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Abstra
t

This thesis des
ribes a theoreti
al framework for building 
ompilers that generate

formal guarantees that they work 
orre
tly. Traditional 
ompilers provide no su
h

guarantees|given an original sour
e program, a traditional 
ompiler generates only

a transformed exe
utable program. The only way to investigate the 
orre
tness of a


ompilation is to run the transformed program on some sample inputs. Even if the

transformed program generates expe
ted results for these inputs, it does not ensure

that the transformed program is indeed equivalent to the original program for all

inputs.

Most previous resear
h on 
ompiler 
orre
tness fo
used on developing 
ompilers

that are guaranteed to 
orre
tly translate every original program. It is extremely

diÆ
ult, however, to verify that a 
omplex 
ode, whi
h implements a 
ompiler, is


orre
t. Therefore, a novel approa
h was proposed: instead of verifying a 
ompiler,

verify the result of ea
h single 
ompilation. We require the 
ompiler to generate a

transformed program and some additional information that enables a simple veri�er

to 
he
k the 
ompilation. We 
all this approa
h 
redible 
ompilation.

This thesis presents a formal framework for the 
redible 
ompilation of imperative

programming languages. Ea
h transformation generates, in addition to a transformed

program, a set of standard invariants and 
ontexts, whi
h the 
ompiler uses to prove

that its analysis results are 
orre
t, and a set of simulation invariants and 
ontexts,

whi
h the 
ompiler uses to prove that the transformed program is equivalent to the

original program. The 
ompiler has also to generate a proof for all the invariants

and 
ontexts. We des
ribe in detail the stru
ture of a veri�er that 
he
ks the 
om-

piler results. The veri�er �rst uses standard and simulation veri�
ation-
ondition

generators to symboli
ally exe
ute the original and transformed programs and gen-

erate a veri�
ation 
ondition. The veri�er then uses a proof 
he
ker to verify that

the supplied proof indeed proves that veri�
ation 
ondition. If the proof fails, the

parti
ular 
ompilation is potentially not 
orre
t. Our framework supports numerous

intrapro
edural transformations and some interpro
edural transformations.

Thesis Supervisor: Martin C. Rinard

Title: Asso
iate Professor
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Chapter 1

Introdu
tion

Compilers translate programs from one language to another. Typi
ally, a 
ompiler

takes an input program written in a high-level programming language and generates

an output program in a target ma
hine language. A 
ompiler usually 
onsists of a

front end, whi
h translates the sour
e program to some intermediate representation,

a middle end, whi
h transforms the program so that it exe
utes more eÆ
iently, and

a ba
k end, whi
h translates the program from the intermediate representation to the

ma
hine language.

In most modern 
ompilers, the middle end is stru
tured as a sequen
e of optimiza-

tion passes. Ea
h optimization pass transforms the input program to an equivalent

output program that is expe
ted to exe
ute faster or require less memory. It is well

known that the optimizations are rarely optimal by any measure. We therefore 
all

the optimization passes transformations. We distinguish transformations from trans-

lations. We use the term translations to refer to 
ompiler phases, su
h as parsing or


ode generation, that translate the program from one representation to an essentially

di�erent representation.

1

1.1 Traditional Compilation

Traditional 
ompilers o�er no formal guarantees that they operate 
orre
tly. Even the

most reliable 
ompilers 
an fail to 
ompile a program 
orre
tly. The main problem

with traditional 
ompilers is that they fail silently; the 
ompiled program is produ
ed

in a highly en
oded form suitable for ma
hine exe
ution and not designed to be read

by programmers. The only reasonable way a programmer 
an observe an in
orre
t


ompilation is by exe
uting the 
ompiled program and observing an in
orre
t exe
u-

tion. Exe
utions are usually in
orre
t be
ause of errors in the sour
e program, and

the programmer �rst inspe
ts the sour
e program. When the error is due to the 
om-

piler, it takes signi�
antly more time and e�ort to dis
over that the error is a
tually

not in the sour
e program.

1

In many 
ompilers, low-level optimizations su
h as register allo
ation take pla
e in the ba
k end.

It is possible to perform these optimizations without signi�
antly 
hanging the program representa-

tion. We therefore view even these low-level optimizations as transformations, not translations.

7



Additionally, the exe
ution of the program depends on its input data, and the

programmer 
an test the program only for some sample input data. If the exe
ution

is 
orre
t for those input data, it does not guarantee that the 
ompiled program is


orre
t for all input data. Furthermore, 
ompiling the same sour
e program with

di�erent optimizations produ
es, in general, di�erent 
ompiled programs. If one of

those programs is tested and found 
orre
t, there is no guarantee that all of them

are 
orre
t. Any 
ompiler optimization may potentially introdu
e an error in the


ompiled program, and the programmer has to test ea
h 
ompiled program.

Compiler failures are terrible for programmers, but in pra
ti
e, programmers infre-

quently en
ounter 
ompiler errors. Produ
tion-quality 
ompilers are among the most

reliable software produ
ts and almost never in
orre
tly 
ompile a program. However,

produ
ing an extremely reliable 
ompiler requires a large development time. The re-

sult is that industry 
ompilers are almost always many years old. They lag behind the

advan
es in programming languages, 
ompiler resear
h, and 
omputer ar
hite
ture.

Compiler maintainers rarely and slowly add new transformations to optimizing 
om-

pilers. The reason is that a transformation 
an be added to traditional 
ompilers only

when it is 
orre
tly implemented to work for all input programs. A 
ompiler trans-

formation usually requires a 
omplex implementation that is extremely diÆ
ult to

formally verify using standard program veri�
ation te
hniques. Therefore, 
ompiler

developers only test the implementation for some large 
lass of input programs and

add the transformation to the 
ompiler when they believe that it is working 
orre
tly.

1.2 Credible Compilation

This thesis presents a fundamentally di�erent approa
h to building optimizing 
om-

pilers: implement 
ompiler transformations whi
h, given an input program, generate

an output program and some additional information, in
luding a ma
hine-veri�able

proof, that the output program is equivalent to the input program. After ea
h trans-

formation, an automated veri�er 
he
ks whether the supplied proof indeed guarantees

that the transformed output program is equivalent to the given input program. If the

proof fails, the transformed program is potentially not equivalent, and the 
ompiler

should not use this transformation for this input program. The 
ompiler may still be

able, though, to 
ompile this input program to the �nal ma
hine form by omitting

this transformation, and this transformation may work 
orre
tly for other input pro-

grams. Thus, at ea
h pass the veri�er 
he
ks only one parti
ular transformation for

one parti
ular input program and either a

epts or reje
ts the output program. We


all this approa
h 
redible 
ompilation.

We next brie
y mention the results on whi
h we dire
tly build our work. Martin

Rinard [41℄ introdu
ed the name 
redible 
ompiler and des
ribed basi
 te
hniques for

building a 
ompiler that generates equivalen
e proofs. We advan
e these previous

te
hniques and this thesis presents a more elaborate theoreti
al framework for 
red-

ible 
ompilation. This framework supports 
redible 
ompiler transformations, and

not translations. Rinard [41℄ also brie
y des
ribes 
redible 
ode generation. In prin-


iple, the approa
h of generating equivalen
e proofs for ea
h single 
ompiler run and

8




he
king them automati
ally 
an be used for building a whole 
ompiler, in
luding

the translations from one representation to another. The idea of 
redible transla-

tions appeared �rst in papers by Cimatti et al. [12℄ and Pnueli et al. [40℄. These two

papers 
onsider simple programs, 
onsisting of only one loop, and non-optimizing

translations, whereas our work 
onsiders more 
omplex programs and 
ompiler opti-

mizations. We review the related work in detail in Chapter 7.

We next present the motivation for our work. Credible 
ompilation would provide

many pra
ti
al bene�ts 
ompared to traditional 
ompilation. Sin
e a transformation

has to produ
e a proof that it operated 
orre
tly, the 
ompilation failures are not

silent any more. It is immediately visible when a transformation operates in
orre
tly.

This gives the programmer a mu
h higher level of 
on�den
e in the 
ompiler and

saves the programmer time be
ause she never mistakes a 
ompiler bug for a bug in

her own program.

Sin
e 
redible transformations need to produ
e a proof, an implementation of

a 
redible transformation is somewhat more 
omplex than an implementation of a

traditional transformation. Nevertheless, 
redible 
ompilation would make 
ompiler

development faster, be
ause it is easier to �nd and eliminate 
ompiler errors. It

would also allow adding new transformations into the 
ompilers more aggressively;


ompiler developers 
ould add a transformation even when the implementation is not


orre
t for all possible input programs. There is no need to verify and trust the

implementation of a transformation. It is only an implementation of a veri�er for a


redible 
ompiler that needs to be trusted, and the veri�er is mu
h simpler to build

than 
ompiler transformations.

1.3 Non-Credible Compilation Example

In this se
tion we try to 
larify two 
ommon misunderstandings about 
redible 
om-

pilation. The �rst misunderstanding is that the added 
omplexity of 
redible 
ompi-

lation is unne
essary be
ause traditional 
ompilers are extremely reliable. We address

this misunderstanding by presenting an example program that exposes a bug in an

existing industrial-strength 
ompiler. The se
ond misunderstanding is that people do

not 
learly distinguish safety proofs of the output program from equivalen
e proofs

that involve both the input program and the output program. We address this misun-

derstanding by presenting an example of a safe output program that does not preserve

the semanti
s of the input program.

Figure 1-1 shows our example C program. The 
ompiler is the Sun Mi
rosystems

C 
ompiler, version WorkShop Compilers 4.2 30 O
t 1996 C 4.2.

2

This 
ompiler

is over three years old, but it is still the default C 
ompiler on the main server of the

Computer Ar
hite
ture Group at MIT.

The program 
ontains three loops of the form:

for (i = 0; i < 10; i++) *p = (*p) + i;

2

We have reported the bug, but it had already been observed earlier and 
orre
ted in the next

versions.

9



We wrote the loop body in a verbose mode

3

to point out that we do not use any

potentially unsafe pointer arithmeti
 operation. All the loop does is add the numbers

1 to 10 to the variable pointed to by the pointer p. In the three loops we vary where

p 
an point to.

#in
lude <stdio.h>

int i, j, x;

void main() {

int *p;

p = &x; /* p->x */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

p = &i; /* p->i */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

j = i;

if (x > 0) p = &i; else p = &x; /* p->x or p->i; a
tually p->i */

*p = 0; for (i = 0; i < 10; i++) *p = (*p) + i;

printf("i=%2d, j=%2d, x=%2d\n", i, j, x);

}

Figure 1-1: Non-Credible Compilation Example Program

If the 
ompiler dete
ts that p 
an point to only one variable, say x, within the

loop, it 
an repla
e the dereferen
ing *p with the dire
t referen
ing of that variable:

for (i = 0; i < 10; i++) x = x + i;

This transformation generates an equivalent program even when p 
an point only to

the loop index variable i.

Even when the 
ompiler 
annot dete
t where p exa
tly points to, but p does not


hange within the loop

4

, the 
ompiler may still be able to optimize the program. The


ompiler 
an hoist dereferen
ing, whi
h is invariant, out of the loop by using a new

temporary variable t:

t = *p; for (i = 0; i < 10; i++) t = t + i; *p = t;

However, the question is: are the two loops equivalent in all 
ases? The answer is:

no; if p 
an point to i, the transformed loop does not produ
e the same result as the

original loop. This is exa
tly what the example program exploits. In the �rst loop,

3

In C, it would be usually written just as *p+=i.

4

In C, it is possible to make, using type-unsafe 
asting, a pointer that points to itself and writing

to *p would 
hange p itself in that 
ase.
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p points to x, in the se
ond loop p points to i, but in the third loop p is written so

that it may point to either i or x, although it a
tually always points to i.

We �rst 
ompiled the program without any optimizations. Running the resulting

exe
utable gives the expe
ted output:

i=15, j=15, x=45

We then 
ompiled the program with a high optimization level (-xO4). Running the

resulting exe
utable now gives a di�erent output:

i=45, j=15, x=45

We looked at the assembly 
ode generated by the 
ompiler to �nd the 
ause for the

di�erent outputs. As expe
ted, the reason is that the 
ompiler aggressively applied

dereferen
e hoisting in the third loop. In the �rst and the se
ond loop, the 
ompiler


orre
tly found that p 
an point only to x, respe
tively i, and repla
ed *p with x,

respe
tively i. However, in the third loop, the 
ompiler failed to �nd that p 
an

point only to i. Even worse, the 
ompiler in
orre
tly assumed that p 
annot point

to i, and performed the transformation with a new temporary variable as des
ribed

above. This example shows that even a produ
tion-quality 
ompilers 
an in
orre
tly

optimize a program.

We next point out the di�eren
e between a 
ompiler that generates equivalen
e

proofs for the input program and the output program and a 
ompiler that generates

proofs only about the properties of the output program. One su
h property is safety, in

parti
ular type and memory safety, of the output program. Some resear
h 
ompilers,

su
h as Ne
ula and Lee's Tou
hstone [38℄ and Morrisett et al.'s Pop
orn [31℄, generate

an eviden
e of the safety of the 
ompiled program. These 
ompilers are useful in

situations where 
ode 
onsumers, who run the 
ompiled programs, do not trust 
ode

produ
ers, who produ
e these 
ompiled programs. Code produ
ers 
an use these


ompilers to 
ompile the original programs and to obtain the eviden
e together with

the 
ompiled program. Code 
onsumers 
an then re
eive the 
ompiled program and

the eviden
e from untrusted sour
es, for example, by downloading the program from

the Internet. Before running the program, the 
ode 
onsumer 
an use the eviden
e

to verify the safety of the program. But, the fa
t that the 
ompiler has generated

the 
orre
t eviden
e of the safety of the 
ompiled program does not imply that the


ompiler has generated a 
ompiled program that is equivalent to the original program.

For instan
e, in the presented example, 
he
king only the type safety would not

dete
t the 
ompiler bug.

5

The reason is that the in
orre
t transformation does not

violate type safety. Both the loop with *p and the in
orre
tly transformed loop

with t type-
he
k|type is preserved, but the values are 
hanged. Therefore, even a


ompiler that uses strongly typed intermediate representation 
ould make the same

error. Further, a 
ompiler that generates eviden
e of the safety of the transformed

5

The full C language is not type-safe, but observe that the example program does not use any

low-level, unsafe C features, su
h as arbitrary pointer arithmeti
 or type 
asts. Hen
e, this example


an be regarded as a program in a type-safe subset of C.

11



program 
ould generate 
orre
t eviden
e for the in
orre
tly transformed program. In


ontrast, a 
ompiler that generates equivalen
e proofs 
ould not generate a 
orre
t

proof for the in
orre
tly transformed program. In 
on
lusion, 
ompilers that generate

guarantees only about the transformed program are good for sending the transformed

program to 
ode 
onsumers. However, su
h 
ompilers are not good enough for 
ode

produ
ers; 
ode produ
ers need 
redible 
ompilers.

12



Chapter 2

Overview

In this 
hapter we present in more detail the stru
ture of a 
redible 
ompiler. The

main idea of 
redible 
ompilation is that the 
ompiler generates a proof that it 
or-

re
tly transformed the input program. We �rst de�ne when a 
ompiler transformation

is 
orre
t. We next des
ribe the organization of a 
redible 
ompiler and what exa
tly

the 
ompiler has to prove. Finally, we summarize the results of our work.

2.1 Transformation Corre
tness

In this se
tion we de�ne more pre
isely our requirement for a 
orre
t transformation.

So far we have used the intuitive notion of the equivalen
e between the output program

and the input program. We �rst argue that the requirement that the programs be

equivalent is too strong for transforming non-deterministi
 programs. We then de�ne

our requirement for a 
orre
t transformation to be that the output program simulates

the input program.

Usually, a transformation is de�ned to be 
orre
t if it preserves the meaning of

the program, as de�ned by the semanti
s of the language. Informally, a transfor-

mation is 
onsidered 
orre
t if the transformed program is semanti
ally equivalent

to the original program|for all possible inputs, the two programs, given the same

input, produ
e the same output. What is 
onsidered as input and output depends

on the semanti
s of the programs. We dis
uss several examples, and additionally the

requirements that 
ould be imposed on a 
ompiler:

� If the programs are non-deterministi
, then the original program 
ould itself

generate, for the same input, di�erent results in di�erent exe
utions. We 
ould

then require the transformed program to be able to also generate all those

results, or only some of them.

� The original program may not terminate for some input. We 
ould require the

transformed program also not to terminate for that input. Conversely, we 
ould

require the transformed program to terminate whenever the original program

terminates.

13



� The original program may end up in an error state for some input (e.g., be
ause

of the resour
e bound violation when the program exe
utes on a real ma
hine).

We 
ould require the transformed program to also end up in the error state.

Conversely, we 
ould require the transformed program to end up in the error

state only if the original program ends up in the error state.

� The output of a program, or more pre
isely, the observable e�e
ts of a program

exe
ution, may in
lude more than the �nal state. We 
ould require the 
ompiler

to preserve all the observable e�e
ts, or only some of them.

Clearly, the 
orre
tness 
riterion should spe
ify that the transformed program


an generate only the results that the original program 
an generate. However, we

do not require the transformed program to be able to generate all the results that

the original program may generate. This allows the transformed program to have less

non-determinism than the original program. The reason is that the 
ompiler trans-

formations bring the program 
loser to the �nal exe
utable form, and the programs

exe
ute mostly on deterministi
 ma
hines. Therefore, the 
ompiler need not preserve

the non-determinism that might be present in the original program.

We spe
ify our requirement using the notion of simulation. Informally, program

P

1

simulates program P

2

if P

1


an generate only the results that P

2

generates. More

pre
isely, for all exe
utions of P

1

, there exists an exe
ution of P

2

whi
h generates the

same output (for the same input). Additionally, if P

1

may not terminate (i.e., P

1

has

an in�nite exe
ution) for some input, then P

2

also may not terminate for that input.

We require the 
ompiler to generate a transformed program that simulates the original

program. We give a formal de�nition of simulation in Se
tion 4.4. Our framework


an easily support a stronger notion of 
orre
tness, namely bi-simulation. Programs

P

1

and P

2

bi-simulate ea
h other if P

1

simulates P

2

and, 
onversely, P

2

simulates P

1

.

We 
ould require the 
ompiler to prove that the transformed program bi-simulates

the original program by proving both that the transformed program simulates the

original program and that the original program simulates the transformed program.

In general, simulation is not a symmetri
 relationship between programs. If P

1

simulates P

2

, then P

2

may generate more results than P

1

, and therefore P

2

need not

simulate P

1

. This means that when P

1

simulates P

2

, the two programs need not be

equivalent in the sense that they 
an generate the same set of results. However, if

programs are deterministi
, they 
an generate only one result. Therefore, when the

transformed program simulates the original program that is deterministi
, the two

programs are equivalent.

1

In our basi
 framework, presented in Chapter 4, we 
onsider

almost deterministi
 programs. We 
all the programs almost deterministi
 be
ause

the result of a program exe
ution may depend on the unknown values of uninitialized

lo
al variables, although we 
onsider a language without non-deterministi
 
onstru
ts.

Therefore, we will sometimes use the term equivalen
e, instead of simulation, to refer

to the 
orre
tness requirement.

1

Observe that P

1

and P

2

are equivalent if P

1

bi-simulates P

2

.
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2.2 Credible Compiler Stru
ture

In this se
tion we �rst 
ompare the general stru
tures of a traditional 
ompiler and a


redible 
ompiler. The main di�eren
e is that a 
redible 
ompiler has a veri�er that


he
ks the results of the 
ompiler. The veri�er uses some additional information that

the 
ompiler generates beside the output program. We brie
y dis
uss the additional

information, and we des
ribe the general stru
ture of the veri�er.

Figure 2-1 shows the simpli�ed stru
ture of a traditional optimizing 
ompiler.

First, the front end translates the input program from the sour
e language to the

intermediate representation. Next, the transformations, whi
h in
lude the optimiza-

tions and the ba
k end passes that are not highly ma
hine dependent, transform the

program within the intermediate representation. Finally, the 
ode generator pro-

du
es the ma
hine 
ode. Clearly, for a 
ompilation to be 
orre
t, all passes need to

be 
orre
t and to produ
e an output program that simulates the input program. In

traditional 
ompilation there is no 
he
king of the results generated by any of the

passes; they are all blindly trusted to be 
orre
t.

Language

Sour
e Front

End Representation

Intermediate Ma
hine

Code

Code

Generator

Transformations

Figure 2-1: Stru
ture of a Traditional Compiler

Figure 2-2 shows the simpli�ed stru
ture of a 
redible 
ompiler. It di�ers from a

traditional 
ompiler in that there is 
he
king of the results generated by the transfor-

mation passes. Sin
e the transformations are not blindly trusted, we represent them

as a \bla
k box" in the �gure. After ea
h transformation, the veri�er 
he
ks that

the output program simulates the input program. To 
he
k the simulation of the

two programs, the veri�er uses the additional information that the transformation

generates beside the output program. We �rst argue why it is ne
essary that the

transformations generate some additional information, and then we des
ribe how the

veri�er uses that information for 
he
king.

At �rst glan
e, it seems possible that a transformation need only generate the out-

put program, and the veri�er 
an 
he
k the simulation of the two programs. However,
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Veri�er

Language

Sour
e Front

End Representation

Intermediate Ma
hine

Code

Code

Generator

Additional

Information

Transformations

Yes/No

Output Program

Input Program

Figure 2-2: Stru
ture of a Credible Compiler

dire
tly building su
h a powerful veri�er for arbitrary programs in suÆ
iently expres-

sive languages is not a good idea. First, from theory we know that it is unde
idable

to determine the equivalen
e/simulation of two arbitrary programs. Hen
e, a veri�er

for the general 
ase 
annot be built. In pra
ti
e, it is possible to build a big veri�er

that would 
he
k the results of 
ommon 
ompiler transformations. However, building

a big veri�er whi
h is itself not veri�ed only shifts the possibility of introdu
ing er-

rors from the 
ompiler implementation to the veri�er implementation. Additionally,

su
h a veri�er may need to be modi�ed ea
h time a new transformation is added

to the 
ompiler. Therefore, 
redible 
ompiler transformations need to generate some

additional information that allows their results to be 
he
ked with a relatively simple

veri�er. We explain later what we mean by relatively simple.

We next present the additional information that a 
redible 
ompiler transforma-

tion generates. Con
eptually, the 
ompiler generates a set of 
ontexts and a proof

that those 
ontexts hold. A 
ompiler usually applies a transformation in two steps:

� In the analysis step, the 
ompiler analyzes the input program to determine the

properties relevant for the transformation.

� In the transformation step, the 
ompiler 
hanges the input program, taking into

a

ount the results of the analysis, and generates an output program.

Our approa
h to 
redible 
ompilation supports this two-step organization. For ea
h

step, a 
redible 
ompiler generates a set of 
ontexts:

� Standard 
ontexts express properties of only one program. The 
ompiler uses

the standard 
ontexts to represent the analysis results.

� Simulation 
ontexts express the 
orresponden
e between two programs. The


ompiler uses simulation 
ontexts to represent the simulation relationships be-

tween the input and output programs.

16



Ea
h 
ontext 
ontains a set of invariants. (Contexts also 
ontain some other addi-

tional information, whi
h we present later in the text.) More pre
isely, ea
h standard


ontext 
ontains a set of standard invariants and ea
h simulation 
ontext 
ontains

a set of simulation invariants. (We introdu
e several other 
on
epts that have both

standard and simulation form; we omit standard and simulation when it is 
lear from

the 
ontext or when we refer to both.)

The standard and simulation invariants are formulas in a logi
. (We present in

Se
tion 4.2 the details of the logi
 that we use, whi
h is an extension of �rst-order

predi
ate logi
.) If all the invariants hold, then all the 
ontexts hold, and the output

program simulates the input program. The veri�er does not try to prove that the


ontexts hold. Instead, the input to the veri�er 
onsists of the two programs, the


ontexts, and additionally a proof that those 
ontexts hold for those programs. The

veri�er only 
he
ks that the proof indeed shows that the 
ontexts hold.

Both the 
ontexts and the proof are 
on
eptually generated by the 
ompiler. In

pra
ti
e, a 
redible 
ompiler 
onsists of two parts: a part that a
tually performs the

transformations and generates the output program and the 
ontexts and a part that

proves that the 
ontexts hold. We 
all the latter part the proof generator. We use this

term, instead of the 
ommon theorem prover, to point out that a 
redible 
ompiler

does not use a general purpose theorem prover but a very spe
ialized one.

2.2.1 Credible Compiler Veri�er

We next des
ribe the organization of a veri�er for a 
redible 
ompiler and what

exa
tly the proof generator has to prove. Figure 2-3 shows the detailed stru
ture of

the 
redible 
ompiler transformations. The module that performs the transformations

and the proof generator are shown as \bla
k boxes" be
ause they 
an be implemented

in any arbitrary way. They are not trusted, but the veri�er 
he
ks their results.

The veri�er, however, needs to be trusted. The veri�er 
onsists of two parts: the

veri�
ation-
ondition generator and the a
tual proof 
he
ker. Before we pro
eed to

des
ribe the veri�er parts, we explain what a relatively simple veri�er means. On

the one hand, the proof 
he
ker, and thus the veri�er, 
annot be too simple sin
e

the expe
ted proofs are non-trivial. On the other hand, the veri�er should still be

simpler to implement and verify, using standard program veri�
ation te
hniques, than

the 
ompiler transformations.

The veri�
ation-
ondition generator (VCG) for a 
redible 
ompiler 
onsists of two

parts. We 
all them the standard veri�
ation-
ondition generator (StdVCG) and the

simulation veri�
ation-
ondition generator (SimVCG). The StdVCG takes as input

one program at a time (be it 
ompiler input or output) and standard 
ontexts for

that program. We postpone the details of how the StdVCG works for the example

in Se
tion 3.1.1 and we give the full algorithm in Se
tion 4.3.3. SuÆ
e to say that

the StdVCG symboli
ally exe
utes the given program. The output of the StdVCG is

the standard veri�
ation 
ondition (StdVC) for the given program and its standard


ontexts. The StdVC is a logi
 formula whose validity implies that the given 
ontexts

hold for the given program. Namely, the results of the 
ompiler analysis are 
orre
t

if the StdVC is valid.
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Sim VCG

Std VCG

VCG

Program

Output

Program

Input

Transformations

Invariants

VC

Yes/No

Proof Che
ker

Proof

Veri�er

Compiler

Proof Generator

Figure 2-3: Veri�er for a Credible Compiler

The SimVCG takes as input two programs (both the 
ompiler input and output

programs) and simulation 
ontexts for them. Again, we postpone the details of how

the SimVCG works for the example in Se
tion 3.2.1 and we give the full algorithm in

Se
tion 4.4.3. SuÆ
e to say that the SimVCG symboli
ally exe
utes both given pro-

grams. The output of the SimVCG is the simulation veri�
ation 
ondition (SimVC)

for the given two programs and their simulation 
ontexts. The SimVC is a logi


formula whose validity implies that the given 
ontexts hold for the given program.

Namely, the result of the 
ompiler transformation is 
orre
t (i.e., the output program

simulates the input program) if the SimVC is valid.

The veri�er for a 
redible 
ompiler works as follows. It �rst takes the 
ompiler

input and output programs and atta
hed 
ontexts, and uses the VCG to generate

the standard and simulation veri�
ation 
onditions for those programs. We 
all the


onjun
tion of those veri�
ation 
onditions the veri�
ation 
ondition (VC) for those

two programs. The VCG does not prove that the VC is valid. The VCG only performs

synta
ti
 (and stati
 semanti
) 
he
ks on the programs and the 
ontexts; the VCG

reje
ts the programs if the 
ompiler output is ill-formed. The veri�er next uses the

proof 
he
ker to verify that the proof provided by the proof generator a
tually proves

the parti
ular VC. If the proof 
he
ker reje
ts the proof, the 
ompiler 
onsiders the

transformed program to be in
orre
t and 
ontinues transforming the input program.

Otherwise, the transformed program simulates the input program, and the 
ompiler


ontinues transforming further the transformed program.
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2.3 Summary

In this se
tion we �rst brie
y present the previously published results on 
redible


ompilation [41, 42℄. The initial work on 
redible 
ompilation did not use VCG. We

des
ribe how using VCG in the veri�er redu
es the size of the proofs that the 
ompiler

needs to generate. We next present the s
ope of this thesis and we �nally list the


ontributions of the thesis.

Rinard [41℄ des
ribes the basi
 te
hniques for building 
redible 
ompilers. The

main idea is that the 
ompiler generates a set of standard and simulation invari-

ants together with the output program. The 
ompiler then proves that it 
orre
tly

transformed the input program by proving that these invariants hold for the input

and output programs. Rinard devised a set of rules for proving that standard and

simulation invariants hold for two programs.

The rules for standard invariants use a variation of the Floyd-Hoare rules [16,23℄

for proving properties about one program. These rules propagate an invariant ba
k-

ward (opposite to the 
ow of 
ontrol) through the program until another invariant is

rea
hed, at whi
h point the 
ompiler should prove that the rea
hed invariant implies

the propagated invariant. The rules for simulation invariants work in a 
on
eptu-

ally similar way. However, those rules propagate simulation invariants through both

programs. To the best of our knowledge, the simulation invariants and related rules

were �rst introdu
ed for proving 
ompiler optimizations 
orre
t in [41℄. The simula-

tion invariants are similar to the (bi-)simulation relations in 
on
urren
y theory, but

the te
hniques and appli
ations used in that 
ontext are 
ompletely di�erent. An

overview of 
on
urren
y theory 
an be found in the arti
le by Milner [30℄.

The initial work on 
redible 
ompilation presented the rules for standard and

simulation invariants as proof rules in a logi
. The rules were derived from the

stru
ture of the programs, and therefore involved synta
ti
 elements, for instan
e:

a program 
ontains a parti
ular statement. In general, it is possible to en
ode the

proofs dire
tly using those rules, without using a VCG in the veri�er. However, using

a VCG dramati
ally de
reases the size of the proofs. The reason is that the VCG

performs synta
ti
 
he
ks on the programs and the invariants while generating the

VC. The 
ompiler 
an en
ode the proofs of VC using rules whi
h do not in
lude

(many) synta
ti
 elements from programs. The drawba
k of using a VCG is that the

veri�er, whose implementation needs to be trusted, gets larger.

We used the original rules for invariants as a guidan
e for making VCG, in parti
-

ular the algorithm for the SimVCG. As des
ribed, the original rules for the simulation

invariants did not give a pre
ise algorithm for their appli
ation; they are just proof

rules. This is somewhat analogous to type re
onstru
tion|the typing rules provide

a way to 
he
k the well-typedness of a program given the types of variables, but the

rules do not provide a dire
t way to 
ome up with those types when they are not

given. However, an algorithm for type re
onstru
tion infers those types, whereas the

algorithm for the SimVCG does not try to infer any properties. The SimVCG simply

requires the 
ompiler to provide more additional information.

Our approa
h to using the VCG is motivated by Ne
ula's PhD thesis [35℄. In fa
t,

the original in
entive 
ame through personal 
ommuni
ation with George Ne
ula at
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the PLDI '99 
onferen
e. Ne
ula attributes the veri�
ation-
ondition generation to

Floyd and King; the term \veri�
ation 
ondition" is itself introdu
ed by Floyd [16℄,

and the 
on
ept of veri�
ation-
ondition generation is explained by King [27℄. Those

veri�
ation-
ondition generators are for only one program, or, in terms of 
redible


ompilation, they are standard veri�
ation-
ondition generators, whereas our VCG

also in
ludes a SimVCG. Re
ently, Ne
ula [36℄ presented his work on veri�
ation of


ompiler transformations whi
h uses a strategy similar to SimVCG. We 
ompare that

work to ours in Chapter 7, after we des
ribe the details of our approa
h.

2.3.1 S
ope

This thesis des
ribes a theoreti
al framework for 
redible 
ompilation. We next list

questions that arise in the 
ontext of 
redible 
ompilation and we explain how we

address those questions in this thesis. We also brie
y present our initial experien
e

with a small prototype of a 
redible 
ompiler.

� What is the language that is 
ompiled?

We present a framework for 
ompiling imperative programming languages. The

intermediate representation that we use 
an be 
onsidered as a subset of the

C programming language [26℄. The introdu
tory paper on 
redible 
ompila-

tion [41℄ des
ribed a framework for a rather simple language: the programs


onsisted of only one pro
edure and operated only on simple integer variables.

Rinard and Marinov [42℄ then extended the language with C-like pointers.

In the basi
 framework, presented in Chapter 4, we extend the initial language

for 
redible 
ompilers with pro
edures

2

. Adding pro
edures to the language is

important be
ause it makes the language more realisti
. In our basi
 language

we 
onsider the simple semanti
s of programs that exe
ute on an idealized ab-

stra
t ma
hine without error states. The state of an exe
ution is observed only

at the end of the exe
ution, if the program terminates at all. In Chapter 6 we

dis
uss how to extend the basi
 framework to handle other 
ommon 
onstru
ts

of imperative programming languages. We point out that the framework whi
h

we present 
an formally handle only a subset of a C-like language. The main

obsta
le for a formal treatment of the full C language is the semanti
s of \un-

de�ned" C 
onstru
ts, su
h as out-of-bound array a

esses. We also dis
uss in

Chapter 6 some limitations of our 
urrent framework.

� What transformations are supported by the framework?

We say that a framework supports a transformation if that framework allows the


ompiler to prove that the results of that transformation are 
orre
t. Clearly,

a framework whi
h supports more transformations is preferable to a framework

2

We use the term pro
edure to refer to subprograms be
ause, for simpli
ity, we 
onsider only

the subprogram 
alls whi
h are statements, and not expressions. The pro
edures do not return a

result dire
tly, but they 
an modify the memory state. We use the term fun
tion to refer to the

meta-language obje
ts.
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whi
h supports fewer transformations. Due to fundamental unde
idability 
on-

straints, we 
annot hope to develop a general framework whi
h would allow

the 
ompiler to automati
ally prove that all possible transformations are 
or-

re
t. However, we want to develop a framework that allows the 
ompiler to

prove at least that the results of \standard transformations" are 
orre
t. The

term \standard transformations" loosely refers to the 
ommon transformations

performed by industry quality optimizing 
ompilers.

The framework that we present supports numerous \standard" intrapro
edural

transformations, ranging from 
onstant propagation to indu
tion variable elim-

ination to loop unrolling. Although it is presumptuous to say that a framework

supports all transformations, we are not aware of any \standard" transforma-

tion that is not supported. The framework also supports some interpro
edural

analyses and whole program transformations.

In general, the 
ompiler 
an transform any number of pro
edures to generate the

transformed program. Our framework is designed so that the 
ompiler proves

the simulation relationships between pairs of pro
edures. To prove that the

transformed program simulates the original program, the 
ompiler then has to

prove that the starting pro
edure

3

of the transformed program simulates the

starting pro
edure of the original program.

The use of multiple standard 
ontexts allows the 
ompiler to prove 
orre
t even

the results of some 
ontext-sensitive interpro
edural analyses. (We des
ribe the


on
ept of standard 
ontexts through the example in Se
tion 3.1, and we formal-

ize standard 
ontexts in Se
tion 4.3.) The use of simulation 
ontexts allows the


ompiler to prove 
orre
t the results of some interpro
edural transformations,

su
h as pro
edure spe
ialization. (We introdu
e the 
on
ept of simulation 
on-

texts through the example in Se
tion 3.2, and we formalize simulation 
ontexts

in Se
tion 4.4.) Simulation 
ontexts also support reordering a

esses to global

variables a
ross the pro
edure 
alls.

The framework, however, does not support pro
edure inlining and related trans-

formations that 
hange the stru
ture of the 
all graph. The \
ulprit" is the

simulation veri�
ation-
ondition generator. It operates on two pro
edures at a

time and requires that whenever the transformed pro
edure rea
hes a 
all site,

the original pro
edure also rea
hes a 
all site. (We present details on this later in

the text.) Sin
e pro
edure inlining is an important optimization, we 
an extend

the framework to support it by adding a spe
ialized part to the veri�er that

separately 
he
ks only inlining. In prin
iple, support for any transformation


an be added as a spe
ialized 
he
k for that transformation. However, doing so

for every transformation would make the veri�er prohibitively large, as large as

the 
ompiler itself.

� Can the 
ompiler transformations generate the invariants (and other required

3

The starting pro
edure for a program is the pro
edure where the exe
ution of the program starts;

in C, the starting pro
edure is 
alled main.
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additional information, ex
ept for the proof)?

The 
ompiler 
an generate the standard invariants simply by generating the

formulas that represent the 
ompiler analysis results. It is only that the language

used for formulas should be expressive enough so that the 
ompiler 
an indeed

represent its results. The 
ompiler is also able to automati
ally generate the

simulation invariants, be
ause intuitively the 
ompiler \knows" how it performs

the transformation and whi
h entities in the output program 
orrespond to

whi
h entities in the input program.

The approa
h in whi
h the 
ompiler generates some additional information is

also explained by Morrisett et al. [32℄, who 
redit Ne
ula and Lee [34,37℄. They

used the approa
h to build their 
ompilers, Tou
hstone [38℄ and Pop
orn [31℄.

However, both of these 
ompilers prove only the properties of the output pro-

gram, more pre
isely the type safety of the output program. In terms of 
redible


ompilation, the additional information that those 
ompilers generate is only a

set of standard invariants. In 
ontrast, 
redible 
ompilers also generate a set of

simulation invariants. The simulation invariants are 
ru
ial for the 
on
ept of


redible 
ompilation be
ause they allow the 
ompiler to prove that the output

program simulates the input program.

� Can the proof generator automati
ally generate a proof?

The proof generator that a

ompanies a 
redible 
ompiler generates proofs for

the standard and simulation veri�
ation 
onditions. The main requirement for

the proof generator is that it needs to be fully automati
. For ea
h 
ompiler

transformation and analysis, there needs to be a de
ision pro
edure that 
an

prove the SimVC and StdVC, respe
tively, generated for every possible input

program. Note that the 
ompiler developer 
an determine the general stru
ture

of the veri�
ation 
onditions for ea
h transformation and analysis. Namely,

ea
h VC is a formula that depends on the invariants (and on the VCG). From

the pla
ement of the invariants and the general stru
ture of their formulas, it

is possible to �nd the general stru
ture of the VC.

We believe that it is possible to develop a de
ision pro
edure that 
an prove all

veri�
ation 
onditions of the parti
ular general stru
ture. The reason is that

the 
ompiler developer knows why a transformation is 
orre
t, and potentially

has a meta-proof that shows the transformation to be 
orre
t for all input

programs. Developing a de
ision pro
edure is then a matter of translating the

meta-proof into an algorithm that generates a proof for ea
h possible instan
e

of veri�
ation 
onditions. The 
omplexity of the de
ision pro
edures depends

on the parti
ular transformations. The whole proof generator, whi
h 
ombines

the de
ision pro
edures, needs only to be as powerful as the transformations

whose results it needs to prove.

For example, 
onsider a proof generator that needs to prove the results of 
on-

stant propagation, 
onstant folding, and algebrai
 simpli�
ations. The proof

generator for 
onstant propagation requires only a relatively simple de
ision
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pro
edure that uses a few logi
 rules, su
h as the 
ongruen
e rule for equality,

and does not need to \know" anything about the numbers. The proof gener-

ator for 
onstant folding needs a more sophisti
ated de
ision pro
edure that

uses arithmeti
 rules. Further, the proof generator for algebrai
 simpli�
ations

needs an even more sophisti
ated de
ision pro
edure that uses algebrai
 rules.

However, this does not imply that every new transformation requires a new

de
ision pro
edure. Many 
ompiler transformations may have the same general

stru
ture of the veri�
ation 
onditions and 
an thus share the same de
ision

pro
edure. For instan
e, the explained proof generator 
ould prove the results

of 
opy propagation and even 
ommon subexpression elimination. We do not


onsider the proof generator further in this thesis.

An implementation of a 
redible 
ompiler 
an answer the last two of the listed

questions: is it possible for a 
redible 
omplier to generate the required additional

information and to automati
ally prove the veri�
ation 
onditions. Additional prag-

mati
 issues in the 
ontext of 
redible 
ompilation are the diÆ
ulty of generating

the proofs, the size of the generated proofs, and the diÆ
ulty of 
he
king the proofs.

To explore these issues, we have started developing a prototype of a 
redible 
om-

piler. We have implemented a small system for the language without pro
edures, but

with pointers. We have used the Java programming language [8℄ for implementing a


ow-sensitive pointer analysis and 
onstant propagation analysis/transformation.

For proof representation and veri�
ation we use Athena [5,6℄, a denotational proof

language [7℄ developed by Kostas Arkoudas at MIT. Athena is a 
exible logi
al frame-

work that allows a 
ompa
t, pro
edural representation of proofs. This makes it possi-

ble to balan
e the division of labor between the proof generator and the proof 
he
ker,

while retaining the full soundness guarantee. It also simpli�es the 
onstru
tion of the


ompiler by simplifying the proof generator and allowing the 
ompiler developer to

easily generate proofs. Based on our initial positive experien
e with Athena, we be-

lieve that a key enabling feature to obtaining reasonable proof sizes and 
ompiler


omplexity is the use of su
h a 
exible logi
al framework. We do not present the

prototype implementation in this thesis.

2.3.2 Contributions

The main 
ontribution of the previously published work on 
redible 
ompilation [41,

42℄ is introdu
tion of a theoreti
al framework in whi
h a 
ompiler, using simulation

invariants, 
an prove that it 
orre
tly transformed an input program. The 
ontribu-

tions of this thesis to the existing work on 
redible 
ompilation are the following:

� We extend the language for 
redible 
ompilers with pro
edures.

� We use standard 
ontexts and we introdu
e simulation 
ontexts that allow the


ompiler to prove that the results of interpro
edural analyses and transforma-

tions are 
orre
t.

� We present an algorithm for the veri�
ation-
ondition generator, in parti
ular

for the simulation veri�
ation-
ondition generator.
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Chapter 3

Example

In this 
hapter we give an example of a 
redible 
ompiler transformation. We ex-

plain what the 
ompiler generates and how a veri�
ation 
ondition-generator (VCG)

generates a veri�
ation 
ondition (VC). The 
ompiler proves that it 
orre
tly per-

formed the transformation by supplying a proof that the VC is valid. For 
larity of

presentation, we use a simple program fragment given in Figure 3-1. The fragment

presents a pro
edure p in a program with a global variable g. Pro
edure p has two

lo
al variables i and 
. We show a simple transformation on this example pro
edure,

namely 
onstant propagation. The example is written in C, but at the present time

we 
an handle only a small subset of a C-like language within the 
redible 
ompilation

framework. On the other hand, our framework supports many other transformations

that 
hange the pro
edure stru
ture in more 
omplex ways. More examples 
an be

found in [42℄.

int g;

void p() {

int i, 
;

i = 0;


 = 3;

do {

g = 2 * i;

q();

i = i + 
;

} while (i < 24);

}

Figure 3-1: Example Program Fragment

We use an intermediate representation based on 
ontrol 
ow graphs. Figure 3-2

shows the graph for the example pro
edure. The graph 
ontains several nodes, ea
h

with a unique label. Most of the nodes have syntax and semanti
s as in C. For

example, the node with label 3 assigns the value of the expression 2*i to variable

g. Node 4 is a pro
edure 
all node. Control 
ows from this node to the beginning

of the 
alled pro
edure q. When (and if) the 
alled pro
edure returns, the exe
ution
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ontinues from the next node. Node 6 is a 
onditional bran
h node. If the value of

variable i is less than 24, the 
ontrol 
ows to node 3; otherwise, the 
ontrol 
ows to

the pro
edure return node 7.

1: i = 0

2: 
 = 3

3: g = 2*i

4: q()

5: i = i+


6: br (i<24) 3

7: ret

1: i = 0

2: 
 = 3

3: g = 2*i

4: q()

5: i = i+3

6: br (i<24) 3

7: ret

Figure 3-2: Original Pro
edure

Figure 3-3: Pro
edure After Constant

Propagation

Figure 3-3 shows the graph after 
onstant propagation. To perform su
h an opti-

mization, the 
ompiler �rst analyzes the 
ode to dis
over 
ertain properties. In our

example, the 
ompiler dis
overs that the variable 
 always has value 3 before the node

with label 5 exe
utes. The 
ompiler next performs the transformation of the 
ode.

In our example, the 
ompiler propagates the de�nition of variable 
 at node 2 to the

use of the same variable at node 5. In addition to generating the transformed 
ode,

a 
redible 
ompiler also generates standard and simulation invariants. The standard

invariants are used to prove that the analysis results are 
orre
t, and those results,

together with the simulation invariants, are used to prove that the transformation

is 
orre
t. We next des
ribe the invariants that the 
ompiler may generate in this

example, and how VCG uses the invariants to generate VC.
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3.1 Compiler Analysis

After performing an analysis, the 
ompiler presents its results in the form of stan-

dard invariants. The invariants are assertions about the program state at di�erent

program points. In the language that we 
onsider, an invariant is a relationship be-

tween variables at di�erent nodes in the 
ontrol 
ow graph. The 
ompiler 
laims

the relationship to be true whenever 
ontrol rea
hes the 
orresponding node. The

veri�er uses the standard veri�
ation-
ondition generator (StdVCG) to generate the

standard veri�
ation 
ondition (StdVC) for the assertions. If the 
ompiler 
an prove

the StdVC, then the 
laimed assertions always hold; they are indeed invariants, and

thus the results are 
orre
t.

Ea
h standard invariant 
onsists of a formula

1

and the label of a node in the


ontrol 
ow graph. The main invariant in our running example is that the value of

the variable 
 is always 3 at the node with label 5. We use the formula 
 = 3 to

represent the predi
ate on 
, and we denote the whole invariant as 5:inv 
 = 3.

The 
ompiler usually generates several invariants to represent the analysis results

at di�erent nodes. The 
ompiler may also need to generate additional invariants to

be able to prove the results. The reason is that the StdVCG requires at least one

invariant for ea
h loop in the pro
edure. Otherwise, the StdVCG 
annot generate the

StdVC and marks the 
ompiler output as in
orre
t. In this example, the invariant

5:inv 
 = 3 is suÆ
ient for the StdVCG to generate the StdVC. For expository

purposes, we 
onsider two invariants: 3:inv 
 = 3 and 5:inv 
 = 3.

We next des
ribe how the 
ompiler presents the summary results for a pro
edure

in the form of standard 
ontexts. The StdVCG uses standard 
ontexts at 
all sites.

A (standard) 
ontext for a pro
edure is a pair 
onsisting of a standard input 
ontext

and a standard output 
ontext :

2

� a (standard) input 
ontext is a formula that 
an 
ontain only the global program

variables and the pro
edure parameters; it represents a relationship between the

values of these variables that the 
ompiler assumes to hold at the beginning of

the pro
edure;

� a (standard) output 
ontext is a formula that 
an 
ontain only the global pro-

gram variables; it represents a relationship between the values of these variables

that the 
ompiler 
laims to hold at the end of the pro
edure.

1

Formulas are predi
ates from the logi
 that we present in detail in Se
tion 4.2. We use a

slightly di�erent syntax for the logi
 formulas than for the program expressions; in parti
ular, we

use typewriter font for the program syntax entities, su
h as variables or labels.

2

In program veri�
ation, a standard 
ontext is traditionally 
alled a pro
edure spe
i�
ation and it


onsists of a pro
edure pre
ondition and a pro
edure post
ondition. A pre
ondition for a pro
edure

is formally a predi
ate on the program state at the beginning of the pro
edure. We 
all su
h a

predi
ate a standard input 
ontext be
ause a 
redible 
ompiler proves the 
orre
tness of program

analysis results, and the predi
ate represents the (program) 
ontext whi
h the 
ompiler assumes at

the beginning of the pro
edure. A post
ondition for a pro
edure is, in general, a relationship between

the program states at the beginning and at the end of the pro
edure. We 
all su
h a relationship

a standard output 
ontext, and we use, in our basi
 framework, a simpli�ed version in whi
h the

relationship is only unary on the state at the end of the pro
edure.
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The 
ompiler proves that the results (invariants and the output 
ontext) for a given


ontext are valid assuming that the input 
ontext holds. The 
ompiler may generate

many 
ontexts for the same pro
edure. This allows the 
ompiler to prove that the

results of 
ontext-sensitive interpro
edural analyses are 
orre
t.

In our example, the analysis of the pro
edure p does not assume any initial values

for variables; the results hold for all input 
ontexts, and the analysis does not generate

any result for the output 
ontext. Hen
e, both input and output 
ontexts are simply

true; we will use true

p

in

and true

p

out

to point out whi
h formula we refer to. In this

example, for the 
all to pro
edure q we also take both input and output 
ontexts to

be true, in notation true

q

in

and true

q

out

. The reason is that the analysis of p does

not require any result from q, ex
ept that q does not modify the lo
al variable 
 of

p. The semanti
s of our language guarantees that the 
allee 
annot a

ess the lo
al

variables of the 
aller. Pro
edure q may still modify the global variable g.

In our example, all of the formulas for the 
ontexts are simply true. In general,

the pro
edure input and output 
ontext 
an be arbitrary formulas that in
lude the

global variables and the parameters of the pro
edure. For instan
e, the 
ompiler

might express that when g is even before the 
all to pro
edure q, then g is 0 after

the 
all. The input 
ontext would be g%2 = 0 and the output 
ontext g = 0. The


ompiler would need to prove that this 
ontext indeed holds for pro
edure q.

3.1.1 Standard Veri�
ation-Condition Generator

We next illustrate how the StdVCG uses the standard invariants and 
ontexts to

generate the StdVC for our example. The StdVCG symboli
ally exe
utes the whole

pro
edure in the same dire
tion in whi
h the 
ontrol 
ows through the pro
edure

graph. The symboli
 exe
ution uses a symboli
 state that maps ea
h program variable

to an expression representing the (symboli
) value of that variable. The StdVCG

propagates the symboli
 state from a pro
edure node to all its immediate su

essors.

The StdVCG splits the exe
ution at bran
h nodes into two independent paths. The

e�e
t of ea
h node is modeled by appropriately 
hanging the symboli
 state and/or

generating a part of StdVC.

When the symboli
 exe
ution rea
hes an invariant for the �rst time, the StdVCG

generates the part of StdVC that requires the invariant to hold in the 
urrent state.

The StdVCG then generates the invariant as a hypothesis for proving the rest of the

pro
edure. The exe
ution �nishes when it rea
hes an invariant for the se
ond time,

or when it gets to a return node. At return nodes, the StdVCG adds the standard

output 
ontext to the StdVC. The StdVC is a formula in the logi
 whi
h we present

in Se
tion 4.2. In our logi
 formulas we distinguish the program variables from the

variables introdu
ed in the formulas by quanti�
ation. We 
all the latter variables

logi
 variables. (Not related to the logi
 variables used in logi
 programming.)

In our running example, the symboli
 exe
ution pro
eeds in the following steps:

� The exe
ution starts from node 1 and a fresh symboli
 state. All program

variables are mapped to fresh logi
 variables that symboli
ally represent the

(unknown) values of the program variables at the beginning of the pro
edure. In
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this 
ase, for the program variables i, 
, and g, we use the logi
 variables i

1

, 


1

,

and g

1

, respe
tively. We use supers
ripts to distinguish di�erent logi
 variables

that represent the values of the same program variable at di�erent program

points. (The numbers in the supers
ripts are not related to pro
edure labels.)

These symboli
 values represent all possible 
on
rete values of the variables,

and therefore the StdVCG generates a StdVC that universally quanti�es over

these logi
 variables. The analysis results should hold for all the initial values

that satisfy the standard input 
ontext. In this example, it is just true

p

in

, so

the StdVC starts as: 8i

1

: 8


1

: 8g

1

: true

p

in

) : : :, and the rest of the symboli


exe
ution generates the rest of the StdVC. We abbreviate several 
onse
utive

universal quanti�
ations to: 8i

1

; 


1

; g

1

: true

p

in

) : : :.

� The exe
ution of an assignment node does not generate any part of the StdVC;

the StdVCG only modi�es the symboli
 state: node 1 assigns the expression 1

to i, and node 2 assigns the expression 3 to 
.

� The exe
ution next rea
hes the invariant 3:inv 
 = 3 for the �rst time. The

StdVCG substitutes the program variables o

urring in the formula of the in-

variant (only 
 in this 
ase) with the symboli
 values of those variables in the


urrent state (3 in this 
ase) and generates the substituted formula as part of

the StdVC. Intuitively, this part requires that the invariant holds in the base


ase of the indu
tion. The StdVCG then generates a fresh symboli
 state and

substitutes the program variables in the invariant with fresh logi
 variables.

The substituted invariant be
omes the assumption used in the StdVC for prov-

ing the rest of the pro
edure. This part 
an be regarded as an indu
tive step;

the StdVCG uses a fresh state be
ause the invariant has to hold for all su

es-

sive exe
utions that rea
h this node. Therefore, the StdVC is extended with:

: : : 3 = 3 ^ 8i

2

; 


2

; g

2

: 


2

= 3) : : :.

� The exe
ution 
ontinues at node 3 whi
h modi�es the symboli
 state by map-

ping g to 2 � i

2

. The exe
ution next rea
hes node 4 whi
h is a 
all node. At


all sites, the StdVCG performs an operation similar to the operation for the

invariants. The StdVCG uses the 
urrent symboli
 state to substitute the appro-

priate expressions for the global variables and the pro
edure parameters of the


allee in the input 
ontext of the 
allee. In our example, this simply generates

true

q

in

. Next, the StdVCG generates a new symboli
 state, but repla
ing only

the symboli
 values of the global program variables with fresh logi
 variables (g

be
omes g

3

); lo
al pro
edure variables do not 
hange (i and 
 remain i

2

and 


2

,

respe
tively). The StdVCG then substitutes the program variables o

urring in

the output 
ontext of the 
allee with fresh logi
 variables from the new symboli


state. In our example, it again generates just true

q

out

, and thus the exe
ution

of this node extends the StdVC with: : : : true

q

in

^ 8g

3

: true

q

out

) : : :.

� The exe
ution rea
hes the other invariant 5:inv 
 = 3, and the StdVCG does

the same as for the �rst invariant. The di�eren
e is that the symboli
 value
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of 
 is 


2

(and not 3) at this point. Thus, 


2

appears in the StdVC: : : : 


2

=

3 ^ 8i

3

; 


3

; g

4

: 


3

= 3) : : :.

� The next node is the assignment node 5, and the symboli
 state before this

node maps i to i

3

, and 
 to 


3

. After the node exe
utes, i gets mapped to the

expression i

3

+ 


3

.

� The 
onditional bran
h node 6 splits the exe
ution in two bran
hes:

{ For the true bran
h, the StdVCG adds the bran
h 
ondition (after appro-

priate substitutions) as the assumption to the StdVC and the exe
ution


ontinues at node 3. At this point, the invariant 3:inv 
 = 3 is rea
hed

again. The substitution of the invariant is performed as before, and it is

added to the StdVC. However, the exe
ution of this bran
h �nishes here

be
ause the invariant is rea
hed for the se
ond time.

{ For the false bran
h, the StdVCG adds the negation of the bran
h 
ondition

(after appropriate substitutions) as the assumption to the StdVC and the

exe
ution 
ontinues at node 7. This is the return node, so the StdVCG

performs the appropriate substitution on the standard output 
ontext and

adds it to the StdVC. The exe
ution �nishes at the return node.

Finally, the whole StdVC for this example of a standard 
ontext is:

8i

1

; 


1

; g

1

: true

p

in

)

3 = 3 ^ 8i

2

; 


2

; g

2

: 


2

= 3)

true

q

in

^ 8g

3

: true

q

out

)




2

= 3 ^ 8i

3

; 


3

; g

4

: 


3

= 3)

(i

3

+ 


3

< 24) 


3

= 3) ^

(:(i

3

+ 


3

< 24)) true

p

out

):

The 
ompiler has to prove that this StdVC holds to show that the analysis results are


orre
t. The 
ompiler generates a proof using the proof rules for the logi
 presented

in Se
tion 4.2.

3.2 Compiler Transformation

In this se
tion we des
ribe the simulation invariants that the 
ompiler generates to

prove that the transformed pro
edure p simulates the original pro
edure with the

same name p. To avoid repeating transformed and original, we use subs
ript 1 for

the entities from the transformed pro
edure (program), and subs
ript 2 for the en-

tities from the original pro
edure (program). Therefore, we des
ribe the simulation

invariants for proving that p

1

simulates p

2

. The 
ompiler generates the simulation

invariants together with the transformed program and the standard invariants.

3

3

Note, however, that the reasons for generating the standard invariants di�er slightly from the

reasons for generating the simulation invariants. Namely, the standard invariants both represent the
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The simulation invariants represent a 
orresponden
e between the states of the

two programs at parti
ular program points. Ea
h simulation invariant 
onsists of a

formula that represents a relationship between the variables from the two programs

and two labels of nodes in pro
edures p

1

and p

2

. For example, the 
ompiler might

express that variable g

1

at node 3

1

has the same value as variable g

2

at node 3

2

.

We denote su
h relationship as 3

1

,3

2

:sim-inv g

1

= g

2

. Simpli�ed, this simulation

invariant holds if for all exe
utions of p

1

that rea
h 3

1

, there exists an exe
ution of p

2

that rea
hes 3

2

su
h that g

1

= g

2

holds. We de�ne pre
isely when a set of simulation

invariants hold for some pro
edures later in the text.

In our example, we use the simulation invariant that additionally 
laims that i

1

has the same value as i

2

: 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

. The 
ompiler usually

needs to generate a set of simulation invariants. This is analogous to the standard

invariants, where the StdVCG exe
utes one pro
edure to generate the StdVC; for

the simulation invariants, the SimVCG exe
utes both pro
edures to generate the

SimVC. There should be enough simulation invariants for the SimVCG to perform

the exe
utions. Otherwise, the SimVCG marks the 
ompiler output as in
orre
t. In

our running example, the simulation invariant 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

is

suÆ
ient

4

for generating a SimVC and we will use only that one invariant.

We next des
ribe how the 
ompiler presents the summary results for the simulation

of two pro
edures in the form of simulation 
ontexts. As ea
h standard 
ontext is

a pair of a standard input 
ontext and a standard output 
ontext, ea
h simulation


ontext is a pair of a simulation input 
ontext and a simulation output 
ontext :

� a simulation input 
ontext represents a relationship that the 
ompiler assumes

to hold between the states of the two programs at the beginning of the two

pro
edures;

� a simulation output 
ontext represents a relationship that the 
ompiler 
laims

to hold between the states of the two programs at the end of the two pro
edures.

As for the standard 
ontexts and standard invariants, the 
ompiler proves that the

simulation invariants hold for a parti
ular simulation 
ontext.

The 
ompiler is free to 
hoose arbitrary simulation 
ontexts for any pair of pro
e-

dures within two programs as long as it 
an prove that those 
ontexts hold. The only

requirement is that the 
ompiler has to prove that the transformed program simu-

lates the original program by proving that the starting pro
edure of the transformed

program simulates the starting pro
edure of the original program for the simulation


ontext whi
h 
onsists of:

� the simulation input 
ontext that states that the global variables of the two

programs and the parameters of the respe
tive starting pro
edures have the

same values, and

(analysis) results and are used by the StdVCG to generate the StdVC to prove those results. On

the other hand, the simulation invariants are not a result by themselves, but a means for generating

the SimVC to prove simulation relationships.

4

A
tually, it is possible to generate a provable SimVC using only 3

1

,3

2

:sim-inv i

1

= i

2

.
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� the simulation output 
ontext that states that the global variables of the two

programs have the same values.

Intuitively, this way the 
ompiler proves that the two programs generate the same

output, given that they have the same input.

In our example, suppose that p is the starting pro
edure of the two programs and

g is the only global variable in the two programs. Then, the 
ompiler has to prove the

simulation 
ontext for pro
edures p

1

and p

2

with input formula g

1

= g

2

and output

formula g

1

= g

2

. Additionally, pro
edure p 
alls pro
edure q, or, in general, p

1


alls

q

1

, and p

2


alls q

2

. The 
ompiler needs to use some simulation 
ontext to represent

the e�e
t of those 
alls on the global variables g

1

and g

2

.

We assume that for the pair q

1

and q

2

, the 
ompiler also uses the simulation


ontext with both input and output 
ontexts being g

1

= g

2

.

5

The 
ompiler 
ould


ome up with this 
ontext in several ways. For example, pro
edures q

1

and q

2


an

be identi
al pro
edures, i.e., pro
edure q from the program where the 
ompiler has

optimized p, if the 
ompiler has not transformed q. Alternatively, q

2


an be generated

by the 
ompiler by transforming q

1

. In this 
ase the 
ompiler would need to prove

that the simulation 
ontext it 
laims for q

1

and q

2

indeed holds. Finally, 
alls to q

1

and q

2

might be 
alls to the same library pro
edure.

3.2.1 Simulation Veri�
ation-Condition Generator

We next illustrate how the SimVCG uses the simulation invariants and 
ontexts to

generate the SimVC in our example. The SimVCG 
on
urrently exe
utes both pro-


edures p

1

and p

2

. The exe
utions are symboli
 and similar to the symboli
 exe
ution

that the StdVCG performs. For ea
h pro
edure, the SimVCG uses a symboli
 state

that maps variables from that pro
edure to symboli
 expressions representing the val-

ues of the variables. The SimVCG propagates the symboli
 states through the nodes

of the respe
tive pro
edures and appropriately 
hanges the symboli
 states and/or

generates a part of SimVC. The SimVCG exe
utes the nodes from p

1

and p

2

inde-

pendently, ex
ept for pairs of nodes that are related, su
h as 
all nodes, return nodes,

or simulation invariants. The SimVCG needs to simultaneously exe
ute the related

nodes. Also, the SimVCG needs to interleave the exe
utions of other nodes from p

1

and p

2

.

We allow the 
ompiler to spe
ify an arbitrary interleaving of the exe
utions of p

1

and p

2

. An interleaving is des
ribed with a sequen
e of a
tions that the 
ompiler

generates in addition to a set of simulation invariants. The SimVCG starts the

exe
utions of p

1

and p

2

from the beginning nodes and then 
onse
utively uses the

a
tions from the sequen
e to determine whi
h node(s) to exe
ute next. For example,

the a
tion exe
ute

1

instru
ts the SimVCG to exe
ute a node from p

1

. We next

explain the a
tion exe
ute

2

B, where B is a boolean value; this a
tion is used for


onditional bran
h nodes of p

2

. We dis
uss other a
tions in detail later in the text.

5

The simulation 
ontexts that the 
ompiler generates need not be only the equality of the two

program states. For instan
e, even in this example, the 
ompiler 
an generate the simulation input


ontext just true and prove that the simulation output 
ontext g

1

= g

2

holds.
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While exe
uting the pro
edures, the SimVCG en
ounters the bran
h nodes. There

are two possible paths from a bran
h node. For pro
edure p

1

, there is an impli
it

universal quanti�
ation over the 
ontrol paths|ea
h simulation invariant must hold

for all paths in p

1

that lead to that simulation invariant. The SimVCG therefore splits

the exe
ution at bran
h nodes of p

1

into two independent exe
utions. For pro
edure

p

2

, there is an impli
it existential quanti�
ation over the 
ontrol paths|for ea
h

simulation invariant in p

1

, there exists a path in p

2

that leads to a 
orresponding

simulation invariant. The SimVCG therefore follows only one path after a bran
h

node of p

2

. (the SimVCG 
ould follow both paths, but that would make the SimVC

unne
essarily long.) The SimVCG does not try to determine by itself whi
h path

to follow. Instead, the 
ompiler needs to generate the a
tion exe
ute

2

B, whi
h

instru
ts the SimVCG to exe
ute the bran
h node and to follow the bran
h B (taken

or not-taken).

In this example, we assume that the a
tion sequen
e is su
h that the SimVCG

interleaves the exe
utions of p

1

and p

2

using the following strategy:

� �rst, exe
ute pro
edure p

1

until it gets to one of the simulation invariants,

pro
edure 
all nodes, or return nodes;

� then, exe
ute pro
edure p

2

until it gets to one of the simulation invariants,

pro
edure 
all nodes, or return nodes;

� �nally, exe
ute simultaneously the related nodes from p

1

and p

2

and 
ontinue

the exe
ution again from p

1

unless the exe
utions �nish.

The SimVCG �nishes the exe
utions when a simulation invariant is rea
hed for

the se
ond time, or when both pro
edures get to return nodes. At return nodes,

the SimVCG also adds the simulation output 
ontext to the SimVC. When both

exe
utions rea
h a simulation invariant for the �rst time, the SimVCG generates the

part of SimVC that requires the invariant to hold in the 
urrent states. The SimVCG

then generates the invariant as a hypothesis and 
ontinues exe
uting the rest of the

pro
edures. When both exe
utions rea
h a 
all site, the SimVCG uses the simulation


ontext of the 
allees to generate a part of SimVC and then 
ontinues the exe
utions.

Note that the a
tions determine only when, and not how, the SimVCG exe
utes

parti
ular nodes.

In our running example, the symboli
 exe
utions pro
eed in the following steps:

� The exe
utions start from nodes 1

1

and 1

2

with fresh symboli
 states for both

pro
edures. All program variables are mapped to fresh logi
 variables that sym-

boli
ally represent the values of the program variables at the beginning of the

pro
edure. In this 
ase we use the logi
 variables i

1

1

, 


1

1

, and g

1

1

for the pro-

gram variables i

1

, 


1

, and g

1

, and i

1

2

, 


1

2

, and g

1

2

for the program variables i

2

,




2

, and g

2

. These symboli
 values represent all possible 
on
rete values of the

variables. The SimVCG generates a SimVC that universally quanti�es over the

logi
 variables representing all program variables from program 1. However, for

the variables from program 2, the SimVCG universally quanti�es only the logi
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variables representing values of global variables in program 2 and pro
edure pa-

rameters of p

2

, but the SimVCG only existentially quanti�es the logi
 variables

representing lo
al variables of p

2

whi
h are not parameters of p

2

. We explain

later why the SimVCG existentially quanti�es the values of lo
al variables of

p

2

.

The SimVCG starts generating the SimVC for a simulation 
ontext by substi-

tuting the logi
 variables for the appropriate program variables in the simulation

input 
ontext of that 
ontext. In this example, the simulation input 
ontext

is g

1

= g

2

and the substitution gives g

1

1

= g

1

2

. Thus, the SimVC starts as:

8g

1

1

; i

1

1

; 


1

1

; g

1

2

: 9i

1

2

; 


1

2

: g

1

1

= g

1

2

) : : :, and the rest of the symboli
 exe
utions

generate the rest of the SimVC.

� The SimVCG �rst exe
utes nodes 1

1

and 2

1

from pro
edure p

1

, modifying its

symboli
 state. Node 1

1

assigns the expression 1 to i

1

, and node 2

1

assigns the

expression 3 to 


1

. The exe
ution of this path rea
hes a simulation invariant.

The SimVCG next exe
utes p

2

, and nodes 1

2

and 2

2

modify the symboli
 state

of p

2

.

� The exe
utions rea
h the simulation invariant 3

1

,3

2

:sim-inv g

1

= g

2

^i

1

= i

2

for the �rst time. The SimVCG substitutes the program variables o

urring in

the formula of the invariant (g

1

, g

2

, i

1

, and i

2

in this 
ase) with the symboli


values of those variables in their respe
tive states (g

1

1

, g

1

2

, 0, and 0 in this 
ase)

and generates the substituted formula as the part of SimVC. Similar to the part

of StdVC, this part intuitively requires that the invariant holds in the base 
ase

of indu
tion. The SimVCG then generates a fresh symboli
 state and substitutes

the program variables in the invariant with fresh logi
 variables. The substituted

invariant be
omes the assumption used in the SimVC for proving the rest of

the simulation. This part 
an be regarded as an indu
tive step; the SimVCG

uses a fresh state be
ause the invariant has to hold for all su

essive exe
utions

that rea
h this node. This means that the SimVCG now universally quanti�es

over all logi
 variables in both pro
edures. Thus, the SimVC is extended with:

: : : g

1

1

= g

1

2

^ 0 = 0 ^ 8g

2

1

; i

2

1

; 


2

1

; g

2

2

; i

2

2

; 


2

2

: g

2

1

= g

2

2

^ i

2

1

= i

2

2

) : : :.

� The 
ompiler 
an use the analysis results to prove the transformation 
orre
t.

In this example, the 
ompiler spe
i�es with the a
tion use-analysis

2

that it

uses the standard invariant 3:inv 
 = 3 from p

2

.

6

The SimVCG adds the

invariant (after the appropriate substitution) as an assumption to the SimVC

and extends it with: 


2

2

= 3) : : :.

� The exe
ution of p

1


ontinues at node 3

1

whi
h modi�es the symboli
 state of

p

1

, and then the exe
ution rea
hes node 4

1

whi
h is a 
all node. The exe
ution

of p

2


ontinues at node 3

2

. Both exe
utions are now at 
all sites, and the

SimVCG performs a similar operation as the StdVCG. The SimVCG uses the

6

The original pro
edure is p

2

be
ause we are showing that p

1

, the transformed pro
edure, simu-

lates p

2

.
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urrent symboli
 states to substitute the appropriate expressions for the global

variables and the pro
edure parameters of the 
allees in the simulation input


ontext of the 
allees. In our example, this generates 2 � i

2

1

= 2 � i

2

2

. Next, the

SimVCG generates for ea
h pro
edure a new symboli
 state, but repla
ing only

the symboli
 values of the global program variables with fresh logi
 variables;

lo
al pro
edure variables do not 
hange. Then, the SimVCG substitutes the

program variables o

urring in the simulation output 
ontext of the 
allees

with the fresh logi
 variables from the new symboli
 states. In our example,

g

3

1

= g

3

2

. The exe
ution of 
all nodes extends the SimVC with: : : : 2 � i

2

1

=

2 � i

2

2

^ 8g

3

1

; g

3

2

: g

3

1

= g

3

2

) : : :.

� The next node is the assignment node 5

1

, and the exe
ution modi�es the sym-

boli
 state by mapping i

1

to i

2

1

+ 3. The global exe
ution rea
hes bran
h node

6

1

and splits into two paths:

{ For the true bran
h, the SimVCG adds the bran
h 
ondition (after appro-

priate substitutions) as the assumption to the SimVC and the 
ontrol 
ows

to node 3

1

. At this point, an invariant is rea
hed. The SimVCG next exe-


utes node 5

2

and rea
hes bran
h node 6

2

. At this point, the SimVCG uses

additional information provided by the 
ompiler to de
ide whi
h bran
h to

take. In this 
ase, the SimVCG also follows the true bran
h and adds the

bran
h 
ondition (after appropriate substitutions) as the part of SimVC.

The di�eren
e is that this part is not used as an assumption, but as a


onsequen
e. The reason is that for ea
h path in p

1

, there should be one

appropriate path in p

2

, but the 
ompiler has to prove that this appropriate

path is indeed taken. At this point, both programs rea
h, for the se
ond

time, the invariant 3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

. The substitution of

the invariant is performed as before, and it is added to the SimVC. The

exe
utions �nish here be
ause the invariant is rea
hed for the se
ond time.

{ For the false bran
h, the SimVCG adds the negation of the bran
h 
on-

dition (after appropriate substitutions) as the assumption to the SimVC

and the exe
ution of p

1


ontinues at node 7

1

. This is a return node, so the

SimVCG 
ontinues exe
uting p

2

. After the SimVCG exe
utes node 5

2

, it

again rea
hes bran
h node 6

2

. In this 
ase, the SimVCG takes the false

bran
h of that node, and adds the negation of the bran
h 
ondition (after

appropriate substitutions) to the SimVC. At this point, both pro
edures

are at return nodes. The SimVCG performs the appropriate substitution

on the simulation output 
ontext and adds it to the SimVC. The exe
ution

of this path �nishes at return nodes.
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Finally, the whole SimVC for this example of a simulation 
ontext is:

8g

1

1

; i

1

1

; 


1

1

; g

1

2

: 9i

1

2

; 


1

2

: g

1

1

= g

1

2

)

g

1

1

= g

1

2

^ 0 = 0 ^ 8g

2

1

; i

2

1

; 


2

1

; g

2

2

; i

2

2

; 


2

2

: g

2

1

= g

2

2

^ i

2

1

= i

2

2

) 


2

2

= 3)

2 � i

2

1

= 2 � i

2

2

^ 8g

3

1

; g

3

2

: g

3

1

= g

3

2

)

(i

2

1

+ 3 < 24) i

2

2

+ 


2

2

< 24 ^ g

3

1

= g

3

2

^ i

2

1

= i

2

2

) ^

(:(i

2

1

+ 3 < 24)) :(i

2

2

+ 


2

2

< 24) ^ g

3

1

= g

3

2

):

In this example, we have not des
ribed all the details of the a
tual SimVCG

(presented in Se
tion 4.4). The a
tual SimVCG expe
ts the 
ompiler to provide some

more additional information and, for this example of a simulation 
ontext, the a
tual

SimVCG generates a di�erent, but equivalent, SimVC. We next illustrate some more

details and show the a
tual SimVC.

Additional Information for Simulation Veri�
ation-Condition Generator

We next dis
uss some additional information that the SimVCG requires the 
ompiler

to generate and we show how the SimVCG uses that information to generate the

SimVC. We present two extensions to the SimVCG presented so far, and we also

des
ribe the a
tions for the SimVCG in more detail.

The �rst extension to the presented SimVCG regards generating related symboli


states for the two pro
edures. In the example, we have used the simulation invariant

3

1

,3

2

:sim-inv g

1

= g

2

^ i

1

= i

2

that asserts that the values of g

1

and i

1

are the

same as the values of g

2

and i

2

, respe
tively. In general, simulation invariants mostly

assert that the variables from one program have the same values as the 
orresponding

variables from the other program. Instead of using two di�erent fresh logi
 variables,

say x

1

and x

2

, for those two program variables, the a
tual SimVCG uses the same logi


variable for both program variables in their respe
tive symboli
 states. That way the

SimVCG does not need to generate x

1

= x

2

) : : : in the SimVC. Additionally, when

substituting the program variables in the invariants with the logi
 expressions, the

SimVCG 
he
ks (synta
ti
) equality of the logi
 expressions, and does not generate

them if they are equal. These 
hanges result in a mu
h shorter SimVC. (We present

all the details of related symboli
 states in Se
tion 4.4.)

The se
ond extension to the presented SimVCG regards the existentially quanti�ed

logi
 variables representing lo
al variables of p

1

. We �rst explain why the SimVCG

does not universally quantify those variables. Re
all �rst that the StdVCG starts the

symboli
 exe
ution with a fresh symboli
 state, whi
h maps all program variables to

fresh logi
 variables, and that the StdVCG universally quanti�es all those logi
 vari-

ables in the resulting StdVC. The SimVCG similarly starts the symboli
 exe
utions

with fresh symboli
 states for both pro
edures. The state for p

1

maps variables from

program 1 to fresh logi
 variables, and the state for p

2

maps variables from program 2

to fresh logi
 variables. However, the SimVCG does not universally quantify all these

variables in the SimVC. The reason is that, in general, the resulting SimVC would

not hold and thus would not be provable, although p

1

simulates p

2

. The problem is

that uninitialized lo
al variables lead to the non-determinism in the following sense:
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di�erent exe
utions of a program may generate di�erent results for the same input,

where we regard as program input only the values of the global variables (and the

pro
edure parameters) at the start of the exe
ution.

7

Consider, for instan
e, two identi
al pro
edures without parameters that only set

global variable g to the value of (uninitialized) lo
al variable l and return. We would

like to have a framework in whi
h we 
an prove that one of those pro
edures simulates

the other. (Although the equivalen
e of two programs is unde
idable in general, we

want at least to be able to prove that two identi
al pro
edures are equivalent, no

matter what they do!) If we used a SimVCG that universally quanti�es over all

logi
 variables, we would obtain as SimVC (for the 
ontext stating that g

1

is the

same as g

2

at the end of the pro
edures) 8l

1

1

; l

1

2

: l

1

1

= l

1

2

, whi
h 
learly does not hold.

Therefore, we require that the SimVC be universally quanti�ed over all logi
 variables

representing possible inputs to the pro
edures (i.e., global variables and parameters).

But, for lo
al variables, we require only that for all possible initial values of the lo
al

variables of p

1

, there exist some initial values of the lo
al variables of p

2

su
h that

the SimVC holds. In the 
ase of the fg = l;retg pro
edures, it gives 8l

1

1

: 9l

1

2

: l

1

1

= l

1

2

,

whi
h 
learly holds.

The a
tual SimVCG requires the 
ompiler to provide the initial expressions for

the lo
al variables of p

2

. These expressions are usually just equalities of the lo
al

variables of p

2

with the 
orresponding lo
al variables in p

1

. (We present all the details

in Se
tion 4.4.) In the initial symboli
 state for p

2

, the SimVCG then maps the lo
al

variables of p

2

to the expressions provided by the 
ompiler. Therefore, the SimVCG

does not introdu
e fresh logi
 variables for the initial values of the lo
al variables of

p

2

, and the generated SimVC has no existential quanti�
ation. This makes it easier

for the proof generator to prove the SimVC.

The a
tual SimVCG, whi
h uses related symboli
 states and logi
 expressions for

the initial values of lo
al variables of p

2

, generates, for the previous example of a

simulation 
ontext, the following SimVC:

8

8g

1

1

; i

1

1

; 


1

1

: true)

true ^ 8g

2

; i

2

; 


2

1

; 


1

2

: true) 


1

2

= 3)

true ^ 8g

3

: true)

(i

2

+ 3 < 24) i

2

+ 


1

2

< 24 ^ true) ^

(:(i

2

+ 3 < 24)) :(i

2

+ 


1

2

< 24) ^ true):

We next des
ribe the a
tions for the SimVCG in more detail. We �rst explain why

the 
ompiler generates a
tions. As mentioned, the 
ompiler uses a sequen
e of a
tions

to guide the SimVCG in performing the symboli
 exe
utions of pro
edures. This is

di�erent from the StdVCG, whi
h has a �xed stru
ture in its symboli
 exe
ution.

7

Sin
e the programs have no non-deterministi
 
onstru
ts, the result of an exe
ution is determined

by the state of the (whole) memory in whi
h the program starts the exe
utions. But, 
onsidering

as program input also the values of the uninitialized lo
al variables would disallow many 
ompiler

transformations, e.g., the 
ompiler 
ould not add temporary variables.

8

In pra
ti
e, the SimVCG does not even generate \true" in \true ) F", \true ^ F", or

\F ^ true".
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Namely, the StdVCG starts the exe
ution from the beginning of the pro
edure, and

the exe
ution pro
eeds sequentially until one of the following is rea
hed: a bran
h

node, a standard invariant, a 
all node, or a return node. At bran
h nodes, the

exe
ution splits into two paths and ea
h of them follows the same algorithm. When

a standard invariant is rea
hed, depending on whether it is the �rst time it is rea
hed

or not, the exe
ution either pro
eeds from the next node or �nishes. When a 
all

node is rea
hed, a standard 
ontext is used for generating a part of StdVC, and the

exe
ution always 
ontinues from the next node. Finally, the exe
ution always �nishes

at a return node.

The SimVCG di�ers from the StdVCG in that the SimVCG exe
utes two pro
e-

dures, and has to interleave the symboli
 exe
utions of the nodes from those pro
e-

dures. It is possible to use a �xed stru
ture for this interleaving; in parti
ular, the

SimVCG 
ould follow the general strategy that we des
ribed in the example: �rst

exe
ute p

1

until a \swit
h" node, then exe
ute p

2

until the 
orresponding node, and

then exe
ute two nodes simultaneously. However, there are pairs of pro
edures for

whi
h following this �xed stru
ture would generate unne
essarily long SimVCs. We

therefore allow the 
ompiler to des
ribe an arbitrary interleaving. Note that it is not

ne
essary that the 
ompiler itself generate all the steps des
ribing the interleaving.

The 
ompiler 
an generate only the set of simulation invariants and potentially some

guidelines for the interleaving, and a di�erent module, following those guidelines, 
an

generate the full sequen
e of the interleaving steps.

We next present the a
tions that the SimVCG performs while generating the

SimVC in our example of a simulation 
ontext. We represent the a
tions in the

following way: ex

1

and ex

2

instru
t the SimVCG to exe
ute nodes from p

1

and p

2

,

respe
tively; ex-b instru
ts the SimVCG to exe
ute nodes from both pro
edures;

and an

2

instru
ts the SimVCG to in
lude the results of the analysis of p

2

. The full

sequen
e of a
tions is:

ex

1

; ex

1

; ex

2

; ex

2

; ex-b; an

2

; ex

1

; ex

2

; ex-b; ex

1

; ex

1

; ex

2

; ex

2

T; ex-b; ex

2

; ex

2

F; ex-b:

Re
all that the SimVCG splits the exe
ution of p

1

at bran
h nodes. In this example,

the last ex

1

a
tion in the sequen
e instru
ts the SimVCG to exe
ute a bran
h node.

The next three a
tions in the sequen
e|ex

2

; ex

2

T; ex-b|
orrespond to one path of

the exe
ution, and the last three a
tions|ex

2

; ex

2

F; ex-b|
orrespond to another

path. We 
an therefore represent the sequen
e of a
tions as an a
tion tree:

ex

2

; ex

2

F; ex-b

ex

1

; ex

1

; ex

2

; ex

2

; ex-b; an

2

; ex

1

; ex

2

; ex-b; ex

1

; ex

1

ex

2

; ex

2

T; ex-b

�

�

The a
tion tree des
ribes the interleaving of the symboli
 exe
utions of p

1

and p

2

.

Note that we 
an make an a
tion tree from a sequen
e of a
tions by knowing the 
ow

graphs of the pro
edures and the pla
ement of simulation invariants. We use a
tions

trees in the presentation of the a
tual SimVCG in Se
tion 4.4.
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Chapter 4

Basi
 Framework

In this 
hapter we des
ribe a formal framework for 
redible 
ompilation. We �rst

de�ne a language for whi
h we build the basi
 framework. For 
larity of presentation,

we use a simple language that we 
all the basi
 language (BL). In Chapter 6 we

des
ribe some extensions to BL and how to handle them in the framework. We also

present some limitations of the 
urrent 
redible 
ompilation framework.

We �rst de�ne the syntax and semanti
s of BL in Se
tion 4.1. We next de�ne

syntax and semanti
s of the logi
 formulas for 
redible 
ompilation in Se
tion 4.2.

The logi
 that we use is a �rst-order predi
ate logi
 with simple integer variables

and an extension for referring to program variables within the formulas. The logi


formulas are used for two purposes: for representing the (standard and simulation)

invariants and for representing the veri�
ation 
onditions.

In Se
tion 4.3 we des
ribe the standard 
ontexts in detail and formally de�ne when

the standard 
ontexts hold for some program. We also present how the standard

veri�
ation-
ondition generator uses the standard 
ontexts to generate the standard

veri�
ation 
ondition. In Se
tion 4.4 we des
ribe the simulation 
ontexts in detail and

formally de�ne when one BL program simulates another. We also present how the

simulation veri�
ation-
ondition generator uses the simulation 
ontexts to generate

the simulation veri�
ation 
ondition.

The notation that we use for the meta-language mostly follows the notation from

the unpublished textbook used in the MIT Programming Languages 
ourse [46℄. In-

stead of using the juxtaposition fs to denote the appli
ation of a fun
tion f to an

element s, we use the more traditional notation f(s). We will also use 
ommon in-

�x notation for standard binary fun
tions. We explain other abbreviations as we

introdu
e them.

4.1 Basi
 Language

In this se
tion we �rst de�ne the syntax of BL and then its formal operational se-

manti
s. We make a number of simpli�
ations in designing BL; we present some

alternatives later in the text.

BL is a toy imperative language that des
ribes a 
ompiler intermediate represen-
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tation based on 
ontrol 
ow graphs. BL 
an be regarded as a small subset of the

C programming language [26℄. However, BL is not a high-level language for writing

sour
e programs. We dis
uss 
redible 
ompiler translations, in parti
ular translation

from a sour
e language to an intermediate representation, in Se
tion 6.3. BL is not

a low-level language, either. More spe
i�
ally, variables have symboli
 names, and

programs do not operate only with registers and memory as in an assembly language.

(In Se
tion 6.1.1 we show how to model registers with variables with spe
ial names

and memory a

esses with pointer a

esses.)

4.1.1 BL Syntax

Figure 4-1 shows the abstra
t syntax of BL. The main synta
ti
 elements are pro-

grams, pro
edures, nodes, and expressions. Ea
h program Q 
onsists of a sequen
e of

de
larations of global variables and a sequen
e of pro
edures. Ea
h pro
edure P 
on-

sists of a sequen
e of formal parameters, a sequen
e of de
larations, and a sequen
e

of nodes. In the abstra
t grammar we use x

�

to denote a possibly empty sequen
e

and x

+

to denote a sequen
e with at least one element. In the 
on
rete grammar we

use \;" or \," for sequen
ing. Thus, a more 
on
rete way to des
ribe a pro
edure is:

P � pro
 I(I

1

, : : : ,I

n

) D

1

; : : : ;D

m

fN

1

; : : : ;N

k

g:
We use \�" to denote synta
ti


equality.

Ea
h node N has a unique label L for identi�
ation. There are four groups of

nodes, and their informal semanti
s is the following:

� An assignment node I=E evaluates the expression E, assigns its value to I, and

the exe
ution 
ontinues at the next node.

� A bran
h node br(E)L

0

evaluates the expression E and if it is true, the exe
u-

tion 
ontinues at the node with label L

0

; otherwise, the exe
ution 
ontinues at

the next node.

� A return node ret �nishes the exe
ution of the 
urrent pro
edure and the

exe
ution 
ontinues in the pro
edure that 
alled this pro
edure; if there is no

su
h pro
edure, then the program terminates.

� A 
all node I(E

1

, : : : ,E

n

) evaluates the expressions E

1

to E

n

, passes their

values as a
tual parameters to pro
edure I, and the exe
ution 
ontinues at the

�rst node of pro
edure I.

Expressions are 
onstru
ted from variables, integer and boolean 
onstants, and

operators. We use expressions without side e�e
ts to simplify the presentation. Thus,

pro
edure 
alls are not expressions, but statements; pro
edures do not return a result,

but they 
an 
hange the global variables. We 
onsider expressions with side e�e
ts

in Se
tion 6.1.4. De
larations of BL program variables have no types. We assume

that programs operate on integers. We adopt the C 
onvention for boolean values: a

non-zero integer represents true, and zero is false. We present some extensions to the

language in Se
tion 6.1.
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Synta
ti
 Domains :

Q 2 Program

P 2 Pro
edure

D 2 De
laration

N 2 Node

L 2 Label

E 2 Expression

I 2 Identi�er

U 2 Unary-operator = f!; -g

O 2 Binary-operator = f+; -; *; /; %g [ f==; !=; >; <; >=; <=g [ f&&; ||g

B 2 Boolean-literal = fTRUE; FALSEg

Z 2 Integer-literal = f: : : ; -2; -1; 0; 1; 2; : : :g

Produ
tion Rules :

E � Z [Integer Literal℄

j B [Boolean Literal℄

j I [Variable Referen
e℄

j E

1

O E

2

[Binary Operator℄

j U E

1

[Unary Operator℄

L � I [Textual Label℄

j Z [Numeri
al Label℄

N � L:I=E [Assignment Node℄

j L:br(E)L

0

[Bran
h Node℄

j L:ret [Return Node℄

j L:I(E

�

) [Call Node℄

D � I [Impli
it Size℄

P � pro
 I(I

�

) D

�

fN

+

g [Pro
edure℄

Q � prog D

�

P

+

[Program℄

Figure 4-1: Abstra
t Syntax of BL
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We introdu
e some additional notation and des
ribe semanti
 
he
ks for BL pro-

grams. We write P 2 Q to denote that pro
edure P is in program Q and N 2 P

to denote that node N is in pro
edure P . We write P (L) for the node with label L

in pro
edure P . We require that target labels of all bran
hes in P be labels of some

nodes in P . For a node with label L in pro
edure P , the label of the next node is

denoted L +

P

1. This is the label of the node following L in the stati
 sequen
e of

nodes, not ne
essarily in the exe
ution. There is exa
tly one next node for ea
h node

ex
ept the last node. We require that the last node be a return node. We write the

label of the starting node of pro
edure P as start-label(P ) or P

0

.

Ea
h pro
edure P � pro
 I(I

�

) D

�

fN

+

g has three sets of variables in the s
ope;

we denote these sets as: lo
als(P ) for the lo
al variables of P (variables in D

�

),

params(P ) for the parameters of P (variables I

�

), and globals(P ) (or globals(Q)) for

the global variables of the program Q that 
ontains P . We require that params(P )\

lo
als(P ) = fg. We use vars(P ) = params(P )[lo
als(P )[globals(P ) for the set of all

variables in the s
ope of P . Therefore, lo
als(P )[params(P ) is a set of all non-global

variables of P and vars(P ) � lo
als(P ) is a set of all non-lo
al variables of P . We

require that all variables used in a pro
edure/program be de
lared. Also, we require

that pro
edures in all 
all nodes be pro
edure (not variable) identi�ers and that the

number of a
tual parameters be the same as the number of formal parameters.

4.1.2 BL Semanti
s

In this se
tion we present the formal semanti
s of BL. We use a stru
tured operational

semanti
s whi
h is formally a �ve-tuple hC;!;F ; I;Oi. C is a set of 
on�gurations

that represent the state of a ma
hine exe
uting a BL program. ! is a relation

des
ribing transitions between 
on�gurations. F is a set of �nal 
on�gurations in

whi
h a program 
an �nish its exe
ution. I is an input fun
tion that maps a program

and its input data to an initial 
on�guration. O is an output fun
tion that maps a

�nal 
on�guration to a program's output.

Before we de�ne C, we introdu
e some additional domains:

V 2 Value = Integer-literal

Address = Integer-literal

m 2Memory = Address! Value

p 2 Allo
-Pointer = Address

One-Environment = Identi�er* Address

a 2 Environment = One-Environment�One-Environment

h 2 History = (Label� Pro
edure � Environment)

�

:

The Value domain represents the values to whi
h BL expressions 
an evaluate; BL

programs operate on integers. The values of program variables are stored in a mem-

ory. Memory lo
ations have addresses from the domain Address. The Allo
-Pointer

domain represents the values of the (sta
k) pointer used for memory allo
ation. The

domain Memory 
ontains fun
tions that map addresses to values stored at those ad-

dresses. The domain One-Environment 
ontains fun
tions that map variable names

41



to the memory addresses where values of those variables are stored. We use a pair of

environments to represent separately the environments for global and lo
al variables.

We will use supers
ripts g and l to refer to the global and lo
al parts; for example,

a

g

denotes the �rst 
omponent of pair a, and a

l

denotes the se
ond 
omponent.

Elements of the History domain basi
ally represent (
ontrol) sta
ks. They are

sequen
es of triples. Ea
h triple 
onsists of the information ne
essary to resume the

exe
ution after a pro
edure 
all returns: the label of the next node to be exe
uted

after the return, the pro
edure in whi
h that node is, and the environment for that

pro
edure. Data sta
ks, namely the values of the lo
al variables and pro
edure pa-

rameters, are stored in memory.

We next de�ne 
on�gurations of BL operational semanti
s. They are six-tuples


onsisting of the label of the node to exe
ute, the 
urrent state of the memory, the

environment for the 
urrent s
ope, the value of the sta
k pointer, the history of

pro
edure 
alls, and the 
urrent pro
edure:

C = Label�Memory� Environment� Allo
-Pointer� History� Pro
edure:

To be even more pre
ise, we should in
lude in the 
on�gurations the program that is

exe
uting. However, the program does not 
hange during the exe
ution, and we omit

it. Also, during the exe
ution of a �xed pro
edure a
tivation, the sta
k pointer, the

history, and the pro
edure do not 
hange

1

ex
ept at 
all sites, and we abbreviate the


on�gurations to triples hL;m; ai.

We next explain the sta
k allo
ation in BL. The basi
 fun
tion that allo
ates spa
e

for a lo
al variable I is:

allo


l

(hm; a; pi; I) = hm; ha

g

; a

l

[I 7! p℄i; p+ 1i:

This fun
tion only extends the lo
al environment and in
rements the sta
k pointer;

the memory remains the same. To initialize the value of the lo
al variable we addi-

tionally 
hange the memory lo
ation:

allo
-init

l

(hm; a; pi; I; Z) = hm[p 7! Z℄; ha

g

; a

l

[I 7! p℄i; p+ 1i:

We also de�ne an analogous fun
tion for initializing a global variable:

allo
-init

g

(hm; a; pi; I; Z) = hm[p 7! Z℄; ha

g

[I 7! p℄; a

l

i; p+ 1i:

We will use these fun
tions for sequen
es of variables (and their initial values when

appropriate). In parti
ular, fun
tion allo
-lo
als is a map of allo


l

over a sequen
e I

�

:

allo
-lo
als(hm; a; pi; [ ℄) = hm; a; pi

allo
-lo
als(hm; a; pi; I:I

�

) = allo
-lo
als(allo


l

(hm; a; pi; I); I

�

):

Similarly, allo
-params(hm; a; pi; I

�

; Z

�

) and allo
-params(hm; a; pi; I

�

; Z

�

) are maps

1

Environment a also does not 
hange, but it is used for evaluating expressions.
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of allo
-init

l

and allo
-init

g

, respe
tively.

The sta
k deallo
ation in BL does not 
hange the sta
k pointer; the fun
tions that

deallo
ate spa
e simply return their input p:

deallo
-lo
als(p;D

�

) = p

deallo
-params(p; I

�

) = p:

We explain later why we do not de
rease the value of p.

We next present how a program starts and �nishes its exe
ution. We also present

what is input and output data for a program. To start a program exe
ution, we need

to give two sequen
es of values: one for the global variables of the program and one

for the a
tual parameters of the starting pro
edure. The input fun
tion I maps a

program and two sequen
es to an initial 
on�guration:

I(Q;Z

�

g

; Z

�

p

) =

mat
hing Q� prog D

�

P

+

[℄

let hm

s

; p

s

i be random-memory() in

let a

s

be empty-environment() in

let hm

g

; a

g

; p

g

i be allo
-globals(hm

s

; a

s

; p

s

i; D

�

; Z

�

g

) in

let P be head(P

+

) in

mat
hing P � pro
 I(I

�

) D

�

fN

+

g [℄

let hm

p

; a

p

; p

p

i be allo
-params(hm

g

; a

g

; p

g

i; I

�

; Z

�

p

) in

let hm; a; pi be allo
-lo
als(hm

g

; a

g

; p

g

i; D

�

) in

hP

0

; m; a; p; [ ℄; P i

endmat
hing

endmat
hing:

The initial state of the memory, before the exe
ution starts, is 
ompletely arbitrary,

and the environment is empty. The fun
tion allo
-globals �rst 
reates an environment

for the global variables and initializes the memory lo
ations for those variables. Next,

the starting pro
edure P of the program is obtained. Spa
e for the parameters of P

is allo
ated in memory, and those lo
ations are initialized to the input values. Spa
e

is also allo
ated for the lo
al variables of P , but those lo
ations are not initialized.

Exe
ution starts with the �rst node in P and an empty history.

The program �nishes its exe
ution when the starting pro
edure gets to the return

node. At that point, the history is empty. The output of the program is only the

sequen
e of values of its global variables, not the state of the whole memory:

F = fhL;m; a; p; [ ℄; P ijP (L) � L:retg

O(hL;m; a; p; [ ℄; P i; Q) =mat
hing Q� prog D

�

P

+

[℄

extra
t-output(m; ha

g

; empty-environment()i; D

�

)

endmat
hing;

where

extra
t-output(m; a; [ ℄) = [ ℄

extra
t-output(m; a; I:I

�

) = m(a(I)):extra
t-output(m; a; I

�

):
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The value of variable I in memory m and environment a is denoted m(a(I)). We

use a(I) to denote the address of the variable I in the environment a: if I is in the

domain of a

l

, then a(I) = a

l

(I); otherwise, a(I) = a

g

(I).

We use notation m(a(E)) to denote the value of expression E in memory m and

environment a. Figure 4-2 de�nes the value of BL expressions. The de�nition uses

the helper fun
tion 
al
-value. This fun
tion takes a synta
ti
 representation of the

operator and operands, and returns an integer literal whi
h is the result of applying

that operator to those operands. The operations give the same results as in C, ex
ept

for division and modulo operations. We de�ne that they evaluate to 0 if their se
ond

operand is 0. This way expression evaluation 
annot end up in an error state. We

dis
uss the absen
e of error states after presenting 
ompletely the semanti
s of BL

programs.

m(a(Z)) = Z

m(a(TRUE)) = 1

m(a(FALSE)) = 0

m(a(E

1

O E

2

)) = 
al
-value(O;m(a(E

1

)); m(a(E

2

)))

m(a(U E)) = 
al
-value(U;m(a(E)))

Figure 4-2: BL Expression Evaluation

Figure 4-3 de�nes the rewrite rules for BL. We present a high-level operational

semanti
s [4℄, without spe
ifying the details of expression evaluation

2

on a ma
hine

that is exe
uting the programs. Instead, in ea
h step the ma
hine evaluates all the

expressions o

urring in the 
urrent node and makes a transition to the next node.

The rule for I=E evaluates the expression, updates the memory, and the exe
u-

tion 
ontinues at the next node. The rules for br(E)L

0

evaluate the 
ondition, and

depending on its truth value, the exe
ution 
ontinues at the next node or the node

with label L

0

. The exe
ution of I(E

�

) �rst evaluates the values of parameters. Next,

it allo
ates spa
e in memory for the parameters and initializes them with the values.

Finally, it allo
ates spa
e for lo
al variables of I and the exe
ution 
ontinues from

the �rst node of I. The rule for ret deallo
ates the spa
e for lo
al variables and

parameters, and the exe
ution 
ontinues in the 
aller, at the node after the 
all.

We now dis
uss the sta
k deallo
ation. We use deallo
ate fun
tions that do not


hange the sta
k pointer p; they simply return p

0

that has the same value as p. This

may look surprising, sin
e the expe
ted behavior would be that the deallo
ate fun
-

tions de
rease p (opposite of the allo
ate fun
tions). We do not 
hange p be
ause we

model lo
al variables that have arbitrary initial values for every 
all. If we de
reased

p, the initial values of lo
al variables would be the �nal values of lo
al variables in pre-

vious 
alls. We want to eliminate su
h dependen
ies in the language for two reasons:

they do not formalize properly the intuitive notion of uninitialized lo
al variables and

they make 
ompiler transformations more diÆ
ult.

2

This is easy to do be
ause expressions have no side e�e
ts.
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hL;m; a; p; h; P i ! hL+

P

1; m[V 7! V

0

℄; a; p; h; P i
[assign℄

where P (L) � L:I=E

and V � a(I) and V

0

� m(a(E))

hL;m; a; p; h; P i ! hL

0

; m; a; p; h; P i
[bran
h-true℄

where P (L) � L:br(E)L

0

and m(a(E)) 6� 0

hL;m; a; p; h; P i ! hL+

P

1; m; a; p; h; P i
[bran
h-false℄

where P (L) � L:br(E)L

0

and m(a(E)) � 0

hL;m; a; p; h; P i ! hstart-label(P

0

); m

0

; a

0

; p

0

; hL+

P

1; P; ai:h; P

0

i

[
all℄

where P (L) � L:I(E

�

)

and P

0

� pro
 I(I

�

) D

�

fN

+

g

and V

�

� m(a(E

�

))

and hm

0

; a

0

; p

0

i = allo
-lo
als(allo
-params(hm; a; pi; I

�

; V

�

); D

�

)

hL;m; a; p; hL

0

; P

0

; a

0

i:h; P i ! hL

0

; m; a

0

; p

0

; h; P

0

i
[return℄

where P (L) � L:ret

and P � pro
 I(I

�

) D

�

fN

+

g

and p

0

= deallo
-params(deallo
-lo
als(p;D

�

); I

�

)

Figure 4-3: BL Operational Semanti
s Rewrite Rules
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We allow programs that read uninitialized lo
al variables.

3

However, su
h a pro-

gram 
an generate di�erent results in di�erent exe
utions, depending on the state

of the memory at the beginning of the exe
ution. As we pointed out, the exe
ution

starts with a 
ompletely arbitrary memory. That is why we 
all BL programs almost

deterministi
|the output is determined uniquely by the input and the initial state

of the memory, but that state is arbitrary. For example, 
onsider a simple program

that has only one global variable and only one parameterless pro
edure. Further, let

the pro
edure set the global variable to an unknown value of a lo
al variable. This

program 
an generate any output, no matter what the value of the global variable at

the beginning is.

We next argue that not de
reasing the sta
k pointer p in the deallo
ate fun
tions

does not a�e
t \well-behaved" programs. We 
all a program \well-behaved" if it

does not read uninitialized variables, and its output is therefore determined solely

by its input. Consider the exe
ution of BL programs on a realisti
 ma
hine that

would de
rease p on a return from a 
allee. The exe
ution of a BL program on su
h

ma
hine would generate one of the results that the exe
utions of the same program


an generate on a ma
hine that does not de
rease p. If a program 
an generate only

one result (for a given input) on a ma
hine that does not de
rease p, then the program

generates the same result on the ma
hine that de
reases p. Therefore, not de
reasing

p does not a�e
t the result of the \well-behaved" programs as they 
an generate only

one result.

For the original programs that are not \well-behaved" and read uninitialized vari-

ables, we 
ould de�ne the result to be \unde�ned." We 
ould then allow the 
ompiler

to generate any transformed program; however, we do not do that. We require, in-

stead, the 
ompiler to generate a transformed program that 
an generate only the

results that the original program 
an generate. We present details later in the text.

Finally, we point out that BL semanti
s has no error states. There are no stu
k


on�gurations: ea
h 
on�guration is either �nal and the exe
ution �nishes, or the

exe
ution 
an make a transition from the 
on�guration to its su

essor. BL programs

thus either generate a regular output or do not terminate. This is a simpli�
ation

that we make in the basi
 framework. We 
onsider extending the semanti
s with error

states in Se
tion 6.1.3.

Partial Exe
utions

We next de�ne partial exe
utions of BL programs and pro
edures using the rewrite

rules for BL. We also de�ne quanti�
ation of partial exe
utions, whi
h we use to

spe
ify the 
ompiler requirements.

De�nition 1 A partial exe
ution of a program Q is a sequen
e of 
on�gurations

hP

0

; m; a; p; [ ℄; P i ! : : :! hL;m

0

; a

0

; p

0

; h; P

0

i su
h that:

� the �rst 
on�guration is the initial 
on�guration for an exe
ution of Q: the 
ur-

rent pro
edure P is the starting pro
edure of Q, the 
urrent label P

0

is the label

3

It is unde
idable in general to 
he
k if a BL program reads an uninitialized lo
al variable.
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of the starting node of P , the history is empty, and m, a, and p are, respe
tively,

the memory, the environment, and the sta
k pointer at the beginning of P ; and

� ea
h su

essor 
on�guration is obtained from the pre
eding 
on�guration by a

rewrite rule.

The 
on�gurations in a partial exe
ution of a program 
an have di�erent 
urrent

pro
edures. The 
urrent pro
edure 
hanges between two 
onse
utive 
on�gurations

when a 
all node or a return node is exe
uted. More pre
isely, a pro
edure 
an 
all

itself, and it is the a
tivation of the pro
edure that 
hanges. Ea
h 
on�guration in a

partial exe
ution of a program belongs to some pro
edure a
tivation. All 
on�gura-

tions that belong to a �xed pro
edure a
tivation form a sequen
e of 
on�gurations,

whi
h is a subsequen
e (not ne
essarily 
onse
utive) of the sequen
e of 
on�gura-

tions for the partial exe
ution of the program. We usually refer to a sequen
e of


on�gurations that belong to a �xed pro
edure a
tivation as a partial exe
ution of a

pro
edure.

De�nition 2 A partial exe
ution of (an a
tivation) of a pro
edure P is a sequen
e

of 
on�gurations hP

0

; m

0

; a; p

0

; h; P i

+

! : : :

+

! hL;m; a; p; h; P i su
h that:

� the �rst 
on�guration 
onsists of the label of the starting node of P , the starting

memory m

0

at the entry of the pro
edure, the environment a for the parti
ular

pro
edure a
tivation, and the sta
k pointer p

0

and the history h at the entry of

the pro
edure; and

� ea
h su

essor 
on�guration is obtained from the pre
eding 
on�guration:

{ if the pre
eding 
on�guration is not a 
all node, the su

essor is obtained

by one rewrite rule, and

{ if the pre
eding 
on�guration is a 
all node, the su

essor is obtained by

several rewrite rules, none of whi
h is a return from a 
on�guration with

history h; and

� all 
on�gurations have the same environment a, history h, and pro
edure P .

We usually refer only to the �rst and the last 
on�guration in a sequen
e representing a

partial exe
ution. Therefore, we denote a partial exe
ution as hP

0

; m

0

; a; p

0

; h; P i

+

9 9 K

hL;m; a; p; h; P i. We next des
ribe another abbreviation that we use.

Pro
edure P 
an 
all other pro
edures during an exe
ution. The environment,

a history, and 
urrent pro
edure temporarily 
hange at a 
all site, but are restored

after the 
alled pro
edure returns. (Therefore, h and P are the same for all 
on�g-

urations in a partial exe
ution of an a
tivation, but h and P 
an be the same even

for di�erent a
tivations.) On the other hand, the memory is not restored, and for

BL programs, the sta
k pointer is also not restored: p is in
reased at 
all sites, but

not de
reased on returns. The expression evaluation, however, does not depend on

the sta
k pointer. Therefore, during the exe
ution of a �xed pro
edure a
tivation, we

47



abbreviate the 
on�gurations hL;m; a; p; h; P i to triples hL;m; ai, and we represent

a partial exe
ution of an a
tivation of a pro
edure P as hP

0

; m

0

; ai

+

9 9 KhL;m; ai.

We next explain quanti�
ation of partial exe
utions. We use the terms \for all

partial exe
utions" and \there exists a partial exe
ution" to spe
ify the 
orre
t-

ness requirements for 
ompiler analyses (Se
tion 4.3.2) and 
ompiler transforma-

tions (Se
tion 4.4.2). We �rst introdu
e quanti�
ation of starting 
on�gurations

hP

0

; m

0

; a; p

0

; h; P i for an a
tivation of a pro
edure P � pro
 I(I

�

) D

�

fN

+

g.

Any p

0

is possible at the beginning of any P . Let p

0

= p

0

� jlo
als(P )j and p

00

=

p

0

� jparams(P )j, i.e., p

0

is the value of the sta
k pointer before the allo
ation of the

lo
al variables of P and p

00

is the value of the sta
k pointer before the allo
ation of

the parameters of P . We say that environment a and history h are possible for p

0

and P if:

� lo
al environment a

l

maps I

�

to addresses from p

00

to p

0

� 1 and a

l

maps D

�

to

addresses from p

0

to p

0

� 1, and

� global environment a

g

is the same for all environments in h = hL

0

; P

0

; a

0

i

�

and

a

g

maps the global variables of the program that P is in to addresses less than

some p

g

, and

� if h = hL

0

; P

0

; a

0

i:h

0

, then there exists some p

00

� p

00

su
h that a

0

and h

0

are

possible for p

00

and P

0

; otherwise if h = [ ℄, then p

g

� p

00

.

Basi
ally, an environment and a history are possible for a pro
edure if they represent

a possible sta
k state.

We de�ne the quanti�
ation of starting 
on�gurations based on memory m

0

:

� \for all starting 
on�gurations of P" means: for all p

0

, and for all a and h

possible for that p

0

, and for all m

0

; and

� \there exists a starting 
on�guration of P" means: for all p

0

, and for all a and

h possible for that p

0

, and for all values of m

0

lo
ations with addresses less than

p

0

(the lo
ations \below" the lo
al variables of P ), there exist some values of

other m

0

lo
ations (the lo
ations for the lo
al variables of P and \above" the

lo
al variables).

Finally, we de�ne the quanti�
ation of partial exe
utions:

� \for all partial exe
utions hP

0

; m

0

; ai

+

9 9 KhL;m; ai" means:

{ for all starting 
on�gurations of P , and

{ for all sequen
es of 
on�gurations from hP

0

; m

0

; ai to hL;m; ai su
h that

ea
h 
on�guration is the su

essor of the pre
eding 
on�guration;

� \there exists a partial exe
ution hP

0

; m

0

; ai

+

9 9 KhL;m; ai" means:

{ there exists a starting 
on�guration of P , and

{ there exists a sequen
e of 
on�gurations from hP

0

; m

0

; ai to hL;m; ai su
h

that ea
h 
on�guration is the su

essor of the pre
eding 
on�guration.
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4.2 Basi
 Logi


This se
tion presents the logi
 for 
redible 
ompilation for the basi
 language (BL)

introdu
ed in the previous se
tion. We use �rst-order predi
ate logi
 with simple

integer variables [4℄. In logi
 formulas, there needs to be a way to refer to the variables

from both the original program and the 
ompiler transformed program. To this end,

we add spe
ial 
onstru
tors to logi
 expressions. We des
ribe in detail the relationship

between the program and logi
 expressions. We �nally de�ne semanti
s of the logi


formulas, and dis
uss brie
y proof rules for those formulas.

4.2.1 Syntax of Logi
 Formulas

Figure 4-4 shows the syntax of the logi
 formulas.

4

We use the meta-variable F for

the elements of the synta
ti
 domain of the logi
 formulas. The formulas 
onsists

of boolean expressions G

b

and logi
al operators 
onne
ting them. The formulas 
an

also be universally or existentially quanti�ed; in the basi
 logi
, only integer logi


variables 
an be quanti�ed.

Boolean expressions are 
onstru
ted from boolean 
onstants, operators that take

either boolean or integer expressions and produ
e boolean expressions, and the integer

to boolean 
onversion fun
tion. i2b(G

i

) 
ould be also written as G

i

6= 0. Integer

expressions are 
onstru
ted from integer 
onstants, integer variables, operators that

produ
e integer results, and the boolean to integer 
onversion fun
tion. b2i(G

b

)

represents the fun
tion that takes a boolean value, and if it is true, returns 1, otherwise

0.

There are two groups of variables in the logi
 formulas: logi
 variables, for whi
h

we use the meta-variable x, and program variables, for whi
h we use the meta-variable

I. We use the integer expression 
onstru
tors H(I) to denote values of program

variables. We introdu
ed these spe
ial 
onstru
tors for two reasons.

First, H(I) 
onstru
tors provide a way to refer, within a logi
 formula, to the

program variables not visible in the lexi
al s
ope of the part of the program en
losing

the formula. For example, 
onsider a program Q that has a global variable named

v and a pro
edure P that itself has a lo
al variable named v. Referring to v within

P a

esses the lo
al variable; there is no way to a

ess the global v. In the formulas

in P , the 
ompiler might also need to refer to the global v. That is the intended

meaning of the 
onstru
tors glob (to denote the global variables) and lo
 (to denote

the lo
al variables).

5

(We also use lo
 to denote the pro
edure parameters. Unless

noted otherwise, we always treat the pro
edure parameters in the same way as the

lo
al variables.) For example, the formula lo
(v) = glob(v) denotes that the lo
al

v has the same value as the global v; depending on the values of the two di�erent

variables (with the same name), the formula 
an be true or false.

4

We use di�erent notation for logi
 expressions (
ommon mathemati
al symbols in a proportional

font) than for program expressions (
ommon programming languages symbols in a �xed-width font).

5

Another way to make a distin
tion between the variables would be to require disjoint sets of

names for the global and lo
al variables.
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Synta
ti
 Domains :

F 2 Formula

G

b

2 Boolean-expression

G

i

2 Integer-expression

H 2 Program-variable = flo
; globg [ flo


1

; glob

1

; lo


2

; glob

2

g

I 2 Identi�er

x 2 Logi
-identi�er

O

a

2 Arithmeti
-operator = f+;�; �; =;%g

O

l

2 Logi
al-operator = f^;_;);,g

O

r

2 Relational-operator = f=; 6=; >;<;�;�g

Z 2 Integer-
onstant = f: : : ;�2;�1; 0; 1; 2; : : :g

Produ
tion Rules :

G

i

� Z [Integer Constant℄

j x [Logi
 Variable℄

j H(I) [Program Variable℄

j G

i

1

O

a

G

i

2

[Arithmeti
 Operator℄

j �G

i

1

[Unary Minus℄

j b2i(G

b

) [Boolean Conversion℄

G

b

� true [Constant True℄

j false [Constant False℄

j G

b

1

O

l

G

b

2

[Logi
al Operator℄

j :G

b

1

[Negation℄

j G

i

1

O

r

G

i

2

[Relational Operator℄

j i2b(G

i

) [Integer Conversion℄

F �G

b

[Boolean Expressions℄

j F

1

O

l

F

2

[Logi
al Operator℄

j :F

0

[Negation℄

j 8x: F

0

[Universal Quanti�
ation℄

j 9x: F

0

[Existential Quanti�
ation℄

Figure 4-4: Abstra
t Syntax of the Logi
 Formulas
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The se
ond reason for introdu
ing H(I) 
onstru
tors is for the formulas that de-

s
ribe a 
orresponden
e between two programs. Su
h a formula refers to the variables

from both programs.

6

We use the 
onstru
tors with indi
es to denote the program

variables: lo


1

and glob

1

for the variables from program 1 and lo


2

and glob

2

for

the variables from program 2. Although the syntax for formulas allows 
ombining


onstru
tors lo
 and glob with lo


1

, glob

1

, lo


2

, and glob

2

, we use those two

groups ex
lusively. There are two groups of formulas: formulas that des
ribe prop-

erties of only one program and formulas that des
ribe 
orresponden
es between two

programs. The formulas from the �rst group 
an 
ontain only the 
onstru
tors lo


and glob without indi
es, and the formulas from the se
ond group 
an 
ontain only

the 
onstru
tors with indi
es.

The majority of the formulas that des
ribe 
orresponden
es between two pro-

grams are 
onjun
tions stating that some variables from one pro
edure/program have

the same values as the 
orresponding variables from the other pro
edure/program.

We introdu
e a spe
ial form for su
h formulas. We use meta-variable J for the

pairs 
onsisting of a logi
 formula and a sequen
e of pairs of program variables:

F,(H

1

(I

1

),H

2

(I

2

))

�

. Su
h a pair represents 
onjun
tion F ^

V

H

1

(I

1

) = H

2

(I

2

),

where

V

ranges over the pairs of variables in the sequen
e. We require that a variable


an appear in only one pair of variables, i.e., in the sequen
e of the �rst 
omponents

H

1

(I

1

)

�

, all the variables have to be di�erent, and in the sequen
e of the se
ond


omponents H

2

(I

2

)

�

, all the variables have to be di�erent. We write var-pairs(J) for

the set of pairs of variables from formula J .

We introdu
e one notational 
onvention for referring to the entities from two

programs Q

1

and Q

2

. We use index

1=2

to mean \1 and 2, respe
tively." For exam-

ple, we say \variables H

1=2

(I

1=2

) from programs Q

1=2

" to mean \variables H

1

(I

1

)

and H

2

(I

2

) from program Q

1

and program Q

2

, respe
tively." We also write only

\variables H

1

(I

1

) and H

2

(I

2

) from programs Q

1

and Q

2

" referring to the respe
tive

entities, without mentioning it expli
itly.

4.2.2 Relationship between Program and Logi
 Expressions

We next des
ribe the relationship between expressions in BL programs and expres-

sions in the logi
 formulas. The program and logi
 expressions have a similar stru
-

ture. The main di�eren
e is in the way of referring to the program variables. In

programs, the variables are referred to simply by their name. In logi
 expressions,

program variables are referred to by using expression 
onstru
tors from H. In logi


expressions, there are also logi
 variables introdu
ed by quanti�
ation of logi
 formu-

las. These variables are referred to simply by their name. Another di�eren
e between

program and logi
 expressions is typing. Whereas program expressions are untyped

(all expressions have integer type), logi
 expressions have types and they 
an be either

integer or boolean.

6

Again, one way to make a distin
tion between the variables would be to require that the two

programs use di�erent names for the variables. Although this might be a

eptable for global and

lo
al variables within one program, it is less a

eptable for variables from two programs.
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We introdu
e fun
tions for translating expressions from program form to logi


form. Figure 4-5 shows the de�nition of the translation fun
tions. These fun
tions

use a symboli
 environment e in translation. The symboli
 environment e is similar

to the environment a used in the operational semanti
s. However, e does not map

variable names to the memory addresses, but to the appropriate logi
 expressions

for those variables. For example, a symboli
 environment for one program maps the

variables in the following way: for ea
h lo
al variable I

l

, e(I

l

) = lo
(I

l

), and for ea
h

global variable I

g

, e(I

g

) = glob(I

g

).

translate(E; e) = to-type(translate-type(E; e); int)

translate-bool(E; e) = to-type(translate-type(E; e); bool)

translate-seq(E:E

�

; e) = translate(E; e):translate-seq(E

�

; e)

translate-seq([ ℄; e) = [ ℄

translate-type(Z; e) = hZ; inti

translate-type(TRUE; e) = htrue; booli

translate-type(FALSE; e) = hfalse; booli

translate-type(I; e) = he(I); inti

translate-type(-E

1

; e) =

let G be to-type(translate-type(E

1

; e); int) in h�G; inti

translate-type(!E

1

; e) =

let G be to-type(translate-type(E

1

; e); bool) in h:G; booli

translate-type(E

1

O E

2

; e) =

let O

x

be translate-op(O) in

let G

1

be to-type(translate-type(E

1

; e); op1-type(O

x

)) in

let G

2

be to-type(translate-type(E

2

; e); op2-type(O

x

)) in

hG

1

O

x

G

2

; ret-type(O

x

)i

to-type(hG; inti; int) = G

to-type(hG; inti; bool) = b2i(G)

to-type(hG; booli; int) = i2b(G)

to-type(hG; booli; bool) = G

Figure 4-5: Fun
tions for Translating Program Expressions to Logi
 Expressions

When translating a program expression, we need to obtain either an integer

logi
 expression or a boolean logi
 expression. The fun
tion translate, given pro-

gram expression E and symboli
 environment e, returns an integer logi
 expres-

sion G

i

representing E. For example, if the variable v is lo
al in the environ-

ment e, then the expression v+1 would be translated to lo
(v) + 1. The fun
tion

translate-bool produ
es a boolean logi
 expression G

b

. In the example, the result

would be translate-bool(v+1; e) = i2b(lo
(v) + 1). Finally, translate-seq is used

for translating a sequen
e of program expressions into a sequen
e of integer logi


expressions.

We next des
ribe substitutions for the de�ned logi
 formulas. The spe
ial 
on-
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stru
tors for program variables do not 
hange the way free and bound variables are

de�ned for the logi
 expressions. In parti
ular, program variables are always free,

whereas logi
 variables follow the standard rules for bound variables. We use the


ommon notation F [G=x℄ to denote the substitution of the expression G for the logi


variable x in formula F . This substitution follows the usual rules of renaming bound

variables. We use F [G=H(I)℄ to denote the substitution of the expression G for the

program variable I in formula F . For example, glob(v) = lo
(v)[0=glob(v)℄ �

0 = lo
(v) and glob(v) = lo
(v)[0=lo
(v)℄ � glob(v) = 0.

We also de�ne a multiple substitution of logi
 expressions for program variables in

a formula. Veri�
ation-
ondition generators symboli
ally exe
ute BL programs and

perform multiple substitutions on invariants to produ
e veri�
ation 
onditions. A

symboli
 exe
ution uses a symboli
 state, whi
h is a mapping from program variables

(a set of H(I)) to logi
 expressions (a set of G

i

). For a symboli
 state s, we denote

by subst(F; s) the logi
 formula obtained by substituting the logi
 expressions from

s for the appropriate program variables in F . For example, if s maps glob(v) to 0,

and lo
(v) to 1, then subst(glob(v) = lo
(v); s) gives 0 = 1.

4.2.3 Semanti
s of Logi
 Formulas

We next de�ne the semanti
s of the logi
 formulas. The semanti
s 
onsists of a set of

semanti
 domains and a set of valuation fun
tions. Figure 4-6 presents the semanti


domains that we use. The basi
 semanti
 domains Int and Bool are the usual integer

numbers and truth values. We use the domain One-Context to represent a pair

of an environment and a memory. These pairs are used to de�ne the meaning of

program variables. As explained, there are two groups of logi
 formulas: formulas

with variables from only one program and formulas with variables from two programs.

For the �rst group, we use a 
ontext that 
onsists of one environment-memory pair,

and for the se
ond group, we use two su
h pairs. The same meta-variable 
 ranges

over both groups of 
ontexts. When we want to spe
ify a 
ontext, we abbreviate

hm; ai to m; a and hhm

1

; a

1

i; hm

2

; a

2

ii to m

1

; a

1

; m

2

; a

2

.

z 2 Int = f: : : ;�2;�1; 0; 1; 2; : : :g

b 2 Bool = ftrue; falseg

One-Context = Memory� Environment


 2 Context = One-Context +One-Context � One-Context

Figure 4-6: Semanti
 Domains for Logi
 Formulas

Figure 4-7 presents the signatures of the valuation fun
tions used in the semanti
s.

Z maps integer 
onstants used in the synta
ti
 representation of the logi
 formulas to

the integer numbers used in the semanti
 domain. The valuation fun
tions O

a

, O

r

,

and O

l

map the synta
ti
 representation of operators to their semanti
 equivalents.

The fun
tions G

i

, G

b

, and F are used for the meaning of the expressions and formulas

in the logi
. We de�ne the meaning only of the expressions and formulas with no free

logi
 variables. (The program variables are always free, and they get their meaning
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from the 
ontext.) We write G

i

[[G

i

℄℄ 
 to denote the value of integer expression G

i

in


ontext 
. Similarly, we write F [[F ℄℄ 
 to denote the value of formula F in 
ontext 
.

We are mostly interested in the valid formulas, and we abbreviate F [[F ℄℄ 
 = true to


 j= F and say that formula F holds in 
ontext 
.

Z : Integer-
onstant! Int

O

a

: Arithmeti
-operator! Int ! Int ! Int

O

r

: Relational-operator! Int ! Int ! Bool

O

l

: Logi
al-operator! Bool ! Bool ! Bool

G

i

: Integer-expression! Context ! Int

G

b

: Boolean-expression! Context ! Bool

F : Formula! Context ! Bool

Figure 4-7: Signatures of the Valuation Fun
tions

Figure 4-8 presents the valuation fun
tions for integer and boolean expressions

and validity of logi
 formulas. These fun
tions de�ne the meaning for all expressions

and formulas with no free logi
 variables. (To obtain total meaning fun
tions, we

assign 0 as the meaning of operations not de�ned on integers, su
h as division by

0.) Bound logi
 variables are substituted with integers, as shown in the meaning of

quanti�ed formulas.

7

Program variables get their meaning from the 
ontext. There

are two groups of 
ontexts and two groups of formulas. Formulas have a meaning

only for the appropriate 
ontexts. Figure 4-8 shows the valuation fun
tions for all

meaningful 
ombinations. If a formula F holds in all meaningful 
ontexts, we write

j= F .

4.2.4 Proof Rules for Logi
 Formulas

We need a set of proof rules for proving the validity of logi
 formulas. We do not

spe
ify the exa
t set of rules, but we assume the existen
e of rules for proving the

formulas of the presented �rst-order predi
ate logi
 with integer variables. This set

in
ludes the standard rules for introdu
tion and elimination of logi
al operators in

the natural dedu
tion style, the re
exivity and the 
ongruen
e rules for the equality,

and a group of rules for integer arithmeti
. We write ` F to denote that formula

F with no free (logi
) variables is provable using those rules. The proof system is

required to be sound, namely for all F , if ` F , then j= F .

4.3 Compiler Analyses

In this se
tion we present the veri�
ation of the results generated by a 
redible 
om-

piler analysis. The 
ompiler expresses the analysis results in the form of standard

7

The substitution is used in a slightly informal way; we would a
tually need to substitute Z, or

use a 
ontext for logi
 formulas, whi
h we want to avoid for simpli
ity of presentation.
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Figure 4-8: Valuation Fun
tions for Expressions and Validity of Formulas
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ontexts. We �rst des
ribe standard 
ontexts and then formally de�ne when they are


orre
t. We �nally present the standard veri�
ation-
ondition generator (StdVCG).

The veri�er for the 
ompiler uses the StdVCG to generate a standard veri�
ation


ondition (StdVC) for a set of standard 
ontexts. To prove that the analysis results

are indeed 
orre
t, the 
ompiler needs to prove that the StdVC holds.

4.3.1 Standard Contexts and Standard Invariants

We next des
ribe the form in whi
h the 
ompiler presents analysis results. To allow

separate 
ompilation of pro
edures, we need support for modularity. It is usually

obtained using pro
edure spe
i�
ations, ea
h of whi
h 
onsists of two formulas: a

pre
ondition formula and a post
ondition formula. A pre
ondition for a pro
edure P

des
ribes what P is allowed to assume at its entry, and a post
ondition for a pro
edure

P des
ribes what P must preserve at its exit. We 
all a formula at the entry of a

pro
edure a standard input 
ontext. It des
ribes the 
ontext in whi
h the pro
edure

is 
alled; we write F

in

for su
h formulas. We 
all a formula at the exit of a pro
edure

a standard output 
ontext. It des
ribes the return 
ontext of the pro
edure; we write

F

out

for su
h formulas. We refer to a pair of a standard input 
ontext and a standard

output 
ontext as a standard 
ontext.

Both groups of formulas F

in

and F

out

represent properties of only one program.

Therefore, they 
an 
ontain only lo
 and glob logi
 expression 
onstru
tors. Further,

the variables that appear in F

in

for pro
edure P 
an be only the global variables of

the program that 
ontains P and the formal parameters of P , i.e., vars(P )�lo
als(P ).

In F

out

, only the global variables of the program, i.e., globals(P ), 
an appear.

The 
ompiler may generate several 
ontexts for the same pro
edure. This allows

the 
ompiler to express the results of 
ontext-sensitive interpro
edural analyses. For

ea
h 
ontext of a pro
edure, the 
ompiler generates a set of standard invariants. A

standard invariant 
onsists of a logi
 formula and a label. The formula represents an

expression that the 
ompiler 
laims to be true whenever the exe
ution rea
hes the

program point represented by the label. There should be at least one invariant in

ea
h loop to ensure that the StdVCG, whi
h symboli
ally exe
utes the pro
edure,

terminates. One way to guarantee this is to pla
e an invariant at every ba
kward

bran
h in the pro
edure. We do not expli
itly require this pla
ement, but we require

that there be enough invariants.

We represent a standard invariant synta
ti
ally as L:inv F ; meta-variable T

ranges over standard invariants. For ea
h 
ontext the 
ompiler generates at least F

in

,

F

out

, and a sequen
e T

�

. These are the analysis results that the 
ompiler needs to

prove. The 
ompiler also needs to generate more information to guide the StdVCG

in generating the StdVC. For ea
h 
ontext, the 
ompiler generates a sequen
e K

�

.

This sequen
e represents the indi
es of the 
allee 
ontexts that the 
ompiler used at

ea
h 
all site in the analysis of the 
urrent 
ontext. We present more details after

introdu
ing some additional notation.
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For pro
edure P for whi
h the 
ompiler generates n 
ontexts, we write:

P � pro
 I(I

�

) D

�

fN

+

g

std-invariants F

in

1

F

out

1

T

�

1

K

�

1

F

in

2

F

out

2

T

�

2

K

�

2

.

.

.

F

in

n

F

out

n

T

�

n

K

�

n

:

We de�ne several fun
tions for standard 
ontexts: 
ontexts(P ) returns the set of


ontext indi
es for pro
edure P (in the general 
ase, it is f1 : : : ng), in-
ontext(P; k)

returns the formula for the input 
ontext k of P (F

in

k

), out-
ontext(P; k) returns the

formula for the output 
ontext k of P (F

out

k

), 
ontext(P; k) returns a pair of input and

output 
ontexts. Also, the fun
tion std-invariant(P; k; L) returns the formula F from

the standard invariant

8

T � L:inv F from 
ontext k of P . (We often use, instead

of pro
edures, pro
edure identi�ers as fun
tion arguments, e.g., 
ontexts(I) returns

a set of 
ontext indi
es for pro
edure named I.)

We next explain why we require the 
ompiler to generate the sequen
e K

�

. Ea
h

K � L:Z 
onsists of the label L of a 
all node L:I(E

�

) from P and an integer

literal Z that represents the index of the 
allee 
ontext for that 
all site. We write


ontext-index(L;K

�

) for the 
ontext index Z of label L in K

�

. The StdVCG uses


ontext(I; Z) at 
all site L to generate the StdVC. In general, the StdVCG 
annot

determine whi
h 
allee 
ontext the 
ompiler used at the 
all site (if the 
ompiler

generated several 
allee 
ontexts). The StdVCG 
ould generate a StdVC that in
ludes

all 
allee 
ontexts (either 
ontext 1 is used, or 
ontext 2, or up to the total number of


allee 
ontexts), but the resulting StdVC would be prohibitively long. Therefore, we

simply require the 
ompiler to generate more additional information whi
h represents

whi
h 
ontext the analysis used at ea
h 
all site.

The 
ompiler may use di�erent 
ontexts of the same 
allee pro
edure at di�erent


all sites. We illustrate this situation using an example. Suppose that the 
ompiler

analyzes some pro
edure p that has two 
alls to another pro
edure q. Suppose that

q has one formal parameter i, and that the a
tual parameter of q is 0 for the �rst


all, and 1 for the se
ond 
all. Additionally, the 
ompiler performs a 
ontext-sensitive

interpro
edural analysis and separately analyzes q for these two input 
ontexts. Fur-

ther, assume that these input 
ontexts have di�erent output 
ontexts. For instan
e,

a global variable g is 3 at the end of an exe
ution of q in the �rst 
ontext, and it is

8 in the se
ond 
ontext. In this example, the 
ompiler would generate two 
ontexts

for pro
edure q: F

in

1

� lo
(i) = 0, F

out

1

� glob(g) = 3, and F

in

2

� lo
(i) = 1,

F

out

2

� glob(g) = 8. In K

�

for p, the 
ompiler would represent that it used the �rst


ontext for the �rst 
all, and the se
ond 
ontext for the se
ond 
all.

The 
ompiler need not perform a 
ontext-sensitive analysis. It 
an perform a


ontext-insensitive analysis and generate only one 
ontext for ea
h pro
edure. For

instan
e, in the previous example of pro
edure q, the 
ompiler 
ould generate the

8

If there are many invariants with the same label, std-invariant returns the 
onjun
tion of all the

formulas.
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following 
ontext: F

in

� lo
(i) = 0 _ lo
(i) = 1 and F

out

� glob(g) = 3 _

glob(g) = 8. K

�

would in this 
ase represent that at both 
all sites the same 
ontext

of q is used. Finally, the 
ompiler need not perform an interpro
edural analysis at

all. It 
an always use for any pro
edure a 
ontext that represents that for all possible

inputs to the pro
edure (F

in

� true), the output 
an be anything (F

out

� true).

This 
orresponds to an intrapro
edural analysis, whi
h (in terms of data
ow analyses)

kills all the information at 
all sites.

4.3.2 Analysis Corre
tness

We next dis
uss the notion of 
orre
t 
ompiler analysis results. Most 
ompiler anal-

yses generate results that satisfy only partial 
orre
tness|a result is guaranteed to

be 
orre
t if the program exe
ution rea
hes the point of the result, but the program

exe
ution is not guaranteed to rea
h that point. Therefore, we require the 
ompiler

to prove that the generated standard invariants are only partially 
orre
t.

Formally, we �rst de�ne when the standard invariants are 
orre
t for a standard


ontext.

De�nition 3 A standard 
ontext k holds for a pro
edure P in a program Q, in no-

tation j= std-invs(k; P;Q), i� for all partial exe
utions hP

0

; m

0

; ai

+

9 9 KhL;m; ai of

P for whi
h m

0

; a j= F

in

k

, the following is satis�ed:

� for all L

0

:inv F from T

�

k

, if L � L

0

, then m; a j= F ; and

� for all L

0

:ret from P , if L � L

0

, then m; a j= F

out

k

.

In other words, if the input 
ontext holds at the beginning of an exe
ution, then

ea
h invariant should hold when the exe
ution rea
hes it and the output 
ontext

should hold when the exe
ution rea
hes a return node. We extend the de�nition to

pro
edures and programs.

De�nition 4 Standard invariants are 
orre
t (hold) for a pro
edure P 2 Q, in nota-

tion j= std-invs(P;Q), i� all 
ontexts k of P hold.

De�nition 5 Standard invariants are 
orre
t (hold) for a program Q, in notation

j= std-invs(Q), i� standard invariants hold for all pro
edures P 2 Q.

The 
ompiler does not prove dire
tly that j= std-invs(Q). Instead, the veri�er

uses the StdVCG to generate the StdVC for the invariants of all 
ontexts of all

pro
edures in program Q. We write F

v


Q

for the logi
 formula representing the StdVC

of program Q. We present a sound StdVCG su
h that the validity of F

v


Q

implies that

the invariants of Q are 
orre
t, i.e., if j= F

v


Q

, then j= std-invs(Q). (We show in

Se
tion 5.1 that the StdVCG is sound.) The 
ompiler generates a proof ` F

v


Q

using

the proof rules from the logi
. By the soundness of the proof rules, if ` F

v


Q

, then

j= F

v


Q

. Therefore, the 
ompiler a
tually proves that the StdVC holds for program

Q, whi
h then implies that all the standard invariants for program Q hold, and the


ompiler analysis results are thus 
orre
t.
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4.3.3 Standard Veri�
ation-Condition Generator

We next present the algorithm for generating standard veri�
ation 
onditions. The

StdVCG generates the StdVC for a program Q and a set of standard 
ontexts for

pro
edures in Q by symboli
ally exe
uting ea
h of those 
ontexts. We �rst explain

how those parts of the StdVC for ea
h 
ontext 
ombine in the whole StdVC. We then

des
ribe the algorithm that 
onsists of two phases: the initial phase and the main

phase.

Figure 4-9 shows the algorithm that generates F

v


k;P;Q

, a part of the StdVC for one


ontext k 2 
ontexts(P ) = f1 : : : ng of pro
edure P 2 Q. The 
onjun
tion of the

veri�
ation 
onditions for all 
ontexts of pro
edure P is the veri�
ation 
ondition for

that pro
edure, and the 
onjun
tion of the veri�
ation 
onditions for all pro
edures

of program Q is the veri�
ation 
ondition for that program:

F

v


P;Q

=

V

k2f1:::ng

F

v


k;P;Q

and F

v


Q

=

V

P2Q

F

v


P;Q

:

The StdVC for a program is the whole F

v


Q

; we also refer to F

v


k;P;Q

as StdVC.

The StdVCG generates F

v


k;P;Q

by symboli
ally exe
uting the 
ontext k of pro
edure

P . We �rst des
ribe the initial phase of the StdVCG, whi
h prepares the pro
edure for

the exe
ution, and then the main phase of the StdVCG, whi
h performs the exe
ution

using the main fun
tion Std.

In the initial phase, the StdVCG �rst uses the helper fun
tion merge-invariants

to merge the invariants T

�

k

into the pro
edure P , generating pro
edure P

0

. The

invariants in T

�

k

have the same labels as nodes in P ; merge-invariants makes the labels

unique and inserts the invariants in front of the appropriate nodes.

9

We assume that

the fun
tion merge-invariants also 
he
ks that there are enough invariants so that

the symboli
 exe
ution terminates.

10

If there are not enough invariants, the results

are marked as in
orre
t. The StdVCG next 
reates a symboli
 environment e for

pro
edure P 2 Q. This environment maps ea
h lo
al variable I

l

of P to the logi


expression lo
(I

l

) and ea
h global variable I

g

of Q to the logi
 expression glob(I

g

).

The StdVCG then 
reates a fresh symboli
 state s

0

that maps all variables from the

environment e to fresh logi
 variables. The sequen
e of all these fresh logi
 variables

is in x

�

, and F

v


k;P;Q

is universally quanti�ed over x

�

.

Standard Veri�
ation-Condition Generator Main Fun
tion

The fun
tion Std performs the symboli
 exe
ution of pro
edure P

0

. This fun
tion

takes three arguments: the label L of the 
urrent node to exe
ute, the symboli
 state

s, and the set i of already (symboli
ally) exe
uted standard invariants.

The exe
ution starts from the �rst node of pro
edure P with a fresh state and

9

The 
hange is done so that the bran
hes to a node in P are now bran
hes to the �rst invariant

in front of that node in P

0

.

10

We use this organization only for an easier explanation of the StdVCG; in pra
ti
e, the 
he
ks

are done during the symboli
 exe
ution. The StdVCG keeps tra
k of the nodes already symboli
ally

exe
uted on ea
h path, and if a node is rea
hed twi
e, there is a loop without invariant.
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P � pro
 I(I

�

) D

�

fN

+

g

std-invariants (F

in

F

out

T

�

K

�

)

�

F

v


k;P;Q

=

let P

0

be merge-invariants(T

�

k

; P ) in

let e be sym-environment(P;Q) in

let hs

0

; x

�

i be fresh-sym-state(e) in

letre
 Std be �L s i:

mat
hing P

0

(L)

� L:I=E [℄

let s

0

be translate-assign(I; E; s; e) in

Std(L+

P

0

1; s

0

; i)

� L:br(E)L

0

[℄

let G be translate-bran
h(E; s; e) in

(G) Std(L

0

; s; i)) ^

(:G) Std(L +

P

0

1; s; i))

� L:ret [℄

subst(F

out

k

; s)

� L:I(E

�

) [℄

let G

�

be translate-
all(E

�

; s; e) in

let k

0

be 
ontext-index(L;K

�

k

) in

let hF

in

; F

out

i be 
ontext(I; k

0

) in

let hs

0

; x

�

i be fresh-globals(s) in

subst(F

in

; set-params(I; G

�

; s)) ^

8x

�

: subst(F

out

; s

0

)) Std(L +

P

0

1; s

0

; i)

� L:inv F [℄

if member-�rst(L; i) then

subst(F; s)

else

let hs

0

; x

�

i be fresh-sym-state(e) in

subst(F; s) ^

8x

�

: subst(F; s

0

)) Std(L+

P

0

1; s

0

; union(hL; s

0

i; i))

�

endmat
hing in

8x

�

: subst(F

in

k

; s

0

)) Std(start-label(P

0

); s

0

; fg)

Figure 4-9: Veri�
ation-Condition Generator for Standard Invariants
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the empty set of invariants. This exe
ution generates a part of F

v


k;P;Q

that 
aptures

the 
orre
tness of all the invariants and the output 
ontext of 
ontext k. Sin
e the

invariants and the output 
ontext are required to be 
orre
t only for the appropriate

input 
ontext, the whole F

v


k;P;Q

is an impli
ation|input 
ontext, substituted in the

initial state, implies the result of the exe
ution starting from that initial state.

We next des
ribe how the algorithm exe
utes ea
h group of nodes. (Figure 4-10

shows the helper fun
tions that the algorithm uses during the exe
ution.)

N1. The exe
ution of an assignment node I=E 
hanges the symboli
 state using the

fun
tion translate-assign. This fun
tion 
hanges only the symboli
 expression

representing the value of variable I; the rest of the state is un
hanged. The

exe
ution pro
eeds from the assignment node to the next node.

N2. The exe
ution of a bran
h node br(E)L

0

�rst translates the bran
h 
ondition

E using the fun
tion translate-bran
h. After that, the exe
ution splits into two

bran
hes generating the appropriate 
ondition on ea
h bran
h.

N3. The exe
ution of a return node ret generates the formula representing the

output 
ontext in the 
urrent state and �nishes this bran
h of the exe
ution.

N4. The exe
ution of a 
all node I(E

�

) is more involved. The StdVCG �rst 
reates

expressions G

�

that symboli
ally represent the values of the a
tual parameters

at the 
all site. These expressions will be repla
ed with the formal parameters

in the 
allee input 
ontext. The StdVCG next de
ides, based on the sequen
e

K

�

k

, whi
h 
allee 
ontext k

0

to use for this 
all. The StdVCG generates the

part of F

v


k;P;Q

that requires the input 
ontext F

in

for 
ontext k

0

of I to hold for

this 
all. This is done using the fun
tion set-params, whi
h extends s with the

mapping from the formal parameters of pro
edure I to the expressions G

�

.

The 
all to pro
edure I 
an 
hange the global variables in an arbitrary way.

Therefore, the StdVCG 
reates a state s

0

in whi
h all global variables from s

are mapped to fresh logi
 variables x

�

, while all lo
al variables from s remain

the same as before the 
all. The StdVCG next generates the part of F

v


k;P;Q

that requires the output 
ontext F

out

for 
ontext k

0

of I to hold in state s

0

.

The symboli
 exe
ution 
ontinues with the state s

0

from the node after the 
all

node.

N5. The exe
ution of a standard invariant L:inv F depends on whether the invari-

ant has been already exe
uted or not.

N5.1. If the label L is in i (more pre
isely, in the �rst 
omponent of one of the

pairs in i), the invariant is rea
hed for the se
ond time during this bran
h

of the exe
ution. The StdVCG substitutes the 
urrent symboli
 state in

the invariant, generates the resulting formula as a part of F

v


k;P;Q

that needs

to be proven, and the exe
ution of this bran
h �nishes.

N5.2. If label L is not in i, then the invariant is rea
hed for the �rst time. The

StdVCG similarly substitutes the 
urrent symboli
 state in the invariant
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and generates the resulting formula as a part of F

v


k;P;Q

that needs to be

proven, but 
ontinues the exe
ution. The exe
ution 
ontinues from the

node after the invariant with a fresh symboli
 state s

0

and the pair hL; s

0

i

added to the set of exe
uted invariants. (For this StdVCG, i 
an be a set

of labels only; we add the states te
hni
ally to prove the soundness of the

StdVCG.) The rest of this exe
ution 
an assume that the invariant holds

in state s

0

.

translate-assign(I; E; s; e) = s[translate(I; e) 7! subst(translate(E; e); s)℄

translate-bran
h(E; s; e) = subst(translate-bool(E; e); s)

translate-
all(E

�

; s; e) = subst-seq(translate-seq(E

�

; e); s)

Figure 4-10: Translation Fun
tions for Veri�
ation-Condition Generators

4.4 Compiler Transformations

In this se
tion we present the veri�
ation of the results generated by a 
redible 
om-

piler transformation. After performing the transformation on an original program,

the 
ompiler generates a transformed program and additional information in the form

of simulation 
ontexts. We �rst des
ribe simulation 
ontexts and then formally de�ne

the simulation of BL programs. We 
all the two programs Q

1

and Q

2

, and we spe
ify

when Q

1

simulates Q

2

. (Depending on the required (bi-)simulation 
orresponden
e,

programsQ

1

andQ

2


an be the transformed and original programs and/or the original

and transformed programs.) We �nally present the simulation veri�
ation-
ondition

generator (SimVCG). The veri�er uses SimVCG to generate a simulation veri�
ation


ondition (StdVC) for a set of simulation 
ontexts. To prove that Q

1

simulates Q

2

,

the 
ompiler needs to prove that the SimVC holds.

4.4.1 Simulation Contexts and Simulation Invariants

We next des
ribe the additional information that the 
ompiler transformation gener-

ates beside the transformed program. Similarly as the 
ompiler generates a standard


ontext to summarize the analysis results for a pro
edure, the 
ompiler generates a

simulation 
ontext to represent a simulation relationship between a pair of pro
edures.

A simulation 
ontext 
onsists of two formulas that we 
all a simulation input 
ontext

and a simulation output 
ontext. Simulation input 
ontexts represent the 
orrespon-

den
e between the states of the two programs at the entries of the two pro
edures.

Simulation output 
ontexts represent the 
orresponden
e between the states of the

two programs at the exits of the two pro
edures.

Both simulation input and output 
ontexts are formulas representing 
orrespon-

den
e between two programs. Therefore, they 
an 
ontain only the indexed 
on-

stru
tors H for a

essing program variables in logi
 expressions (lo


1

, glob

1

, lo


2

,
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glob

2

). We write J

in

and J

out

for the simulation input and output 
ontext, respe
-

tively. (Re
all that we use J for formulas that expli
itly represent pairs of vari-

ables that have the same value.) For pro
edures P

1

and P

2

, only the variables from

globals(P

1

)[ params(P

1

)[ globals(P

2

)[ params(P

2

) 
an appear in J

in

, and only the

variables from globals(P

1

) [ globals(P

2

) 
an appear in J

out

.

The 
ompiler may generate several simulation 
ontexts involving the same pro-


edure or pair of pro
edures. (This allows, for instan
e, the 
ompiler to express the

results of pro
edure spe
ializations.) For ea
h simulation 
ontext, the 
ompiler gen-

erates a set of simulation invariants that represent relationships between the two

programs. A simulation invariant 
onsists of a logi
 formula and two labels, one from

ea
h program. We represent a simulation invariant synta
ti
ally as L

1

,L

2

:sim-inv J ,

where the �rst label L

1

is a label from P

1

and the se
ond label L

2

is a label from P

2

;

meta-variable S ranges over simulation invariants.

The set of simulation invariants S

�

for one simulation 
ontext may 
ontain several

invariants with the same �rst label, e.g., L

1

,L

0

2

:sim-inv J

0

, or the same se
ond label,

e.g., L

0

1

,L

2

:sim-inv J

0

.

11

We denote by set-sim-inv(L

1

; S

�

) the set of the simulation

invariants whose �rst label is L

1

. Informally, a set of simulation invariants for P

1

and

P

2

holds if for all partial exe
utions of P

1

that rea
h label L

1

of one of the invariants

from the set, there exists a partial exe
ution of P

2

that rea
hes label L

2

of one of the

invariants L

1

,L

2

:sim-inv J 2 set-sim-inv(L

1

; S

�

), su
h that formula J holds for the

states of the two pro
edures. We formalize this in Se
tion 4.4.2.

Similar to the pla
ement of standard invariants for the StdVCG, there should be

enough simulation invariants so that the SimVCG 
an exe
ute both pro
edures to

generate the SimVC. These exe
utions require that for ea
h path in P

1

, there exist an

appropriate path in P

2

. Therefore, there should be at least one simulation invariant

in ea
h loop in P

1

. We do not require any parti
ular pla
ement of these invariants.

Additionally, for ea
h path from one invariant to another in P

1

, there should be a

path between the 
orresponding points in P

2

. The pla
ement of these invariants

depends on the 
hange that the transformation performs on the 
ontrol 
ow graph of

the pro
edure.

We have presented so far the formulas J

in

and J

out

and a sequen
e S

�

that the


ompiler needs to generate for ea
h simulation 
ontext. Analogous to the standard


ontexts, the 
ompiler also needs to generate whi
h simulation 
ontexts the SimVCG

should use for 
alls. We represent this as a sequen
e K

�

where ea
h K � L

1

,L

2

:Z


onsists of the labels L

1

and L

2

(of 
all nodes L

1

:I

1

(E

�

1

) from P

1

and L

2

:I

2

(E

�

2

)

from P

2

) and an integer literal Z that represents the simulation 
ontext index for

pro
edures I

1

and I

2

. We write sim-
ontext-index(L

1

; L

2

; K

�

) for the 
ontext index

Z of labels L

1

and L

2

in K

�

. We next present the other additional information that

the veri�er requires the 
ompiler to generate for ea
h simulation 
ontext.

The 
ompiler may use the analysis results to perform the transformation. For

di�erent simulation 
ontexts, the 
ompiler may use di�erent analysis results. The


ompiler represents the analysis results as standard 
ontexts. Sin
e there 
an be

11

In general, there 
an be even many invariants with both labels being the same, e.g.,

L

1

,L

2

:sim-inv J

0

, but they 
an be repla
ed with: L

1

,L

2

:sim-inv J ^ J

0

.

63



many standard 
ontexts, the 
ompiler needs to represent, for ea
h simulation 
ontext,

whi
h standard 
ontexts it uses for the two pro
edures. The 
ompiler represents these


ontexts by their indi
es, as integer literals Z

1

and Z

2

.

The 
ompiler also generates the expressions for the initial values of lo
al vari-

ables of P

2

. The StdVCG and the SimVCG introdu
e fresh logi
 variables during

the symboli
 exe
utions that generate veri�
ation-
ondition formulas. The StdVCG

always universally quanti�es the formulas over the new logi
 variables. We showed in

Se
tion 3.2.1 that the SimVCG needs to existentially quantify over the logi
 variables

that represent the initial values of the variables from lo
als(P

2

). To avoid existential

quanti�
ation in the SimVC, we require the 
ompiler to generate, for ea
h simulation


ontext, a sequen
e of integer logi
 expressions G

�

that represent the initial values

of lo
al variables of P

2

. These expressions 
an 
ontain global variables from both

programs, pro
edure parameters from both pro
edures, and lo
al variables from P

1

.

Usually, the expression for a lo
al variable from P

2

is that the initial value is the same

as the initial value of the 
orresponding lo
al variable from P

1

, or that the initial value


an be anything, e.g., the 
onstant 0.

Finally, the 
ompiler generates, for ea
h 
ontext, a sequen
e of a
tions A

�

to

guide the SimVCG in generating the SimVC. We present the a
tions in detail later

in the text. In summary, for pro
edures P

1

and P

2

for whi
h the 
ompiler generates

n simulation 
ontexts, we write:

P

1

� pro
 I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro
 I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants J

in

1

J

out

1

S

�

1

K

�

1

Z

1

1

Z

2

1

G

�

1

A

�

1

J

in

2

J

out

2

S

�

2

K

�

2

Z

1

2

Z

2

2

G

�

2

A

�

2

.

.

.

J

in

n

J

out

n

S

�

n

K

�

n

Z

1

n

Z

2

n

G

�

n

A

�

n

:

We de�ne several fun
tions for simulation 
ontexts: sim-
ontexts(P

1

; P

2

) returns a

set of simulation 
ontext indi
es for pro
edures P

1

and P

2

(in the general 
ase,

it is f1 : : : ng), sim-in-
ontext(P

1

; P

2

; k) returns the formula for the simulation in-

put 
ontext k of pro
edures P

1

and P

2

(J

in

k

), sim-out-
ontext(P

1

; P

2

; k) returns the

formula for the simulation output 
ontext k of pro
edures P

1

and P

2

(J

out

k

), and

sim-
ontext(P

1

; P

2

; k) returns a pair of simulation input and output 
ontexts.

4.4.2 Transformation Corre
tness

We dis
ussed the notion of 
orre
t 
ompiler transformations in Se
tion 2.1. We require

the 
ompiler to generate a transformed program that simulates the original program.

This means that the transformed program is Q

1

, and the original program is Q

2

.

Informally, Q

1

simulates Q

2

if Q

1


an generate only the results that Q

2


an generate.

The result of a BL program exe
ution is the values of the global variables at the end

of the starting pro
edure. Therefore, we require the two programs to have the same

number of global variables, and we additionally require 
orresponding global variables

to have the same name.
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We next de�ne formally when one BL program simulates another. We �rst de�ne

the notion of simulation for a simulation 
ontext.

De�nition 6 A pro
edure P

1

2 Q

1

simulates a pro
edure P

2

2 Q

2

for a simulation


ontext k, in notation P

1

; Q

1

�

k

P

2

; Q

2

, i� for all partial exe
utions hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i of P

1

, there exists a partial exe
ution

12

hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

su
h that if m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the following is satis�ed:

� for all L

0

1

,L

0

2

:sim-inv J

0

from S

�

k

, if L

1

� L

0

1

, then there exists L

1

,L

00

2

:sim-inv J

from set-sim-inv(L

1

; S

�

k

) su
h that L

2

� L

00

2

and m

1

; a

1

; m

2

; a

2

j= J ; and

� if P

1

(L

1

) � L

1

:ret, then P

2

(L

2

) � L

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the partial exe
ution of P

1

does not terminate, then the partial exe
ution of

P

2

also does not terminate.

We extend the de�nition to pro
edures and programs.

De�nition 7 A pro
edure P

1

2 Q

1

simulates a pro
edure P

2

2 Q

2

, in notation

P

1

; Q

1

� P

2

; Q

2

, i� for all simulation 
ontexts k 2 sim-
ontexts(P

1

; P

2

), P

1

; Q

1

�

k

P

2

; Q

2

.

De�nition 8 A program Q

1

simulates a program Q

2

, in notation Q

1

�Q

2

i�:

� for all pairs of pro
edures P

1

2 Q

1

and P

2

2 Q

2

for whi
h there are simulation


ontexts, P

1

; Q

1

� P

2

; Q

2

; and

� one of the simulation 
ontexts for the starting pro
edures for programs Q

1

and

Q

2

is the following:

{ the simulation input 
ontext states that the two programs start with the

same input at the beginning:

J

in

�

^

glob

1

(I

g

) = glob

2

(I

g

) ^

^

lo


1

(I

p

1

) = lo


2

(I

p

2

)

for all global variables I

g

from Q

1

(and Q

2

) and for all parameters I

p

1

of

the starting pro
edure of Q

1

and their 
orresponding parameters

13

I

p

2

of the

starting pro
edure of Q

2

,

14

and

12

The exa
t order of quanti�
ations in the de�nition is: for all a

1

possible at the start of P

1

, for

all m

0

1

, for all a

2

possible at the start of P

2

, and for all values of m

0

2

lo
ations \below" the lo
al

variables of P

2

, there exist some values of the other m

0

2

lo
ations su
h that if m

0

1

; a

1

;m

0

2

; a

2

j= J

in

k

,

then for all hL

1

;m

1

; a

1

i in the exe
ution sequen
e of P

1

, there exists a 
orresponding hL

2

;m

2

; a

2

i in

the exe
ution sequen
e of P

2

.

13

Sin
e the values for the parameters of the starting pro
edures are supplied to the programs,

we require the starting pro
edures to have the same number of parameters, but 
orresponding

parameters need not have the same name. In general, two pro
edures need not even have the same

number of parameters when there is a simulation 
ontext for those pro
edures.

14

Additionally, the requirement for the simulation input 
ontext of the starting pro
edures implies

that the simulation holds for all possible input values be
ause the standard 
ontexts Z

1

and Z

2

, for

this simulation 
ontext, need to have their input 
ontexts true.
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{ the simulation output 
ontext states that the two programs generate the

same output at the end:

J

out

�

^

glob

1

(I

g

) = glob

2

(I

g

)

for all global variables I

g

from Q

1

(and Q

2

).

This de�nition for Q

1

� Q

2

formalizes the intuitive notion of the simulation|

program Q

1

simulates program Q

2

if Q

2


an generate the same output data as Q

1

generates, provided that the two programs have the same input data. The simulation

also requires termination simulation|Q

2

does not terminate ifQ

1

does not terminate.

The de�nition forQ

1

�Q

2

(more spe
i�
ally, P

1

; Q

1

�

k

P

2

; Q

2

) additionally requires the

simulation invariants to hold. Finally, the way that the SimVCG generates the SimVC

also requires that the exe
ution of Q

2

rea
hes a 
all site whenever the exe
ution of

Q

1

rea
hes a 
all site.

Analogous to the 
ompiler analysis results and j= std-invs(Q), the 
ompiler does

not prove dire
tly that Q

1

� Q

2

. Instead, the veri�er uses the SimVCG to generate

the SimVC for the simulation invariants of all simulation 
ontexts of all pro
edures in

programs Q

1

and Q

2

. We write F

v


Q

1

;Q

2

for the logi
 formula representing the SimVC

of programs Q

1

and Q

2

. We design a sound SimVCG su
h that the validity of F

v


Q

1

;Q

2

implies that Q

1

simulates Q

2

, i.e., if j= F

v


Q

1

;Q

2

, then Q

1

� Q

2

. (More pre
isely, the

standard veri�
ation 
onditions for Q

1

and Q

2

also need to hold: if j= F

v


Q

1

;Q

2

and

j= F

v


Q

1

and j= F

v


Q

2

, then Q

1

�Q

2

. We show in Se
tion 5.2 that the SimVCG is sound.)

The 
ompiler generates a proof ` F

v


Q

1

;Q

2

using the proof rules from the logi
. By the

soundness of the proof rules, if ` F

v


Q

1

;Q

2

, then j= F

v


Q

1

;Q

2

. Therefore, the 
ompiler

a
tually proves that the SimVC holds for programs Q

1

and Q

2

; that implies that

program Q

1

simulates program Q

2

, and therefore Q

1


an generate only the results

that Q

2


an generate.

4.4.3 Simulation Veri�
ation-Condition Generator

We next present the algorithm for generating simulation veri�
ation 
onditions. The

SimVCG generates the SimVC for two programs Q

1

and Q

2

and a set of simulation


ontexts for pro
edures in Q

1

and Q

2

by symboli
ally exe
uting ea
h of those sim-

ulation 
ontexts. We �rst explain how those parts of the SimVC for ea
h 
ontext


ombine in the whole SimVC. We then des
ribe the algorithm that 
onsists of two

phases: the initial phase and the main phase.

Figures 4-11 and 4-12 show the algorithm that generates F

v


k;P

1

;Q

2

;P

2

;Q

2

, a part of

SimVC, for one simulation 
ontext k 2 sim-
ontexts(P

1

; P

2

) = f1 : : : ng of pro
edures

P

1

2 Q

1

and P

2

2 Q

2

. Similar to the standard 
ontexts, the 
onjun
tion of the

veri�
ation 
onditions for all simulation 
ontexts of pro
edures P

1

and P

2

is the

veri�
ation 
ondition for those pro
edures, and the 
onjun
tion of the veri�
ation


onditions for all pairs of pro
edures (for whi
h there is a simulation 
ontext) of

programs Q

1

and Q

2

is the veri�
ation 
ondition for those programs:

F

v


P

1

;Q

1

;P

2

;Q

2

=

V

k2f1:::ng

F

v


k;P

1

;Q

1

;P

2

;Q

2

and F

v


Q

1

;Q

2

=

V

P

1

2Q

1

;P

2

2Q

2

F

v


P

1

;Q

1

;P

2

;Q

2

:
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The SimVC for two programs is the whole F

v


Q

1

;Q

2

; we also refer to F

v


k;P

1

;Q

2

;P

2

;Q

2

as

SimVC.

The SimVCG generates F

v


k;P

1

;Q

1

;P

2

;Q

2

by symboli
ally exe
uting the simulation


ontext k for pro
edures P

1

and P

2

. We �rst des
ribe the initial phase of the SimVCG,

whi
h prepares the pro
edures for the exe
utions, and then the main phase of the

SimVCG, whi
h performs the exe
utions using the main fun
tion Sim.

In the initial phase, the SimVCG �rst uses the fun
tion merge-sim-invariants to

merge the simulation invariants S

�

k

into pro
edures P

1=2

generating pro
edures P

0

1=2

.

This is similar to the way in whi
h the StdVCG merges the standard invariants,

but there are several di�eren
es. Merging the simulation invariant L

1

,L

2

:sim-inv J

in P

1

only adds the node

15

L

1

:sim-inv that represents that there is a simulation

invariant at L

1

. In P

2

, merging adds the node L

2

:sim-inv J,L

1

to re
ord the a
tual

formula of the invariant. The reason for this is that there 
an be many invariants for

the same node L

1

in P

1

, and they all share the same L

1

:sim-inv node. We 
all ea
h

of the nodes L

1

:sim-inv and L

2

:sim-inv J,L

1

a half of the simulation invariant.

We explained in Se
tion 3.2.1 the most notable di�eren
e between the StdVCG

and the SimVCG|the SimVCG uses a sequen
e of a
tions to guide the symboli
 ex-

e
utions, whereas the StdVCG has a �xed stru
ture of the symboli
 exe
ution. After

the fun
tion merge-sim-invariants generates P

0

1=2

, the SimVCG applies the fun
tion

a
tion-tree to A

�

k

to obtain an a
tion tree t

0

. The a
tion tree 
ontains the whole

step-by-step des
ription for the interleaving of the symboli
 exe
utions of P

0

1=2

. We

des
ribe a
tion trees and all a
tions later in the text.

The SimVCG next applies the fun
tion 
he
k-std-
ontexts. This fun
tion returns

the indi
es Z

1

k

of P

1

and Z

2

k

of P

2

after 
he
king that those indi
es are 
orre
t for the

standard 
ontexts of P

1

and P

2

. The standard invariants from standard 
ontexts k

1

and k

2


an be used in the simulation 
ontext k.

The SimVCG next 
reates symboli
 environments e

1=2

for pro
edures P

1=2

2 Q

1=2

.

These environments map lo
al variables I

l

of their respe
tive pro
edures to logi


expressions lo


1=2

(I

l

) and global variables I

g

of their respe
tive programs to logi


expressions glob

1=2

(I

g

). The SimVCG next 
reates the initial symboli
 states s

0

1

and

s

0

2

for the two pro
edures using the following algorithm:

� �rst 
reate s

0

1

that maps all variables from vars(P

1

) to fresh logi
 variables and

put those logi
 variables in x

�

;

� then 
reate s

0

2

that maps all variables from vars(P

2

)� lo
als(P

2

) to the following

logi
 variables:

{ if variable I

2

appears in some pair H

1

(I

1

),H

2

(I

2

) in var-pairs(J

in

k

), map

H

2

(I

2

) in s

0

2

to the logi
 variable that H

1

(I

1

) is mapped to in s

0

1

, and

{ if variable I

2

does not appear in any pair in var-pairs(J

in

k

), map H

2

(I

2

) in

s

0

2

to a fresh logi
 variable, and add that logi
 variable to x

�

;

15

A label renaming is also performed to make all the labels unique.
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P

1

� pro
 I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro
 I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants (J

in

J

out

S

�

K

�

Z

1

Z

2

G

�

A

�

)

�

F

v


k;P

1

;Q

1

;P

2

;Q

2

=

let hP

0

1

; P

0

2

i be merge-sim-invariants(S

�

k

; P

1

; P

2

) in

let t

0

be a
tion-tree(A

�

k

; P

0

1

; P

0

2

) in

let hk

1

; k

2

i be 
he
k-std-
ontexts(P

1

; Z

1

k

; P

2

; Z

2

k

) in

let he

1

; e

2

i be sim-sym-environments(P

1

; Q

1

; P

2

; Q

2

) in

let hs

0

1

; s

0

2

; x

�

i be initial-sim-sym-states(e

1

; e

2

; J

in

k

; P

2

; G

�

k

) in

letre
 Sim be �L

1

s

1

L

2

s

2

i t:

mat
hing root(t)

� exe
ute

1

[℄

mat
hing P

0

1

(L

1

)

� L

1

:I=E [℄

let s

0

be translate-assign(I; E; s

1

; e

1

) in

Sim(L

1

+

P

0

1

1; s

0

; L

2

; s

2

; i; left(t))

� L

1

:br(E)L

0

[℄

let G be translate-bran
h(E; s

1

; e

1

) in

(G) Sim(L

0

; s

1

; L

2

; s

2

; i; left(t))) ^

(:G) Sim(L

1

+

P

0

1

1; s

1

; L

2

; s

2

; i; right(t)))

endmat
hing

� exe
ute

2

B [℄

mat
hing P

0

2

(L

2

)

� L

2

:I=E [℄

let s

0

be translate-assign(I; E; s

2

; e

2

) in

Sim(L

2

; s

1

; L

2

+

P

0

2

1; s

0

; i; left(t))

� L

2

:br(E)L

0

[℄

let G be translate-bran
h(E; s

2

; e

2

) in

if B � true then

G ^ Sim(L

1

; s

1

; L

0

; s

2

; i; left(t))

else

:G ^ Sim(L

1

; s

1

; L

2

+

P

0

2

1; s

2

; i; left(t))

�

� L

2

:sim-inv J,L

1

[℄

Sim(L

1

; s

1

; L

2

+

P

0

2

1; s

2

; i; left(t))

endmat
hing

� : : : 
ontinued in Figure 4-12

endmat
hing in

8x

�

: subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(start-label(P

0

1

); s

0

1

; start-label(P

0

2

); s

0

2

; fg; t

0

) ^

subst(in-
ontext(P

1

; k

1

); s

0

1

) ^ subst(in-
ontext(P

2

; k

2

); s

0

2

)

Figure 4-11: Simulation Veri�
ation-Condition Generator, Part 1

68



letre
 Sim be �L

1

s

1

L

2

s

2

i t:

mat
hing root(t)

� : : : 
ontinued from Figure 4-11

� stop [℄

false

� split F [℄

let F

0

be subst(F; s

1

) in

(F

0

) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))) ^

(:F

0

) Sim(L

1

; s

1

; L

2

; s

2

; i; right(t)))

� use-analysis

1

[℄

subst(std-invariant(P

1

; k

1

; L

1

); s

1

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))

� use-analysis

2

[℄

subst(std-invariant(P

2

; k

2

; L

2

); s

2

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))

� exe
ute-both [℄

mat
hing P

0

2

(L

2

)

� L

2

:ret [℄

subst-sim(J

out

k

; s

1

; s

2

)

� L

2

:I

2

(E

�

2

) [℄

let G

�

2

be translate-
all(E

�

2

; s

2

; e

2

) in

mat
hing P

0

1

(L

1

)

� L

1

:I

1

(E

�

1

) [℄

let G

�

1

be translate-
all(E

�

1

; s

1

; e

1

) in

let k

0

be sim-
ontext-index(L

1

; L

2

; K

�

k

) in

let hJ

in

; J

out

i be sim-
ontext(I

1

; I

2

; k

0

) in

let hs

0

1

; s

0

2

; x

�

i be fresh-sim-globals(s

1

; s

2

; J

out

) in

subst-sim(J

in

; set-params(I

1

; G

�

1

; s

1

);

set-params(I

2

; G

�

2

; s

2

)) ^

8x

�

: subst-sim(J

out

; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))

endmat
hing

� L

2

:sim-inv J,L

1

[℄

if member-�rst(hL

1

; L

2

i; i) then

subst-sim(J; s

1

; s

2

)

else

let hs

0

1

; s

0

2

; x

�

i be fresh-sim-sym-states(s

1

; s

2

; J) in

subst-sim(J; s

1

; s

2

) ^

8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

;

union(hhL

1

; L

2

i; hs

1

; s

2

i; left(t)i; i); left(t))

�

endmat
hing

endmat
hing in

Figure 4-12: Simulation Veri�
ation-Condition Generator, Part 2
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� �nally map the lo
al variables of P

2

in s

0

2

to the logi
 expressions obtained by

substituting the program variables appearing in G

�

k

with the appropriate logi


variables from s

0

1

and s

0

2

.

The sequen
e of all fresh logi
 variables is in x

�

, and F

v


k;P

1

;Q

1

;P

2

;Q

2

is universally

quanti�ed over all those variables.

The algorithm for the SimVCG uses the fun
tion subst-sim to perform substi-

tutions. For a formula J � F,(H

1

(I

1

),H

2

(I

2

))

�

and symboli
 states s

1

and s

2

,

subst-sim(J; s

1

; s

2

) does the following:

� substitute all program variables in formula F using the mappings s

1=2

; 
all the

result F

0

� subst(subst(F; s

1

); s

2

), and

� for all pairs H

1

(I

1

),H

2

(I

2

) from var-pairs(J), 
he
k if the logi
 expressions

G

1=2

to whi
h s

1=2

map H

1=2

(I

1=2

) are synta
ti
ally identi
al, and:

{ if the expressions are identi
al, do not add anything to F

0

for this pair; or

{ if the expressions are not identi
al, add G

1

= G

2

as a 
onjun
t to F

0

, and

� �nally return the whole 
onjun
tion F

0

.

This way the SimVCG performs several rules from the logi
, most notably the 
on-

gruen
e rule for equality, whi
h results in a mu
h shorter SimVC.

Simulation Veri�
ation-Condition Generator Main Fun
tion

The fun
tion Sim performs the symboli
 exe
utions of pro
edures P

0

1

and P

0

2

. This

fun
tion takes six arguments: the label L

1

of the 
urrent node to exe
ute in P

0

1

, the

symboli
 state s

1

of P

0

1

, the label L

2

of the 
urrent node to exe
ute in P

0

2

, the symboli


state s

2

of P

0

2

, the set i of already (symboli
ally) exe
uted simulation invariants, and

the a
tion tree t.

The exe
utions start from the �rst nodes of pro
edures P

1

and P

2

with the 
reated

initial symboli
 states, the empty set of invariants, and t

0

obtained from A

�

k

. The

exe
utions generate a part of F

v


k;P

1

;Q

1

;P

2

;Q

2

that 
aptures the 
orre
tness of all simu-

lation invariants and the simulation output 
ontext of 
ontext k. Sin
e the invariants

and the output 
ontext are required to be 
orre
t only for the appropriate input 
on-

text, the whole F

v


k;P

1

;Q

1

;P

2

;Q

2

is an impli
ation|the input 
ontext, substituted in the

initial states

16

, implies the result of the exe
utions starting from the initial states.

Additionally, we require the simulation input 
ontext to imply the input 
ontexts for

standard 
ontexts k

1

for P

1

and k

2

for P

2

.

We next des
ribe how Sim uses the a
tion tree t. At ea
h step, Sim performs the

a
tion from the root of the a
tion tree. We write root(t) for the a
tion from the root.

At the bran
h nodes in P

0

1

, Sim splits the exe
ution into two paths. That is where

16

The input 
ontext J

in

k

is substituted in s

0

1

and s

0

2

using the fun
tion subst-sim. For the initial

states, all pairs of variables that appear in J

in

k

have the same value, and their equality is not added

to F

v


k;P

1

;Q

1

;P

2

;Q

2

, but it is still represented within the symboli
 states.
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Sim uses the subtrees of the a
tion tree to 
ontinue the exe
utions of the two paths.

We write left(t) and right(t) for the left and right subtree, respe
tively. For most

other a
tions, Sim does not require t to be a tree, but only a list. In those 
ases, Sim


ontinues the exe
ution with all the a
tions but the root. We also write left(t) for

that list of a
tions. All the fun
tions that operate on a tree t generate an error if t

does not have the appropriate form.

17

Finally, we des
ribe how Sim performs ea
h group of a
tions from the root of the

a
tion tree t.

A1. The a
tion exe
ute

1

exe
utes the 
urrent node in P

0

1

. This a
tion 
an be used

only when the 
urrent node is an assignment node or a 
onditional bran
h node.

(Otherwise, mat
hing fails and the SimVCG signals an error.) The SimVCG

exe
utes assignment and bran
h nodes similarly as the StdVCG does.

A1.1. The exe
ution of an assignment node 
hanges the state s

1

and the exe
ution


ontinues from the next node in P

0

1

.

A1.2. The exe
ution of a bran
h node splits the exe
ution of P

0

1

into two bran
hes

and ea
h of them generates an impli
ation with the appropriate 
ondition.

These 
onditions represent formulas that hold when the parti
ular bran
h

is taken.

A2. The a
tion exe
ute

2

exe
utes the 
urrent node in P

0

2

. This a
tion 
an be used

when the 
urrent node in P

0

2

is an assignment node, a 
onditional bran
h node,

or a half of a simulation invariant.

A2.1. The exe
ution of an assignment node 
hanges the state s

2

and pro
eeds

from the next node in P

0

2

, analogously as the exe
ution for exe
ute

1

.

A2.2. The exe
ution of a bran
h node in P

0

2

is di�erent than the exe
ution in P

0

1

.

Sin
e the simulation 
ondition requires for all paths in P

0

1

that there exist

a 
orresponding path in P

0

2

, only one bran
h is taken in P

0

2

. The a
tion

represents with B the bran
h that the SimVCG should take. Further, the

bran
h 
onditions of P

0

1

are used as assumptions in the SimVC, whereas

the bran
h 
onditions of P

0

2

are used as 
on
lusions|the 
ompiler needs

to prove, when P

0

1

takes some bran
hes, that P

0

2

indeed takes the bran
hes

that the 
ompiler 
laims P

0

2

takes.

A2.3. The exe
ution of half of a simulation invariant only moves past the invari-

ant. This is sound be
ause the exe
ution of P

0

2

has to rea
h any half of a

simulation invariant in P

0

2

(
orresponding to the half in P

0

1

); it need not be

the �rst half that the exe
ution gets to.

17

We use a
tion trees only te
hni
ally to prove that the SimVCG is sound. In pra
ti
e, the

SimVCG uses a mutable list l that is initialized to A

�

k

. At ea
h step, instead of root(t), the SimVCG

applies head!(l) that returns the head of the list and sets the list to the tail. If the list is empty,

head!() generates an error; the SimVCG always terminates be
ause the list is �nite.
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A3. The a
tion stop 
an be used at any point; it generates false as a part of

SimVC that needs to be proven and �nishes the exe
ution. In general, false


an be proven only if it is implied by false. Therefore, the 
ompiler uses this

a
tion only when it knows that the path taken by the symboli
 exe
ution of P

0

1

is not possible during the 
on
rete exe
ution of P

1

. For example, the path that

bran
hes from L

1

:br(FALSE)L

0

to L

0

during the symboli
 exe
ution is a
tually

never taken. (The 
ompiler usually does not need to use stop to prove that the

transformed program simulates original program. However, if we also required

the other simulation dire
tion, the 
ompiler would have to use stop when the


ompiler, for example, eliminated a bran
h that 
annot be taken.)

A4. The a
tion split 
an also be used at any point. The 
ompiler uses split F to

instru
t the SimVCG to split the exe
ution of P

0

1

into two paths, although there

are no 
onditional bran
h nodes. (The SimVCG otherwise splits the exe
ution

of P

0

1

only at 
onditional bran
h nodes.) Both paths 
ontinue from the next

node, but one of them has the 
ondition F and the other has the negation

of F (with proper substitutions). For example, the 
ompiler uses this to prove

that L

1

:z=x*y;L: simulates L

2

:br(y==0)L

0

;z=x*y;br(TRUE)L;L

0

:z=0;L:: If

x and y are the same in both programs before these sequen
es, then z is the

same after the sequen
es. The 
ompiler would use split lo


1

(y) = 0 to 
reate

two paths of exe
ution of P

0

1

, ea
h of whi
h implies the 
orresponding path in

the longer program sequen
e P

0

2

. (The 
ompiler uses split, in general, when it

merges two bran
hes into one.)

A5. The a
tions use-analysis

1

and use-analysis

2

in
lude the results of 
ompiler

analyses of pro
edures P

1

and P

2

in the SimVC. This 
an be done at any point

at whi
h there is a standard invariant in 
ontext k

1

(for P

1

) or k

2

(for P

2

).

(Note that the program variables in the standard invariants are represented

with H 
onstru
tors without indi
es, whereas states s

1

and s

2

map variables

with indi
es. Therefore, to be pre
ise, we should repla
e H

1=2

for H in the

invariants before the substitution.)

A6. The a
tion exe
ute-both simultaneously exe
utes a node from ea
h pro
edure.

The two nodes 
an be both return nodes, both 
all nodes, or both halves of some

simulation invariant.

A6.1. If both nodes are return nodes, the SimVCG adds to the SimVC the sim-

ulation output 
ontext substituted into the 
urrent symboli
 states of the

two pro
edures.

A6.2. If both nodes are 
all nodes, the pro
ess is more involved, but similar

to the generation of the StdVC. The SimVCG �rst 
reates G

�

1

and G

�

2

that symboli
ally represent the a
tual parameters of 
allees at the 
all

sites. These expressions will be repla
ed for the formal parameters in the

simulation input 
ontext of the two 
allees. The SimVCG next de
ides,

based on the sequen
e K

�

k

, whi
h simulation 
ontext k

0

to use for these


all nodes. Next, the SimVCG generates a part of SimVC that requires
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the simulation input 
ontext J

in

for 
ontext k

0

of I

1

and I

2

to hold for

these 
alls. The fun
tion set-params extends the mappings s

1=2

with the

mappings from the formal parameters of pro
edures I

1=2

to expressions

G

�

1=2

.

Callees 
an arbitrarily 
hange the global variables of the programs. There-

fore, the SimVCG 
reates new states s

0

1

and s

0

2

to represent the states of the

programs after the 
alls. This is done using the fun
tion fresh-sim-sym-states,

whi
h �rst maps all global variables from s

1

to fresh logi
 variables, and

then, based on the pairs of variables in J

out

, maps global variables from

s

2

to either the appropriate logi
 variables in s

1

or to fresh logi
 variables.

The sequen
e of all the introdu
ed logi
 variables is returned in x

�

. All

the lo
al variables in s

1

and s

2

remain the same as they were before the


all. Finally, the SimVCG generates a part of the SimVC that requires the

simulation output 
ontext J

out

for 
ontext k

0

of pro
edures I

1=2

to hold in

states s

0

1=2

, and the symboli
 exe
ution 
ontinues from the nodes after the


all nodes.

Observe that the part of the SimVC generated for 
all nodes requires only

that the simulation input 
ontext k

0

for pro
edures I

1=2

hold. That simu-

lation 
ontext is valid only for some standard 
ontexts for I

1=2

. However,

the SimVC does not expli
itly require those standard 
ontexts to hold at

every 
all site. Instead, the SimVC requires the simulation input 
ontext

to imply the standard 
ontexts in whi
h the simulation 
ontext is valid.

This is in
luded in the SimVC only on
e for ea
h simulation 
ontext, as

shown at the bottom of Figure 4-11. Similarly, the SimVC for 
all nodes

does not in
lude the output 
ontexts of the standard 
ontexts, but those

relationships are represented in the simulation output 
ontext.

A6.3. If both nodes are halves of a simulation invariant, the exe
ution depends

on whether the invariant has been already exe
uted during this bran
h of

the exe
ution.

A6.3.1. If the pair of labels hL

1

; L

2

i is in i (more pre
isely, in the �rst 
ompo-

nent of one of the triples in i), the simulation invariant has been al-

ready exe
uted. The SimVCG substitutes the 
urrent symboli
 states

s

1

and s

2

in the invariant formula J . The resulting formula is gener-

ated as the part of SimVC that needs to be proven, and the exe
utions

of these paths �nish.

A6.3.2. If the pair of labels hL

1

; L

2

i is not in i, then the simulation invariant

is rea
hed for the �rst time. The SimVCG similarly substitutes the


urrent symboli
 states in the invariant and generates the resulting

formula as the part of SimVC that needs to be proven. The exe
u-

tions do not �nish, though, but move past the invariant halves in P

0

1

(the node L

1

:sim-inv) and P

0

2

(the node L

2

:sim-inv J,L

1

). The ex-

e
utions 
ontinue with fresh symboli
 states s

0

1=2

, 
reated with respe
t

to J , and the triple hhL

1

; L

2

i; hs

0

1

; s

0

2

i; ti added to the set of exe
uted

invariants. (For this SimVCG, i 
an be a set of label pairs hL

1

; L

2

i
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only; we add the states and the a
tion tree te
hni
ally to prove the

soundness of the SimVCG.) The rest of the exe
utions 
an assume

that the invariant holds in states s

0

1=2

.
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Chapter 5

Soundness Proofs

In this 
hapter we prove the soundness of the standard veri�
ation-
ondition generator

(StdVCG) and the simulation veri�
ation-
ondition generator (SimVCG) presented

in Chapter 4. The StdVCG generates a standard veri�
ation 
ondition (StdVC) for a

program Q and a set of standard 
ontexts for Q; the StdVCG is sound if the validity

of the StdVC implies that those 
ontexts indeed hold for program Q. The SimVCG

generates a simulation veri�
ation 
ondition (SimVC) for a pair of programs Q

1

and

Q

2

and a set of simulation 
ontexts for those programs; the SimVCG is sound if the

validity of the SimVC implies that Q

1

simulates Q

2

. Our proof of the soundness of the

StdVCG follows a proof by Ne
ula [35, Appendix A℄, and our proof of the soundness

of the SimVCG 
ombines the te
hniques from the proof by Ne
ula and a proof by

Rinard [41℄.

Before presenting the soundness proofs, we introdu
e some additional notation and

present lemmas that we will use in the proofs. For the brevity of the presentation, we

will 
onsider logi
 expressions without the 
onstru
tors H. Ea
h program variable I is

represented in logi
 expressions simply by its name I. We assume that lo
al and global

variables have di�erent names. Symboli
 exe
ution of a pro
edure P uses a symboli


state s that maps all program variables from P to logi
 expressions. We represent

a symboli
 state as fI

�

7! G

�

g; usually, the logi
 expressions are just logi
 variables

and s = fI

�

7! x

�

g. The notation with sequen
es represents a mapping between


orresponding elements: s = fI

(1)

7! x

(1)

; : : : ; I

(n)

7! x

(n)

g, where x

(n)

denotes the

n-th element of sequen
e x

�

. We denote by subst(F; s) the logi
 formula obtained

by substituting the logi
 expressions from s for the appropriate program variables in

formula F . For a variable I that o

urs in s, we write s(I) for the logi
al expression


orresponding to I.

In the 
ourse of the proofs, we show properties of partial exe
utions of pro
edures.

Re
all that hP

0

; m

0

; ai

+

9 9 KhL;m; ai represents a partial exe
ution of an a
tivation of

pro
edure P , and we therefore use the abbreviated form hL;m; ai of 
on�gurations

hL;m; a; p; h; P i. We refer to the exe
ution of BL programs on a ma
hine with 
on�g-

urations hL;m; ai (hL;m; a; p; h; P i) as the 
on
rete exe
ution, to distinguish it from

the symboli
 exe
ution. The 
on
rete exe
ution operates on the 
on
rete state, whi
h


onsists of the memory m and the environment a, whereas the symboli
 exe
ution

operates on the symboli
 state s.
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Ea
h symboli
 state s 
orresponds to a set of the 
on
rete states m; a. A sym-

boli
 state s = fI

�

7! G

�

g maps program variables to logi
 expressions, whereas

an environment a maps the variables to the addresses, and a memory m maps the

addresses to the 
on
rete values from the Value domain so that m(a(I)) = Z. The

logi
 expressions G

�

in the symboli
 state s in
lude logi
 variables. Let all those vari-

ables be from a set/sequen
e x

�

. In the proofs, we use substitutions that map logi


variables to integer values. We represent a substitution that maps the logi
 variables

x

�

to some 
on
rete values Z

�

as fx

�

7! Z

�

g; ea
h su
h substitution spe
i�es one

parti
ular mapping from s to m; a.

We use the meta-variable � to represent substitutions. We denote by �

0

[ fx

�

7!

Z

�

g the union of a substitution �

0

(whi
h does not map any variable from some x

�

) and

a mapping from x

�

to Z

�

. We denote with �(F ) the formula obtained by substituting

the integer values from � for the appropriate logi
 variables in F . We usually apply a

substitution � for logi
 variables after substituting the program variables in a formula

F with the logi
 expressions from a symboli
 state s: �(subst(F; s)). We say that a

symboli
 state s and a 
on
rete state m; a 
oin
ide (with respe
t to a substitution �)

for some variables I

�

if j= �(s(I)) = m(a(I)) for all variables I from I

�

.

We use several lemmas to prove the main soundness theorems. The �rst two

lemmas (for one program or for two programs) assert that if the symboli
 states


oin
ide with the 
on
rete states for all program variables in a formula, then the

formula is valid in the symboli
 states if and only if it is valid in the 
on
rete states.

(We break ea
h equivalen
e into two impli
ations for easier referral later in the text.)

We omit the details of the proofs of the lemmas.

Lemma 1 (Standard Congruen
e) Let P be any pro
edure and F be any formula with

program variables from I

�

� vars(P ). Let m and a be any memory and environment

for P . Let the symboli
 state be s � fI

�

7! G

�

g, and let x

�

be all logi
 variables that

o

ur in G

�

. If a substitution � � fx

�

7! Z

�

g is su
h that j= �(s(I)) = m(a(I)) for

all I that o

ur in F , then:

if m; a j= F , then j= �(subst(F; s)) (5.1)

and

if j= �(subst(F; s)), then m; a j= F : (5.2)

Proof: Stru
tural indu
tion on the formula F (a
tually the formula subst(F; s)).

Lemma 2 (Simulation Congruen
e) Let P

1

and P

2

be any pair of pro
edures and J

be any formula with program variables from I

�

1

� vars(P

1

) and I

�

2

� vars(P

2

). Let

m

1=2

and a

1=2

be any memory and environment for P

1=2

. Let the symboli
 states be

s

1=2

� fI

�

1=2

7! G

�

1=2

g, and let x

�

be all logi
 variables that o

ur in G

�

1

or G

�

2

. If a

substitution � � fx

�

7! Z

�

g is su
h that j= � (s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

that o

ur in J , then:

if m

1

; a

1

; m

2

; a

2

j= J , then j= �(subst-sim(J; s

1

; s

2

)) (5.3)

and

if j= �(subst-sim(J; s

1

; s

2

)), then m

1

; a

1

; m

2

; a

2

j= J: (5.4)
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Proof: Stru
tural indu
tion on the formula J (a
tually subst-sim(J; s

1

; s

2

)).

The next three lemmas (for assignment, bran
h, and 
all nodes) assert that the

translation fun
tions for program expressions (Figure 4-5) are 
orre
t with respe
t to

expression evaluation (Figure 4-2). The proofs of all three lemmas are by stru
tural

indu
tion on the parti
ular expressions. We omit the details of these proofs.

Lemma 3 (Assignment Translation) Let P be any pro
edure and E be any expression

that 
an o

ur in an assignment node in that pro
edure. Let e and s be, respe
tively,

the symboli
 environment and a symboli
 state for a symboli
 exe
ution of P . Let

a and m be, respe
tively, an environment and a memory for a 
on
rete exe
ution of

P . If a substitution � is su
h that j= � (s(I)) = m(a(I)) for all I 2 vars(P ), then

j= �(subst(translate(E; e); s)) = m(a(E)).

Proof: Stru
tural indu
tion on the expression E.

Lemma 4 (Bran
h Translation) Let P be any pro
edure and E be any expression

that 
an o

ur in a bran
h node in that pro
edure. Let e and s be, respe
tively, the

symboli
 environment and a symboli
 state for a symboli
 exe
ution of P . Let a and

m be, respe
tively, an environment and a memory for a 
on
rete exe
ution of P . If a

substitution � is su
h that j= �(s(I)) = m(a(I)) for all I 2 vars(P ), then m(a(E)) 6� 0

if and only if j= �(translate-bran
h(E; s; e)).

Proof: Stru
tural indu
tion on the expression E.

Lemma 5 (Call Translation) Let P be any pro
edure and E

�

be any sequen
e of

expressions that 
an o

ur in a 
all node in that pro
edure. Let e and s be, respe
tively,

the symboli
 environment and a symboli
 state for a symboli
 exe
ution of P . Let

a and m be, respe
tively, an environment and a memory for a 
on
rete exe
ution

of P . If a substitution � is su
h that j= � (s(I)) = m(a(I)) for all I 2 vars(P ),

then j= �(G

(n)

) = m(a(E

(n)

)) for ea
h E

(n)

from the sequen
e E

�

and the respe
tive

expression G

(n)

from the sequen
e G

�

= translate-
all(E

�

; s; e).

Proof: Indu
tion on the length of the sequen
e E

�

and appli
ation of Lemma 3 for

ea
h of those expressions.

5.1 Soundness of Standard Veri�
ation-Condition

Generator

In this se
tion we prove that the standard veri�
ation-
ondition generator (presented

in Se
tion 4.3) is sound: for every program Q and every set of standard 
ontexts

(invariants) for Q, if the standard veri�
ation 
ondition for that program and those


ontexts is valid, then those standard 
ontexts indeed hold for that program; in nota-

tion: if j= F

v


Q

, then j= std-invs(Q). By the de�nition (page 58), j= std-invs(Q)

if j= std-invs(P;Q) for all pro
edures P 2 Q. Further, j= std-invs(P;Q) if

j= std-invs(k; P;Q) for all standard 
ontexts k of P . We therefore prove the stan-

dard soundness theorem as follows.
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Theorem 1 (Standard Soundness) If j= F

v


Q

, then j= std-invs(k; P;Q) for all 
on-

texts k of all pro
edures P 2 Q.

Proof: Pi
k any pro
edure P 2 Q and any 
ontext k of P :

P � pro
 I(I

�

) D

�

fN

+

g

std-invariants (F

in

F

out

T

�

K

�

)

�

:

Sin
e j= F

v


Q

and F

v


Q

=

V

P2Q

F

v


P;Q

, by the de�nition of 
onjun
tion (Figure 4-8),

we get j= F

v


P;Q

. Further, F

v


P;Q

=

V

k2f1:::ng

F

v


k;P;Q

, for 
ontexts(P ) = f1 : : : ng, and

therefore j= F

v


k;P;Q

, i.e., the standard veri�
ation 
ondition for the 
ontext k of P

holds. From the algorithm for F

v


k;P;Q

and Std (Figure 4-9), we have:

j= 8x

�

: subst(F

in

k

; s

0

)) Std(start-label(P

0

); s

0

; fg); (5.5)

where s

0

= fI

�

7! x

�

g for all I 2 vars(P ) and s

0

is the starting symboli
 state for the

symboli
 exe
ution of P

0

= merge-invariants(k; P ). The symboli
 exe
ution uses a

symboli
 environment e that maps program variables to logi
 expressions representing

those variables.

We need to show that for all partial exe
utions hP

0

; m

0

; ai

+

9 9 KhL;m; ai of P for

whi
h m

0

; a j= F

in

k

, the following is satis�ed:

� for all L

0

:inv F from T

�

k

, if L � L

0

, then m; a j= F ; and

� for all L

0

:ret from P , if L � L

0

, then m; a j= F

out

k

.

The proof is by indu
tion on the length of the partial exe
ution of P . We prove the

indu
tion using an indu
tion hypothesis that we 
all the standard indu
tion hypoth-

esis (StdIH). The StdIH relates a 
on�guration hL;m; ai of the 
on
rete exe
ution of

P to the parameters of the symboli
 exe
ution Std(L

0

; s; i) of P

0

. We �rst informally

des
ribe a relationship between ea
h program point L of the 
on
rete exe
ution and

a 
orresponding program point L

0

of the symboli
 exe
ution. We then formally state

the StdIH and prove the base 
ase and the indu
tion step. The proof pro
eeds by

an indu
tion on the stru
ture of the symboli
 exe
ution of P

0


orresponding to the


on
rete exe
ution of P .

The 
orresponden
e between the symboli
 exe
ution of P

0

and the 
on
rete exe
u-

tion of P is as follows. Ea
h node (with label) L

0

from P

0

has a unique 
orresponding

node (with label) L from P . The nodes in P

0

are obtained by adding the standard

invariants to the nodes from P . Ea
h node from P

0

that is not an invariant 
orre-

sponds to the appropriate original node from P . Ea
h standard invariant L:inv F

from T

�

k

is added to P

0

in front of the node with label L, with a proper label renam-

ing. We say that an invariant L:inv F 
orresponds to the node with label L from

P . (The merging of the invariants only adds new nodes, and the program variables

do not 
hange: vars(P ) = vars(P

0

).) Conversely, ea
h node from P has one or more


orresponding nodes from P

0

: the 
opy of the original node and, in general, a set of

invariant nodes

1

that pre
ede the 
opy of the original node. Therefore, ea
h 
on
rete

1

In pra
ti
e, there is at most one standard invariant for any node.
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exe
ution of a node from P has a 
orresponding sequen
e in the symboli
 exe
ution

of P

0

|this sequen
e 
onsists of the symboli
 exe
ution of the 
orresponding nodes

from P

0

.

5.1.1 Standard Indu
tion Hypothesis

The standard indu
tion hypothesis (StdIH) relates a 
on�guration hL;m; ai of the

partial exe
ution hP

0

; m

0

; ai

+

9 9 K hL;m; ai of pro
edure P to the parameters of the

symboli
 exe
ution Std(L

0

; s; i) of P

0

started with the symboli
 state s

0

. Formally,

the StdIH is a relation with ten arguments StdIH(L;m; a; L

0

; s; i; �; P;m

0

; s

0

), where

� is a mapping from logi
 variables to values. We will abbreviate the StdIH to seven

arguments StdIH(L;m; a; L

0

; s; i; �), be
ause the pro
edure and the starting states do

not 
hange for a �xed pro
edure a
tivation. We de�ne that the StdIH holds if the

following is satis�ed:

StdIH1. the standard veri�
ation 
ondition is valid: j= �(Std(L

0

; s; i)), and

StdIH2. the symboli
 state and the 
on
rete state 
oin
ide for all I 2 vars(P ): j=

� (s(I)) = m(a(I)), and

StdIH3. the substitution � is 
orre
t with respe
t to i: either

StdIH3.1. i = fg and for the initial symboli
 state s

0

= fI

�

7! x

�

g:

StdIH3.1.1. all logi
 variables are in the substitution, i.e., � � fx

�

7! Z

�

g, and

StdIH3.1.2. j= �(s

0

(I)) = m

0

(a(I)) for all I 2 vars(P ); or

StdIH3.2. i = i

1

[ fhL

00

; s

0

ig, where s

0

= fI

�

7! x

�

g for some x

�

, and

StdIH3.2.1. P

0

(L

00

) � L

00

:inv F , and

StdIH3.2.2. � = �

1

[ fx

�

7! Z

�

g, and

StdIH3.2.3. x

�

are fresh variables, i.e., for all x from x

�

, x 62 �

1

[ i

1

, and

StdIH3.2.4. j= �

1

(8x

�

: subst(F; s

0

)) Std(L

00

+

P

0

1; s

0

; i)), and

StdIH3.2.5. �

1

is 
orre
t with respe
t to i

1

, as de�ned by StdIH3.

We now prove that for all hL;m; ai in hP

0

; m

0

; ai

+

9 9 K hL;m; ai of P , where

m

0

; a j= F

in

k

, and for all L

0

2 P

0


orresponding to L 2 P , there exist a symboli


state s, a set of symboli
ally exe
uted invariants i, and a substitution � su
h that

StdIH(L;m; a; L

0

; s; i; �) holds. We also show that this implies that the standard

invariants and the output 
ontext of the 
ontext k hold:

� if P

0

(L

0

) � L

0

:inv F , then m; a j= F ; and

� if P

0

(L

0

) � L

0

:ret, then m; a j= F

out

k

.
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5.1.2 Standard Base Case

The initial 
on�guration for the 
on
rete exe
ution of P is hP

0

; m

0

; ai, where m

0

; a j=

F

in

k

. The symboli
 exe
ution starts with L

0

� start-label(P

0

), s = s

0

= fI

�

7! x

�

g,

where x

�

are fresh variables, and i = fg. We need to show that there exists a substi-

tution � su
h that StdIH(P

0

; m

0

; a; L

0

; s

0

; fg; �) holds. Let � =

S

fs(I) 7! m

0

(a(I))g,

where

S

ranges over all I 2 vars(P ), i.e., � = fx

�

7! m

0

(a(I

�

))g. This 
hoi
e imme-

diately implies StdIH2 and StdIH3 (part StdIH3.1). We next prove that StdIH1 also

holds.

From 5.5, we have j= 8x

�

: subst(F

in

k

; s

0

)) Std(L

0

; s

0

; fg). Using the de�nition of

universal quanti�
ation (Figure 4-8), we obtain j= � (subst(F

in

k

; s

0

)) Std(L

0

; s

0

; fg)).

By the de�nition of impli
ation, this simpli�es to: if j= � (subst(F

in

k

; s

0

)), then

j= � (Std(L

0

; s

0

; fg)). Sin
e StdIH2 holds, we 
an apply the Standard Congruen
e

Lemma, impli
ation 5.1, and from m

0

; a j= F

in

k

, we have j= � (subst(F

in

k

; s

0

)). There-

fore, j= � (Std(L

0

; s

0

; fg)), i.e., j= � (Std(L

0

; s; i)), whi
h is StdIH1.

5.1.3 Standard Indu
tion Step

The 
on
rete exe
ution of the node at label L in P has a 
orresponding sequen
e in

the symboli
 exe
ution of P

0

. The node at L

0

in P

0


orresponds to the node at L

in P . We do a 
ase analysis of the last node, at L

0

, exe
uted during the symboli


exe
ution of P

0

. We show that if the StdIH holds before the last node is exe
uted,

then the StdIH also holds after the node is exe
uted.

N1. The last node is an assignment node: P

0

(L

0

) � L

0

:I=E. Before this node

is exe
uted, from the indu
tion hypothesis, there exist s, i, and � su
h that

StdIH(L;m; a; L

0

; s; i; �) holds. When the node is exe
uted, the 
on
rete exe-


ution makes a transition hL;m; ai ! hL +

P

1; m

0

; ai, where m

0

= m[a(I) 7!

m(a(E))℄. The symboli
 exe
ution 
ontinues at the next node Std(L

0

+

P

0

1; s

0

; i)

with the new symboli
 state s

0

= s[I 7! subst(translate(E; e); s)℄. We need to

show that StdIH holds in the new states. We use the same substitution � to

prove that StdIH(L+

P

1; m

0

; a; L

0

+

P

0

1; s

0

; i; �) holds.

StdIH3 holds in the new states be
ause StdIH3 holds in the previous states,

and � and i do not 
hange. That StdIH1 holds in the new states, namely

j= � (Std(L

0

+

P

0

1; s

0

; i)), is also easy to prove: it follows from StdIH1 of the

indu
tion hypothesis, namely j= �(Std(L

0

; s; i)), be
ause � does not 
hange

and the symboli
 exe
utions before and after the assignment node generate

the same veri�
ation 
ondition. To prove StdIH2 in the new states, namely

j= � (s

0

(I

0

)) = m

0

(a(I

0

)) for all I

0

2 vars(P ), we analyze two 
ases.

First, for all variables I

0

di�erent than I, the symboli
 state and the memory

do not 
hange, i.e., for all I

0

6� I, s

0

(I

0

) � s(I) and m

0

(a(I

0

)) � m(a(I)).

Therefore, for those variables, j= �(s

0

(I

0

)) = m

0

(a(I

0

)) follows from StdIH2 of

the indu
tion hypothesis. Se
ond, for I

0

� I, to show j= �(s

0

(I

0

)) = m

0

(a(I

0

)),

we need to show j= � (subst(translate(E; e); s)) = m(a(E)). The equality holds

by Lemma 3 be
ause j= �(s(I)) = m(a(I)) for all I 2 vars(P ), by StdIH2 of
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the indu
tion hypothesis. Therefore, StdIH2 also holds in the new states for all

variables.

N2. The last node is a 
onditional bran
h node: P

0

(L

0

) � L

0

:br(E)L

00

. There

are two paths from this node, and the 
on
rete exe
ution takes only one of

them depending on the value of the bran
h 
ondition. However, the symboli


exe
ution takes both paths, and from StdIH1 of the indu
tion hypothesis, we

have:

j= �((G) Std(L

00

; s; i)) ^ (:G) Std(L

0

+

P

0

1; s; i))); (5.6)

where G = translate-bran
h(E; s; e).

We next show that StdIH holds after the bran
h node when the bran
h is

taken during the 
on
rete exe
ution; the 
ase when the bran
h is not taken is

analogous. The bran
h is taken, and the 
on
rete exe
ution makes a transition

hL;m; ai ! hL

00

; m; ai, ifm(a(E)) 6� 0. We use the same substitution � from the

indu
tion hypothesis to show that StdIH holds after the bran
h is taken. Sin
e

m(a(E)) 6� 0 and, by StdIH2 of the indu
tion hypothesis, j= �(s(I)) = m(a(I))

for all I 2 vars(P ), we have, by Lemma 4, j= � (G).

From 5.6 and the de�nition of 
onjun
tion (Figure 4-8), we obtain that both

j= � (G) Std(L

00

; s; i)) and j= � (:G) Std(L

0

+

P

0

1; s; i)). From the former we

further obtain: if j= �(G), then j= �(Std(L

00

; s; i)). Therefore, when the bran
h

is taken, then j= �(Std(L

00

; s; i)) whi
h is StdIH1 in the new states. StdIH2 and

StdIH3 in the new states trivially follow from the indu
tion hypothesis be
ause

m, s, i, and � remain the same.

N3. The last node is a return node: P

0

(L

0

) � L

0

:ret. It is the �nal node in the


on
rete exe
ution of a pro
edure a
tivation, and therefore we do not show that

StdIH holds after the return node. We still need to show that the standard

output 
ontext holds at the return node. From StdIH1 of the indu
tion hy-

pothesis, there exists � su
h that j= �(Std(L

0

; s; i)), i.e., j= � (subst(F

out

k

; s)).

Sin
e StdIH2 of the indu
tion hypothesis holds, by the Congruen
e Lemma 5.2,

we obtain m; a j= F

out

k

.

N4. The last node is a pro
edure 
all node: P

0

(L

0

) � L

0

:I(E

�

). Let the 
allee

pro
edure be P

00

� pro
 I(I

�

) D

�

fN

+

g. The 
on
rete exe
ution makes a

transition to the �rst node of P

00

, allo
ating memory for the parameters and

lo
al variables of P

00

:

hm

in

; a

in

; p

in

i = allo
-lo
als(allo
-params(hm; a; pi; I

�

; m(a(E

�

))); D

�

):

When and if the exe
ution of P

00

returns, the 
on
rete exe
ution 
ontinues

from hP (L+

P

1); m

0

; ai, where m

0

is the memory after the 
all. For all non-

global variables of P , the values remain the same: m

0

(a(I)) = m(a(I)) for all

I 2 lo
als(P ) [ params(P ).

The symboli
 exe
ution 
ontinues, after the return node, with the new symboli


state s

0

= s[I

�

7! x

�

℄ for all I

�

2 globals(P ), where x

�

are fresh logi
 variables.
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From StdIH1 of the indu
tion hypothesis, there is a substitution � su
h that:

j= � (subst(F

in

; set-params(I; G

�

; s))) (5.7)

and

j= � (8x

�

: subst(F

out

; s

0

)) Std(L

0

+

P

0

1; s

0

; i)); (5.8)

where G

�

= translate-
all(E

�

; s; e), and hF

in

; F

out

i is one of the 
ontexts of

pro
edure P

00

. We use s

in

to denote the symboli
 state for the formula F

in

:

s

in

= set-params(I; G

�

; s) = s[I

�

7! G

�

℄ for parameters I

�

of pro
edure I=P

00

.

We need to show that the StdIH holds after the 
all. We use the substitution

�

0

= � [ fx

�

7! m

0

(a(I

�

))g to show that StdIH(L +

P

1; m

0

; a; L

0

+

P

0

1; s

0

; i; �

0

)

holds.

StdIH3 is easy to prove: from StdIH3 of the indu
tion hypothesis, � is 
orre
t

with respe
t to i. After the symboli
 exe
ution of the 
all node, i remains the

same and � � �

0

. Therefore, �

0

is 
orre
t with respe
t to i. To show StdIH2, we

analyze two 
ases. First, for all non-global variables I 2 lo
als(P )[params(P ),

the following holds: j= �

0

(s

0

(I)) = �

0

(s(I)) = �(s

0

(I)) = m(a(I)) = m

0

(a(I)).

Se
ond, for all global variables I 2 globals(P ), from the 
hoi
e of �

0

immediately

follows: j= �

0

(s

0

(I)) = m

0

(a(I)). Therefore, j= �

0

(s

0

(I)) = m

0

(a(I)) for all

I 2 vars(P ). We still need to prove that StdIH1 holds in the new states.

We �rst show that j= � (s

in

(I)) = m

in

(a

in

(I)) for all variables I 2 globals(P

00

)[

params(P

00

) that 
an o

ur in F

in

. We analyze two 
ases: I 2 globals(P

00

)

and I 2 params(P

00

). First, for all global variables I, s

in

(I) � s(I) and

m

in

(a

in

(I)) = m(a(I)). From StdIH2 of the indu
tion hypothesis, j= � (s(I)) =

m(a(I)) for all I 2 vars(P ). Sin
e P and P

00

have the same global variables,

j= � (s

in

(I)) = m

in

(a

in

(I)) for all those global variables. Se
ond, for ea
h pa-

rameter I

(n)

from the sequen
e I

�

, s

in

(I

(n)

) � G

(n)

, where G

(n)

is the respe
tive

expression from the sequen
e G

�

= translate-
all(E

�

; s; e). By Lemma 5, j=

�(G

(n)

) = m(a(E

(n)

)), sin
e j= �(s(I)) = m(a(I)) for all I 2 vars(P ), by StdIH2

of the indu
tion hypothesis. Further, m

in

(a

in

(I

(n)

)) � m(a(E

(n)

)) by the de�-

nition of the allo
-params fun
tion (Se
tion 4.1.2). Therefore, j= �(s

in

(I

(n)

)) =

m

in

(a

in

(I

(n)

)) for all parameters of P

00

, and thus j= �(s

in

(I)) = m

in

(a

in

(I)) for

all variables I that 
an o

ur in F

in

.

We next show that m

0

; a j= F

out

. From 5.7, we have j= � (subst(F

in

; s

in

)).

Sin
e j= �(s

in

(I)) = m

in

(a

in

(I)) for all variables I that 
an o

ur in F

in

, by

the Congruen
e Lemma 5.2, we obtain m

in

; a

in

j= F

in

. This means that the

input 
ontext F

in

holds at the beginning of P

00

. For every 
ontext k

00

of every

pro
edure P

00

in Q, if the input 
ontext holds at the beginning of an a
tivation

of P

00

, then the output 
ontext holds at the end of that a
tivation. (Note that it

appears that we assume the a
tual statement that we try to establish, namely

j= std-invs(Q). We show later how to 
orre
t this apparent error.) Therefore,

m

out

; a

out

j= F

out

, where m

out

is the memory at the end of the a
tivation of P

00

,

and a

out

= a

in

is the environment for the parti
ular a
tivation of P

00

. Memory

m

out

= m

0

be
ause the 
on
rete exe
ution of the return node in P

00

does not
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hange the memory. Additionally, the environments a

in

for P

00

and a for P map

the global variables to the same addresses. Sin
e F

out


an 
ontain only global

variables, we have m

0

; a j= F

out

.

Finally, we show that j= �

0

(Std(L

0

+

P

0

1; s

0

; i)). From 5.8 and the 
hoi
e

of �

0

, we have j= �

0

(subst(F

out

; s

0

) ) Std(L

0

+

P

0

1; s

0

; i)). We have already

proven that StdIH2 holds in the new states: j= �

0

(s

0

(I)) = m

0

(a(I)) for all

I 2 vars(P ). From m

0

; a j= F

out

, we obtain, by the Congruen
e Lemma 5.1,

that j= �

0

(subst(F

out

; s

0

)). Therefore, j= �

0

(Std(L

0

+

P

0

1; s

0

; i)), whi
h is StdIH1

in the new states. This 
on
ludes the proof that the exe
ution of any 
all node

preserves the StdIH.

We next show how to 
orre
t the apparent error that we used j= std-invs(Q)

to prove j= std-invs(Q). More pre
isely, while proving j= std-invs(k; P;Q),

we assumed, at 
all sites in P , that j= std-invs(k

00

; P

00

; Q) for all 
ontexts

k

00

of all pro
edures P

00

. If the pro
edure P is re
ursive, we 
annot make su
h

an assumption. The 
orre
t proof of 
all nodes requires, besides the indu
tion

on the length of the partial exe
ution of P , an additional indu
tion on the

height of the pro
edure 
all tree. A pro
edure 
all tree is a dire
ted tree whose

nodes represent a
tivations of pro
edures 
alled during a (
on
rete) program

exe
ution, and whose edges represent 
all relationships|there is an edge from

one a
tivation to another if the former 
alls the latter. The root of the whole 
all

tree for a program exe
ution is the initial a
tivation of the starting pro
edure of

the program. Ea
h a
tivation is also the root of a subtree of 
alls made starting

from that a
tivation.

We next des
ribe only informally how the indu
tion on the height of the pro-


edure 
all tree would pro
eed. The indu
tion hypothesis would state that

j= std-invs(k; P;Q) for all a
tivations (of all 
ontexts k of all pro
edures

P ) whose subtrees have height n. The base 
ase 
onsiders a
tivations whi
h

make no 
alls. (The proof for this 
ase is by indu
tion on the length of

the partial exe
ution without 
all nodes.) The indu
tion step assumes that

j= std-invs(k; P;Q) for all a
tivations whose subtrees have height at most n,

and derives that j= std-invs(k; P;Q) for all a
tivations whose subtrees have

height at most n + 1. (The proof for this 
ase is again by indu
tion on the

length of the partial exe
ution, and the hypothesis for height at most n is used

for 
all nodes.) This indu
tion would 
orre
t the proof.

Observe that this indu
tion pro
eeds from the leaves of the tree toward the root.

Therefore, if a tree has �nite height, then 
learly j= std-invs(k; P;Q) for all a
-

tivations. However, even if a tree has in�nite height, still j= std-invs(k; P;Q)

for all a
tivations. The reason is that we require partial 
orre
tness|the out-

put 
ontexts should hold only if the exe
ution rea
hes a return node. When a

subtree of the 
all tree has in�nite height, it means that the a
tivation of the

root of that subtree never terminates. Sin
e the exe
ution of that a
tivation

does not rea
h a return node, any result for the output 
ontext is allowed. For

example, 
onsider a parameterless pro
edure that has only a re
ursive 
all to

83



the same pro
edure and a return node. For this pro
edure, the 
ontext with

F

in

� true and F

out

� false holds be
ause no exe
ution 
an rea
h the return

node. Otherwise, the output 
ontext false does not hold for any 
on
rete state,

and would not be 
orre
t/provable if an exe
ution 
ould rea
h the return node.

N5. The last node is an invariant: P

0

(L

0

) � L

0

:inv F . There are two 
ases de-

pending on whether the invariant has been already symboli
ally exe
uted or

not:

N5.1. The invariant L

0

:inv F is exe
uted for the �rst time, i.e., hL

0

; s

0

i 62 i for

any s

0

. From StdIH1 of the indu
tion hypothesis, there is a substitution �

su
h that:

j= � (subst(F; s)) (5.9)

and

j= � (8x

�

: subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i

0

)); (5.10)

where s

0

= fI

�

7! x

�

g is a fresh symboli
 state with fresh logi
 variables

x

�

for all I 2 vars(P ) and i

0

= hL

0

; s

0

i [ i.

From StdIH2 of the indu
tion hypothesis, j= � (s(I)) = m(a(I)) for all

I 2 vars(P ). We 
an therefore apply the Congruen
e Lemma 5.2, and

from 5.9, we obtain m; a j= F , whi
h is one of the requirements for j=

std-invs(k; P;Q). We need additionally to show that StdIH holds after

the symboli
 exe
ution of the invariant. (There is no 
on
rete exe
ution of

the invariants|the invariants only 
orrespond to 
ertain program points

and des
ribe the program state at those points.) We use the substitution

�

0

= � [ fx

�

7! m

0

(a(I

�

))g to show that StdIH(L;m; a; L

0

+

P

0

1; s

0

; i

0

; �

0

)

holds after the invariant.

StdIH2 is trivial to prove; from the 
hoi
e of �

0

: j= �

0

(s

0

(I)) = m(a(I)) for

all I 2 vars(P ). Sin
e StdIH2 holds, and alsom; a j= F , by the Congruen
e

Lemma 5.1, we have j= �

0

(subst(F; s

0

)). Further, from 5.10 and the 
hoi
e

of �

0

, we have:

j= �

0

(subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i

0

)); (5.11)

whi
h means that j= �

0

(Std(L

0

+

P

0

1; s

0

; i

0

)) if j= �

0

(subst(F; s

0

)). Therefore,

j= �

0

(Std(L

0

+

P

0

1; s

0

; i

0

)), whi
h is StdIH1. We need still to prove StdIH3,

i.e., that �

0

is 
orre
t with respe
t to i

0

. We prove that StdIH3.2 holds.

StdIH3.2.1{StdIH3.2.3 follow from the 
hoi
e of �

0

. StdIH3.2.4 holds be-


ause of 5.10 (�

1

is �). StdIH3.2.5 follows from StdIH3 of the indu
tion

hypothesis.

N5.2. The invariant L

0

:inv F has been previously exe
uted, i.e., hL

0

; s

0

i 2 i for

some symboli
 state s

0

. From StdIH1 of the indu
tion hypothesis, there is

a substitution � su
h that j= �(subst(F; s)). From StdIH2 of the indu
tion

hypothesis, j= � (s(I)) = m(a(I)) for all I 2 vars(P ). We 
an therefore
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apply the Congruen
e Lemma 5.2 to obtain m; a j= F , whi
h is one of the

requirements for j= std-invs(k; P;Q). We need additionally to show that

StdIH holds after the invariant. We show that there exists �

0

su
h that

StdIH(L;m; a; L

0

+

P

0

1; s

0

; i; �

0

) holds.

From hL

0

; s

0

i 2 i, we have that i = fhL

0

; s

0

ig [ i

1

, where s

0

= fI

�

7! x

�

g

for all I 2 vars(P ). From StdIH3.2.2 of the indu
tion hypothesis, we know

that � = �

1

[ fx

�

7! Z

�

g for some �

1

su
h that by StdIH3.2.3, none of x

from x

�

is in �

1

. Therefore, we 
an use �

0

= �

1

[ fx

�

7! m(a(I

�

))g, and we

prove that StdIH holds for that �

0

.

StdIH2, namely j= �

0

(s

0

(I)) = m(a(I)) for all I 2 vars(P ), follows dire
tly

from the 
hoi
e of �

0

. StdIH3 follows from StdIH3 of the indu
tion hypoth-

esis. We need still to show that StdIH1 holds: j= �

0

(Std(L

0

+

P

0

1; s

0

; i)).

From StdIH3.2.4 of the indu
tion hypothesis, we have:

j= �

1

(8x

�

: subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i)): (5.12)

Further, by the de�nition of universal quanti�
ation, we get:

j= �

0

(subst(F; s

0

)) Std(L

0

+

P

0

1; s

0

; i)): (5.13)

As we have already shown that StdIH2 holds and m; a j= F , by the Con-

gruen
e Lemma 5.1, we obtain j= �

0

(subst(F; s

0

)). Therefore, from 5.13,

we �nally have that j= �

0

(Std(L

0

+

P

0

1; s

0

; i)).

5.2 Soundness of Simulation Veri�
ation-Condition

Generator

In this se
tion we prove that the simulation veri�
ation-
ondition generator (presented

in Se
tion 4.4) is sound: for every pair of programs Q

1

and Q

2

and every set of

simulation 
ontexts for those programs, if the simulation veri�
ation 
ondition for

those programs and those 
ontexts is valid, then Q

1

simulates Q

2

; in notation: if

j= F

v


Q

1

;Q

2

, then Q

1

� Q

2

. (More pre
isely, we also need the standard veri�
ation


onditions for programs Q

1

and Q

2

to be valid: if j= F

v


Q

1

;Q

2

and j= F

v


Q

1

and j= F

v


Q

2

,

then Q

1

�Q

2

.) By the de�nition (page 65), Q

1

�Q

2

if:

� P

1

; Q

1

� P

2

; Q

2

for all pairs of pro
edures P

1

2 Q

1

and P

2

2 Q

2

for whi
h there

are simulation 
ontexts, and

� one of the simulation 
ontexts for the starting pro
edures for programs Q

1

and

Q

2

requires that the two programs generate the same output given that they

start with the same input.

Further, P

1

; Q

1

� P

2

; Q

2

if P

1

; Q

1

�

k

P

2

; Q

2

for all 
ontexts k 2 sim-
ontexts(P

1

; P

2

).

We therefore prove the simulation soundness theorem as follows.
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Theorem 2 (Simulation Soundness) If j= F

v


Q

1

;Q

2

and j= F

v


Q

1

and j= F

v


Q

2

, then

P

1

; Q

1

�

k

P

2

; Q

2

for all simulation 
ontexts k of all pairs of pro
edures P

1

2 Q

1

and P

2

2 Q

2

.

Proof: Pi
k any pair of pro
edures P

1

2 Q

1

and P

2

2 Q

2

, for whi
h there is a

simulation 
ontext, and pi
k any simulation 
ontext k of P

1

and P

2

:

P

1

� pro
 I

1

(I

�

1

) D

�

1

fN

+

1

g

P

2

� pro
 I

2

(I

�

2

) D

�

2

fN

+

2

g

sim-invariants (J

in

J

out

S

�

K

�

Z

1

Z

2

G

�

A

�

)

�

:

Sin
e j= F

v


Q

1

;Q

2

and F

v


Q

1

;Q

2

=

V

P

1

2Q

1

;P

2

2Q

2

F

v


P

1

;Q

1

;P

2

;Q

2

, by the de�nition of 
on-

jun
tion (Figure 4-8), we get j= F

v


P

1

;Q

1

;P

2

;Q

2

. Further, by the de�nition, F

v


P

1

;Q

1

;P

2

;Q

2

=

V

k2f1:::ng

F

v


k;P

1

;Q

1

;P

2

;Q

2

, for sim-
ontexts(P

1

; P

2

) = f1 : : : ng, and thus j= F

v


k;P

1

;Q

1

;P

2

;Q

2

,

i.e., the simulation veri�
ation 
ondition for the 
ontext k of P

1

and P

2

holds. From

the algorithm for F

v


k;P

1

;Q

1

;P

2

;Q

2

and Sim (Figure 4-11), we have:

j= 8x

�

: subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(start-label(P

0

1

); s

0

1

; start-label(P

0

2

); s

0

2

; fg; t

0

) ^

subst(in-
ontext(P

1

; k

1

); s

0

1

) ^ subst(in-
ontext(P

2

; k

2

); s

0

2

);

(5.14)

where: s

0

1

= fI

�

1

7! x

�

1

g for all I

1

2 vars(P

1

), s

0

2

= fI

�

2

7! G

�

g for all I

2

2 vars(P

2

),

s

0

1

and s

0

2

are the starting symboli
 states for the symboli
 exe
utions of pro
edures

hP

0

1

; P

0

2

i = merge-sim-invariants(k; P

1

; P

2

), and t

0

= a
tion-tree(A

�

k

; P

0

1

; P

0

2

) is the a
-

tion tree for the interleaving of the symboli
 exe
utions of P

0

1

and P

0

2

. The symboli


exe
utions use symboli
 environments e

1=2

that map program variables from pro
e-

dures P

1=2

to logi
 expressions representing those variables.

2

We use a variable name

with an index to represent whi
h program the variable is from.

The starting symboli
 expressions G

�

for s

0

2

are 
reated in the following way:

� for ea
h I

2

2 vars(P

2

)� lo
als(P

2

):

{ if hI

1

; I

2

i 2 var-pairs(J

in

k

) for some I

1

, then I

2

is mapped to s

1

(I

1

); other-

wise,

{ I

2

is mapped to a fresh variable x

2

, and the sequen
e of all su
h fresh

variables, x

�

2

, 
on
atenated to x

�

1

gives x

�

; and

� for ea
h I

2

2 lo
als(P

2

), the symboli
 expression for I

2

is obtained by substitut-

ing x

�

for the appropriate program variables in expressions G

�

k

provided by the


ompiler transformation.

2

In general, e

1=2

maps ea
h I

l

2 lo
als(P

1=2

) [ params(P

1=2

) to logi
 expression lo


1=2

(I

l

) and

ea
h I

g

2 globals(P

1=2

) to logi
 expression glob

1=2

(I

g

). For the brevity of the proof presentation,

we use logi
 expressions without the spe
ial 
onstru
tors H . Therefore, e

1=2

is the identity: it maps

ea
h variable I

1=2

2 vars(P

1=2

) to itself. We assume that the variable names in two pro
edures are

di�erent: vars(P

1

) \ vars(P

2

) = fg.
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The 
ompiler transformation also provides indi
es for standard 
ontexts of pro-


edures: k

1

of P

1

and k

2

of P

2

. By assumption, the standard veri�
ation 
onditions

for programs Q

1

and Q

2

are valid: j= F

v


Q

1

and j= F

v


Q

2

. Therefore, by Theorem 1, all

standard 
ontexts of all pro
edures from programs Q

1

and Q

2

hold. In parti
ular,


ontexts k

1

of P

1

and k

2

of P

2

hold:

j= std-invs(k

1

; P

1

; Q

1

) (5.15)

and

j= std-invs(k

2

; P

2

; Q

2

): (5.16)

We need to show that for all partial exe
utions hP

0

1

; m

0

1

; a

1

i

+

9 9 K hL

1

; m

1

; a

1

i of

P

1

, there exists a partial exe
ution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i of P

2

su
h that if

m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the following is satis�ed:

� for all L

0

1

,L

0

2

:sim-inv J

0

from S

�

k

, if L

1

� L

0

1

, then there exists L

1

,L

00

2

:sim-inv J

from set-sim-inv(L

1

; S

�

k

) su
h that L

2

� L

00

2

and m

1

; a

1

; m

2

; a

2

j= J ; and

� if P

1

(L

1

) � L

1

:ret, then P

2

(L

2

) � L

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the partial exe
ution of P

1

does not terminate, then the partial exe
ution of

P

2

also does not terminate.

The proof is by indu
tion on the length of the partial exe
ution of P

1

. We prove

the indu
tion using an indu
tion hypothesis that we 
all the simulation indu
tion

hypothesis (SimIH). The SimIH relates 
on�gurations hL

1

; m

1

; a

1

i and hL

2

; m

2

; a

2

i of

the 
on
rete exe
utions of P

1

and P

2

to the parameters of the symboli
 exe
utions

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) of P

0

1

and P

0

2

. Similar to the standard indu
tion hypothesis, the

simulation indu
tion hypothesis relates the program points L

1=2

of the 
on
rete exe
u-

tions to the program points L

0

1=2

of the symboli
 exe
utions. Additionally, the SimIH

in
ludes an a
tion tree t that guides the symboli
 exe
utions. We �rst des
ribe the


orresponden
e between the a
tions of the tree and the 
on
rete exe
utions. We next

des
ribe how the SimIH uses a substitution � to relate the 
on
rete states m

1=2

; a

1=2

to the symboli
 states s

1=2

. We then present a lemma that shows 
ertain substitutions

to be well-de�ned for symboli
 states that are related by a formula J . Finally, we

state the SimIH and prove the base 
ase and the indu
tion step.

The 
orresponden
e between the nodes of P

0

1=2

and the nodes of P

1=2

is as follows.

Ea
h node (with label) L

0

from either P

0

1

or P

0

2

has a unique 
orresponding node (with

label) L from the respe
tive P

1

or P

2

. The nodes in P

0

1=2

are obtained by merging the

halves of simulation invariants to the nodes from P

1=2

. Ea
h node from P

0

1=2

that is

not a half of an invariant 
orresponds to the appropriate original node from P

1=2

. For

ea
h simulation invariant L

1

,L

2

:sim-inv J from S

�

k

, the node L

1

:sim-inv is added

to P

0

1

in front of the node with label L

1

and the node L

2

:sim-inv J,L

1

is added to

P

0

2

in front of the node with label L

2

, as explained in the initial phase of the SimVCG

(page 67). The nodes L

1

:sim-inv and L

2

:sim-inv J,L

1

represent two halves of a

simulation invariant.
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Similar to the standard invariants, ea
h node from P

1=2

has one or more 
orre-

sponding nodes from P

0

1=2

: the 
opy of the original node and, in general, a set of halves

of simulation invariants that pre
ede the 
opy of the original node.

3

The soundness

proof for the standard invariants is, 
on
eptually, by an indu
tion on the length of the


on
rete exe
ution of the pro
edure. Te
hni
ally, we do an indu
tion on all possible

symboli
 exe
utions (
orresponding to the 
on
rete exe
ution) that implies the indu
-

tion on the length of the 
on
rete exe
ution. Similarly, the soundness proof for the

simulation invariants is, 
on
eptually, by an indu
tion on the length of the 
on
rete

exe
ution of P

1

. We a
tually do an indu
tion on all possible symboli
 exe
utions of

P

0

1

and P

0

2


orresponding to the 
on
rete exe
ution of P

1

.

The a
tion tree t guides the interleaving of the symboli
 exe
utions of P

0

1

and P

0

2

.

Ea
h 
on
rete exe
ution of a node L

1

from P

1

has a 
orresponding sequen
e of a
tions

from the tree. This sequen
e ends with the a
tion that exe
utes in P

0

1

the 
opy of the

node L

1

; depending on the node, the a
tion 
an be either exe
ute

1

or exe
ute-both.

The sequen
e starts with the a
tion that immediately follows the end of the previous

sequen
e, ex
ept that the sequen
e for the �rst node starts with the �rst a
tion of the

tree. We show in the indu
tion step that any sequen
e 
orresponding to the 
on
rete

exe
ution of a node preserves the simulation indu
tion hypothesis.

More pre
isely, we 
onsider only 
orre
t sequen
es of a
tions, i.e., 
orre
t a
tion

trees. An a
tion tree t is 
orre
t with respe
t to L

0

1

, L

0

2

, and i if the appli
ation

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) does not generate an error. In general, an error o

urs if there

are not enough a
tions in the tree (i.e., t is empty when Sim performs root(t)), or

the root a
tion is not allowed for the nodes L

0

1

and/or L

0

2

(e.g., exe
ute-both for a

return and a bran
h node). The SimVCG invokes the fun
tion Sim with the initial

tree t

0

and we know that it generates a SimVC, and not an error, sin
e we also know

that the SimVC is valid. Thus, t

0

is 
orre
t for the respe
tive starting labels. In

the base 
ase of the indu
tion, we also use the tree t

0

. If a tree is 
orre
t before

some a
tion, then the appropriate subtrees are 
orre
t for the exe
utions after the

a
tion. In the indu
tion step, we 
onsider the same subtrees as the fun
tion Sim, and

therefore the subtrees are 
orre
t for the respe
tive exe
utions. Whenever we write

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) in the rest of the proof, we understand that it is for a 
orre
t t.

We next show the 
orresponden
e between the symboli
 states s

1=2

and the 
on-


rete states m

1=2

; a

1=2

. Ea
h of the symboli
 states s

1=2

= fI

�

1=2

7! G

�

1=2

g 
orresponds

to a set of the 
on
rete states m

1=2

; a

1=2

. We 
an spe
ify one su
h 
orresponden
e

with a substitution � = fx

�

7! Z

�

g, where x

�

are all logi
 variables in the expres-

sions G

�

1=2

. The SimIH uses � su
h that the symboli
 states and the 
on
rete states


oin
ide: j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 vars(P

1=2

). In general, there

are symboli
 and 
on
rete states for whi
h no su
h � exists, even if s

1

= fI

�

1

7! x

�

1

g

for all I

1

2 vars(P

1

) and some sequen
e x

�

1

of di�erent logi
 variables. (If s

1


an be

arbitrary, then there is no � , e.g., for s

1

= fI

1

7! x

1

; I

0

7! x

1

g and m

1

; a

1

su
h that

m

1

(a

1

(I

1

)) 6= m

1

(a

1

(I

0

)).) We next show that a substitution � exists for all states

that satisfy 
ertain 
onditions.

3

Re
all that in P

0

1

, there is at most one L

1

:sim-inv before any original node be
ause the simu-

lation invariants with the same �rst label share that node.
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Lemma 6 (Well-De�ned Substitution) Let J be any formula for two programs (a

simulation invariant, a simulation input 
ontext, or a simulation output 
ontext),

and let m

1

; a

1

; m

2

; a

2

be any 
on
rete states su
h that m

1

; a

1

; m

2

; a

2

j= J . Let s

1

=

fI

�

1

7! x

�

1

g for all I

1

2 vars(P

1

) and some sequen
e x

�

1

of di�erent logi
 variables.

Let s

2

= fI

�

2

7! G

�

g for all I

1

2 vars(P

1

), where G

�

are any expressions su
h that:

for any variable I and any variable I

0

6� I that 
an o

ur in J (all variables, non-

lo
al variables, or global variables, depending on J), s

2

(I) is a logi
 variable and

s

2

(I) 6� s

2

(I

0

). Let x

�

2

be all logi
 variables that are images, in s

2

, of variables that


an o

ur in J . (Note that some variables from x

�

2

may be identi
al to some variables

from x

�

1

.) Let x

�

= x

�

1

[ x

�

2

be a sequen
e of all unique variables from x

�

1

and x

�

2

.

If s

1

(I

1

) � s

2

(I

2

) for all hI

1

; I

2

i 2 var-pairs(J), i.e., the symboli
 states s

1=2

are

related by (the pairs of variables in) J , then there exists a substitution � = fx

�

1

7!

m

1

(a

1

(I

�

1

))g [ fx

�

2

7! m

2

(a

2

(I

�

2

))g, denoted as fx

�

7! m

1=2

(a

1=2

(I

�

1=2

))g, su
h that:

j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

that 
an o

ur in J .

Proof: We give only an outline of the proof. The main result to show is that the

substitution � is well-de�ned: for ea
h x from x

�

, there exists a unique Z su
h that

�(x) = Z. Let �

1

= fx

�

1

7! m

1

(a

1

(I

�

1

))g and �

2

= fx

�

2

7! m

2

(a

2

(I

�

2

))g. We have that

� = �

1

[ �

2

, and we need to show that �

1

(x) = �

2

(x) for all variables x that are both

in x

1

and x

2

. It is easy to show that those logi
 variables are images, in s

1=2

, of the

program variables that appear in var-pairs(J). Further, it is easy to show, by the

de�nition of 
onjun
tion, that m

1

(a

1

(I

1

)) = m

2

(a

2

(I

2

)) for all hI

1

; I

2

i 2 var-pairs(J)

follows from m

1

; a

1

; m

2

; a

2

j= J . This 
on
ludes the proof of the lemma.

5.2.1 Simulation Indu
tion Hypothesis

The simulation indu
tion hypothesis (SimIH) relates 
on�gurations hL

1

; m

1

; a

1

i and

hL

2

; m

2

; a

2

i of the partial exe
utions hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i and hP

0

2

; m

0

2

; a

2

i

+

9 9 K

hL

2

; m

2

; a

2

i of pro
edures P

1

and P

2

to the parameters of the symboli
 exe
utions

Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t) of P

0

1

and P

0

2

started with the symboli
 states s

0

1

and s

0

2

. For-

mally, the SimIH is a relation with many arguments:

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �; P

1

; m

0

1

; s

0

1

; P

2

; m

0

2

; s

0

2

);

where � is a mapping from logi
 variables to values. We will abbreviate the SimIH

to SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �), be
ause the pro
edures and the

starting states do not 
hange for a �xed pair of pro
edure a
tivations. We de�ne that

the SimIH holds if the following is satis�ed:

SimIH1. the simulation veri�
ation 
ondition holds: j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t)), and

SimIH2. the symboli
 states and the 
on
rete states 
oin
ide:

SimIH2.1. for all I

1

2 vars(P

1

): j= � (s

1

(I

1

)) = m

1

(a

1

(I

1

)), and

SimIH2.2. for all I

2

2 vars(P

2

): j= � (s

2

(I

2

)) = m

2

(a

2

(I

2

)); and
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SimIH3. the substitution � is 
orre
t with respe
t to i: either

SimIH3.1. i = fg and for the initial symboli
 states s

0

1

= fI

�

1

7! x

�

1

g and s

0

2

=

fI

�

2

7! G

�

g, where x

�

are all variables that o

ur in x

�

1

or G

�

:

SimIH3.1.1. all logi
 variables are in the substitution, i.e., � � fx

�

7! Z

�

g, and

SimIH3.1.2. j= � (s

0

1

(I

1

)) = m

0

1

(a

1

(I

1

)) for all I

1

2 vars(P

1

), and

SimIH3.1.3. j= � (s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)) for all I

2

2 vars(P

2

); or

SimIH3.2. i = i

1

[ fhhL

00

1

; L

00

2

i; hs

0

1

; s

0

2

i; t

0

ig, where s

0

1

= fI

�

1

7! x

�

1

g and s

0

2

= fI

�

2

7!

x

�

2

g for some x

�

= x

�

1

[ x

�

2

, and

SimIH3.2.1. P

0

1

(L

00

1

) � L

00

1

:sim-inv and P

0

2

(L

00

2

) � L

00

2

:sim-inv J,L

00

1

, and

SimIH3.2.2. � = �

1

[ fx

�

7! Z

�

g, and

SimIH3.2.3. x

�

are fresh variables, i.e., for all x from x

�

, x 62 �

1

[ i

1

, and

SimIH3.2.4. j= �

1

(8x

�

: subst-sim(J; s

0

1

; s

0

2

)) Sim(L

00

1

+

P

0

1

1; s

0

1

; L

00

2

+

P

0

2

1; s

0

2

; i; t

0

)),

and

SimIH3.2.5. �

1

is 
orre
t with respe
t to i

1

, as de�ned by SimIH3.

We now prove that for all 
on�gurations hL

1

; m

1

; a

1

i in sequen
es hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i of P

1

, there exists a 
on�guration hL

2

; m

2

; a

2

i in a sequen
e hP

0

2

; m

0

2

; a

2

i

+

9 9 K

hL

2

; m

2

; a

2

i of P

2

, where m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, su
h that for all L

0

1

2 P

0

1


orresponding

to L

1

2 P

1

, there exists a label L

0

2

2 P

0

2


orresponding to L

2

2 P

2

, and there exist sym-

boli
 states s

1

and s

2

, a set of symboli
ally exe
uted simulation invariants i, an a
tion

tree t, and a substitution � for whi
h SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �)

holds. We also show that this implies that the simulation invariants and the simula-

tion output 
ontext of the 
ontext k hold, as well as that the termination simulation

is satis�ed:

� if P

0

1

(L

0

1

) � L

0

1

:sim-inv, then P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

0

1

and m

1

; a

1

; m

2

; a

2

j=

J ; and

� if P

0

1

(L

0

1

) � L

0

1

:ret, then P

0

2

(L

0

2

) � L

0

2

:ret and m

1

; a

1

; m

2

; a

2

j= J

out

k

; and

� if the exe
ution of P

1

does not terminate, then the exe
ution of P

2

also does

not terminate.

5.2.2 Simulation Base Case

The initial 
on�gurations for the 
on
rete exe
utions of P

1

and P

2

are hP

0

1

; m

0

1

; a

1

i and

hP

0

2

; m

0

2

; a

2

i, where m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

. (Re
all that by the simulation requirement,

the memory m

0

1

for the exe
ution of P

1

is universally quanti�ed, whereas the memory

m

0

2

for the exe
ution of P

2

is existentially quanti�ed.) The symboli
 exe
utions start

with L

0

1

� start-label(P

0

1

), s

1

= s

0

1

= fI

�

1

7! x

�

1

g, L

0

2

� start-label(P

0

2

), s

2

= s

0

2

=

fI

�

2

7! G

�

g, i = fg, and t = t

0

. Let x

�

be all logi
 variables that o

ur in x

�

1

or G

�

.

We need to show that there exists a substitution � for all variables in x

�

su
h that

SimIH(P

0

1

; m

0

1

; a

1

; P

0

2

; m

0

2

; a

2

; L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

; �) holds.
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By the Well-De�ned Substitution Lemma, we know that there exists � = fx

�

7!

m

0

1=2

(a

1=2

(I

�

1=2

))g su
h that j= � (s

0

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 vars(P

1=2

)�

lo
als(P

1=2

). We �rst show that for this � , SimIH2 holds. SimIH3 (part SimIH3.1)

then trivially follows from SimIH2. To 
on
lude the proof that SimIH holds, we

then show that SimIH1 holds. Finally, we show also that the standard invariants

of standard 
ontexts k

1=2

of P

1=2

hold during the 
on
rete exe
utions started with

m

0

1=2

; a

1=2

.

SimIH2.1 holds from the 
hoi
e of � . To prove SimIH2.2, we still need to prove

that j= �(s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)) for all I

2

2 lo
als(P

2

). More pre
isely, sin
e m

0

2

is

existentially quanti�ed, we need to show that there exist values m

0

2

(a

2

(I

2

)) for all

I

2

2 lo
als(P

2

) su
h that j= �(s

0

2

(I

2

)) = m

0

2

(a

2

(I

2

)). From the algorithm that 
reates

the starting symboli
 expressions G

�

(page 86), we have that for all I

2

2 lo
als(P

2

),

s

0

2

(I

2

) � subst-sim(G

k

; s

0

1

; s

0

2

) for the appropriate G

k

, whi
h 
annot 
ontain lo
al

variables of P

2

. Therefore, we 
an 
hoose m

0

2

(a

2

(I

2

)) = G

i

[[� (s

0

2

(I

2

))℄℄ m

0

1

; a

1

; m

0

2

; a

2

for all I

2

2 lo
als(P

2

), sin
e the evaluation G

i

does not require the values of lo
al

variables of P

2

. This 
hoi
e implies dire
tly that SimIH2.2 holds. Note that at this

point, we spe
ify the values of memory lo
ations of m

0

2

only for the lo
al variables of

P

2

. Be
ause of the existential quanti�
ation of m

0

2

, we 
an still spe
ify the values of

the lo
ations \above" the lo
ations for the lo
al variables; we use this for 
all nodes.

We next prove that SimIH1 holds. From 5.14, we obtain:

j= � (subst-sim(J

in

k

; s

0

1

; s

0

2

))

Sim(L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

) ^

subst(in-
ontext(P

1

; k

1

); s

0

1

) ^ subst(in-
ontext(P

2

; k

2

); s

0

2

)):

This further simpli�es to: if j= �(subst-sim(J

in

k

; s

0

1

; s

0

2

)), then

j= � (Sim(L

0

1

; s

0

1

; L

0

2

; s

0

2

; fg; t

0

)) (5.17)

and

j= � (subst(in-
ontext(P

1

; k

1

); s

0

1

)) (5.18)

and

j= � (subst(in-
ontext(P

2

; k

2

); s

0

2

)): (5.19)

Sin
e SimIH2 holds, we 
an apply the Simulation Congruen
e Lemma, dire
tion 5.3,

and from m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, we have j= � (subst-sim(J

in

k

; s

0

1

; s

0

2

)). Therefore, 5.17

also holds, i.e., j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; t)) whi
h is SimIH1.

Additionally, 5.18 and 5.19 hold. We next prove that the standard invariants of


ontext k

1

hold during the 
on
rete exe
ution of P

1

started with m

0

1

; a

1

; by anal-

ogy, the standard invariants of 
ontext k

2

also hold. From 5.15, we know that the


ontext k

1

holds. Therefore, if we prove that the standard input 
ontext F

in

k

1

=

in-
ontext(P

1

; k

1

) holds for m

0

1

; a

1

, then all standard invariants of k

1

hold. From

SimIH2.1, we have that j= � (s

0

1

(I

1

)) = m

0

1

(a

1

(I

1

)) for all variables I

1

that 
an o

ur

in F

in

k

1

. Therefore, we 
an apply the Standard Congruen
e Lemma 5.2, and from 5.18,

we obtain m

0

1

; a

1

j= F

in

k

1

, whi
h 
on
ludes the proof.
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5.2.3 Simulation Indu
tion Step

The 
on
rete exe
ution of the node at label L

1

in P

1

has a 
orresponding sequen
e of

a
tions from the a
tion tree t. We show that any su
h sequen
e of a
tions preserves

the SimIH. At ea
h step, the SimVCG performs the a
tion from the root of the tree.

We do a 
ase analysis of the last a
tion performed during the symboli
 exe
utions of

pro
edures P

0

1=2

. We show that if the SimIH holds before the root a
tion from the

tree t is performed, then the SimIH also holds after the a
tion is performed.

A1. The last a
tion is exe
ute

1

, whi
h symboli
ally exe
utes an assignment node

or a bran
h node from P

0

1

.

A1.1. The node is an assignment node: P

0

1

(L

0

1

) � L

0

1

:I=E. Before this node

is exe
uted, from the indu
tion hypothesis, there exist s

1

, s

2

, i, t, and

� su
h that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds. When

the node is exe
uted, the 
on
rete exe
ution of P

1

makes a transition

hL

1

; m

1

; ai ! hL

1

+

P

1

1; m

0

1

; ai, where m

0

1

= m

1

[a

1

(I) 7! m

1

(a

1

(E))℄. The

symboli
 exe
ution 
ontinues at the next node Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

; s

0

2

; i; t)

with the new symboli
 state s

0

1

= s

1

[I 7! subst(translate(E; e

1

); s

1

)℄. We

need to show that SimIH holds in the new states. We use the same � to

prove that SimIH(L

1

+

P

1

1; m

0

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

; s

2

; i; left(t); �)

holds.

SimIH1 and SimIH3 follow dire
tly from the indu
tion hypothesis be
ause

� and i do not 
hange, and the symboli
 exe
utions before and after the

assignment node generate the same veri�
ation 
ondition. We need to

prove that SimIH2 holds. SimIH2.2 follows dire
tly from SimIH2.2 of the

indu
tion hypothesis be
ause � , s

2

, and m

2

do not 
hange. The proof

that SimIH2.1 holds is analogous to the proof for assignment nodes for the

StdVC (page 80): we analyze two 
ases, I

0

6� I and I

0

� I, and we use

Lemma 3 in the latter 
ase. We omit the details of the proof.

A1.2. The node is a bran
h node: P

0

1

(L

0

1

) � L

0

1

:br(E)L

00

. There are two paths

from this node, and the 
on
rete exe
ution of P

1

takes only one of them

depending on the value of the bran
h 
ondition. However, the symboli


exe
ution takes both paths, and from SimIH1 of the indu
tion hypothesis,

we have:

j= �((G) Sim(L

00

; s

1

; L

0

2

; s

2

; i; left(t))) ^

(:G) Sim(L

0

1

+

P

0

1

1; s

1

; L

0

2

; s

2

; i; right(t))));

(5.20)

where G = translate-bran
h(E; s

1

; e

1

).

From the indu
tion hypothesis, there exists a substitution � su
h that

SimIH holds before the bran
h node. The proof that SimIH holds after

the bran
h node is analogous to the proof for bran
h nodes for the StdVC

(page 81). We give an outline of the proof for the 
ase when the bran
h is

taken. We show that SimIH(L

00

; m

1

; a

1

; L

2

; m

2

; a

2

; L

00

; s

1

; L

0

2

; s

2

; i; left(t); �)

holds after the bran
h is taken. SimIH2 and SimIH3 follow dire
tly from
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the indu
tion hypothesis be
ause m

1

, s

1

, m

2

, s

2

, i, and � remain the same.

SimIH1, namely j= �(Sim(L

00

; s

1

; L

0

2

; s

2

; i; left(t))), follows from 5.20, by

the de�nitions of 
onjun
tion and impli
ation and by Lemma 4.

A2. The last a
tion is exe
ute

2

B, whi
h either symboli
ally exe
utes an assignment

node or a bran
h node from P

0

2

or moves past a simulation invariant from P

0

2

.

A2.1. The node is an assignment node: P

0

2

(L

0

2

) � L

0

2

:I=E. The proof that SimIH

holds after the exe
utions of an assignment node in P

0

2

and P

2

is analogous

to the proof that SimIH holds after the exe
utions of an assignment node

in P

0

1

and P

1

(page 92).

A2.2. The node is a bran
h node: P

0

2

(L

0

2

) � L

0

2

:br(E)L

00

. The symboli
 exe
u-

tion of a bran
h node in P

0

2

di�ers from the symboli
 exe
ution of a bran
h

node in P

0

1

. In P

0

1

, the symboli
 exe
ution splits at a bran
h node and

follows both paths. In P

0

2

, the symboli
 exe
ution follows only one path,

either bran
h-taken or bran
h-not-taken, depending on B. We prove that

the 
orresponding 
on
rete exe
ution also takes the same path. We give a

proof that these exe
utions preserve the SimIH for the bran
h-taken 
ase;

the bran
h-not-taken 
ase is analogous. From the indu
tion hypothesis,

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds (for some values of

the existentially quanti�ed arguments) before the node is exe
uted. We

show that SimIH(L

1

; m

1

; a

1

; L

00

; m

2

; a

2

; L

0

1

; s

1

; L

00

; s

2

; i; left(t); �) holds after

the node is exe
uted.

SimIH2 and SimIH3 are trivial to prove. We show that SimIH1 holds.

From the indu
tion hypothesis,

j= � (G ^ Sim(L

1

; s

1

; L

00

; s

2

; i; left(t))); (5.21)

where G = translate-bran
h(E; s

2

; e

2

). From 5.21, we have j= � (G). Fur-

ther, by Lemma 4, m

2

(a

2

(E)) 6� 0 whi
h proves that the 
on
rete exe
u-

tion of P

2

makes the bran
h-taken transition: hL

2

; m

2

; a

2

i ! hL

00

; m

2

; a

2

i.

From 5.21, we also obtain j= �(Sim(L

1

; s

1

; L

00

; s

2

; i; left(t))) whi
h is SimIH1.

A2.3. The node is a half of a simulation invariant: P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

00

1

.

From the indu
tion hypothesis, we know that there exists a symboli
 exe
u-

tion of P

0

2

su
h that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds.

The symboli
 exe
ution of the half of an invariant only moves past it.

We prove that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

+

P

0

2

1; s

2

; i; left(t); �)

holds. Sin
e the states and the substitution do not 
hange, SimIH2 and

SimIH3 follow dire
tly from their 
ounterparts in the indu
tion hypothesis.

SimIH1 also follows from SimIH1 of the indu
tion hypothesis be
ause the

symboli
 exe
utions before and after the half of an invariant generate the

same simulation veri�
ation 
ondition.

A3. The last a
tion is stop, whi
h �nishes the symboli
 exe
utions. We need to

prove that if SimIH holds before stop, then SimIH holds after stop. We
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show that this impli
ation is valid by showing that SimIH 
annot hold for any

substitution � before this a
tion. By 
ontradi
tion, assume that there exists

a substitution � (as well as the other arguments of the indu
tion hypothe-

sis relation) su
h that SimIH holds before stop. Sin
e the exe
ution of stop

generates false, we obtain, from SimIH1, j= � (false). For all substitutions

�(false) � false, and we have j= false whi
h 
annot hold, by the de�nition

of the valuation fun
tion for false (Figure 4-8). Hen
e, SimIH does not hold

before a
tion stop. (This means that stop 
annot be used on some path during

a symboli
 exe
ution of P

0

1

if that path is possible during a 
on
rete exe
ution of

P

1

. If a path is not possible during any 
on
rete exe
ution, stop 
an be used.)

A4. The last a
tion is split F , whi
h splits the symboli
 exe
ution of P

0

1

into two

paths. This a
tion 
an be used at any point in the symboli
 exe
ution. Before

the a
tion, from the indu
tion hypothesis, there exist s

1

, s

2

, i, t, and � su
h

that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �) holds. From SimIH1 of the

indu
tion hypothesis, the following holds:

j= �((F

0

) Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; left(t))) ^

(:F

0

) Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; right(t))));

(5.22)

where F

0

= subst(F; s

1

).

We next show that SimIH holds after the a
tion if m

1

; a

1

j= F ; the 
ase when

m

1

; a

1

j= :F is analogous. (Note that by the de�nition of valuation fun
tions,

either F or :F holds for anym

1

; a

1

.) The proof is similar to the proof for bran
h

nodes. We use the same s

1

, s

2

, i, and � from the indu
tion hypothesis and

t

0

= left(t) to show that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t

0

; �) holds.

SimIH2 and SimIH3 follow dire
tly from their 
ounterparts in the indu
tion

hypothesis. For SimIH1, we need to show j= �(Sim(L

0

1

; s

1

; L

0

2

; s

2

; i; left(t))).

From 5.22, we have that SimIH1 holds if j= � (F

0

). Further, j= � (F

0

) from

the assumption m

1

; a

1

j= F , by the Standard Congruen
e Lemma 5.1, sin
e

j= � (s

1

(I

1

)) = m

1

(a

1

(I

1

)) for all I

1

2 vars(P

1

) from SimIH2.1 of the indu
tion

hypothesis. This 
on
ludes the proof of this 
ase.

A5. The last a
tion is use-analysis

1

or use-analysis

2

, whi
h in
ludes a stan-

dard invariant in the simulation veri�
ation 
ondition. From the indu
tion hy-

pothesis, there is t su
h that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

; s

1

; L

0

2

; s

2

; i; t; �)

holds before the a
tion. We prove that SimIH holds for t

0

= left(t) after

use-analysis

1

; the proof for use-analysis

2

is analogous. SimIH2 and SimIH3

follow dire
tly from the indu
tion hypothesis. To prove SimIH1, let F be

the formula from the standard invariant at L

1

in the 
ontext k

1

of P

1

: F =

std-invariant(P

1

; k

1

; L

1

). From SimIH1 of the indu
tion hypothesis, we have

j= �(subst(F; s

1

)) Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))): (5.23)

We have proven in the simulation base 
ase (Se
tion 5.2.2) that all standard

invariants of 
ontext k

1

hold during the 
on
rete exe
ution of P

1

, and therefore
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m

1

; a

1

j= F . Sin
e SimIH2.1 holds, we 
an apply the Standard Congruen
e

Lemma 5.1 to obtain: j= �(subst(F; s

1

)). From 5.23, we then have that SimIH1

holds: j= �(Sim(L

1

; s

1

; L

2

; s

2

; i; left(t))).

A6. The last a
tion is exe
ute-both, whi
h symboli
ally exe
utes a node from both

P

0

1

and P

0

2

. The two nodes 
an be both return nodes, or both 
all nodes, or

both halves of some simulation invariant.

A6.1. The nodes are return nodes: P

0

1

(L

0

1

) � L

0

1

:ret and P

0

2

(L

0

2

) � L

0

2

:ret.

These nodes are the last nodes in the 
on
rete exe
utions of pro
edure a
-

tivations, and therefore we do not show that SimIH holds after the return

nodes. We still need to show that the simulation output 
ontext holds

whenever the pro
edures rea
h return nodes. From SimIH1 of the indu
-

tion hypothesis, j= � (subst-sim(J

out

k

; s

1

; s

2

)) for some � . Sin
e SimIH2

holds for the same � , by the Simulation Congruen
e Lemma 5.4, we obtain

m

1

; a

1

; m

2

; a

2

j= J

out

k

.

A6.2. The nodes are 
all nodes: P

0

1

(L

0

1

) � L

0

1

:I

1

(E

�

2

) and P

0

2

(L

0

2

) � L

0

2

:I

2

(E

�

2

).

Let the 
allee pro
edures be P

00

1

� pro
 I

1

(I

�

1

) D

�

1

fN

+

1

g and P

00

2

�

pro
 I

2

(I

�

2

) D

�

2

fN

+

2

g. The 
on
rete exe
utions make transitions to the

�rst nodes of P

00

1=2

, allo
ating memory for the parameters and lo
al vari-

ables of P

00

1=2

:

hm

in

1=2

; a

in

1=2

; p

in

1=2

i =

allo
-lo
als(allo
-params(hm

1=2

; a

1=2

; p

1=2

i; I

�

1=2

; m

1=2

(a

1=2

(E

�

1=2

))); D

�

1=2

):

When and if the exe
utions of P

00

1=2

return, the 
on
rete exe
utions 
on-

tinue from hP

1=2

(L

1=2

+

P

1=2

1); m

0

1=2

; a

1=2

i, where the memories after the


alls satisfy: m

0

1=2

(a

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 lo
als(P

1=2

)[

params(P

1=2

). (We show later that the exe
utions of P

00

1=2

either both re-

turn or both do not return.)

Let k

00

= sim-
ontext-index(L

1

; L

2

; K

�

k

) be the index of the simulation 
on-

text for the 
all nodes at L

1=2

, and let hJ

in

; J

out

i = sim-
ontext(I

1

; I

2

; k

00

)

be the input and output 
ontexts for the simulation 
ontext k

00

of pro-


edures I

1=2

, i.e., P

1=2

. The symboli
 exe
utions 
ontinue, after the re-

turn nodes, with the new symboli
 states: s

0

1=2

= s

1=2

[I

�

1=2

7! x

�

1=2

℄ for

all I

�

1=2

2 globals(P

1=2

), where x

�

= x

�

1

[ x

�

2

are fresh logi
 variables.

(Some variables in x

�

1


an be the same as some variables in x

�

2

sin
e

hs

0

1

; s

0

2

; x

�

i = fresh-sim-globals(s

1

; s

2

; J

out

).)

From SimIH1 of the indu
tion hypothesis, there is a substitution � su
h

that:

j= � (subst-sim(J

in

; set-params(I

1

; G

�

1

; s

1

);

set-params(I

2

; G

�

2

; s

2

))) (5.24)

and
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j= � (8x

�

: subst-sim(J

out

; s

0

1

; s

0

2

))

Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))); (5.25)

where G

�

1=2

= translate-
all(E

�

1=2

; s

1=2

; e

1=2

). We use s

in

1=2

to denote the

symboli
 states for the formula J

in

: s

in

1=2

= set-params(I

1=2

; G

�

1=2

; s

1=2

) =

s

1=2

[I

�

1=2

7! G

�

1=2

℄ for parameters I

�

1=2

of pro
edures I

1=2

. To prove that

SimIH holds after the 
alls, we use the substitution �

0

= � [ fx

�

7!

m

0

1=2

(a

1=2

(I

�

1=2

))g. (We show later that we 
an make su
h a substitution.)

We prove that the following relation holds:

SimIH(L

1

+

P

1

1; m

0

1

; a

1

; L

2

+

P

2

1; m

0

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; left(t); �

0

):

The proof is similar to the proof for 
all nodes for the StdVC (page 81).

SimIH3 follows from SimIH3 of the indu
tion hypothesis be
ause � � �

0

and i does not 
hange after 
all nodes. We need to prove that SimIH1 and

SimIH2 also hold. We prove �rst that the simulation input 
ontext J

in

holds, next that the simulation output 
ontext J

out

holds, and then that

SimIH2 holds

4

and �nally that SimIH1 holds.

We �rst observe that j= �(s

in

1=2

(I

1=2

)) = m

in

1=2

(a

in

1=2

(I

1=2

)) for all variables

I

1=2

2 globals(P

00

1=2

) [ params(P

00

1=2

) that 
an o

ur in J

in

. The proof that

the states s

in

1=2

and m

in

1=2

; a

in

1=2


oin
ide for all variables in J

in

is analogous

(for ea
h pro
edure) to the proof for the StdVC (page 82), and we do

not repeat it here. From 5.24, we have j= �(subst-sim(J

in

; s

in

1

; s

in

2

). Sin
e

j= �(s

in

1=2

(I

1=2

)) = m

in

1=2

(a

in

1=2

(I

1=2

)) for all variables I

1=2

in J

in

, by the Sim-

ulation Congruen
e Lemma 5.4, we obtain m

in

1

; a

in

1

; m

in

2

; a

in

2

j= J

in

. This

means that the simulation input 
ontext J

in

holds at the beginning of P

00

1

and P

00

2

.

For every simulation 
ontext k

00

of every pair of pro
edures P

00

1=2

in Q

1=2

, if

the simulation input 
ontext holds at the beginning of a
tivations of P

00

1=2

,

then the simulation output 
ontext holds at the end of the a
tivations.

Similarly to the proof for the StdVC, the proof for SimVC is informal at

this point and it appears that we assume assumption the a
tual statement

that we try to establish, namely Q

1

� Q

2

. We do not present a full proof

that would require an indu
tion on the height of the pro
edure 
all trees

of programs Q

1=2

. (Note that the two programs have isomorphi
 
all trees

be
ause of the simultaneous exe
ution of the 
all and return nodes.) We

show later that if the a
tivation of P

00

1

does not terminate, then there exists

an a
tivation of P

00

2

that also does not terminate. We additionally dis
uss

the existential quanti�
ation of the exe
utions of P

00

2

after we �nish the

proof that SimIH holds.

Sin
e J

in

holds at the beginning of P

00

1=2

, then, for all exe
utions of P

00

1

,

4

For the StdVC we 
an prove that SimIH2 holds even before we prove that the standard output


ontext holds be
ause the substitution �

0

does not depend on the output 
ontext.
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there is an exe
ution of P

00

2

su
h that m

0

1

; a

in

1

; m

0

2

; a

in

2

j= J

out

, where m

0

1=2

are the memories at the end of the a
tivations of P

00

1=2

, and a

in

1=2

are the

environments for those a
tivations. Additionally, the environments a

in

1=2

for

P

00

1=2

and a

1=2

for P

1=2

map the global variables to the same addresses. Sin
e

J

out


an 
ontain only the global variables, we have m

0

1

; a

1

; m

0

2

; a

2

j= J

out

.

By the Well-De�ned Substitution Lemma, we 
an then make substitution

fx

�

7! m

0

1=2

(a

1=2

(I

�

1=2

))g and, for that substitution, j= �

0

(s

1=2

(I

1=2

)) =

m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2 globals(P

1=2

). To prove that SimIH2 holds,

we need also to prove that j= �

0

(s

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) for all I

1=2

2

lo
als(P

1=2

) [ params(P

1=2

). It holds by the following: j= �

0

(s

0

1=2

(I

1=2

)) =

�

0

(s

1=2

(I

1=2

)) = � (s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)) = m

0

1=2

(a

1=2

(I

1=2

)) be
ause

the exe
utions of P

00

1=2


annot 
hange lo
al variables of P

1=2

. We next prove

that SimIH1 holds.

Sin
e SimIH2 holds, and m

0

1

; a

1

; m

0

2

; a

2

j= J

out

, by the Simulation Congru-

en
e Lemma 5.3, we have j= �

0

(subst-sim(J

out

; s

0

1

; s

0

2

)). Further, from 5.25

and the 
hoi
e of �

0

, we have:

j= �

0

(subst-sim(J

out

; s

0

1

; s

0

2

)) Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t)));

and therefore j= �

0

(Sim(L

1

+

P

0

1

1; s

0

1

; L

2

+

P

0

2

1; s

0

2

; i; left(t))), whi
h is SimIH1.

This 
on
ludes the proof that the exe
utions of 
all nodes preserve the

SimIH.

We now dis
uss the quanti�
ation of the exe
utions of P

00

1=2

and the termi-

nation simulation between those exe
utions. In the proof for 
all nodes,

we assume that for the exe
utions of P

00

1=2

, J

out

holds at the end if J

in

holds

at the beginning. Spe
i�
ally, we use that for all initial values for the lo
al

variables of P

00

1

, there exist some initial values for the lo
al variables of

P

00

2

su
h that J

out

holds at the end. We need to show that we 
an indeed


hoose these initial values for the appropriate lo
ations in the memory m

in

2

at the beginning of P

00

2

, i.e., those initial values are not already spe
i�ed

or universally quanti�ed. We next give an outline of the proof for this.

We �rst re
all that the memory and the sta
k pointer at the beginning

of P

2

are m

0

2

and p

0

2

. From the simulation requirement, we 
an 
hoose

the values of memory lo
ations for the lo
al variables of m

0

2

and also for

all lo
ations with addresses greater than p

0

2

. In the simulation base 
ase

(Se
tion 5.2.2), we have 
hosen the values for the lo
al variables of P

2

. We

now prove by indu
tion that we 
an 
hoose the values of lo
al variables for

all 
alls in the 
all tree starting from P

2

. The indu
tion hypothesis is: if the


urrent memory is m

2

and the sta
k pointer is p

2

, then we 
an 
hoose the

values of lo
ations in m

2

with addresses greater than p

2

. This apparently

holds before the �rst 
all in P

2

. For a 
all to any P

00

2

, the memory and the

sta
k pointer after the 
all are:

hm

in

2

; a

in

2

; p

in

2

i = allo
-lo
als(allo
-params(hm

2

; a

2

; p

2

i; I

�

2

; m(a(E

�

2

))); D

�

2

);
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with the lo
al variables of P

00

2

being allo
ated in m

in

2

at addresses greater

than p

2

and less than p

in

2

. By the indu
tion hypothesis, we 
an 
hoose

the initial values for those variables. Further, we 
an 
hoose the initial

values for all lo
ations with addresses greater than p

in

2

. Sin
e the value of

the sta
k pointer does not de
rease after the returns, it follows indu
tively

that we 
an 
hoose the initial values for the lo
al variables for all 
alls from

P

00

2

and also for all 
alls from P

2

after P

00

2

returns.

Finally, we dis
uss the termination simulation of the exe
utions of P

00

1=2

:

if P

00

1

does not terminate, then P

00

2

does not terminate either. A partial

exe
ution of a pro
edure terminates if it rea
hes a return node. In the

above proof that 
all nodes preserve the SimIH, we have used the following:

for every exe
ution of P

00

1

that terminates, there exists an exe
ution of P

00

2

that also terminates su
h that J

out

holds at the end of the exe
utions if J

in

holds at the beginning. We explained informally that this 
an be proven by

an indu
tion on the height of the pro
edure 
all trees of programsQ

1=2

. For

every exe
ution of Q

1

, with an arbitrary 
all tree, there exists an exe
ution

of Q

2

with an isomorphi
 
all tree be
ause whenever the exe
ution of Q

1

rea
hes a 
all node or a return node, there exists an exe
ution of Q

2

that

rea
hes, respe
tively, a 
all node or a return node. We have not shown,

however, what happens if Q

1

(P

00

1

) does not terminate. We next show that

then exists an exe
ution of Q

2

(P

00

2

) that also does not terminate.

A program does not terminate if it has an in�nite partial exe
ution (a

partial exe
ution of in�nite length). A partial exe
ution of a program is

in�nite in one of the following two 
ases: the exe
ution has a 
all tree

of in�nite height (in�nite re
ursion) or the exe
ution 
alls a pro
edure

whi
h has an in�nite partial exe
ution (in�nite loop). We analyze the


ase of an in�nite loop in Se
tion 5.2.4. (We postpone the analysis until

we 
omplete the proof for the simulation indu
tion step, in
luding the


ase for simulation invariants.) We next analyze informally the 
ase of an

in�nite re
ursion.

If the exe
ution of Q

1

has a 
all tree of in�nite height, then there exists an

exe
ution of Q

2

that has a 
all tree of in�nite height. The same relation

holds for the subtrees of these 
all trees: if the subtree (of the 
all tree for

Q

1

) whose root is the a
tivation of P

00

1

has in�nite height, then there exists

an a
tivation of P

00

2

whi
h is the root of a subtree (of the 
all tree for Q

2

)

that has in�nite height. Therefore, the termination simulation is satis�ed

in the 
ase of an in�nite re
ursion. In this 
ase, any simulation output


ontext is allowed. For example, it is possible to prove that the 
ontext

with J

in

� true and J

out

� false holds for pro
edures:

pro
 I

1

() fg=1;I

1

();ret;g pro
 I

2

() fg=2;I

2

();ret;g

It is also possible to prove that the global variables g have the same value

at the end of the pro
edures I

1=2

. The reason is that simulation output


ontext is required to hold only if the exe
utions of I

1=2

rea
h the return
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nodes.

A6.3. The nodes are two halves of a simulation invariant: P

0

1

(L

0

1

) � L

0

1

:sim-inv

and P

0

2

(L

0

2

) � L

0

2

:sim-inv J,L

0

1

. There are two 
ases depending on

whether the simulation invariant L

1

,L

2

:sim-inv J has been already sym-

boli
ally exe
uted or not.

A6.3.1. The simulation invariant is symboli
ally exe
uted for the �rst time if

hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

i 62 i for any s

0

1

, s

0

2

, and t

0

. From SimIH1 of the

indu
tion hypothesis, there is a substitution � su
h that:

j= �(subst-sim(J; s

1

; s

2

)) (5.26)

and

j= �(8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t)));(5.27)

where hs

0

1

; s

0

2

; x

�

i = fresh-sim-sym-states(s

1

; s

2

; J), i.e., for all I

1=2

2

vars(P

1=2

), the states s

0

1=2

= fI

�

1=2

7! x

�

1=2

g for some fresh logi
 vari-

ables x

�

= x

�

1

[ x

�

2

and i

0

= hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; left(t)i [ i.

From SimIH2 of the indu
tion hypothesis, for all I

1=2

2 vars(P

1=2

):

j= �(s

1=2

(I

1=2

)) = m

1=2

(a

1=2

(I

1=2

)). We 
an therefore apply the Simula-

tion Congruen
e Lemma 5.4, and from 5.26 we obtainm

1

; a

1

; m

2

; a

2

j=

J , whi
h is one of the requirements for P

1

; Q

1

�

k

P

2

; Q

2

. We need ad-

ditionally to show that SimIH holds after the symboli
 exe
ution of

the invariant. By the Well-De�ned Substitution Lemma, we 
an make

the substitution �

0

= � [ fx

�

7! m

0

1=2

(a

1=2

(I

�

1=2

))g. We use it to show

that SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t); �

0

)

holds after the invariant.

SimIH2 follows from the 
hoi
e of �

0

. Sin
e SimIH2 holds, and we have

proven m

1

; a

1

; m

2

; a

2

j= J , by the Simulation Congruen
e Lemma 5.3,

we have j= �

0

(subst-sim(J; s

0

1

; s

0

2

)). Further, from 5.27 and the 
hoi
e

of �

0

, we obtain j= �

0

(Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i

0

; left(t))); whi
h

is SimIH1. We need still to prove SimIH3, i.e., that �

0

is 
orre
t with

respe
t to i

0

. We prove that SimIH3.2 holds. SimIH3.2.1{SimIH3.2.3

hold by the 
hoi
e of �

0

. SimIH3.2.4 holds be
ause of 5.27 (�

1

is �).

SimIH3.2.5 follows from SimIH3 of the indu
tion hypothesis.

A6.3.2. The simulation invariant has been previously symboli
ally exe
uted

if hhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

i 2 i for some symboli
 states s

0

1=2

and some

a
tion tree t

0

. From SimIH1 of the indu
tion hypothesis, there is a

substitution � su
h that j= � (subst-sim(J; s

1

; s

2

)). Sin
e SimIH2 of

the indu
tion hypothesis holds, we 
an apply the Simulation Congru-

en
e Lemma 5.4 to obtain m

1

; a

1

; m

2

; a

2

j= J , whi
h is one of the

requirements for P

1

; Q

1

�

k

P

2

; Q

2

. We additionally show that SimIH

holds after the invariant by showing that there exists �

0

su
h that

SimIH(L

1

; m

1

; a

1

; L

2

; m

2

; a

2

; L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

; �

0

) holds.

Sin
e the invariant has been exe
uted, i = fhhL

0

1

; L

0

2

i; hs

0

1

; s

0

2

i; t

0

ig[ i

1

,
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where s

0

1=2

= fI

�

1=2

7! x

1=2

g for some x

�

= x

�

1

[ x

�

2

and t

0

is the a
tion

tree for the symboli
 exe
ution after the invariant. From SimIH3.2.2

of the indu
tion hypothesis, we know that � = �

1

[fx

�

7! Z

�

g for some

�

1

su
h that, from SimIH3.2.3, none of x from x

�

is in �

1

. Therefore,

we 
an remap x

�

, and by the Well-De�ned Substitution Lemma, we


an make �

0

= �

1

[ fx

�

7! m

1=2

(a

1=2

(I

�

1=2

))g. We prove that SimIH

holds for that �

0

.

SimIH2 follows from the 
hoi
e of �

0

. SimIH3 follows from SimIH3

of the indu
tion hypothesis. We next show that SimIH1 also holds.

From SimIH3.2.4 of the indu
tion hypothesis, we have:

j= � (8x

�

: subst-sim(J; s

0

1

; s

0

2

))

Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

)); (5.28)

As we have already shown that SimIH2 holds and m

1

; a

1

; m

2

; a

2

j= J ,

we obtain j= �

0

(subst-sim(J; s

0

1

; s

0

2

)) by the Simulation Congruen
e

Lemma 5.3. Therefore, from 5.28, we �nally have that j= �

0

(Sim(L

0

1

+

P

0

1

1; s

0

1

; L

0

2

+

P

0

2

1; s

0

2

; i; t

0

)).

This 
on
ludes the proof for the simulation invariants and the whole simulation

indu
tion step. We next point out an important property of the symboli
 exe
ution

of simulation invariants. Observe that the symboli
 exe
ution of an invariant moves

past the halves of the invariant both in P

0

1

and P

0

2

. In P

0

1

, the node after the half

of an invariant has to be a non-invariant node. Therefore, between two 
onse
utive

exe
utions of an invariant from P

0

1

, at least one non-invariant node is exe
uted. (The

symboli
 exe
ution of su
h a node 
orresponds dire
tly to the 
on
rete exe
ution of

the same node.)

Whenever a half of an invariant from P

0

1

is exe
uted, a half of an invariant from P

0

2

is also exe
uted. In P

0

2

, there 
an be many halves of invariants in front of some non-

invariant node. Therefore, several 
onse
utive exe
utions of nodes from P

0

2


an exe
ute

halves of invariants. However, there are �nitely many halves of invariants in P

0

2

, and

after �nitely many exe
utions of invariants, a non-invariant node has to be exe
uted.

We 
an formalize this reasoning to prove that for the 
onse
utive 
on
rete exe
utions

of P

1

that rea
h a simulation invariant, the length of the 
orresponding 
on
rete

exe
utions of P

2

does not de
rease, and, in fa
t, in
reases after a �nite number of

exe
utions. We use this property in the proof of the termination simulation.

5.2.4 Termination Simulation

In this se
tion we 
omplete the proof that the validity of the simulation veri�
ation


ondition for two programs Q

1

and Q

2

, i.e., j= F

v


Q

1

;Q

2

, implies the termination simu-

lation of those programs. More spe
i�
ally, we prove that for any simulation 
ontext

k for pro
edures P

1=2

of programs Q

1=2

, P

1

may not terminate only if P

2

may not

terminate.

An a
tivation of a pro
edure does not terminate if the a
tivation either 
ontains
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an in�nite loop or 
alls another a
tivation that does not terminate. (Note that the

a
tivation 
an 
all, within the loop, other a
tivations that terminate.) If the 
alled

a
tivation does not terminate, it 
an be again be
ause of an in�nite loop or a 
all

that does not terminate. Eventually, either some a
tivation in the 
all tree has an

in�nite loop or the 
all tree has in�nite height.

We have argued in the proof for 
all nodes (page 98) that if an exe
ution of P

1

has a 
all tree of in�nite height, then there is an exe
ution of P

2

that also has a 
all

tree of in�nite height. Therefore, we analyze only the 
ase of an in�nite loop in this

se
tion. An a
tivation of a pro
edure has an in�nite loop if the partial exe
ution of

that a
tivation has in�nite length.

5

We prove the termination simulation theorem as

follows.

Theorem 3 (Termination Simulation) Assume that j= F

v


Q

1

;Q

2

for two programs Q

1

and Q

2

. If a partial exe
ution hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i of P

1

has in�nite length,

then there exists a partial exe
ution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i of P

2

su
h that

if m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

, then the partial exe
ution hP

0

2

; m

0

2

; a

2

i

+

9 9 K hL

2

; m

2

; a

2

i has

in�nite length.

Proof: By 
ontradi
tion, assume that there exists no in�nite partial exe
ution

hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

su
h that m

0

1

; a

1

; m

0

2

; a

2

j= J

in

k

. Sin
e j= F

v


Q

1

;Q

2

, we

have by the proof in the previous se
tion

6

, that for all hP

0

1

; m

0

1

; a

1

i

+

9 9 KhL

1

; m

1

; a

1

i of

P

1

, there exists hP

0

2

; m

0

2

; a

2

i

+

9 9 KhL

2

; m

2

; a

2

i of P

2

su
h that for all L

1

,L

0

2

:sim-inv J

0

from S

�

k

, there exists L

1

,L

00

2

:sim-inv J 2 set-sim-inv(L

1

; S

�

k

) su
h that L

2

� L

00

2

and

m

1

; a

1

; m

2

; a

2

j= J . In other words, for all partial exe
utions of P

1

that rea
h (a half

of) a simulation invariant, there exists an exe
ution of P

2

that rea
hes a 
orrespond-

ing (half of) simulation invariant. (Also, whenever the exe
utions rea
h the invariant,

its formula holds, but we do not need that for this proof.)

Sin
e the partial exe
ution of P

1

has in�nite length, it exe
utes at least one node

in P

1

in�nite number of times. Further, sin
e j= F

v


Q

1

;Q

2

, the SimVCG 
ould generate

F

v


Q

1

;Q

2

. and therefore it follows that the exe
ution rea
hes at least one half of a

simulation invariant in�nite number of times. Let the label for that invariant be L

1

.

We show that the partial exe
utions of P

2

that rea
h a 
orresponding half of the

invariant 
annot be all �nite, whi
h thus 
ontradi
ts the assumption that they are all

�nite.

We now 
onsider di�erent partial exe
utions of P

1

(started from the same 
on�gu-

ration hP

0

1

; m

0

1

; a

1

i) that rea
h the same L

1

. Re
all that the notation hP

0

1

; m

0

1

; a

1

i

+

9 9 K

hL

1

; m

1

; a

1

i is an abbreviation for the sequen
e hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

; a

1

i.

We 
an order the partial exe
utions that rea
h L

1

by their length. Let the sequen
e

5

An a
tivation of a pro
edure has a 
all that does not terminate if the partial exe
ution of that

a
tivation has a �nite length, but the last 
on�guration is a 
all node and not a return node.

6

Note that the proof in the previous se
tion and the 
urrent proof should be a
tually done

simultaneously as des
ribed for the 
all nodes.
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of su
h exe
utions be:

pe

1

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

pe

2

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

+

! : : :

+

! hL

1

; m

2

1

; a

1

i

pe

3

1

= hP

0

1

; m

0

1

; a

1

i

+

! : : :

+

! hL

1

; m

1

1

; a

1

i

+

! : : :

+

! hL

1

; m

2

1

; a

1

i

+

! : : :

+

! hL

1

; m

3

1

; a

1

i

.

.

.

Note that the memories m

i

1

and m

j

1

for two di�erent partial exe
utions pe

i

1

and pe

j

1

may or may not be di�erent.

For ea
h partial exe
ution pe

i

1

of P

1

, there is a 
orresponding partial exe
ution

pe

i

2

of P

2

. Let the sequen
e of su
h 
orresponding exe
utions be:

pe

1

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

1

2

; m

1

2

; a

2

i

pe

2

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

2

2

; m

2

2

; a

2

i

pe

3

2

= hP

0

2

; m

0

2

; a

2

i

+

! : : :

+

! hL

3

2

; m

3

2

; a

2

i

.

.

.

where L

1

,L

i

2

:sim-inv J

i

2 set-sim-inv(L

1

; S

�

k

). Note that the labels L

i

2

and L

j

2

, as

well as the memories m

i

2

and m

j

2

, for two di�erent indi
es i and j may or may not

be di�erent. Further, even the whole partial exe
utions pe

i

2

and pe

j

2

, and thus their

lengths, may or may not be di�erent. We denote the length of pe

i

2

by jpe

i

2

j.

From j= F

v


Q

1

;Q

2

, we 
an prove that the length of the 
orresponding partial exe-


utions does not de
rease (for all i and for all j > i, jpe

j

2

j � jpe

i

2

j). Even more, we


an prove that the length must in
rease after a �nite number of exe
utions in the

sequen
e pe

i

2

(for all i, exists j > i su
h that jpe

j

2

j > jpe

i

2

j). The proof pro
eeds as

outlined in the previous se
tion (page 100). Therefore, the maximum length of pe

i

2


annot be bounded by any �nite number, i.e., there is a partial exe
ution of P

2

that

has in�nite length.

This 
on
ludes the proof that if the exe
ution of P

1

does not rea
h a return node,

then there exists an exe
ution of P

2

that does not rea
h a return node either. We

have also proven that if the exe
ution of P

1

rea
hes a return node, then there exists an

exe
ution of P

2

that rea
hes a return node (and the simulation output 
ontext holds).

This 
ompletes the proof of all simulation requirements|P

1


an generate only the

results that P

2


an generate.

We next give examples of two interesting 
ases of simulation. First, P

2

may

generate more results than P

1

. For example, if P

1

never terminates, P

2


an terminate

for some initial values of the lo
al variables, but there de�nitely exist some initial

values for whi
h P

2

does not terminate:

pro
 I

1

() fL

1

:br(TRUE)L

1

;ret;g pro
 I

2

() fL

2

:br(i == 0)L

2

;ret;g

Conversely, if P

1

always terminates, P

2

may not terminate for some initial values of the
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lo
al variables, but there de�nitely exist some initial values for whi
h P

2

terminates:

pro
 I

1

() fret;g pro
 I

2

() fL

2

:br(i == 0)L

2

;ret;g

In the above examples, the result of P

2

depends on the uninitialized lo
al variable i.

Se
ond, if neither of pro
edure terminates, any simulation output 
ontext is prov-

able. This is sound be
ause the simulation de�nition requires the simulation output


ontext to hold only if the exe
utions rea
h return nodes. For example, for pro
edures:

pro
 I

1

() fg=1;L

1

:br(TRUE)L

1

;ret;g pro
 I

2

() fg=2;L

2

:br(TRUE)L

2

;ret;g

the 
ompiler 
an prove that the output 
ontext is g

1

= g

2

for the input 
ontext true.

This 
learly would not hold if the exe
utions 
ould rea
h the return nodes.
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Chapter 6

Extensions and Limitations

In Chapter 4 we presented a framework for 
redible 
ompilation. The basi
 frame-

work is for a simple language whi
h we 
all basi
 language (BL). BL has only simple

integer variables, the same as the initial language for 
redible 
ompilation [41℄. The

advan
e is that BL has pro
edures and therefore supports modularity, whereas the

programs in the initial language 
onsist of only one pro
edure. However, the ap-

proa
h is essentially the same for both languages. First, the 
ompiler outputs the

standard 
ontexts (and invariants) for the analysis results and the simulation 
ontexts

(and invariants) together with the transformed program. Next, the veri�er uses the

veri�
ation-
ondition generator (VCG), whi
h 
onsists of the standard VCG (Std-

VCG) and the simulation VCG (SimVCG), to generate the standard veri�
ation 
on-

dition (StdVC) and the simulation veri�
ation 
ondition (SimVC). These 
onditions

are logi
 formulas, and the 
ompiler has the obligation to prove that the formulas

hold. What 
hanges for BL, in 
omparison with the initial language, is the VCG.

In this 
hapter we dis
uss how the framework for 
redible 
ompilation 
ould handle

more realisti
 programming languages. The main strategy still remains the same|

the veri�er requires the 
ompiler to produ
e the standard and simulation 
ontexts,

and to prove the veri�
ation 
onditions for those 
ontexts. We extend BL with some

C 
onstru
ts, su
h as pointers and arrays. We also dis
uss some extensions to the

language semanti
s, in parti
ular adding error states. The 
hanges to the language

syntax and semanti
s 
learly ne
essitate 
hanges to the veri�
ation-
ondition gener-

ators. For some 
hanges, it is also ne
essary to 
hange the logi
, more pre
isely, to

extend the formulas with new 
onstru
tors and new types of variables and expressions.

We present the extensions to the logi
 along with the extensions to the language.

We also show a group of extensions independent of the language used for inter-

mediate representation of programs. These extensions 
hange the language used for

representing invariants and also require 
hanges in the VCG. We introdu
e these ex-

tensions to make it easier to express the results of 
ompiler analyses. The 
hanges

to the language for invariants are therefore primarily for standard invariants, but the


hanges also propagate to simulation invariants. It is important to point out that

these 
hanges are not fundamental to simulation invariants. As mentioned earlier,

simulation invariants are the 
ru
ial 
on
ept for our approa
h to 
redible 
ompi-

lation. The fa
t that simulation invariants basi
ally remain the same, in spite of
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hanges to the programming language and standard invariants, supports our belief

that simulation invariants are essential for 
redible 
ompilation in general.

Finally, we present some limitations of the 
urrent framework for 
redible 
ompi-

lation. In parti
ular, the framework does not support translations from one program

representation to essentially di�erent representations. Su
h translation 
an involve

both 
hanging the 
ode and the data representation. Additionally, the framework


urrently does not support 
hanges in the data layout even within the same represen-

tation. We believe that more general simulation invariants, together with the related


hanges in the SimVC, 
ould enable the framework to support some of these 
hanges.

6.1 Language Extensions

In this se
tion we 
onsider how the framework 
ould handle several extensions to

BL. We start by adding C-like pointers to BL. BL is obtained by adding pro
edures

to the initial language for 
redible 
ompilation. Even before adding pro
edures, we

explored [42℄ adding C-like pointers to the initial language. It may look surprising

that we extend the language �rst with su
h low-level 
onstru
ts as pointers to arbi-

trary memory lo
ations. We �rst present the motivation and then formalize in detail


hanges to the language, the logi
, and the VCG.

We next brie
y dis
uss how to add arrays to the language. Array-bounds 
he
king

emphasizes the ne
essity of a safe language semanti
s. We then dis
uss how to extend

the language semanti
s and the VCG to in
lude error states. Finally, we 
onsider

extending the language with some 
ommon 
onstru
ts from imperative programming

languages, su
h as expressions with side e�e
ts and 
omputed gotos.

6.1.1 Pointers

Before we present the extensions to the language syntax and semanti
s, we dis
uss

why we �rst add arbitrary C-like pointers to the language. Arbitrary pointers are


learly ne
essary if the 
redible 
ompiler has to generate 
ode for unsafe programming

languages like C. They are, however, ne
essary even for more dis
iplined languages

that provide a safe high-level memory model, e.g., the Java programming language [8℄.

Compilers translate the programs from the high-level representation into a lower-

level representation before performing most of the optimizations. The translations

introdu
e pointers in their full generality, so that the transformations 
an optimize

the way in whi
h the resulting 
ode a

esses memory. Therefore, a framework that

allows the 
ompiler to prove results of su
h transformations has to support pointers.

Pointers are also essential for an intermediate representation that des
ribes as-

sembly 
ode. Pointers, or their equivalents, are used to represent memory reads and

writes, and spe
ial global variables (that pointers 
annot point to) are used to repre-

sent ma
hine registers. Finally, we added pointers to the initial language for 
redible


ompilation to �nd out how the 
ompiler 
ould prove that the results of pointer

analyses are 
orre
t. In parti
ular, we developed a framework [42℄ whi
h allows the


ompiler to prove that the results of 
ow-insensitive pointer analyses [2, 44℄ are 
or-
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re
t. We dis
overed that 
ow-insensitive analyses require a language semanti
s with


ertain guarantees; we present details in Se
tion 6.2.4.

We next extend the language syntax and semanti
s with pointers. Figure 6-1 shows

the modi�ed program syntax. There are three new forms for program expressions: &I

denotes the address of the variable named I, *E denotes the value stored at memory

lo
ationE, and NULL denotes a spe
ial address that is di�erent than possible addresses

of the variables. We introdu
e a new synta
ti
 domain for left-hand expressions whi
h

have two forms: a variable or a dereferen
e of an expression. The assignment nodes

are 
hanged so that the left-hand side is W instead of I. We use &W to represent the

synta
ti
 elimination of one level of dereferen
ing: if W � I, then &W � &I; and if

W � *E, then we de�ne &W � E.

Synta
ti
Domains :

E 2 Expression

W 2 L-expression

: : : 2 the same as in BL, Figure 4-1

Produ
tionRules :

E � : : : [the same as in BL℄

j &I [Address-of Operation℄

j *E

deref

[Dereferen
e℄

j NULL [Null Pointer Constant℄

W � I [Variable Lo
ation℄

j *E

deref

[Expression Lo
ation℄

N � L:W=E [Assignment Node℄

j : : : [the rest the same as in BL℄

Figure 6-1: Extensions to the Abstra
t Syntax of BL

Note that the syntax allows expressing arbitrary pointer operations that involve

arithmeti
 and use integers dire
tly as pointers, e.g., *(p+1)=*(q+i)-*8. There are

no types; pointers and integers are synta
ti
ally used in the same way. This is (modulo

type 
asting) the way pointers are used in C. Additionally, pointers are semanti
ally

equivalent to integers in C. It is unde
idable, in general, whether a C program is type

and memory safe. We initially wanted to develop a framework in whi
h the 
ompiler


an prove its transformation 
orre
t even if the input program is an arbitrary C

program without any safety guarantees. However, trying to prove anything about the

full C language leads to numerous te
hni
al problems. Therefore, we 
onsider only a

safer subset of C. In parti
ular, we do not allow programs that apply the address-of

operator to a lo
al variable. We still allow 
ompletely arbitrary pointers to the global

variables, more pre
isely, to the global memory.

We next des
ribe how to modify the operational semanti
s of BL (Se
tion 4.1.2)

to add arbitrary pointers to non-lo
al variables. The main 
hange is to separate the
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memory into two parts: the lo
al memory and the global memory. (We dis
uss in

next se
tions how this 
orresponds to realisti
 ma
hines.) The lo
al variables and

pro
edure parameters are stored in the lo
al memory. The lo
al memory represents

(data) sta
k; we disallow pointers in the sta
k, and thus aliasing of the lo
al variables.

The global variables are stored in the global memory. The global memory represents

stati
 data and 
an also represent the heap, i.e., dynami
ally allo
ated memory.

Formally, we �rst 
hange the domains of the operational semanti
s and the allo-


ation fun
tions in the following way:

One-Memory = Address! Value

m 2Memory = One-Memory� One-Memory

One-Allo
-Pointer = Address

p 2 Allo
-Pointer = One-Allo
-Pointer�One-Allo
-Pointer

allo
-init

l

(hm; a; pi; I; Z) = hhm

g

; m

l

[p

l

7! Z℄i; ha

g

; a

l

[I 7! p℄i; hp

g

; p

l

+ 1ii

allo
-init

g

(hm; a; pi; I; Z) = hhm

g

[p

g

7! Z℄; m

l

i; ha

g

[I 7! p℄; a

l

i; hp

g

+ 1; p

l

ii:

The Memory domain is now a pair that separately represents the global and lo
al

memories. We use m

g

and m

l

to denote the 
omponents of a pair m. Similarly,

ea
h memory has a separate allo
ation pointer p

g

and p

l

. For the lo
al memory, p

l

is the sta
k pointer; for the global memory, p

g

is the heap pointer. The allo
ation

fun
tions for lo
al and global variables 
hange the respe
tive memories, environments,

and pointers.

The input and output fun
tions of the operational semanti
s remain the same as

for BL; the only requirement is that the initial value of the p

g

pointer be greater than

0. The expression evaluation is also similar as in BL; only the evaluation of a variable

slightly 
hanges as shown in Figure 6-2. We use helper fun
tion var-in-lo
-env(W; a

l

)

that returns true if the expression W � I, for some I, and the environment a

l

maps

the variable I; otherwise, var-in-lo
-env(W; a

l

) returns false. Figure 6-2 also shows

the evaluation of the new forms of expressions.

m(a(I)) = if var-in-lo
-env(I; a

l

) then m

l

(a

l

(I)) else m

g

(a

g

(I)) �

m(a(&I)) = a(I) = if var-in-lo
-env(I; a

l

) then a

l

(I) else a

g

(I) �

m(a(*E

deref

)) = m

g

(m(a(E

deref

)))

m(a(NULL)) = 0

Figure 6-2: Extensions to the BL Expression Evaluation

The rewrite rules remain the same as for BL, ex
ept that the rule for assignments

is repla
ed with two new rules. Figure 6-3 shows the new rules for an assignment to

a lo
al variable and an assignment to the global memory. Note that W 
an be of the

form *E

deref

, where E

deref

is an arbitrary expression that 
an evaluate to an address

di�erent than the addresses of the global variables.
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hL;m; a; p; h; P i ! hL+

P

1; hm

g

; m

l

[V 7! V

0

℄i; a; p; h; P i
[assign-lo
℄

where P (L) � L:W=E

and var-in-lo
-env(W; a

l

)

and V � m(a(&W )) and V

0

� m(a(E))

hL;m; a; p; h; P i ! hL+

P

1; hm

g

[V 7! V

0

℄; m

l

i; a; p; h; P i
[assign-glob℄

where P (L) � L:W=E

and not var-in-lo
-env(W; a

l

)

and V � m(a(&W )) and V

0

� m(a(E))

Figure 6-3: Extensions to the BL Operational Semanti
s Rewrite Rules

Logi
 Extensions for Pointers

We next des
ribe how to extend the logi
 after we add pointers to the language. There

are several 
ompli
ations in obtaining an e�e
tive logi
 when dealing with pointers

in the intermediate representation. These 
ompli
ations stem from the possibility

that an assignment via a pointer may 
hange a variable that is not synta
ti
ally

visible in the assignment statement. The solution is to use logi
 expressions with

expli
it memory ; these expressions are di�erent from the program expressions where

the memory is impli
it.

1

We extend the logi
 with a new group of expressions that

expli
itly represent memory. In our presentation, we follow Ne
ula [35, page 64℄, who

attributes the rules related to these expressions to M
Carthy [29℄.

We �rst illustrate the main di�eren
e between the expressions with expli
it and

impli
it memory using an example. Consider the assignment i=j in a program with

global variables i and j. No memory m

g

is synta
ti
ally visible in the expressions

i and j. However, the meaning of the assignment is to read (sele
t) the value of

variable j from the memory m

g

, more pre
isely from the memory address to whi
h

the 
urrent environment maps j, and to write (update) that value to the lo
ation in

memory m

g

to whi
h the 
urrent environment maps i.

In the logi
, we denote the addresses of the variables i and j as addr(i) and

addr(j). Suppose that the logi
 variable x

m

represents the state of the global memory

before the assignment i=j. The logi
 expression sel(x

m

,addr(j)) denotes the value

of variable j in memory x

m

. The logi
 expression upd(x

m

,addr(i),sel(x

m

,addr(j)))

denotes the memory whose lo
ations have the same values as in x

m

, ex
ept that the lo-


ation with address addr(i) has value sel(x

m

,addr(j)). Therefore, the expression

with upd represents the memory after the assignment i=j.

We pro
eed to formally des
ribe the logi
 that in
ludes the new expressions with

memory. We �rst present the syntax of the new expressions. We next des
ribe how to

1

We initially used approximately the same syntax and semanti
s for the logi
 expressions as for

the program expressions, and we devised spe
ial rules for substitution [42℄ to model assignments

in the presen
e of pointers. However, those rules require the 
ompiler to provide pointer-analysis

results and to guide the use of the results in the VCG; otherwise, the VC 
an get exponentially

large.

108



represent the lo
al and global variables with those expressions. The new expressions

ne
essitate 
hanges to the fun
tions for translating the program expressions to the

logi
 expressions. We present the new translation fun
tions, and then the semanti
s

of the new logi
 expressions, as well as the proof rules for those expressions.

Figure 6-4 shows the modi�ed logi
 syntax. We use G

m

to range over memory ex-

pressions that have four forms: a logi
 variable x

m

denotes some memory, the 
onstant

mem

0

denotes the memory that maps all lo
ations to 0, an expression upd(G

m

,G

i

a

,G

i

v

)

denotes the result of updating the memory G

m

at lo
ation G

i

a

with value G

i

v

, and

an expression M denotes a program memory. Observe that the new logi
 has two

types of logi
 variables: integer logi
 variables and memory logi
 variables. We as-

sume that the quanti�ed formulas are extended so that they 
an quantify over both

types of variables, and additionally that there are formula 
onstru
tors for equality

and inequality of memory expressions. There are also two new forms for integer logi


expressions: sel(G

m

,G

i

a

) denotes the result of sele
ting the value at lo
ation G

i

a

in

the memory G

m

and H(I) denotes the value or the address of a program variable.

Synta
ti
Domains :

H 2 Program-variable = fval; val

1

; val

2

g [ faddr; addr

1

; addr

2

g

M 2 Program-memory = fmem; mem

1

; mem

2

g

G

i

2 Integer-expression

G

m

2Memory-expression

: : : 2 the rest the same as in Figure 4-4

Produ
tionRules :

G

i

� : : : [the rest the same as in Figure 4-4℄

j H(I) [Program Variable Value or Address℄

j x

i

[Integer Logi
 Variable℄

j sel(G

m

,G

i

a

) [Memory Read℄

G

m

� x

m

[Memory Logi
 Variable℄

j mem

0

[Memory Constant℄

j upd(G

m

,G

i

a

,G

i

v

) [Memory Write℄

j M [Program Memory℄

Figure 6-4: Extensions to the Abstra
t Syntax of the Logi
 Formulas

We next des
ribe how to represent the program variables and the memory in

the logi
 formulas. The introdu
tion of pointers in the program expressions and the

introdu
tion of the memory expressions in the logi
 ne
essitate a 
hange in the rep-

resentation of the program variables in the logi
. In the logi
 in the basi
 framework,

the expression H(I) always represents the value of the program variable I; depending

on the parti
ular 
onstru
tor H, the variable is lo
al or global, from one program or

from one of the two programs. In the extended logi
, we represent the lo
al variables

di�erently than the global variables: the expression val(I

l

) represents the value of
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the lo
al variable

2

I

l

and the expression addr(I

g

) represents the address of the global

variable I

g

. There are still two groups of formulas: the formulas for one program

(the analysis results) that 
an 
ontain only the 
onstru
tors val and addr and the

formulas for two programs (the simulation relationships) that 
an 
ontain only the

indexed 
onstru
tors val

1=2

and addr

1=2

.

The logi
 formulas represent the (standard and simulation) invariants and the

veri�
ation 
onditions. In the veri�
ation 
onditions, the memory is denoted with

arbitrary memory logi
 expressions. In the invariants, we want to refer, at di�erent

program points, to a parti
ular memory that is the global memory during the program

exe
ution. We use the 
onstru
tor mem to denote the state of the global memory in the

standard invariants. For instan
e, to represent that global pointer p points to global

variable x at some node 3, we write 3:inv sel(mem,addr(p)) = addr(x). We use

indexed versions mem

1

and mem

2

to represent the states of the global memories of

two programs in the simulation invariants. For instan
e, to represent that the global

variable g

1

in program 1 at node 3

1

has the same value as the variable g

2

in program

2 at node 3

2

, we write 3

1

,3

2

:sim-inv sel(mem

1

,addr

1

(g)) = sel(mem

2

,addr

2

(g)).

We also present several other examples of the formulas used in the simulation

invariants. To represent that the two programs have exa
tly the same memories, we

write mem

1

= mem

2

. If the memories have the same values at all lo
ations ex
ept for,

say, the lo
ation with the address of g

1

, we 
an write

3

:

8x: x 6= addr

1

(g)) sel(mem

1

,x) = sel(mem

2

,x):

We 
an also represent this without the universal quanti�
ation:

mem

1

= upd(mem

2

,addr

1

(g),sel(mem

1

,addr

1

(g))):

In general, the memories 
an have di�erent values for a set of lo
ations. (We brie
y

dis
uss extending the logi
 formulas with sets in Se
tion 6.2.3.) The 
ompiler 
an gen-

erate arbitrary invariants as long as it 
an prove the veri�
ation 
onditions generated

for those invariants.

We next des
ribe the fun
tions for translating the program expressions with im-

pli
it memory to the logi
 expressions with expli
it memory. In the logi
 in the basi


framework, the translation fun
tions take a symboli
 environment that maps variable

names to the appropriate logi
 expressions for the values of those variables. In the

extended logi
, the translation fun
tions take a symboli
 environment e that maps

ea
h lo
al variable name to the logi
 expression for the value of that variable and ea
h

global variable name to the logi
 expression for the address of that variable. (We use

2

The 
onstru
tor val is the same as lo
 that we use in the basi
 framework for lo
al variables.

We avoid the name lo
 be
ause it might be misinterpreted as \lo
ation." That is, indeed, the name

that M
Carthy and Painter use for lo
ations in the �rst published paper on 
ompiler 
orre
tness [29℄.

They use a binary 
onstru
tor that takes the name of the variable and the environment. We do not

need to represent the environment expli
itly in the veri�
ation 
onditions.

3

Note that x is an integer logi
 variable in this example. We omit the expli
it typing of the

variables and expressions when it is possible to infer the types.
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the fun
tion var-in-lo
-env(I; e) to test if the variable I is lo
al in the environment

e.) Additionally, the new translation fun
tions take an expression G

m

that represents

the logi
 expression to use for the memory.

Figure 6-5 shows the new translation fun
tions. The translation of the address-of

operation is the expression representing the address of the variable in the symboli


environment. (This translation is used only for global variables.) The translation of

the dereferen
e operation �rst translates the program expression E

deref

to the logi


expression G, and then generates the expression representing a read from lo
ation G

of the symboli
 memory G

m

. Similarly, a global variable referen
e is translated into

the expression representing a read from the symboli
 memory at the address of the

variable in the symboli
 environment. The other translations are done as before, by

stru
tural indu
tion on the program expressions, passing the symboli
 memory and

environment to the translations of the subexpressions.

translate-type(&I; G

m

; e) = he(I); inti

translate-type(*E

deref

; G

m

; e) =

let G be to-type(translate-type(E

deref

; G

m

; e); int) in

hsel(G

m

,G); inti

translate-type(NULL; G

m

; e) = h0; inti

translate-type(I; G

m

; e) =

if var-in-lo
-env(I; e) then he(I); inti else hsel(G

m

,e(I)); inti �

translate-type(: : : ; G

m

; e) = the same as in Figure 4-5

Figure 6-5: Extensions to the Fun
tions for Translating Program Expressions to Logi


Expressions

We next de�ne the semanti
s of the new logi
 expressions. Figure 6-6 shows the

modi�
ations to the basi
 logi
. We add the domain Store to the domains for the

basi
 logi
 (Figure 4-6). The new domain represents memories, i.e., fun
tions from

addresses to values. We also use the new valuation fun
tion G

m

for the meaning of

the memory expressions. The meaning of the mem

0

is the 
onstant fun
tion 0. The

meaning of upd(G

m

,G

i

a

,G

i

v

) is the meaning of G

m

, whi
h is a fun
tion, �, with a


hange that the meaning of G

i

a

, z

a

, is mapped to the meaning of G

i

v

, z

v

:

�[z

a

7! z

v

℄ = �z: if z = z

a

then z

v

else �(z) �:

The meaning of sel(G

m

,G

i

a

) is the appli
ation of the meaning of G

m

, �, to the

meaning of G

i

a

, z

a

: �(z

a

). We de�ne the meaning of the formulas that quantify the

memory variables in the same (informal) way as the meaning of the formulas that

quantify the integer variables. Finally, program expressions (values, addresses, and

memories) get the meaning from the 
ontext 
 that 
onsists of one or two 
on
rete

memory-environment pairs m; a.

We �nally present a set of proof rules for the new logi
 expressions. For the
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� 2 Store = Int ! Int

G

m

: Memory-expression! Context ! Store

G

m

[[mem

0

℄℄ 
 = �z: 0

G

m

[[upd(G

m

,G

i

a

,G

i

v

)℄℄ 
 = (G

m

[[G

m

℄℄ 
)[(G

i

[[G

i

a

℄℄ 
) 7! (G

i

[[G

i

v

℄℄ 
)℄

G

i

[[sel(G

m

,G

i

a

)℄℄ 
 = (G

m

[[G

m

℄℄ 
)(G

i

[[G

i

a

℄℄ 
)

G

i

[[: : :℄℄ 
 = the same as in Figure 4-8


 j= 8x

m

: F

0

i� 
 j= F

0

[�=x

m

℄ for all � 2 Store


 j= 9x

m

: F

0

i� 
 j= F

0

[�=x

m

℄ for some � 2 Store


 j= : : : i� the rest the same as in Figure 4-8

G

i

[[val(I)℄℄ 
 = m

l

(a

l

(I))

G

i

[[addr(I)℄℄ 
 = a

g

(I)

G

i

[[val

1=2

(I)℄℄ 


1

; 


2

= m

l

1=2

(a

l

1=2

(I))

G

i

[[addr

1=2

(I)℄℄ 


1

; 


2

= a

g

1=2

(I)

G

i

[[mem℄℄ 
 = m

g

G

i

[[mem

1=2

℄℄ 


1

; 


2

= m

g

1=2

Figure 6-6: Valuation Fun
tions for Expressions and Validity of Formulas

memory expressions, we use the following two rules, 
alled the M
Carthy rules:

` sel(upd(G

m

,G

i

a

,G

i

v

),G

i

a

) = G

i

v

[Alias℄

` G

i

a

6= G

i

b

` sel(upd(G

m

,G

i

a

,G

i

v

),G

i

b

) = sel(G

m

,G

i

b

)

[Non-Alias℄

The [Alias℄ rule states that a read from the memory lo
ation with address G

i

a

returns

value G

i

v

that has been written to that lo
ation. The [Non-Alias℄ rule states that

a read from the memory lo
ation with address G

i

b

returns the value that does not

depend on the writes to other memory lo
ations.

We next present several rules that involve the program variable names, i.e., iden-

ti�ers. In BL, the identi�ers 
annot appear in the veri�
ation 
onditions, be
ause the

VCG for BL substitutes the program variables with the logi
 expressions that repre-

sent their values. Therefore, in the logi
 for BL, there is no need to have proof rules

that involve identi�ers. However, we later show that the identi�ers 
an appear in the

veri�
ation 
onditions for the extended language. In parti
ular, the identi�ers of the

global program variables appear in the address-of expressions 
onstru
ted with addr.
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We introdu
e the following rules for expressions representing addresses of variables:

` I

1

� I

2

` addr(I

1

) = addr(I

2

)

[Same-Id℄

` I

1

6� I

2

` addr(I

1

) 6= addr(I

2

)

[Di�-Id℄

` addr(I) 6= 0

[Non-Null℄

` addr

1

(I) = addr

2

(I)

[Same-Env ℄

The [Same-Id℄ rule is an instantiation of the general 
ongruen
e rule for equality. We

present the rule expli
itly be
ause it involves the synta
ti
 equality of the program

identi�ers. This requires that a ma
hine-veri�able representation of the proofs have

support for the program identi�ers.

4

The [Di�-Id℄ rule states that the environments

are inje
tive|they map di�erent identi�ers to di�erent memory lo
ations. The [Non-

Null℄ rule states that the environments do not map any identi�er to the value of NULL.

For ea
h of the rules [Same-Id℄, [Di�-Id℄, and [Non-Null℄, there are two analogous rules

for the indexed versions of the 
onstru
tor addr. Finally, the [Same-Env ℄ rule states

that the environments from the two programs map identi
al identi�ers to the same

memory lo
ations. Therefore, we abbreviate all addr

i

(I) expressions to &I in the

rest of the text. We dis
uss the relationship between the addresses of the variables

from two programs in the next se
tion.

Veri�
ation-Condition Generator Extensions for Pointers

Sin
e we extended the language and the logi
, we also need to extend the VCG.

We �rst des
ribe the small 
hanges to the (standard and simulation) 
ontexts and

invariants, and the analysis and transformation 
orre
tness requirements. We then

present the extensions to the StdVCG and SimVCG algorithms for BL. We also show

an example of veri�
ation 
ondition generated by the new algorithms.

The (standard and simulation) 
ontexts remain the same; they 
onsist of an input


ontext, an output 
ontext, a set of invariants, and the other additional information.

The input and output 
ontexts and the invariants are similar as the 
ontexts and

invariants in BL. The only 
hange is that these formulas are now from the extended

logi
 with expli
it memory. The analysis and the transformation requirements are

4

It is not stri
tly ne
essary to use the identi�ers. Instead, we 
an use (distin
t) integer 
onstants

to represent (distin
t) identi�ers from some lexi
al s
ope. That, in turn, requires en
oding integer

literals and proofs involving them in a ma
hine-veri�able form. The Athena framework, whi
h

we use for proof representation and veri�
ation, has a built-in support for both integer literals and

obje
t-level identi�ers. We use identi�ers as they allow a better readability of veri�
ation 
onditions.
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also similar as in BL. The VCG generates StdVC and SimVC, and the 
ompiler has

to prove that those formulas hold. The only di�eren
e is in the simulation 
ontext

for the starting pro
edures of the two programs.

The 
ompiler has to prove that the two programs generate the same output given

the same input. For BL, the input 
onsists of the values of the global variables and

the parameters of the starting pro
edures, and the output 
onsists of the values of

the global variables. For the extended language, instead of the values of the global

variables, we use the entire global memories. To prove that Q

1

� Q

2

, the 
ompiler

has to prove the simulation 
ontext whose input 
ontext is:

J

in

� mem

1

= mem

2

^

^

val

1

(I

p

1

) = val

2

(I

p

2

);

for all parameters I

p

1

of the starting pro
edure ofQ

1

and the 
orresponding parameters

I

p

2

of the starting pro
edure of Q

2

, and the output 
ontext is:

J

out

� mem

1

= mem

2

:

The 
ompiler 
an additionally assume that the two programs have the same allo-


ation of global variables; the 
orresponding global addresses have the same addresses

and thus a

g

1

= a

g

2

. (This does not allow the 
ompiler to prove that 
hanges in the data

layout are 
orre
t.) We need to use the same addresses in both programs and the

whole memories in the simulation requirement be
ause we allow arbitrary pointers.

For instan
e, 
onsider a program that only in
rements a global variable g with the

value of some lo
ation with address 8: g=g+*8. Even if g has the same value at the

beginning of the two programs, it would not have the same value at the end unless the

value at lo
ation 8 is the same. Additionally, if g were mapped to di�erent addresses

in the two programs, and one of the addresses happened to be 8, the value of g would

not be the same at the end of the two programs. Therefore, the 
ompiler 
an use the

rule ` addr

1

(I) = addr

2

(I) in the proof, and mem

1

= mem

2

in J

in

.

We next present 
hanges to the StdVCG (Figure 4-9) and the SimVCG (Figure 4-

11) for BL. The StdVCG and SimVCG for the extended language also symboli
ally

exe
ute pro
edures and generate the appropriate StdVC and SimVC. However, a

symboli
 exe
ution operates on a di�erent symboli
 state than the symboli
 exe
ution

of BL pro
edures. A symboli
 state s for the StdVCG now maps val(I

l

), for ea
h

lo
al variable I

l

, to an integer logi
 expression representing the value of the variable,

as for BL, but s also maps mem to a memory logi
 expression representing the global

memory. Analogously, states s

1=2

for the SimVCG map val

1=2

(I

�

1=2

) and mem

1=2

.

We next des
ribe 
hanges to the helper fun
tions for the StdVCG and SimVCG.

The fun
tion fresh-sym-state returns fresh integer logi
 variables for all val(I

l

) and

a fresh memory logi
 variable for mem. The fun
tion fresh-globals remaps only mem to

a fresh memory logi
 variable. The substitution of the symboli
 state in formulas is

the substitution of the expressions G

i�

for val(I

�

l

) and the expression G

m

for mem:

subst(F; s) = F [G

i�

=val(I

�

l

)℄[G

m

=mem℄. The fun
tions for the SimVCG 
hange in a

similar way, taking into a

ount the spe
ial form of logi
 formulas J that express the

related variables in two programs. (We also allow the pair mem

1

; mem

2

to appear in
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the sequen
e of pairs of related variables.)

Both StdVCG and SimVCG use the same helper fun
tions for the assignment,

bran
h, and 
all nodes. Figure 6-7 shows the new fun
tions for the extended language.

Compared to BL, the new fun
tions have an extra argument M that represents the

memory to use for the translations. The modi�ed StdVCG 
alls these fun
tions with

mem for M , and the modi�ed SimVCG 
alls with mem

1

or mem

2

depending on the

program. In pra
ti
e, the translations of the expressions from the program form to

the logi
 form are done while preparing pro
edures for symboli
 exe
utions (both for

BL and the extended language), i.e., while merging the invariants. The exe
utions

then perform only the substitutions in the 
urrent symboli
 states.

translate-assign(W;E;M; s; e) =

let G

E

be translate(E;M; e) in

if var-in-lo
-env(W; e) then

s[translate(I; e) 7! subst(G

E

; s)℄

else

let G

W

be translate(&W;M; e) in

s[M 7! subst(upd(M,G

W

,G

E

); s)℄

�

translate-bran
h(E;M; s; e) = subst(translate-bool(E;M; e); s)

translate-
all(E

�

;M; s; e) = subst-seq(translate-seq(E

�

;M; e); s)

Figure 6-7: Changes to the Helper Fun
tions for Veri�
ation-Condition Generators

We next show the veri�
ation 
onditions that the modi�ed VCG generates for

an example slightly 
hanged from the example presented in Chapter 3. We 
hange

the original pro
edure from Figure 3-2 in the following way: there is a new global

variable h, there is a new node 0:h=&g before node 1:i=0, and the node with label

3 is 3:*h=g+2*i. We 
onsider that the 
ompiler 
an perform 
onstant propagation

on the input pro
edure and 
an transform the nodes 3:*h=g+2*i and 5:i=i+
 so

that the output pro
edure has nodes 3:g=g+2*i and 5:i=i+3. We �rst des
ribe the

analysis results that the 
ompiler generates and the StdVC for those results. We then

des
ribe the simulation relationships and the SimVC for this example.

The 
ompiler �rst performs a pointer analysis on the original program. Consider

that the pro
edure q is su
h that no exe
ution of q 
hanges the pointer h when h

points to g. The 
ompiler 
an then generate and prove the standard 
ontext for q

with both input and output 
ontexts being sel(mem,&h) = &g. For the pro
edure p,

we 
onsider the standard 
ontext with both input and output 
ontexts being true.

Suppose that the 
ompiler generates only one standard invariant for the analysis

results of this 
ontext: 3:inv sel(mem,&h) = &g ^ val(
) = 3. For this example
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ontext of p, the StdVCG generates the following StdVC:

8i

1

; 


1

; m

1

: true

p

in

)

sel(upd(m

1

,&h,&g),&h) = &g ^ 3 = 3 ^

8i

2

; 


2

; m

2

: sel(m

2

,&h) = &g ^ 


2

= 3)

sel(upd(m

2

,sel(m

2

,&h),sel(m

2

,&g) + 2 � i

2

),&h) = &g ^

8m

3

: sel(m

3

,&h) = &g)

(i

2

+ 


2

< 24) sel(m

3

,&h) = &g ^ 


2

= 3) ^

(:(i

2

+ 


2

< 24)) true

p

out

):

We next 
onsider, for the original and transformed pro
edures p, a simulation


ontext with both simulation input and output 
ontexts being just mem

1

= mem

2

.

We use the same simulation input and output 
ontexts for the 
alls to pro
edure q.

Suppose that the 
ompiler generates only one simulation invariant for the 
ontext for

pro
edures p: 3

1

,3

2

:sim-inv mem

1

= mem

2

^ val

1

(i) = val

2

(i). Also, the 
ompiler

generates that the initial values for lo
al variables i

2

and 


2

are the same as for i

1

and 


1

. In this example, the SimVCG generates the following SimVC:

8m

1

1

; i

1

1

; 


1

1

; m

1

2

: m

1

1

= m

1

2

)

m

1

1

= m

1

2

^ 0 = 0 ^ 8m

2

1

; i

2

1

; 


2

1

; m

2

2

; i

1

2

; 


1

2

: m

2

1

= m

2

2

^ i

2

1

= i

2

2

) 


2

2

= 3)

upd(m

2

1

,sel(m

2

1

,&

1

h),sel(m

2

1

,&

1

g)+ 2 � i

2

1

) =

upd(m

2

2

,sel(m

2

2

,&

2

h),sel(m

2

2

,&

2

g)+ 2 � i

1

2

) ^ 8m

3

1

; m

3

2

: m

3

1

= m

3

2

)

(i

2

1

+ 3 < 24) i

1

2

+ 


1

2

< 24 ^m

3

1

= m

3

2

^ i

2

1

= i

1

2

) ^

(:(i

2

1

+ 3 < 24)) :(i

1

2

+ 


1

2

< 24) ^m

3

1

= m

3

2

):

Observe that the above example does not show the use of the formulas J with a

sequen
e of related variables. Using these formulas, the input and output 
ontexts

are just true,(mem

1

,mem

2

) (i.e., true ^ mem

1

= mem

2

), and the simulation invariant

is 3

1

,3

2

:sim-inv true,(mem

1

,mem

2

),(val

1

(i),val

2

(i)). In this 
ase, the SimVC

is mu
h shorter

5

:

8m

1

; i

1

; 


1

1

: true)

true ^ 8m

2

; i

2

; 


2

1

; 


1

2

: true) 


1

2

= 3)

true ^ 8m

3

: true)

(i

2

+ 3 < 24) i

2

+ 


1

2

< 24 ^ true) ^

(:(i

2

+ 3 < 24)) :(i

2

+ 


1

2

< 24) ^ true):

6.1.2 Arrays

We next brie
y show how to add (stati
) arrays to the BL with pointers. In the

simplest 
ase, we add a new de
laration form for (one-dimensional) arrays, I[Z℄.

The allo
ation of array I[Z℄ takes Z 
onse
utive lo
ations in the memory and the

environment maps I to the address of the �rst lo
ation. We also add a new expression

form for array a

esses, W [E

index

℄, both to the left-hand expressions W and to the

5

In pra
ti
e, the SimVCG does not even generate true in true) F or true ^ F or F ^ true.
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right-hand expressions E. We allow only global variables to be arrays that are indexed

with arbitrary expressions. Sin
e the language has pointer arithmeti
, we 
an 
onsider

array expressions simply as synta
ti
 sugar: W [E℄ � *(&W +E). This 
on
ludes the

extensions for arrays with arbitrary indi
es.

We also point out a useful restri
ted form of arrays. Namely, if the size of arrays

is known at 
ompile time and arrays 
an be indexed only with integer 
onstants,

it is trivial to 
he
k at 
ompile time that array indi
es are within bounds. These

arrays 
an be even lo
al, and we use them to model an a
tivation frame 
ontaining

lo
al variables addressed using the frame pointer. Ea
h array element is, essentially,

treated as a separate variable.

We �nally argue why it is ne
essary to have run-time array-bounds 
he
king for

general array indi
es, as well as more restri
ted pointers, in the language semanti
s.

The main reason is to formally model the exe
ution of programs on realisti
 ma
hines

while still retaining 
ertain guarantees in the language. For example, in the BL with

pointers, a pointer expression involving global variables 
annot a

ess lo
al variables.

However, to guarantee that, the semanti
s presented in Se
tion 6.1.1 requires the

ma
hine to have two separate memories, whi
h is not the 
ase in pra
ti
e. Running

a program on a ma
hine with one memory 
ould generate a di�erent result than

running the program on a ma
hine with separate memories. Therefore, to model

the exe
ution of programs on realisti
 ma
hines, we need to 
hange the semanti
s.

We dis
uss in next se
tion how to introdu
e error states in the semanti
s to restri
t

memory a

esses that pointer/array expressions 
an make.

6.1.3 Error States

We next brie
y dis
uss how we 
ould 
hange the framework to support error states in

the language semanti
s. Error states are added to the semanti
s as follows. For ea
h

group of nodes in the language, the exe
ution 
he
ks whether 
ertain error 
onditions

are satis�ed. For instan
e, for the nodes that evaluate expressions, there are 
he
ks

for whether array indi
es are out of bounds and for division by zero. If the error


onditions are satis�ed, the exe
ution goes to an error state; otherwise, the exe
ution


ontinues as normal. Error states are �nal states of a program exe
ution, and an

error is one of the observable results that a program 
an generate.

We do not formally present error 
onditions for nodes in the BL with pointers (and

arrays). We assume that these 
onditions provide 
ertain guarantees for the program

exe
ution. For example, a read/write of a[i℄ 
an read/write only an element of

the array a. More pre
isely, if the exe
ution (evaluation) of a[i℄ does not end up

in an error state (i.e., the index i is within the bounds of a), then a[i℄ a

esses

an element of a. Note that de�ning error 
onditions for arbitrary expressions with

pointer arithmeti
 is mu
h more involved. For the full C language, the standard [26℄

does not formally present semanti
s (and error 
onditions), and the paper [21℄, whi
h

presents formal semanti
s for C, ignores the issue of errors.

We next 
onsider two approa
hes that we 
ould use to handle errors in BL ex-

tended with pointers: disallowing programs with errors and extending the framework.

We would disallow errors by requiring that the 
ompiler input program have no errors,
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i.e., that the program be su
h that its exe
ution 
an never get into an error state. The


ompiler 
annot determine whether this holds for an arbitrary BL program. However,

BL is only an intermediate representation in the 
ompiler, and we 
an restri
t the

sour
e language so that the 
ompiler 
an e�e
tively 
he
k whether a sour
e program

has an error. This approa
h is used in the 
ertifying 
ompilers Tou
hstone [38℄ and

Pop
orn [31℄. The sour
e language for these 
ompilers is a type-safe subset of C, and

ea
h 
ompiler translation (or transformation) preserves type safety and generates ev-

iden
e that the output program has no errors.

6

To use this approa
h for 
redible


ompilation, we would extend BL with stati
 types. Ea
h 
ompiler transformation

would �rst show that the output program has no errors and then that the output

program simulates, as before, the input program.

The other approa
h to handling errors is to allow the input program to potentially

have errors, but extend the framework so that the 
ompiler 
an prove that it 
orre
tly

transformed the input program even if it has an error. We extend the de�nition of

the simulation requirement to in
lude errors|program Q

1

simulates program Q

2

i�

the following holds: an exe
ution of Q

1


an generate an error only if an exe
ution of

Q

2


an generate an error and, as before, an exe
ution of Q

1


an terminate only if an

exe
ution of Q

2


an terminate with the same output and an exe
ution of Q

1

does not

terminate only if an exe
ution of Q

2

does not terminate. The 
ompiler need prove

only that the output program simulates the input program, and it follows that the

output program has no errors if the input program has no errors.

We next des
ribe how to extend the SimVCG to generate the SimVC for two

programs that 
an have errors. Con
eptually, we introdu
e, in ea
h pro
edure from

the two programs, a spe
ial node that represents an error state. We 
an then repla
e

ea
h original node that 
an generate an error, when some error 
ondition C holds, with

two new nodes: a bran
h node, whose 
ondition is C and whose target is the spe
ial

error node, and a 
opy of the original node, where the 
opy now 
annot generate an

error. After this, we 
an use, for the new pro
edures, a similar SimVCG as we use for

the language without errors. The only 
hange in the symboli
 exe
utions is that both

pro
edures need to simultaneously exe
ute the error nodes (as they simultaneously

exe
ute the return and 
all nodes). This approa
h to errors allows us to des
ribe the

semanti
s of the language using dynami
 types in error 
onditions. We have started

exploring whether it is pra
ti
al to treat pointers as pairs of a base address and

o�set. We believe that this would enable easier modeling of some of the \unde�ned"


onstru
ts in the C language.

6.1.4 Side E�e
ts

We next brie
y 
onsider extending BL by adding expressions that have side e�e
ts.

In parti
ular, we dis
uss how to 
hange the logi
 and the VCG to support fun
tions.

6

In Tou
hstone, the eviden
e is a proof; in Pop
orn, it is type information for the output program.

The type system is sound| every well-typed program is guaranteed to have no errors. The eviden
e

is stati
ally 
he
ked, and the ma
hine that exe
utes the program does not need to perform run-time


he
ks.
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Fun
tions are subroutines that return a result, as opposed to pro
edures, whi
h only

modify the state. To add fun
tions to the language, we add a new expression form for

fun
tion 
alls, I(E

�

), and we 
hange return nodes to be L:ret E. In the language

semanti
s, we need to operationally des
ribe the expression evaluation that now takes

many steps, instead of one step as in BL.

We 
hange the VCG similarly; the VCG does not translate in one step the pro-

gram expressions that 
ontain fun
tion 
alls to logi
 expressions. Instead, the VCG

translates the expressions in several steps and uses a symboli
 state that 
ontains a

spe
ial element that represents the value of the expression. The 
ompiler provides

(standard and simulation) 
ontexts for fun
tions, and the VCG uses those 
ontexts

for modeling the fun
tion 
alls. As usual, the VCG generates a VC that requires the

input 
ontext to hold before the 
all(s) and assumes the output 
ontext to hold after

the 
all(s). The symboli
 state after the 
all has a fresh logi
 variable for the global

memory and for the spe
ial element representing the value of the expression. In the

logi
 formulas, we only add a new 
onstru
tor for representing the return value of

the fun
tion, and the 
ompiler 
an use the new 
onstru
tor in output 
ontexts. This


on
ludes the list of suÆ
ient 
hanges to the framework to make it support fun
tions

in the language. (We present in next se
tion another approa
h, extending the logi


formulas with expressions that represent 
alls, that 
an be used to add support for

fun
tions.)

6.1.5 Computed Jumps

We next 
onsider extending BL with jumps that have 
omputed targets. We 
onsider

two groups of \
omputed jumps": \
omputed jumps to subroutine" (subroutine 
alls

with the subroutine being an arbitrary expression instead of a subroutine identi�er)

and \indire
t jumps" (bran
h nodes with the label being an arbitrary expression

instead of a label identi�er).

We �rst 
onsider 
hanging the 
alls from dire
t I(E

�

) to indire
t W(E

�

), where

the expression &W evaluates to the address of the 
alled pro
edure. (We present the


hanges only for pro
edures as the 
hanges for fun
tions are similar.) We also add

the expression form &I for taking the address of a pro
edure named I. For example,

the sequen
e l=&p;(*l)() makes a 
all to a parameterless pro
edure p. The 
hange

of the 
alls in the language requires a 
hange of the VCG. We 
an 
hange the VCG

to support indire
t 
alls using two approa
hes: extending the des
ription of 
ontexts

at 
all sites or extending the logi
 formulas.

We extend the des
ription of 
ontexts at 
all sites by allowing the 
ompiler to

generate whi
h pro
edures might be 
alled. For programs with dire
t 
alls, only

one pro
edure 
an be 
alled at any 
all site, and the VCG requires the 
ompiler to

generate only the index of a 
allee 
ontext to use for the 
all site. (The StdVCG

requires an index of a standard 
ontext for one 
allee, and the SimVCG requires an

index of a simulation 
ontext for two 
allees.) The VCG for dire
t 
alls uses the input

and output 
ontexts, for the spe
i�ed index, to generate a part of VC that requires

the input 
ontext to hold before the 
all and assumes the output 
ontext to hold after

the 
all. The VCG for indire
t 
alls generates a VC that additionally requires that
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before the 
all, the 
all expression &W evaluates to one of the pro
edures spe
i�ed

by the 
ompiler. The VCG also 
he
ks that all those pro
edure have the 
ontext

spe
i�ed by the 
ompiler.

If the 
ompiler 
annot determine whi
h pro
edures might be 
alled at a 
all site,

the 
ompiler uses the \default 
ontext." For standard 
ontexts, the default 
ontext

has both input and output 
ontexts true, and this 
ontext 
an be used for any pro-


edure. For simulation 
ontexts, the default 
ontext represents that two pro
edures

generate the same output given the same input, i.e., the default simulation 
ontext

has input 
ontext mem

1

= mem

2

^

V

val

1

(I

p

1

) = val

2

(I

p

2

), where

V

ranges over the

parameters of the pro
edures, and output 
ontext mem

1

= mem

2

. This 
ontext 
an

be used only for the pairs of pro
edures for whi
h it holds. Sin
e it holds if the two

pro
edures are identi
al, the SimVCG would generate the SimVC that requires the

(translations of) 
all expressions to be equal at the two 
all sites.

The other approa
h to supporting indire
t 
alls is to extend the logi
 formulas

with expressions that represent pro
edure 
alls. If the memory before the 
all is G

m

,

then the memory after the 
all would be app

i

(G

m

,G

p

,G

�

), where app

i

is a family

of memory expression 
onstru
tors indexed by the number of pro
edure parameters,

G

p

is a logi
 expression representing the pro
edure that is 
alled, and G

�

represents

the parameters. The new 
onstru
tors would be uninterpreted fun
tion symbols in

the logi
. (The same result is a
hieved in the previous approa
h if the 
ompiler uses

\default 
ontexts" at all 
all sites be
ause the 
ompiler does not perform an interpro-


edural analysis or transformation.) Extending the logi
 formulas for indire
t 
alls

does not support interpro
edural analyses and transformations in a 
lean manner.

7

Therefore, we prefer extending the 
ompiler des
ription of 
ontexts.

We next 
onsider 
hanging the bran
hes from dire
t br(E)L to indire
t br(E




)E

t

,

where the target E

t

evaluates to the label to bran
h to if the 
ondition E




evalu-

ates to true. We also 
hange the labels to be integers. For example, the sequen
e

1:j=1;br(TRUE)j is an inde�nite loop. The 
hange of the bran
hes in the language

also requires a 
hange of the VCG. However, we 
annot 
hange the symboli
 exe
ution

of the VCG to support arbitrary indire
t jumps. The reason is that the VCG 
ould

not de
ide, in general, where to 
ontinue the symboli
 exe
ution for the bran
h-taken

path. If we restri
ted the indire
t jumps in some way so that the VCG 
ould deter-

mine what all possible targets are, then we 
ould simply 
hange the VCG to follow

all those paths.

6.2 Invariant Extensions

In this se
tion we dis
uss several extensions to the language used for representing

invariants. An invariant 
onsists of a logi
 formula and one program label (for a stan-

dard invariant) or two program labels (for a simulation invariant). We �rst extend the

7

The support 
an be added by 
hanging the VCG to generate, as assumptions in the VC, formulas

that involve app

i

and des
ribe 
ontexts. We do not present more details here, but suÆ
e it to say

that this would make the VC mu
h more diÆ
ult to prove.
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invariants so that the 
ompiler 
an represent a set of variables that are not modi�ed

during a loop. We then extend the logi
 formulas with some new expression 
onstru
-

tors, more spe
i�
ally, 
onstru
tors that allow the 
ompiler to refer to the program

state at the beginning of an exe
ution and 
onstru
tors that allow the 
ompiler to

more su

in
tly express the results of analyses and the simulation relationships. We

�nally extend the representation of the program labels in standard invariants to allow

the 
ompiler to more easily express the results of 
ow-insensitive analyses.

6.2.1 Loop Constants

We next des
ribe how to 
hange standard invariants and the StdVCG to allow the


ompiler to represent that some variables have 
onstant values during some loop. We

model this 
hange after the invariants that Ne
ula and Lee use in their 
ertifying


ompiler [38℄.

With the invariants presented so far, the 
ompiler 
an represent that some vari-

ables have the same values for all exe
utions that rea
h a program point. The 
ompiler

has to determine these values and to represent them as 
onstants. For example, the

invariant 2:inv sel(mem,&g) = 1 ^ val(i) = 0 represents that the global variable

g and the lo
al variable i have the value 1 and 0, respe
tively, for all exe
utions

that rea
h the node with label 2. However, the 
ompiler 
annot represent that the

value of a variable (in general, the value of an expression) does not 
hange between

the 
onse
utive exe
utions that rea
h the invariant. More pre
isely, we refer to the


onse
utive exe
utions within the same loop, i.e., the 
onse
utive exe
utions that do

not rea
h any node before the invariant. The value 
an 
hange for di�erent loops.

We extend the invariants so that ea
h invariant has, beside a label and a formula,

also a set of expressions that do not 
hange within the innermost loop 
ontaining

the invariant. We write su
h invariant as L:inv F;G

�

. For example, the extended

invariant 5:inv val(j) > 3;sel(mem,&g); val(i) represents that the value of j

is greater than 3 for all exe
utions rea
hing the node 5 and that the values of g

and i are 
onstant within the innermost loop 
ontaining the node 5. Note that

the 
ompiler 
an represent that an expression has a 
onstant value within the loop

although the 
ompiler does not determine that value. The 
ompiler 
an use arbitrary

expressions in G

�

, e.g., mem in G

�

represents that the whole memory does not 
hange,

and sel(mem,sel(mem,&p)) in G

�

represents that the value of the lo
ation pointed

to by the pointer p does not 
hange.

The extended invariants require 
hanges in the StdVCG for BL (Figure 4-9).

Figure 6-8 shows the new symboli
 exe
ution of the invariants with expressions G

�

.

The most 
ommon expressions in G

�

are the values of variables (val(I

l

) for lo-


al I

l

and sel(mem,&I

g

) for global I

g

) and the value of the whole memory (mem).

Instead of the helper fun
tion fresh-sym-state, the new StdVCG uses the fun
tion

fresh-sym-state-related(s;G

�

) that generates the state s

0

from s with respe
t to G

�

.

For ea
h expression G (be it val(I

l

) or mem) that s maps, s

0

maps G to a fresh logi


variable if G is not in G

�

, and s

0

maps G to s(G) if G is in G

�

. The extended StdVCG

also uses the fun
tion seq-eq(G

�

; s; s

0

) that generates

V

subst(G; s) = subst(G; s

0

),

where

V

ranges over all G in G

�

for whi
h subst(G; s) 6� subst(G; s

0

). The soundness
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proof for this StdVCG is similar to the soundness proof for the StdVCG for BL; only

StdIH3 in the indu
tion hypothesis 
hanges. Ne
ula [35℄ shows a similar proof in

detail.

mat
hing P

0

(L)

.

.

.

� L:inv F;G

�

[℄

if member(hL; s

0

i; i) then

subst(F; s) ^ seq-eq(G

�

; s; s

0

)

else

let hs

0

; x

�

i be fresh-sym-state-related(s;G

�

) in

subst(F; s) ^

8x

�

: subst(F; s

0

) ^ seq-eq(G

�

; s; s

0

)) Std(L+

P

0

1; s

0

; union(hL; s

0

i; i))

�

endmat
hing

Figure 6-8: Extensions to the Veri�
ation-Condition Generator for BL

We have des
ribed so far how to extend the standard invariants with sets of

expressions that do not 
hange during a loop. An analogous extension 
an be used

for standard 
ontexts for pro
edures. We 
an allow the 
ompiler to represent in the

input (or the output) 
ontext a set of expressions that do not 
hange during the

exe
ution of one a
tivation. (Alternatively, the 
ompiler 
an represent a set of all

expressions that the pro
edure may 
hange, i.e., the write-set of the pro
edure.) The

StdVCG 
an then generate, at 
all sites, a symboli
 state for the output 
ontext with

respe
t to the symboli
 state for the input 
ontext. In the next se
tion we present

another extension that allows the 
ompiler to represent relationships between the

states for the input and output 
ontexts.

Finally, the simulation invariants and 
ontexts 
an be extended in a similar way

as the standard invariants and 
ontexts. Ea
h simulation invariant would relate

not only the states from two programs, but also di�erent states from one program.

The SimVCG would then generate the fresh symboli
 states with respe
t to the old

symboli
 states.

6.2.2 Starting States in Formulas

We next des
ribe how to extend the logi
 formulas so that the 
ompiler 
an represent

the starting state in them. (By starting state we mean the state of the program

memory at the beginning of the exe
ution of a pro
edure a
tivation.) Using the

logi
 formulas presented so far, the 
ompiler 
an represent in standard invariants

only the 
urrent state during the exe
ution. (In simulation invariants, the 
ompiler


an represent two states, but again only the 
urrent states of two memories.) The


ompiler uses the 
onstru
tors lo
 and glob, in the logi
 for BL (Se
tion 4.2), or

the 
onstru
tors val and mem, in the logi
 for BL with pointers (Se
tion 6.1.1), to

122



represent the 
urrent values of program variables or memory.

8

(In both logi
s, there

are also indexed versions of 
onstru
tors for simulation invariants.) We will use H

to refer to all these 
onstru
tors. Similar to the formulas for invariants, the 
ompiler


an represent only the 
urrent state in the formulas for input and output 
ontexts,

respe
tively, the state at the beginning and the state at the end of the exe
ution of

an a
tivation.

We extend the logi
 formulas to allow the 
ompiler to represent in any formula

the starting state m

0

, beside the 
urrent state m. We add a set of 
onstru
tors H

0

(one for ea
h appropriate H). The expressions with H

0

denote the 
orresponding

values in m

0

. For example, 2:inv glob(g) = glob

0

(g) means that the value of some

global variable g is the same at node 2 as it is in the beginning of the pro
edure.

Formally, the meaning of the new formulas is de�ned with respe
t to the 
ontexts

that 
onsist of two memories and an environment: 
 = hm

0

; m; ai. The translation

fun
tions from program expressions to logi
 expressions remain the same. We next

dis
uss the e�e
t of the new expressions on the (standard and simulation) 
ontexts,

and then we des
ribe the 
hanges to the VCG.

Using the new formulas, the 
ompiler 
an represent in an output 
ontext the state

at the beginning of the 
ontext. This makes the 
ontexts mu
h more expressive. For

example, 
onsider a simple pro
edure that swaps the values of two variables x and y.

The 
ompiler 
an generate only one 
ontext for this pro
edure, namely F

in

� true

and F

out

� glob(x) = glob

0

(y) ^ glob(y) = glob

0

(x). Without glob

0

, the


ompiler would need to generate a 
ontext with F

in

� glob(x) = C

x

^glob(y) = C

y

and F

out

� glob(x) = C

y

^ glob(y) = C

x

for every two 
onstants C

x

and C

y

for

whi
h the 
ompiler uses the fa
t that the pro
edure swaps values. In general, the


ompiler 
an now generate only one 
ontext for the results of any analysis on any

pro
edure. We argue that this is not always the best approa
h.

In the simple example with swap, di�erent input 
ontexts have only di�erent

values of the parameters. However, in more involved examples of 
ontext-sensitive

interpro
edural analyses, di�erent input 
ontexts may express di�erent relationships

between variables. Consider that su
h an analysis generates n di�erent input 
ontexts

F

in

1

; : : : ; F

in

n

and n 
orresponding output 
ontexts F

out

1

; : : : ; F

out

n

for some pro
edure.

The 
ompiler 
an 
ombine all these 
ontexts into one: F

in

� F

in

1

_ : : : _ F

in

n

and

F

out

� F

in

1

[H

0

=H℄ ) F

out

1

^ : : : ^ F

in

n

[H

0

=H℄ ) F

out

n

. (The 
ompiler has also to


ombine the invariants similarly as the output 
ontexts.)

The VCG for the new formulas uses the 
ontexts at 
all sites in the same way as

the VCG for BL. When a pro
edure has only one 
ombined 
ontext, the new VCG

would use that 
ontext for all 
alls to that pro
edure. The �rst problem with the


ombined 
ontext is that the VCG uses F

in

and F

out

, instead of F

in

k

0

and F

out

k

0

for

some k

0

, and thus a part of VC is (roughly n times) longer at ea
h 
all site. A mu
h

bigger problem is that the proof generator that proves the VC has to \redis
over"

whi
h of the 
ontexts F

in

1

; : : : ; F

in

n

to a
tually prove for ea
h 
all site. Therefore, in

the new VCG, we still allow the 
ompiler to generate many standard 
ontexts for the

8

The addresses of global variables do not 
hange during the exe
ution of a program, and thus

addr(I) represents the address of the variable I throughout the exe
ution.
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same pro
edure. (The 
ompiler 
an also generate many simulation 
ontexts for the

same pair of pro
edures.)

The new VCG di�ers from the VCG for BL only in the substitutions of symboli


states, both for the StdVCG (Figure 4-9) and for the SimVCG (Figure 4-11). Ea
h

subst(F; s) for a standard invariant is repla
ed with subst(subst(F; s); s

0

), and analo-

gously ea
h subst-sim(J; s

1

; s

2

) is repla
ed with subst-sim(subst-sim(J; s

1

; s

2

); s

0

1

; s

0

2

).

We allow only H

0


onstru
tors in the input 
ontext formulas, and the starting sym-

boli
 states (s

0

, s

0

1

, and s

0

2

) map the expressions with H

0

to some logi
 expres-

sions. The substitution at 
all sites also 
hanges. The new StdVCG �rst 
reates

s

in

= set-params(I; G

�

; s)[H

0

=H℄ and then performs the substitutions subst(F

in

; s

in

)

and subst(subst(F

out

; s

0

); s

in

); the new SimVCG operates analogously. The soundness

proofs for the new StdVCG and SimVCG pro
eed in a similar way as for the StdVCG

and SimVCG for BL.

6.2.3 Formula Extensions

We next dis
uss general extensions to the logi
 formulas and, in parti
ular, adding

set expressions to the formulas. Generally, adding new predi
ates and/or types of

logi
 variables and expressions allows the 
ompiler to generate shorter invariants.

As a simple example, 
onsider an analysis that determines whi
h program variables

have truth values (0 or 1). Using the formulas presented so far, the 
ompiler 
an

represent the results of the analysis only with expressions val(I) = 0 _ val(I) = 1.

Introdu
ing a new 
onstru
tor bool allows the 
ompiler to use bool(val(I)) instead.

Adding new 
onstru
tors requires adding proof rules for the formulas with new


onstru
tors. In the example with bool, it is enough to add only the rule for the

de�nition of bool (for all x, bool(x) i� x = 0 _ x = 1), and the 
ompiler 
ould add

su
h de�nitions automati
ally. However, in more 
omplex 
ases, it is usually ne
essary

to add several proof rules for the new formulas and to generate a meta-proof that

the new proof rules are sound. Sin
e the 
ompiler 
annot generate a meta-proof, we

need to spe
ify, before a 
ompilation, a logi
 that allows the 
ompiler to eÆ
iently

represent and prove the results of \standard" analyses.

Based on our experien
e with the implementation of a (
ow-sensitive intrapro
e-

dural) pointer analysis, we �nd sets (sequen
es) of 
onstants to be parti
ularly useful

for expressing the results of 
ompiler analyses. In BL extended with pointers, we

regard as 
onstants the addresses of global variables as well as the integer 
onstants

(C ::= addr(I)jZ). We have started extending the logi
 with the expressions that

denote sets of 
onstants: G

s

::= emptyjunion(C,G

s

). The predi
ate in(G

i

,G

s

)

denotes that the value of expression G

i

is in the set G

s

. For example, the expression

in(val(i),union(0,union(1,empty))) denotes that the value of i is either 0 or 1,

i.e., val(i) = 0 _ val(i) = 1. Similarly,

in(sel(mem,&p),union(&x,union(&y,empty)))

denotes that the pointer p points either to x or to y. To fully utilize the sets, we

plan to further extend the logi
 with ways for naming sets and for proving subset
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relationships between sets.

9

As mentioned brie
y in Se
tion 6.1.1, we 
an also use a set of addresses of variables

to represent, in simulation invariants, that two memories have the same value in all

lo
ations ex
ept for the lo
ations whose addresses are from the set G

s

:

8x: in(x,G

s

)) sel(mem

1

,x) = sel(mem

2

,x):

Observe that on
e the formulas involve sets of addresses, it is not possible to prove

that two memories are equal even if the set is empty. We need therefore to add a rule

that mem = mem

0

if 8x: sel(mem

1

,x) = sel(mem

2

,x).

6.2.4 Flow-Insensitive Analyses

We next des
ribe how the 
ompiler represents the results of 
ow-insensitive analyses

and how a spe
ialized StdVCG generates StdVC for those results. We also dis
uss

the relationship between those results and the initialization of variables.

Flow-insensitive analyses generate, for one 
ontext (a pair F

in

and F

out

), the same

result (formula F ) for all nodes in a pro
edure. We 
an represent this result with

only one standard invariant of a spe
ial form, e.g., *:inv F . This invariant represents

that F holds everywhere.

Further, 
ow-insensitive analyses do not use the information from the bran
h


onditions. We 
an therefore use a spe
ialized StdVCG that does not exe
ute the

bran
h nodes of the pro
edure and generates a shorter StdVC.

10

The StdVCG for

*:inv F exe
utes only the assignment nodes and the 
all nodes. The StdVCG �rst


reates fresh symboli
 states s

0

and s, with logi
 variables x

�0

and x

�

, and then

generates the following part of StdVC for the input and output 
ontexts and the

assignment nodes:

8x

�

; x

�0

: subst(F

in

; s

0

)) subst(subst(F; s); s

0

)) subst(subst(F

out

; s); s

0

) ^

V

W=E2P

subst(subst(F; translate-assign(W;E; mem; s; e)); s

0

);

where the 
onjun
tion ranges over all assignment nodes in the pro
edure. The Std-

VCG also generates a similar part of StdVC for the 
all nodes as for the assignment

nodes.

9

Che
king the subset/membership relationships using the proof 
he
ker requires the relationships

to be en
oded in proofs. It is more eÆ
ient to 
he
k the relationships using a fun
tion additional to

the proof 
he
ker. The Athena framework, whi
h we use for proof representation and veri�
ation,

o�ers a dire
t way to add su
h a fun
tion, i.e., to add 
omputation to dedu
tion.

10

Similarly, we 
an use spe
ialized StdVCGs for other kinds of analyses. For example, standard

(non-predi
ated) data
ow analyses do not use the information from the bran
h 
onditions. There-

fore, for the results of su
h analyses, the StdVCG does not need to add the bran
h 
onditions to

the StdVC. (Omitting those 
onditions from StdVC is sound sin
e the 
onditions are used only as

assumptions in the StdVC. Also, the proof generator 
an prove the StdVC without the 
onditions

sin
e the analysis results do not depend on those 
onditions.) The StdVCG still needs to symbol-

i
ally exe
ute all nodes of the pro
edure to generate the StdVC. In general, the 
ompiler has to

exe
ute all nodes and to also generate the bran
h 
onditions; otherwise, the proof generator might

not be able to prove the StdVC.
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We next dis
uss the relationship between 
ow-insensitive analyses and the initial-

ization of program variables. We show that obtaining e�e
tive 
ow-insensitive analy-

ses requires that the language provides some guarantees. As an example, we 
onsider

a 
ow-insensitive pointer analysis. A pointer analysis determines where ea
h pointer


an point to. Assume that some pro
edure (in BL with pointers) has only one pointer

p and two assignments to p: p=&x and p=&y. Usually, an analysis would generate that

val(p) = &x _ val(p) = &y everywhere in the pro
edure. However, this a
tually

does not hold (and thus 
annot be proven) at the beginning of the pro
edure|p 
an

have any value in the starting state. Therefore, a 
ow-insensitive result has to in
lude

the starting value, namely val(p) = &x _ val(p) = &y _ val(p) = val

0

(p).

The results be
ome less pre
ise (and thus less useful) after adding the option

that a variable 
an have the starting value anywhere. For example, even if p 
ould

otherwise point only to x, the 
ompiler 
ould not repla
e *p with x when p 
an also

have the starting value p

0

. Furthermore, if the value p

0

is unknown, as it is for the

uninitialized lo
al variables in BL, then *p 
ould a

ess any lo
ation. This, in turn,

prevents e�e
tively performing a 
ow-insensitive pointer analysis be
ause variables

that are assigned the value read from *p get an arbitrary value.

11

We showed in [42℄ how to minimally 
hange the language semanti
s to enable a


ow-insensitive pointer analysis to generate provably 
orre
t results. We require all

variables to be initialized to some value, v, and a

essing the lo
ation with address v

has spe
ial behavior: a read from lo
ation v always returns v and a write to lo
ation

v does not 
hange the memory. (We use 0 for v, and thus give a spe
ial semanti
s to

null pointer dereferen
ing.) This still requires that the results of the analyses in
lude

v as a possible value for all variables.

As mentioned, 
ow-insensitive analyses in general, and in parti
ular pointer analy-

ses su
h as Steengaards's [44℄ and Andersen's [2℄, generate results that do not in
lude

the starting values. The assumption under whi
h these analyses operate is \no use

before de�nition," i.e., no memory lo
ation is read from before it is written to. The

generated results then hold for all uses of a variable, but they need not hold before

the �rst de�nition. (Additionally, when the semanti
s has error states, the results

need not hold if the exe
ution gets to an error, but the results hold if there is no

error.)

For the full C language, as well as for BL, the \no use before de�nition" assump-

tion 
learly does not hold in general. It is, also, unde
idable to determine whether

the assumption holds for an arbitrary program. One method to ensure that the as-

sumption holds is to initialize, at run-time, all lo
al variables at the beginning of a

pro
edure. For eÆ
ien
y reasons, realisti
 languages do not require the initialization

of lo
al variables. (They may require the initialization of heap data.) The other

method to a
hieve that the assumption holds is to a

ept (for 
ompilation or exe
u-

tion) only the \
orre
t" programs, i.e., programs for whi
h some analysis determines

that the assumption holds. For example, the Java Byte
ode Veri�er [28℄ performs a

11

Even the results of 
ow-insensitive analysis in programs without pointers be
ome less pre
ise

when variables 
an have starting values anywhere. The reason is that assignments propagate the

starting values; for instan
e, the assignment x=y ne
essitates that the result for x also in
ludes y

0

.
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data
ow analysis to determine that \no lo
al variable is a

essed unless it is known

to 
ontain a value of an appropriate type."

Finally, observe that 
ow-insensitive analyses 
annot, by themselves, determine

whether a pro
edure is \
orre
t." Therefore, another method has to �rst establish

that the pro
edure is \
orre
t." The result then 
annot depend on the starting

values of the lo
al variables, and the StdVCG 
an generate StdVC that existentially

quanti�es logi
 variables representing the starting values.

6.3 Limitations

In this se
tion we present some limitations of the 
urrent framework for 
redible 
om-

pilation. We dis
uss how the framework 
ould or 
ould not support translations of

programs from one representation to another representation with di�erent syntax and

semanti
s. As mentioned in Chapter 1, we make a distin
tion between transforma-

tions and translations.

We use the term transformation for a 
ompiler pass whose input and output pro-

grams are in a similar representation. For example, before register allo
ation, the

representation of a program in
ludes temporary variables (virtual registers), but no

physi
al registers. After register allo
ation, the representation in
ludes physi
al regis-

ters and spill slots. Although the representations before and after register allo
ation

are not exa
tly the same, they are quite similar. In fa
t, ea
h representation is a

subset of a general representation that in
ludes variables and registers. Therefore,

a VCG 
an use the same symboli
 exe
ution for both input and output programs.

That is exa
tly what the basi
 VCG and the extensions presented so far do.

We use the term translation for a 
ompiler pass whose input and output programs

are in essentially di�erent representations. For example, lexi
al analysis translates the

program from the sour
e 
ode to a sequen
e of tokens and parsing translates the list

of tokens into an abstra
t syntax tree. (After these two passes, a 
ompiler front-end

usually performs semanti
 analysis that 
he
ks whether the program satis�es seman-

ti
 
onditions.) A C 
ompiler that uses a BL-like intermediate representation also

needs to translate the syntax tree into a 
ow graph. Compilers for more advan
ed

languages usually do not generate a low-level BL-like representation dire
tly from

the syntax tree. Instead, these 
ompilers use several levels of intermediate represen-

tations and translate the program from higher-level to lower-level representations.

These translations involve both transforming 
ode and 
hanging data representation.

Finally, 
ompilers also perform a translation in the ba
k-end where 
ode generation

pass translates the program from an intermediate representation to the ma
hine lan-

guage.

The framework presented so far 
an support only transformations. It is not 
lear

how we 
ould extend the framework to support front-end translation passes. The

representations before and after the front-end are 
ompletely di�erent, and the sour
e


ode is not suited for a symboli
 exe
ution. Therefore, the front-end of a 
redible


ompiler has to be trusted. We 
an say, alternatively, that a veri�er 
an 
he
k the

results of the 
ompiler front-end only if the veri�er itself has an implementation of the
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same front-end as the 
ompiler has. With tools available for automati
 generation of

lexi
al analyzers and parsers, paranoid programmers 
ould develop their own front-

ends. In general, the front-end is not regarded as an origin of many 
ompiler errors.

At a glan
e, it seems easier to extend the framework to support translations from

one intermediate representation to another. All we need is a SimVCG with two

di�erent symboli
 exe
utions: one for the input program representation and one for

the output program representation. However, we also need simulation invariants that


an express relationships between di�erent program representations. It is not 
lear

how we 
ould make su
h simulation invariants in general. The main problem is how

to eÆ
iently express relationships between di�erent data representations.

Consider, for example, a translation from a Java-like program representation to a

C-like representation. Su
h translation needs to translate data represented with Java-

like 
lasses and obje
ts into a representation with C-like stru
tures. The simulation

invariants would then need to des
ribe whi
h data in one representation 
orresponds

to whi
h data in the other. As even simpler example, 
onsider a program in BL with

pointers and a transformation that does not 
hange the 
ode but only 
hanges the

data layout, i.e., the addresses of the global variables. Although this 
hange is within

the same representation, the 
ompiler would need to spe
ify a mapping from the new

addresses to the old addresses and to represent, in simulation invariants, that the two

memories are related under the given (re)mapping of the addresses. We believe that

the framework 
an be extended to support some of these translations using simulation

invariants that would involve mappings from one data representation to another.

We do not explore 
redible 
ode generation in this thesis, but in prin
iple, it is

not a limitation for the presented framework. Rinard [41℄ brie
y dis
usses how a


redible 
ompilation framework 
an support 
ode generation. The idea is that the


ompiler �rst transforms the 
ontrol 
ow graph of the program so that ea
h node


losely 
orresponds to a ma
hine instru
tion. After that, the 
ompiler uses a simple

translation to generate the a
tual binary 
ode. This approa
h requires an interme-

diate representation that models all details of the target instru
tion set ar
hite
ture.

Designing su
h an intermediate representation for a 
omplex ar
hite
ture, su
h as

Intel IA-64, is a non-trivial task, but we believe that it 
an be done by extending the

types of nodes in the 
ontrol 
ow graph, as des
ribed in [41℄.

The presented framework 
an also support \
ompiling to logi
" as done, for in-

stan
e, in the DeepC 
ompiler developed by Babb et al. [9℄. This 
ompiler targets

FPGA-based systems and has a mu
h 
leaner 
ode generation than a 
ompiler that

targets some spe
i�
 instru
tion set. We believe that this makes it even easier to

develop a 
redible 
ode generation for DeepC.
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Chapter 7

Related Work

The most widely used 
ompilers today do not provide any formal eviden
e of 
orre
t


ompilation. However, there is a large body of resear
h on 
orre
t 
ompilation. The

�rst proof of a 
ompiler 
orre
tness 
an be tra
ked down to a 1967 paper by M
Carthy

and Painter [29℄. They present a paper-and-pen
il proof that a 
ompiler algorithm

is 
orre
t. Even before, M
Carthy argued that proofs should be, instead, ma
hine-

veri�able and that 
omputers should be used to 
he
k proofs. There is a di�eren
e,

though, between 
he
king a spe
i�
ation of a 
ompiler algorithm, or for that matter

any algorithm, and the a
tual implementation of the algorithm.

Most resear
h on 
ompiler 
orre
tness fo
used on proving translation algorithms


orre
t [18,22,24,33,47℄. There are several aspe
ts in whi
h these proje
ts di�er. First,

some proje
ts present proofs for all translation steps from a high-level sour
e language

to a ma
hine language, whereas other proje
ts present proofs only for some parts of


ompilers, or do not translate to a realisti
 ma
hine language. Se
ond, in several

proje
ts me
hani
al proof veri�ers are used to 
omplement the manual proofs or to

substitute them. Finally, implementations of some algorithms are 
arefully veri�ed

through stepwise re�nements. These implementations, however, do not generate run-

time proofs that show the 
ompilation to be 
orre
t.

There are several pragmati
 drawba
ks in implementing a fully veri�ed 
ompiler.

They stem from the fa
t that the implementation and veri�
ation methodology is

not 
ompletely automati
. It is therefore possible to have human-introdu
ed errors

in the development pro
ess. Also, the e�ort of 
hanging a 
ompiler is mu
h greater

for a fully veri�ed 
ompiler than for a 
ompiler that generates proofs at run-time.

Furthermore, some 
hanges are almost impossible in pra
ti
e|it is extremely 
ostly

to extend a fully veri�ed 
ompiler with a transformation from an untrusted sour
e.

This would require 
he
king the whole implementation of the new transformation

before it 
an be safely added. That is why all fully veri�ed 
ompilers were developed

by small, 
losed groups of people. Compilers that generate run-time proofs, on the

other hand, o�er mu
h more possibility for having an open sour
e 
ompiler to whi
h

anyone 
an 
ontribute. It is not the 
ompiler program that is 
he
ked, but its result.

The 
on
ept of 
he
king the equivalen
e of the input and output programs after

ea
h 
ompiler run appeared in several works at approximately the same time. Cimatti

et al. [10,12℄ present a system for verifying translations of non-exe
utable \embedded"
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programs to an exe
utable form. These programs 
onsist of only a single loop whose

body is translated. Their veri�er 
he
ks that the input and output programs satisfy a

parti
ular synta
ti
 equivalen
e 
ondition, whi
h then implies semanti
 equivalen
e.

Cimatti et al. 
all the synta
ti
 equivalen
e proof \on-line," as opposed to the \o�-

line" proof whi
h shows the soundness, i.e., that the synta
ti
 equivalen
e implies

the semanti
 equivalen
e for all possible pairs of programs. Pnueli et al. [39, 40℄

present a system for translation validation|verifying translations from programs in

syn
hronous languages to programs in the C programming language. These programs

also 
onsist of a single loop that 
y
li
ally 
omputes the values of the output variables

from the values of the input variables. Our approa
h is designed for imperative

languages with programs that 
an have arbitrary 
ow of 
ontrol.

The general te
hnique of program 
he
king|
he
king the program run-time re-

sults instead of verifying the whole program 
ode|was �rst 
onsidered by Blum and

Kannan [11℄. Clearly, 
he
king the program results is mu
h easier than verifying the


ode in many appli
ations. In some appli
ations, it is possible to verify that the

output of the program is 
orre
t by 
he
king only that the output itself satis�es some


onditions with respe
t to the input. In other appli
ations, though, the program

needs to generate the regular output and also additional information whi
h eases,

or enables, the 
he
king. As explained in Se
tion 2.2, this in parti
ular holds for


ompilers. It is not possible, in general, to 
he
k that the output program is 
orre
t

simply by 
onsidering the output and input programs.

Goos and Zimmermann [20℄ present another methodology for developing 
orre
t


ompilers. This work is a part of the bigger Veri�x proje
t whi
h proposed several

approa
hes for 
onstru
ting provably 
orre
t 
ompilers for realisti
 programming lan-

guages. The earlier approa
hes used only the 
ompiler implementation veri�
ation,

whereas the new approa
h [19,20℄ also uses program 
he
king te
hniques for the veri-

�
ation of 
ompiler output. However, the program 
he
king idea is used in the dire
t

way, without requiring the 
ompiler to generate any additional output besides the

transformed program. The drawba
k of this te
hnique is that adding a new transfor-

mation requires a new 
he
ker whi
h has to be veri�ed itself using standard methods.

Therefore, the 
ompiler 
annot be easily extended from untrusted sour
es. Gaul et

al. [17℄ report on the use of this methodology for developing 
ompiler ba
k-ends.

Proof 
arrying 
ode (PCC), introdu
ed by Ne
ula and Lee [34, 37℄, is a general

framework for atta
hing proofs to the 
ompiled 
ode. Credible 
ompilation 
an be

regarded as an instan
e of this framework, with the main goal to deliver proofs that

the transformed 
ode is semanti
ally equivalent to the original 
ode. Ne
ula and

Lee [38℄ use the name 
ertifying 
ompiler to refer to a pair 
onsisting of a 
ompiler,

whi
h produ
es 
ode annotated with some additional information, and a 
erti�er,

whi
h uses the annotations to generate the proof and 
he
k it. We prefer to use a

di�erent name, be
ause so far 
ertifying 
ompilers have been developed to generate

proofs for properties of one (
ompiled) program, whereas 
redible 
ompilers generate

proofs about two programs. We are not aware of any other work with the goal of

generating equivalen
e/simulation proofs in PCC framework.

Ne
ula des
ribes in his PhD thesis [35℄ the Tou
hstone 
ompiler, a 
ertifying
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ompiler that translates a type-safe subset of C

1

into ma
hine 
ode annotated with

invariants. The invariants allow the 
erti�er to prove safety properties, in parti
ular

type safety, of the 
ompiled 
ode. For the proof formalism, Ne
ula uses an extension of

�rst-order predi
ate logi
. The 
erti�er has a veri�
ation-
ondition generator whi
h

takes the annotated 
ode and generates a veri�
ation 
ondition|a formula whose

validity implies the safety of the 
ode. An untrusted theorem prover is then used to

generate the proof of the veri�
ation 
ondition, and a trusted proof 
he
ker veri�es

this proof. Our stru
ture of the 
redible 
ompiler is similar to the Tou
hstone, but

the 
redible 
ompilers should prove more; we try \to be more ambitious and attempt

to verify not just the type safety of the target 
ode but also its equivalen
e to the

sour
e program" [35, page 152℄.

Morrisett et al. [32℄ present another approa
h in building a 
ertifying 
ompiler for

a PCC framework. They do not use �rst-order predi
ate logi
 for expressing safety

poli
ies; instead, they use type systems, and proof 
he
king redu
es to type 
he
king.

They based their work on typed intermediate languages [43,45℄ and designed an ideal-

ized typed assembly language. In a later work [31℄, they develop a type system for the

Intel IA32 assembly language and implemented the Pop
orn 
ompiler that translates

a type-safe subset of C into ma
hine 
ode and generates the required typing informa-

tion. This system has been extended to support advan
ed language 
onstru
ts, e.g.,

run-time 
ode generation [25℄, and more expressive se
urity properties, e.g., resour
e

bound veri�
ation [15℄.

Appel and Felty [3℄ present a PCC framework in whi
h a 
ode produ
er has mu
h

more 
exibility. The typing rules are not �xed in the safety poli
y, but the 
ode

produ
er 
an 
hoose a set of typing rules, prove them sound, and then use them to

prove the safety of a program. Similarly, the ma
hine 
ode semanti
s is not �xed in

the veri�
ation-
ondition generator, but is a part of the safety poli
y. This eliminates

the need for the veri�
ation-
ondition generator, but requires more 
omplex proofs

(as we also explained in Se
tion 2.3). The in
rease in 
omplexity is not as huge

for a ma
hine language as it would be for a synta
ti
ally (and semanti
ally) ri
her

higher-level language su
h as BL in our basi
 framework.

Ne
ula's re
ent work [36℄ is more related to our approa
h on 
redible 
ompilation.

2

He des
ribes a translation validation infrastru
ture that 
he
ks equivalen
e of the


ompiler input and output programs (both in an intermediate representation), and not

only properties of the output program. His framework is similar to ours in that it uses

simulation invariants (
alled simulation relations) and symboli
 exe
ution. However,

the di�eren
e is that his symboli
 exe
ution does not use simulation 
ontexts and

therefore his 
urrent framework 
an support only intrapro
edural transformations.

Another di�eren
e from our approa
h is that there are no proofs in Ne
ula's

translation validation. The 
ompiler (or a theorem prover) does not generate any

proof. Instead, the 
he
ker has built in rules for equivalen
e and uses them to verify

1

Re
ently, Colby et al. [13, 14℄ report on the development of the Spe
ial J 
ompiler, a 
ertifying


ompiler for Java.

2

Ne
ula's re
ent work was done in parallel with the work dis
ussed in this thesis. We do not use

any results from [36℄ in the approa
h presented in this thesis.
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the simulation invariants. This 
omplexity makes the 
he
ker bigger and more diÆ
ult

to verify than a \standard" proof 
he
ker used in logi
al frameworks. Additionally,

to support the full C language, Ne
ula uses the rules that informally model the C

notion of \unde�ned." This approa
h 
an lead to errors that introdu
e unsound rules

in the 
he
ker, espe
ially for aliasing.

Beside the 
he
king algorithm, Ne
ula also presents the inferen
e algorithm. This

algorithm dis
overs the simulation invariants for the input and output programs, with-

out requiring any additional information from the 
ompiler. Ne
ula implemented his

inferen
e algorithm for verifying transformations in the widely used GNU C optimiz-

ing 
ompiler (g

). The inferen
e algorithm 
an dis
over the simulation invariants

in all intrapro
edural transformations that g

 performs, ex
ept for some 
ases of

loop unrolling. This is an important result that shows that the simulation invari-

ants 
an be pra
ti
ally inferred for a realisti
 
ompiler output. However, g

 is not

an aggressive 
ompiler. For example, it does not have transformations that involve

pointers, and it would not even try to optimize the third loop in the example shown

in Se
tion 1.3. The 
on
lusion is that, in general, a 
redible 
ompiler should gener-

ate some additional information to enable the veri�er to 
he
k the 
orre
tness of a

transformation.
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Chapter 8

Con
lusions and Future Work

Today, widely-used industry 
ompilers o�er no formal guarantees that they work 
or-

re
tly. Most previous resear
h on 
ompiler 
orre
tness fo
used on developing 
om-

pilers that are guaranteed to 
orre
tly translate every input program. It is extremely

diÆ
ult, however, to verify that a 
omplex 
ode, whi
h implements a 
ompiler, is


orre
t. Therefore, a novel approa
h has been re
ently proposed: instead of verify-

ing a 
ompiler, verify the result of ea
h single 
ompilation. We require the 
ompiler

to generate a transformed program and some additional information that enables a

simple veri�er to 
he
k the 
ompilation. We 
all this approa
h 
redible 
ompilation.

This thesis presents a theoreti
al framework for 
redible 
ompilation. We develop

a framework in whi
h a 
ompiler proves 
orre
t the results of transformations. The

transformations operate on programs in an intermediate representation based on 
ow

graphs. Ea
h transformation generates an output program and two sets of invariants

and 
ontexts: standard invariants and 
ontexts, whi
h allow the 
ompiler to prove

that the analysis results are 
orre
t, and simulation invariants and 
ontexts, whi
h

allow the 
ompiler to prove that the output program simulates the input program.

Additionally, the 
ompiler has the proof generator that generates a proof that all the

invariants and 
ontexts are 
orre
t.

We des
ribe in detail the stru
ture of a veri�er that 
he
ks the invariants and


ontexts. The veri�er �rst uses the standard and simulation veri�
ation-
ondition

generators to generate the veri�
ation 
ondition for the given programs and the addi-

tional information. The veri�er then uses a proof 
he
ker to verify that the supplied

proof indeed proves the parti
ular veri�
ation 
ondition. If the proof fails, the output

program potentially does not simulate the input program, and the 
ompiler should

not use this transformation for this input program. If the proof is a

epted, the

parti
ular transformation is 
orre
t.

This thesis shows how to formalize the basi
 te
hniques for building 
redible 
om-

piler transformations for a simple imperative language. There are several dire
tions

for the future work on 
redible 
ompilation, both in extending the theoreti
al frame-

work and implementing a 
redible 
ompiler.

Two questions about the framework are what language it supports and what trans-

formations it supports. The main goal is to develop a formal framework that supports

a realisti
 language. We believe that it 
an be done using a 
ompiler intermediate
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representation that has 
leaner and safer semanti
s than the full-blown unsafe C

language. Otherwise, to handle C, it is ne
essary to 
ompromise the presented for-

mal approa
h, or use 
omplex theoreti
al models that would give poor performan
e

in an implementation. Regarding transformations, the presented framework 
an be

extended to support more transformations. However, the ultimate goal is to have


redible 
ompilation for all 
ompiler phases, not only intermediate transformations.

This requires support for 
ode generation and front-end translations. Additionally,


ompilers for advan
ed languages usually have several intermediate representations,

and the framework should support translations between those representations, in par-

ti
ular translations from abstra
t to 
on
rete data representations.

Two fundamental questions that an implementation 
an answer are is it possible

for a 
redible 
ompiler to generate the required additional information and is it pos-

sible to automati
ally prove the veri�
ation 
onditions. Additional pragmati
 issues

in the 
ontext of 
redible 
ompilation are the diÆ
ulty of generating the proofs, the

size of the generated proofs, and the diÆ
ulty of 
he
king the proofs. To explore

these issues, we have started developing a prototype of a 
redible 
ompiler. We have

implemented a small system for the language without pro
edures, but with pointers.

We have used Java [8℄ for implementing a 
ow-sensitive pointer analysis and 
onstant

propagation analysis/transformation.

For proof representation and veri�
ation we use Athena [5,6℄, a denotational proof

language [7℄ developed by Kostas Arkoudas at MIT. Athena is a 
exible logi
al frame-

work that allows a 
ompa
t, pro
edural representation of proofs. This makes it possi-

ble to balan
e the division of labor between the proof generator and the proof 
he
ker,

while retaining the full soundness guarantee. It also simpli�es the 
onstru
tion of the


ompiler by simplifying the proof generator and allowing the 
ompiler developer to

easily generate proofs. Based on our initial positive experien
e with Athena, we be-

lieve that a key enabling feature to obtaining reasonable proof sizes and 
ompiler


omplexity is the use of su
h a 
exible logi
al framework. We intend to 
ontinue to

use Athena for 
redible 
ompilation. Our plan is to des
ribe, in a follow-up paper,

the implementation strategy for a 
redible 
ompiler based on Athena.
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