trusted proof checker verifies
this proof. Our structure of the credible compiler is similar to the Touchstone, but
the credible compilers should prove more; we try “to be more ambitious and attempt
to verify not just the type safety of the target code but also its equivalence to the
source program” [35, page 152].

Morrisett et al. [32] present another approach in building a certifying compiler for
a PCC framework. They do not use first-order predicate logic for expressing safety
policies; instead, they use type systems, and proof checking reduces to type checking.
They based their work on typed intermediate languages [43,45] and designed an ideal-
ized typed assembly language. In a later work [31], they develop a type system for the
Intel TA32 assembly language and implemented the Popcorn compiler that translates
a type-safe subset of C into machine code and generates the required typing informa-
tion. This system has been extended to support advanced language constructs, e.g.,
run-time code generation [25], and more expressive security properties, e.g., resource
bound verification [15].

Appel and Felty [3] present a PCC framework in which a code producer has much
more flexibility. The typing rules are not fixed in the safety policy, but the code
producer can choose a set of typing rules, prove them sound, and then use them to
prove the safety of a program. Similarly, the machine code semantics is not fixed in
the verification-condition generator, but is a part of the safety policy. This eliminates
the need for the verification-condition generator, but requires more complex proofs
(as we also explained in Section 2.3). The increase in complexity is not as huge
for a machine language as it would be for a syntactically (and semantically) richer
higher-level language such as BL in our basic framework.

Necula’s recent work [36] is more related to our approach on credible compilation.?
He describes a translation wvalidation infrastructure that checks equivalence of the
compiler input and output programs (both in an intermediate representation), and not
only properties of the output program. His framework is similar to ours in that it uses
simulation invariants (called simulation relations) and symbolic execution. However,
the difference is that his symbolic execution does not use simulation contexts and
therefore his current framework can support only intraprocedural transformations.

Another difference from our approach is that there are no proofs in Necula’s
translation validation. The compiler (or a theorem prover) does not generate any
proof. Instead, the checker has built in rules for equivalence and uses them to verify

'Recently, Colby et al. [13,14] report on the development of the Special J compiler, a certifying
compiler for Java.

2Necula’s recent work was done in parallel with the work discussed in this thesis. We do not use
any results from [36] in the approach presented in this thesis.

131



the simulation invariants. This complexity makes the checker bigger and more difficult
to verify than a “standard” proof checker used in logical frameworks. Additionally,
to support the full C language, Necula uses the rules that informally model the C
notion of “undefined.” This approach can lead to errors that introduce unsound rules
in the checker, especially for aliasing.

Beside the checking algorithm, Necula also presents the inference algorithm. This
algorithm discovers the simulation invariants for the input and output programs, with-
out requiring any additional information from the compiler. Necula implemented his
inference algorithm for verifying transformations in the widely used GNU C optimiz-
ing compiler (gcc). The inference algorithm can discover the simulation invariants
in all intraprocedural transformations that gcc performs, except for some cases of
loop unrolling. This is an important result that shows that the simulation invari-
ants can be practically inferred for a realistic compiler output. However, gcc is not
an aggressive compiler. For example, it does not have transformations that involve
pointers, and it would not even try to optimize the third loop in the example shown
in Section 1.3. The conclusion is that, in general, a credible compiler should gener-
ate some additional information to enable the verifier to check the correctness of a
transformation.
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Chapter 8

Conclusions and Future Work

Today, widely-used industry compilers offer no formal guarantees that they work cor-
rectly. Most previous research on compiler correctness focused on developing com-
pilers that are guaranteed to correctly translate every input program. It is extremely
difficult, however, to verify that a complex code, which implements a compiler, is
correct. Therefore, a novel approach has been recently proposed: instead of verify-
ing a compiler, verify the result of each single compilation. We require the compiler
to generate a transformed program and some additional information that enables a
simple verifier to check the compilation. We call this approach credible compilation.

This thesis presents a theoretical framework for credible compilation. We develop
a framework in which a compiler proves correct the results of transformations. The
transformations operate on programs in an intermediate representation based on flow
graphs. Each transformation generates an output program and two sets of invariants
and contexts: standard invariants and contexts, which allow the compiler to prove
that the analysis results are correct, and simulation invariants and contexts, which
allow the compiler to prove that the output program simulates the input program.
Additionally, the compiler has the proof generator that generates a proof that all the
invariants and contexts are correct.

We describe in detail the structure of a verifier that checks the invariants and
contexts. The verifier first uses the standard and simulation verification-condition
generators to generate the verification condition for the given programs and the addi-
tional information. The verifier then uses a proof checker to verify that the supplied
proof indeed proves the particular verification condition. If the proof fails, the output
program potentially does not simulate the input program, and the compiler should
not use this transformation for this input program. If the proof is accepted, the
particular transformation is correct.

This thesis shows how to formalize the basic techniques for building credible com-
piler transformations for a simple imperative language. There are several directions
for the future work on credible compilation, both in extending the theoretical frame-
work and implementing a credible compiler.

Two questions about the framework are what language it supports and what trans-
formations it supports. The main goal is to develop a formal framework that supports
a realistic language. We believe that it can be done using a compiler intermediate
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representation that has cleaner and safer semantics than the full-blown unsafe C
language. Otherwise, to handle C, it is necessary to compromise the presented for-
mal approach, or use complex theoretical models that would give poor performance
in an implementation. Regarding transformations, the presented framework can be
extended to support more transformations. However, the ultimate goal is to have
credible compilation for all compiler phases, not only intermediate transformations.
This requires support for code generation and front-end translations. Additionally,
compilers for advanced languages usually have several intermediate representations,
and the framework should support translations between those representations, in par-
ticular translations from abstract to concrete data representations.

Two fundamental questions that an implementation can answer are is it possible
for a credible compiler to generate the required additional information and is it pos-
sible to automatically prove the verification conditions. Additional pragmatic issues
in the context of credible compilation are the difficulty of generating the proofs, the
size of the generated proofs, and the difficulty of checking the proofs. To explore
these issues, we have started developing a prototype of a credible compiler. We have
implemented a small system for the language without procedures, but with pointers.
We have used Java (8] for implementing a flow-sensitive pointer analysis and constant
propagation analysis/transformation.

For proof representation and verification we use Athena [5,6], a denotational proof
language [7] developed by Kostas Arkoudas at MIT. Athena is a flexible logical frame-
work that allows a compact, procedural representation of proofs. This makes it possi-
ble to balance the division of labor between the proof generator and the proof checker,
while retaining the full soundness guarantee. It also simplifies the construction of the
compiler by simplifying the proof generator and allowing the compiler developer to
easily generate proofs. Based on our initial positive experience with Athena, we be-
lieve that a key enabling feature to obtaining reasonable proof sizes and compiler
complexity is the use of such a flexible logical framework. We intend to continue to
use Athena for credible compilation. Our plan is to describe, in a follow-up paper,
the implementation strategy for a credible compiler based on Athena.
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