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ABSTRACT

The risk posed by software bugs has increased tremendously as software is now essential
to many aspects of our daily lives. Software testing is still the most common method for
finding bugs during software development, before software is deployed. However, software
testing alone is insufficient for finding bugs, as evidenced by the many devastating bugs that
frequently manifest in deployed software. Hence, there is a great need to investigate how to
use formal-methods based approaches effectively and efficiently during software testing, to
help find more bugs during software development.
This dissertation presents work on finding more bugs during software development by

performing runtime verification during software testing. Runtime verification can help find
bugs by monitoring program executions against formally specified properties. Over the last
two decades, great research progress has improved the performance of runtime verification,
but mostly focused on deployed software. There was little focus on the bug-finding benefits
and scalability challenges of using runtime verification during testing of evolving software.
Yet, software testing generates many executions on which properties can be monitored to
squeeze more bug-finding value from existing tests.
This dissertation presents two lines of work on studying and improving the use of runtime

verification for finding more bugs during testing of evolving software. Firstly, this dissertation
reports on the first large-scale study of runtime verification during software testing. The
study performs runtime verification using 199 properties while running 18K developer written
tests and 2.1M automatically generated tests in 200 open-source projects. Results show that
runtime verification during software testing finds many bugs from existing tests, but incurs
high overhead. In spite of tremendous recent research and algorithmic advances in the
runtime verification community on improving the runtime overhead, user experience, and
monitored properties, runtime overhead was still as high as 33.9×, many property violations
were generated that had to be manually inspected, and 84% of the inspected violations were
not bugs due to the ineffectiveness of current properties.
Secondly, this dissertation proposes the idea of, and implements the first set of techniques

for, reducing the overhead of runtime verification during software testing by exploiting soft-
ware evolution. All prior runtime verification research focused on checking a single version
of software. The proposed evolution-aware techniques extend runtime verification to sup-
port multiple software versions and make runtime verification more usable during software
evolution. The key insight behind the evolution-aware techniques is to amortize the over-
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head of runtime verification across multiple versions by only monitoring the parts of code
that changed between versions. Results show that evolution-aware techniques reduce the
accumulated runtime verification overhead by up to 10x and show developers two orders
of magnitude fewer violations, without missing new violations. We expect the benefits of
evolution-aware runtime verification to still apply after future research yields more effective
properties with higher rates of bugs found per violation.
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CHAPTER 1: INTRODUCTION

Software is more essential than ever before as we now rely on software in many aspects of daily
life—from healthcare to aviation, from manufacturing to banking and even to how parents
monitor their babies. As software has grown in importance, the risk posed by software
failures has also grown. Many articles appeared in the news media about devastating effects
to lives and property caused by software failures [8, 141, 204, 206]. The estimated cost of
software failures is also very high: 1.7 trillion USD in financial losses, 3.6 billion people
affected, and 268 years in accumulated downtime in 2017 alone [134].
Software testing is still the most common approach for finding software bugs early, during

development, before these bugs cause software failures after deployment. In particular, to
check the quality of code during software evolution, developers commonly practice regression
testing [215]. In regression testing, after developers make code changes, they rerun tests to
check that code changes do not break previously working functionality. Unfortunately, as
evidenced by the continuing spate of failures in deployed software, testing alone has not been
sufficient for finding bugs during development. There are several reasons for this insufficiency.
Automatically generating tests that find bugs continues to be an active area of research [3,
32,54,60–62,70,152,178,194,199,210]. Manually writing effective tests can be challenging for
developers [154]. Also, testing is increasingly computationally expensive [50,74,86,175,216]
which can make developers to not run tests as often as they should [133].
Many formal methods exist that can help find a lot of bugs, but they are often not

integrated into developers’ everyday software development. Specifically, this dissertation
focuses on a lightweight formal method called runtime verification (RV) [12,26,27,38,48,83,
84,89,99,132]. RV can help to find bugs by monitoring program executions against formally
specified properties. There was little research on whether RV can be used effectively and
efficiently during regression testing. To be effective, RV must be able to find more bugs
from existing tests. To be efficient, RV must scale to the rapid evolution of today’s software,
typically managed via continuous integration [50,59,87,88,140,192].
This dissertation (1) studies the effectiveness of RV for finding more bugs during software

testing, (2) develops a change-impact analysis that assists in adapting RV to multiple soft-
ware versions, (3) combines RV with regression test selection (RTS), and (4) proposes novel
evolution-aware techniques to make RV more efficient during regression testing. Change-
impact analysis [11, 31, 36, 120, 126, 169, 170, 176, 179, 220, 221] is concerned with computing
parts of code that can be affected by a code change. RTS [69,81,149,169,174,211,220] is a
well studied, evolution-centered technique which aims to reduce regression testing time by
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only re-running the tests affected by code changes.
This dissertation proposes to use RV for finding bugs earlier by monitoring program execu-

tions during software testing, in contrast to prior RV research which focused on monitoring
executions of deployed software. A property is a logical formula over a set of events, e.g.,
method calls or field updates; intuitively, it captures developers’ intent on correct API us-
age [171]. RV takes a program to monitor, a set of properties to check, and some program
inputs (e.g., tests). The program is then instrumented based on the properties so that exe-
cuting the instrumented program generates appropriate events and creates monitors to listen
to events and check the properties. RV outputs violation messages (violations for short),
each of which reports that the execution violated some property at a code location. If a
program’s execution does not satisfy a property, manual inspection of the resulting violation
could help find a bug in the program. If the properties are perfect, every violation would
indicate a bug. However, we found in this dissertation that, although RV helped find many
bugs, majority of violations were not true bugs. Thus, much more work needs to be done in
the future to come up with better properties.
Combining RV with testing is expected to find more bugs than testing alone, using the

same set of tests—the tests that developers already have. Whereas software testing is
typically concerned with checking whether code satisfies functional input-output proper-
ties, RV allows to check a broader class of safety properties at every step during a pro-
gram’s execution. The potential for using RV during software testing was previously men-
tioned [99, 102, 113, 132], but there was no study of RV during software testing and there
were no techniques to make RV more efficient during regression testing of evolving software.
Research on combining RV with software testing and on improving the efficiency of RV

during regression testing provides several important benefits. First, combining RV with
software testing increases the chance to find many more bugs during software development,
before those bugs manifest in deployed software and cause costly failures. Second, study-
ing the effectiveness and efficiency of performing RV during testing of real-world software
helps researchers gain important knowledge on how RV performs in practice. Prior to this
dissertation, most evaluation of RV was carried out on carefully curated benchmarks that
may not be representative of test executions in real-world software. Third, performing RV
during regression testing has inspired evolution-aware RV techniques that integrate RV into
developers’ workflow. The work in this dissertation represents the first steps in bridging
the technical gap between RV and regression testing, and in bringing the RV and software
testing research communities together, towards making RV practical enough to use during
regression testing.
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1.1 THESIS STATEMENT

The thesis statement of this dissertation is the following:

Evolution-aware Runtime Verification can be effective and efficient for finding
many more bugs during regression testing.

This thesis statement has three aspects:

(1) There is a need to investigate the effectiveness and efficiency of performing RV during
testing of real-world software.

(2) It is possible to develop an effective static change-impact analysis as a basis for
evolution-aware RV.

(3) It is possible to design and develop evolution-aware RV techniques to better scale RV
during regression testing.

In support of this thesis, this dissertation presents work on these three aspects: (1) a study
of the effectiveness and efficiency of performing RV during testing, using existing properties
from the literature while running tests in many open-source projects; (2) the development
and evaluation of a static change-impact analysis, called STARTS, which provides a way to
reason about code changes as a basis for evolution-aware RV techniques and also provides a
way to perform static regression test selection; and (3) a set of evolution-aware RV techniques
that adapt RV to the context of evolving software and amortize the overhead of RV across
several program versions.

1.2 CONTRIBUTIONS

The work presented in this dissertation makes the following contributions:

• This dissertation presents the first large-scale evaluation of runtime verification dur-
ing software testing, with 199 properties and 200 open-source projects. The study
shows that RV can help find many bugs from existing tests. However, the study also
shows that RV incurs high overhead in (1) machine time to monitor properties and
(2) developer time to wait for and inspect all property violations from test executions
that do not satisfy the properties. Further, the existing properties were largely inef-
fective and have way too high rates of false alarms. The study analyzes reasons for
bug-finding ineffectiveness of existing properties, in particular, the high rates of false
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alarms, and discusses developers’ feedback on bugs found from manual inspection of
violations. Lastly, the study concludes with a set of recommendations that can help
the research community engineer more effective properties and better evaluate these
properties. The data from the study is publicly available [189].

• This dissertation presents the development and evaluation of STARTS, a static change-
impact analysis and RTS tool which forms a basis for evolution-aware RV. Static RTS
techniques were proposed over three decades ago [106, 107] but were not extensively
evaluated on modern software projects. This dissertation presents the first extensive
study of the performance benefits of static RTS techniques and their safety; an RTS
technique is safe if it selects to run all tests that may be affected by code changes.
The study implements two static RTS techniques, one class-level and one method-level,
and compares several variants of these techniques. The study compares these static
RTS techniques against Ekstazi, a state-of-the-art, class-level, dynamic RTS technique.
Experimental results on 985 versions of 22 open-source projects show that the class-
level static RTS is comparable to Ekstazi, with similar performance benefits, but is
sometimes unsafe. In contrast, the method-level static RTS technique performs rather
poorly. Therefore, STARTS, a publicly-available open-source tool [191], was developed
to perform class-level static change-impact analysis and RTS.

• This dissertation presents and evaluates the first evolution-aware RV techniques which
improve the efficiency and usability of runtime verification in the context of software
evolution. Specifically, this dissertation presents three evolution-aware RV techniques
that reduce RV overhead across multiple program versions: (1) Regression Property
Selection (RPS) re-monitors only a subset of properties, namely those that can be
violated in parts of code affected by changes, reducing machine time and developer
time overhead of RV, (2) Violation Message Suppression (VMS) simply shows only new
violations to reduce developer inspection time after code changes; it does not reduce
machine time overhead, and (3) Regression Property Prioritization (RPP) splits RV
in two phases: properties more likely to have violations that help find bugs are first
monitored in a critical phase to provide faster feedback to the developers; the rest are
monitored in a background phase. This dissertation also presents 10 variants of RPS
and explores their efficiency/safety tradeoff. Additionally, this dissertation presents the
first combination of RV with RTS and shows synergy between them. The evaluation
compares these evolution-aware RV techniques with the state-of-the-art, evolution-
unaware RV (base RV, for brevity) when monitoring test executions in 200 versions
of 10 open-source projects. The results show that RPS and RPP reduce the average
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accumulated base RV overhead from 9.4× to as low as 1.8×, were safe, and VMS shows
two orders of magnitude fewer violations than base RV—from 54 violations per version
(for base RV) to one violation per 10 versions.

The rest of this chapter describes these contributions in more detail.

1.3 STUDY OF RUNTIME VERIFICATION DURING SOFTWARE TESTING

The quality of runtime verification depends on the quality of the properties. While previ-
ous research has produced many properties for the Java API, manually or through automatic
mining, there has been no large-scale study of their bug-finding effectiveness or of their run-
time efficiency when monitored during software testing. In this dissertation, a “property”
refers to a behavioral specification, defined by Robillard et al. [171] as “a way to use an API
as asserted by the developer or analyst, and which encodes information about the behavior of a
program when an API is used”. A property violation indicates that some API is used in a way
that is not consistent with its usage guideline, but such violation may or may not be a real
bug in the code. The quality of properties has generally been taken for granted in the runtime
verification research community, where the major research direction over the last decade has
been to improve the efficiency and scalability of runtime verification algorithms, techniques,
and tools. The properties used in previous research were manually written [2, 27, 98, 132]
or automatically mined [19, 37, 43, 63, 105, 112, 122, 123, 143, 144, 155–159, 165, 195, 209, 224].
These properties were monitored to measure their runtime overhead on benchmarks, mostly
running one large program on one input. However, for finding bugs by combining runtime
verification with software testing, it is critical to study the effectiveness of these properties
and the efficiency of monitoring them during testing of real-world software.
This dissertation presents the first large-scale study of the bug-finding effectiveness and

the efficiency of monitoring the previously proposed properties during testing. A property is
considered effective for bug finding if it can catch true bugs but does not generate too many
false alarms. The dissertation focuses on properties of the API from the standard Java
library because such properties can potentially find bugs in many projects across various
domains, require no domain knowledge, and the runtime verification tool that we evaluate,
JavaMOP [92, 99, 132], works for Java. We evaluated 199 existing manually written and
automatically mined properties. These include 182 manually written properties that Lee
et al. [113, 132] formalized directly from the Java API documentation and used in previous
studies on the efficiency and scalability of runtime verification [115,132,163]. The rest were
17 properties that were mined automatically from large traces [156] and used in property
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mining studies [157,159].
All 199 properties used in the study were monitored while running 18,065 developer writ-

ten and 2,135,081 automatically generated tests in 200 open-source projects. We manually
inspected a subset of property violations and submitted pull requests for violations we be-
lieved to be bugs to the developers of those projects. Specifically, we manually inspected 652
of 5,263 violations of manually written and 200 of 1,141 violations of automatically mined
properties. However, there was a high rate of false alarms among the inspected violations and
the runtime overhead was high—4.3× on average and as high as 33.9×. Overall false alarm
rates of 82.81% and 97.89%, respectively, were observed for manually written and automat-
ically mined properties. Further, only a small fraction of the properties led to the discovery
of bugs—11 of 182 manually written and 3 of 17 automatically mined properties—and even
among these, the average false alarm rates were high, 45.51% and 96.69%, respectively. In-
specting property violations and submitting pull requests was also very costly, taking an
estimated 1,200 hours of student time.
The study results show that runtime verification can be performed during testing of many

open-source projects. Also, existing API properties from prior runtime verification and
property mining research can find many bugs that developers are willing to fix. However,
the study also revealed two serious problems. First, RV overhead during software testing is
still very high, both in terms of machine time to monitor the properties during testing and in
developer time to wait for and inspect the resulting property violations. Second, false alarm
rates are worrisome and suggest a need for the research community to fundamentally rethink
property finding and “property engineering” approaches, to make runtime verification a more
effective early-stage bug-finding aid that developers can use. The other contributions of this
dissertation target the first problem, namely, reducing the overhead of RV during software
testing. The second problem—finding more effective properties—is left as future work.

1.4 STATIC CHANGE-IMPACT ANALYSIS AND REGRESSION TEST SELECTION

All prior RV techniques focused on checking a single program version. Yet, software
evolves rapidly as developers add new features, fix bugs, or perform refactorings. Developers
commonly perform regression testing to check that software evolution does not break existing
functionality. Therefore, we proposed the idea of evolution-aware RV to reduce the overhead
of RV during regression testing, by only rechecking parts of code affected by changes [115].
Evolution-Aware RV is inspired by RTS—a well-studied, evolution-centered technique.
A main requirement needed to make any evolution-aware RV technique work is a fast

change-impact analysis. Existing change-impact analyses are either static [31,106,114,176],
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approximating the effect of code changes without running the code, or dynamic [7, 109,
110, 147, 169], computing the effect of code changes based on program execution. Since
we dynamically monitor test executions (with JavaMOP), using a dynamic change-impact
analysis would incur additional overhead. Therefore, we implemented a static change-impact
analysis in a tool called STARTS and evaluated it in the context of RTS, hence, the name
STARTS: STAtic Regression Test Selection.
RTS techniques work in two main steps: (1) use a change-impact analysis technique to

compute the parts of code that are affected by a code change, and (2) rerun only the tests
that are in the affected parts of code, i.e., affected tests. Intuitively, an affected test depends
on code that a change-impact analysis computes as affected.
We investigate change-impact analysis at two program granularity levels in the context

of static RTS: ClassSRTS performs change-impact analysis at the class level, and Meth-
SRTS performs change-impact analysis at the method level. We evaluate these two static
RTS techniques on 985 versions of 22 open-source Java projects. We consider two variants
of ClassSRTS and eight variants of MethSRTS, and we compare both variants with the
state-of-the-art dynamic RTS technique Ekstazi [68, 69]. The results show that ClassSRTS
has comparable performance as Ekstazi, but ClassSRTS is occasionally unsafe. In contrast,
MethSRTS performs rather poorly: it does not provide performance benefits and is more
frequently unsafe. The latter result is somewhat surprising as one may expect finer-grain,
method-level analysis to be safer and more precise (but potentially slower) than the coarser-
grain analysis at the class level. We recommend that researchers continue improving static
change-impact analysis and RTS techniques at the coarser granularity, which already shows
promising results (at least at the level of classes if not modules or projects [76, 186]). Fol-
lowing our own recommendation, we developed our class-level change-impact analysis and
ClassSRTS prototype into STARTS, a publicly-available, open-source tool for static change-
impact analysis and static RTS. STARTS has already been used as part of the evaluation in
other research [39,76,116,226]. Also, several other theses and at least one doctoral disserta-
tion have been written which use or were inspired by STARTS [1,78,103,130,214].

1.5 EVOLUTION-AWARE RUNTIME VERIFICATION

As software evolves, rerunning traditional, evolution-unaware RV (base RV ) incurs un-
necessarily high overhead: machine time can be wasted on repeatedly checking unaffected
parts of code (because base RV is not evolution-aware) and developers can repeatedly see
the same violations (even if they want to handle some violations later, they have no way
to suppress those violations). Considering the overhead, developers may start ignoring vi-
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olations or remove RV altogether. It is therefore important to develop techniques that can
reduce RV overhead—in both machine time and developer time—during software evolution.
This dissertation presents compelling evidence that simply taking software evolution into

account can significantly reduce RV overhead across multiple program versions. We present
three evolution-aware RV techniques to reduce RV overhead during software evolution:
regression property selection (RPS), violation message suppression (VMS), and regression
property prioritization (RPP). The key idea in RPS, VMS, and RPP is to focus RV (and
its users) on changed parts of code and new violations that are generated. RPS can reduce
the RV overhead in both machine time and developer time, VMS can reduce the overhead
in developer time but not in machine time, and RPP can reduce the time for developers
to see results for most critical properties, e.g., those historically more likely to find bugs.
Our evolution-aware RV techniques can be used together and they are complementary to
techniques that make base RV faster on single program versions.
RPS selects to re-monitor only properties that can be violated in parts of code that

are affected by changes, i.e., either directly syntactically changed or indirectly affected.
These affected parts of code may generate new events due to the changes. Our current
implementation of RPS re-monitors only properties whose events can come from affected
classes, i.e., classes that are in the output of change-impact analysis. We focused on class-
level RPS following the results of our evaluation of static change-impact analysis and static
RTS [117], as well as other recent evolution-aware techniques which showed greater overall
benefits of performing analysis only at the class level than at finer-granularity levels like
methods or statements [20,69,218].
VMS by itself re-monitors all properties in a new code version, but shows only new vi-

olations that were not in the old version. VMS collects violations from both versions and
provides likely mapping of code locations between new and old versions of changed classes.
Using this mapping, VMS then filters out violations of the same property that occurred on
likely equivalent locations in both the old and new versions. VMS makes it easier to focus
on new violations; developers can decide whether to inspect only new or also old violations.
RPP partitions RV into two phases: it monitors only some properties in the critical

phase—so called because it is on the developer’s critical path from the moment of submitting
code changes to the moment of getting the results—and monitors the remaining properties
in the background phase. RPP reduces time that it takes for a developer to get feedback on
critical properties but still monitors all properties. Developers select critical properties as
they want, e.g., those that helped find bugs in the past or those for heavily-used APIs. In
our evaluation, critical properties become those that were previously violated.
We define safety and precision for evolution-aware RV techniques (Section 5.2.1): an
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evolution-aware RV technique is safe if it does not miss a new violation and precise if it
shows only new violations. We develop two strong RPS variants that are safe under certain
assumptions. We also develop 10 weak RPS variants that can trade some safety for more
efficiency, i.e., reduced overhead. RPS variants differ in what properties they select and
where they instrument the selected properties.
We compared RPS, VMS, and RPP with base RV using 161 properties on 200 versions

of 10 open-source projects (20 versions per project). The 161 properties are those that
remain from a set of 182 manually written properties, after removing 21 properties that we
identified in our previous study as being broken [118]. The results show that our evolution-
aware RV techniques substantially reduce the runtime overhead and number of violations
shown, compared to base RV. We compute the runtime overhead and the number of violations
showed per version, then average across versions of a project and then across all projects.
Base RV has average runtime overhead of 9.4×, showing 54 violations per version. The two

strong RPS variants have runtime overhead of 7.5× and 7.9×, showing 37 and 42 violations,
respectively. The 10 weak RPS variants have runtime overhead of 2.5×–7.5×, showing 21–37
violations. Surprisingly, all weak RPS variants were safe in our experiments although they
can be unsafe in theory. Our manual inspection shows why: all new violations happened due
to changes whose effects were in the classes computed as affected by all weak RPS variants.
VMS has negligible extra runtime overhead and reduces the number of violations shown by
two orders of magnitude relative to base RV. VMS shows, on average, 0.1 new violation per
version, while base RV shows 54 violations per version. RPP’s critical phase overhead is
1.8× (when combined with RPS) and our analysis of RPP showed that about 76% of base
RV overhead goes into monitoring unviolated properties.

1.6 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows.

Chapter 2: Runtime Verification during Software Testing

This chapter presents our study of RV during software testing; RV helped find
many bugs but incurred high overhead. These results partly motivated the work
on reducing the accumulated overhead of RV during software evolution.

Chapter 3: Static Change-Impact Analysis and Regression Test Selection

This chapter presents the implementation of static change-impact analysis as a
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basis for evolution-aware RV. Evaluation is done at different levels of granularity
and compared with a dynamic approach in the context of RTS.

Chapter 4: STARTS: Static Change-Impact Analysis and RTS Tool

This chapter presents the design and implementation of STARTS, our open-
source tool for change-impact analysis and RTS, based on the results from Chap-
ter 3. STARTS is central to the evolution-aware RV techniques in Chapter 5.

Chapter 5: Evolution-Aware Runtime Verification

This chapter presents the first set of evolution-aware RV techniques, which amor-
tize the overhead of performing RV during regression testing by focusing RV and
its users on parts of the code affected by the changes.

Chapter 6: Related Work

This chapter presents an overview of other research related to the work presented
in this dissertation.

Chapter 7: Conclusions and Future Work

This chapter concludes the dissertation and highlights some avenues for future
work to extend the results presented in this dissertation.
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CHAPTER 2: RUNTIME VERIFICATION DURING SOFTWARE TESTING

This chapter presents the first large-scale, in-depth study of performing RV during software
testing of open-source software. Specifically, we evaluate bug-finding effectiveness and the
efficiency of monitoring previously proposed properties during the execution of developer
written and automatically generated tests. The results of this study partially motivated the
work presented in chapters 3–5. The rest of this chapter is organized as follows. Section 2.1
provides a background on RV. Section 2.2 describes the experimental setup for our study.
Section 2.3 presents quantitative results, while Section 2.4 discusses qualitative results based
on analysis of developer responses to pull requests that we submitted for bugs found during
our study. Section 2.5 provides some discussion about our study. Finally, Section 2.5.1
contains our recommendations, based on our study results, for improving the research on
coming up with more effective properties for finding bugs when performing RV during testing.

2.1 BACKGROUND

In RV, the execution of a software system is dynamically checked against formal prop-
erties [27, 29, 38, 48, 89, 132, 138, 139]. At a high level, the program being monitored is
instrumented to capture, as events, method calls and field updates related to the properties
being checked. Then, at runtime, the instrumented program creates listener objects, called
monitors, which check that the events conform to the properties and report violations when
execution does not satisfy some property. In this dissertation, a “property” refers to a be-
havioral specification, defined by Robillard et al. [171] as “a way to use an API as asserted
by the developer or analyst, and which encodes information about the behavior of a program
when an API is used”. A property violation indicates that an API is used inconsistently
with its usage guideline; such violation may or may not be a true bug in the code.

2.1.1 Overview of our Study

In this dissertation a property is effective for bug finding if it can catch true bugs but does
not generate too many false alarms. We evaluate 199 existing manually written and auto-
matically mined properties: 182 manually written properties that were formalized directly
from the Java API documentation [113] and used in previous studies on the efficiency and
scalability of runtime verification [115,132,163]. We also use 17 properties that were mined
automatically from large traces [156] and were used in property mining studies [157,159].
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1 Collections_SynchronizedCollection(Collection c, Iterator i) {
2 Collection c;
3 creation event sync after() returning(Collection c):
4 call(∗ Collections.synchronizedCollection(Collection)) || ... /∗ more calls ∗/) { this.c = c; }
5 event syncMk after(Collection c) returning(Iterator i) :
6 call(∗ Collection+.iterator()) && target(c) && condition(Thread.holdsLock(c)) {}
7 event asyncMk after(Collection c) returning(Iterator i) :
8 call(∗ Collection+.iterator()) && target(c) && condition(!Thread.holdsLock(c)) {}
9 event access before(Iterator i) :

10 call(∗ Iterator.∗(..)) && target(i) && condition(!Thread.holdsLock(this.c)) {}
11 ere: (sync asyncMk) | (sync syncMk access)
12 @match { RVMLogging.out.println(Level.CRITICAL, __DEFAULT_MESSAGE); ... /∗ more printing ∗/ }
13 }

Figure 2.1: Example property, Collections_SynchronizedCollection (CSC), with
its events and specification

2.1.2 Runtime Verification in JavaMOP

We briefly describe RV of properties in JavaMOP [38, 92, 99, 132, 139]. Collection_Syn

chronizedCollection (CSC), shown in Figure 5.1a, is one of the properties in our study.
CSC was earlier proposed by Bodden et al. [28] (they called it ASyncIteration) to check for
cases where a synchronized Collection’s Iterator is accessed from some non-synchronized
code. Figure 5.1a shows the three parts of a JavaMOP property: lines 3–10 define the events
relevant to the property, line 11 is the formal specification to monitor over the events, and
line 12 shows user-defined handler code that JavaMOP invokes when the monitored program
reaches a certain state, i.e., when the property is violated.
Each property is parameterized by the types of objects whose instances may generate the

events. Specifically, CSC is parameterized (line 1) by Collection c and Iterator i, which
means that one monitor object will be created at runtime for every pair of related c and i.
The creation keyword indicates that a monitor will be created after the sync event occurs
(i.e., when one of the synchronized* methods on line 4 is invoked on a Collection). The
monitor subsequently listens for the events syncMk (line 5), asyncMk (line 7), and access

(line 9). The syncMk events occur after iterator() is invoked on a Collection instance,
c, to create an Iterator, i, and the thread did synchronize on c (lines 5–6). The asyncMk

events occur after iterator() is invoked on c, but the thread did not synchronize on c

(lines 7–8). Finally, the access events occur before any invocation of Iterator methods on
i from any thread that did not synchronize on c (lines 9–10).
If the monitored program ever reaches a state where the extended regular expression (ere)

property on line 11 is matched, then the handler code on line 12 is invoked. The ere matches
when non-synchronized code creates an Iterator from a synchronized Collection (sync
asyncMk) or when accessing a synchronized Collection’s Iterator from non-synchronized
code (sync syncMk access). In our experiments, we used the default handler in JavaMOP:
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1 im = Collections.synchronizedList(...);
2 + synchronized(im) {
3 for (IInvokedMethod iim : im) {
4 ITestNGMethod tm = iim.getTestMethod();
5 ... }
6 + }

Figure 2.2: Buggy code in TestNG

1Specification Collections_SynchronizedCollection has been violated on line org.testng.reporters.SuiteHTMLReporter.
generateMethodsChronologically(SuiteHTMLReporter.java:365). Documentation for this property can be found at
https://runtimeverification.com/monitor/annotated-java/__properties/html/java/util/
Collections_SynchronizedCollection.html

2A synchronized collection was accessed in a thread−unsafe manner.

Figure 2.3: A sample violation

print a violation containing the property name, the program line number where the property
violation occurred, a URL for the property, and an explanation.
As an example, consider the buggy code in Figure 2.2, which is simplified from one of six

bugs that we found in TestNG, a widely used unit-testing framework. The lines not starting
with “+” (1 and 3–5) represent part of the original code that iterates over the synchronized
Collection im. Note that the for loop is not synchronized, leading to a violation of the
CSC property. The violation that JavaMOP reports is shown in Figure 5.3; our inspection
starting from this reported line of code led us to find the bug. The developers accepted our
pull request that added the synchronization code, in the lines starting with “+” (2 and 6).

2.2 EXPERIMENTAL SETUP

We describe the open-source projects used in our study, the manually written and au-
tomatically mined properties that were monitored while running tests in the projects, and
how we automatically generated tests using Randoop [150, 152, 164]. We also explain our
procedure for running JavaMOP on the projects and for inspecting the resulting violations.

2.2.1 Experimental Subjects

We selected the projects for our study from GitHub, starting from a list of the most popular
Java projects. From these, we selected 200 projects that (1) used Maven (for ease of automa-
tion), (2) had at least one test (so we can monitor test runs), (3) had all tests pass without
monitoring, and (4) had all tests pass when monitoring with JavaMOP. Requirements (3)
and (4) are important to have a fair measurement of runtime overhead of JavaMOP—if tests
were to fail between the two runs, with and without monitoring, they may fail at different
points in the execution, leading to rather different time measurements. Furthermore, tests
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Table 2.1: Some statistics of 200 projects used in our study
PID Project SHA LOC ManTests AutoTests
P1 Altoros.YCSB bfcfe23a 7290 1 –
P2 LogBlock.LogBlock-2 40548aad 875 1 –
P3 edanuff.CassandraCompositeType 6d09cceb 1234 1 5427
P4 jriecken.gae-java-mini-profiler 80f3a59e 908 8 92058
P5 mqtt f4384253 11478 18 –
P6 plista.kornakapi 178061c3 3088 2 21594
P7 threerings.playn c969160c 38388 139 –
P8 tbuktu.ntru 8126929e 7715 70 –
P9 OpenGamma.ElSql db6c6d07 2581 160 11034
P10 sematext.ActionGenerator 10f4a3e6 1864 7 –
P11 vivin.GenericTree 15c59c99 677 49 7787
P12 hoverruan.weiboclient4j 6ca0c73f 8748 34 1229
P13 joda-time cc35fb2e 85000 4157 12123
P14 IvanTrendafilov.Confucius 2c302878 1203 84 23196
P15 mikebrock.jboss-websockets fd03a4ef 1736 1 6668
P16 b3log.b3log-latke afb48c40 24399 76 –
P17 Thomas-S-B.visualee 410a80f0 3574 76 8164
P18 asterisk-java b07617fe 39498 220 33632
P19 Cue.lucene-interval-fields 8f8bff6d 736 9 13162
P20 JSqlParser 001d665d 10517 341 14837
P21 Ovea.jetty-session-redis afb2b25b 6358 7 15414
P22 bcel 24014e5e 35827 87 –
P23 zookeeper-utils a2b80474 455 4 633
P24 bucchi.OAuth2.0ProviderForJava db5e1d06 2654 47 –
P25 htrace c32ec0b1 2521 11 –
P26 ptgoetz.storm-jms d152d72f 1085 2 –
P27 UrbanCode.terraform d67ac40c 12108 4 3069
P28 pignlproc 1a609980 2296 19 53693
P29 jmxtrans.embedded-jmxtrans 4f1ce2cc 5806 56 –
P30 apache.gora bb09d891 24185 56 –
F69 69 projects with 100% FAR various 349029 3834 561031
N101 101 projects without violations various 520472 8484 1250330

TOTAL 1214305 18065 2135081
AVG 6071.52 90.33 17500.66
MIN 24 1 1
MAX 93260 4157 219404

could fail due to problems in the project or due to integration of JavaMOP. For example,
we observed some failures of time-sensitive tests that have some timeouts resulting from the
time or memory overhead of JavaMOP. We also observed test failures that happened be-
cause JavaMOP instrumentation interacted unexpectedly with some other instrumentation
frameworks, e.g., test-mocking frameworks. We already reported some of these issues to the
JavaMOP project on GitHub [189].
Table 2.1 lists some basic statistics about the 200 projects used in our study. PID either

starts with “P” to provide the short ID of a project in which we found some real bug, or
summarizes multiple projects with similar characteristics—“F69” summarizes 69 projects
in which all inspected violations were false alarms and “N101” summarizes 101 projects in
which no violations were generated for the properties that we inspected. Project is the
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project name, SHA is the project version we used, LOC is the number of Java lines in the
project, ManTests is the number of manually written tests, and AutoTests is the number of
automatically generated tests. “–” marks that we did not have Randoop test methods, which
happened for 49 projects with multiple Maven modules, 16 projects where generated tests
did not compile, and 13 projects where Randoop did not generate any test method within
the time limit. For F69 and N101, ManTests and AutoTests show the sums for all respective
projects. The rows TOTAL, AVG, MIN, and MAX are the sum, average, minimum, and
maximum across all projects in each column.

2.2.2 Properties Used in this Study

All Java API properties that we used in our study were obtained from the literature, 182
manually written properties [113,132] and 17 automatically mined properties [159,160]. We
next describe our rationale and procedure for selecting each set of properties.
Manually Written Properties: We used 182 manually written JavaMOP properties [115,
132], which are publicly available [161]. The properties were originally written by Lee et
al. [113], who read Javadoc comments in four widely-used packages (java.lang, java.net,
java.io, and java.util) and formalized sentences describing “must”, “should” or “is better
to” conditions. The properties are formalized using finite-state machines (FSM), extended
regular expressions (ERE), linear temporal logic (LTL), and context-free grammars. Java-
MOP can monitor properties in any formalism for which a suitable logic plugin exists.
To illustrate manual formalization of properties, consider again the CSC property [42] from

Section 2.1. It was formalized as an ERE from text in Collections.synchronizedColl

ection() method’s Javadoc: “It is imperative that the user manually synchronize on the
returned collection when iterating over it ... Failure to follow this advice may result in non-
deterministic behavior” [93]. Section 2.1 explained CSC in detail, line-by-line. As mentioned
there, CSC was used earlier [28]; by analyzing Javadoc comments, Lee et al. [113] ended up
with some properties that others had formalized before. Monitoring CSC in our experiments
revealed bugs in several widely used projects, including TestNG, ActiveMQ, and XStream.
However, our experiments also revealed a number of issues and opportunities for improving
the manually written properties, discussed in Section 2.4.2.
Automatically Mined Properties: To compare the effectiveness of manually written
properties and automatically mined properties, we monitored 17 of the 223 properties au-
tomatically mined by Pradel et al. [156, 158–160]. Before settling on these properties, we
searched for mined properties for Java by performing a mini-survey of the property mining
literature to search for properties and to identify how property mining was evaluated.
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Table 2.2: Mini-Survey. Ref: references; Subjects: kind of subjects; OSS:
open-source projects; Sel-Classes: selected classes; #Sub: number of subjects;
FAR[%]: false alarm rate reported; #Bugs: number of bugs found; Rep?: bugs
reported to developers?

Ref Subjects #Sub FAR[%] #Bugs Rep?
[155] DaCapo+OSS 12 n/a n/a n/a
[165] n/a n/a n/a n/a n/a
[105] n/a 8 n/a n/a n/a
[143] DaCapo 7 43.00 20 no
[43] OSS+JDK 7 n/a n/a n/a
[224] OSS 5 73.90 100 yes
[209] OSS 8 n/a 1 no
[157] DaCapo 10 0.00 54 no
[122,123] Sel-Classes 3 n/a n/a n/a
[207] OSS 6 58.00 9 yes
[37] OSS 4 n/a n/a n/a
[144] OSS 3559 n/a n/a n/a
[63] DaCapo 11 70.00 11 no
[19] DaCapo 1 n/a n/a n/a
[111] OSS 7 5.00 265 no
[159] DaCapo 12 49.00 26 no
[195] Sel-Classes 15 n/a n/a n/a

Paper Search: We searched for property mining papers on DBLP [44] using this query:
specification|propert|contract|invariant|precondition mining|monitor|enforce|

infer|mine venue:ICSE|venue:ASE|venue:RV|venue:PLDI|venue:POPL|venue:ISSTA|ve

nue:ieee_trans_software_eng_tse_|venue:sigsoft_fse|venue:autom_softw_eng_ase_

|venue:esec_sigsoft_fse|venue:tacas|venue:icsm|venue:icsme|venue:sas|venue:sa

c|venue:paste|venue:icfem|venue:issre|venue:compsac|venue:formats|venue:sttt|

venue:ecoop|venue:fase|venue:oopsla_companion|venue:kdd|venue:vmcai|venue:sek

e|venue:cav|venue:oopsla|venue:electr_notes_theor_comput_sci_entcs_

We obtained 163 potentially related papers, of which we considered only the 100 papers
published in 2009–2015.
Paper Filtering: We split these 100 papers in half and two of the authors of our paper [118]
read abstracts from each half independently to find relevant papers that mined Java API
properties that we could use. We omitted related papers, e.g., a survey [171], which did not
report finding new properties. The result was 26 papers that we then read in more detail
to answer these questions: (1) in what formalism are the mined properties (and can they be
monitored with JavaMOP)? (2) how many properties did they mine? (3) did they find any
bugs? (4) do they report false alarms from evaluating the bug-finding effectiveness of the
properties? (5) what is the reported false alarm rate, if any?
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Email to Authors: After filtering, we settled on 17 papers and emailed authors who are
not at our institution to ask for their mined properties. We received responses from authors
of 7 papers, with 5 providing their properties. Of these 5, the properties from Pradel et
al. [159] had the largest number that we could easily use—their properties were provided
in the DOT format, which was straightforward to automatically translate to finite-state
machines in the JavaMOP syntax.
Prior Evaluations: Table 2.2 lists the 17 papers whose authors we emailed. Although 7
papers report finding bugs while evaluating mined properties, only 2 papers report confirming
the bugs with the developers. Further, evaluations were mostly performed on DaCapo, the
benchmark initially curated to evaluate performance and not bug-finding effectiveness, and
on a small number of open-source projects, with the exception of Nguyen et al. [144] who
used thousands of projects but only to apply statistical techniques to mine properties and not
to evaluate their bug-finding effectiveness. Finally, among the 7 papers that reported false
alarm rates, the rates varied widely, from 0.0% to 73.9%. Our experiments are therefore
complementary to those in the papers we surveyed on property mining. In fact, we find
even higher false alarms rates. As for the manually written properties, our experiments also
revealed issues and opportunities for improvement in the automatically mined properties, as
discussed in Section 2.5.

2.2.3 Runtime Verification with JavaMOP

Using JavaMOP to monitor test runs is quite simple: integrate JavaMOP in the project
and invoke mvn test. JavaMOP integration in Maven-based projects is described online [91].
First, the JavaMOP compiler generates a Java agent [145] from the properties to be mon-
itored, enabling dynamic instrumentation of code running in the Java Virtual Machine.
Next, the Maven build configuration file, pom.xml, is modified to make the Maven Surefire
plugin (which runs the tests) aware of the JavaMOP agent. Subsequent invocations of mvn
test attach the JavaMOP agent to the test-running process for monitoring the runs against
all the properties simultaneously. We fully automated JavaMOP agent creation, changing
pom.xml, monitoring each project, and post-processing results. This allowed us to scale our
experiments to 199 properties and 200 projects.
In each set of experiments, we ran the tests in each project twice. First, we ran without

integrating JavaMOP to measure the base test-running time and as a check that the tests
in the projects pass by themselves. We then integrated JavaMOP and reran the tests to
measure test-running time with JavaMOP and to record violations. We configured JavaMOP
to log all output to a file. We excluded from monitoring standard Java libraries (that are
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less likely to have bugs) and some third-party libraries, such as Maven Surefire (to reduce
overhead) and test-mocking frameworks (which we found to have unexpected interactions
with JavaMOP, as mentioned in Section 2.2.1). All JavaMOP experiments to monitor the
execution of manually written tests were run on a 64-bit computer with Intel R© CoreTM i7-
3770K CPU @ 3.50GHz processor and 32GB of RAM running Ubuntu 14.04.4 LTS and Java
7 or 8 (as required by the project).

2.2.4 Automatically Generating Tests

To evaluate whether the type of tests impacts the bug-finding effectiveness of the prop-
erties, we used Randoop [150, 152, 164] to automatically generate additional tests. We gen-
erated tests and monitored them on a CoreTM i7-4700MQ 2.40GHz Quad-Core processor
PC with 8GB of RAM, running Ubuntu 15.04, Java 7 or 8 (as required by the project),
and Randoop heap usage limited to 4GB. We ran Randoop on all 151 single-module Maven
projects (out of total 200 single- and multi-module projects), which were easier to automate
than multi-module Maven projects. We limited test-generation time to 1 mins and 5 mins.
After generating tests, we had a separate run to monitor the generated tests (using Java-
MOP) against the same set of manually written properties. The number of new violations,
i.e., those which were not already reported while monitoring manually written tests, showed
little difference between the tests automatically generated in 1 mins and 5 mins. Therefore,
we decided to use the tests generated in 5 mins and did not increase the time limit for
Randoop any further. Other researchers who used Randoop also found tests generated in
different intervals to behave similarly [151,178,196].

2.2.5 Inspecting Violations

We describe our procedure for selecting and inspecting violations that JavaMOP reported
while monitoring test runs. We refer to the source-code line number at which JavaMOP
reports a property violation as the violation site. JavaMOP reports a violation every time
a property is violated at runtime, so it can report many violations of the same property at
the same site (e.g., if the site is in a loop or invoked from multiple tests). We refer to all
violations that are reported by JavaMOP during test execution as dynamic violations (DV)
and we refer to unique violations—those that happen in the same project, for the same
property, and at the same site—as static violations (SV).
We manually inspected some static violations from both manually written and automat-

ically generated properties. For manually written properties, we inspected all violations
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from 42 properties and ignored all violations from 21 properties. For automatically mined
properties, we sampled to inspect 200 out of 1141 violations of the 17 automatically mined
properties that we monitored. To sample 200 violations, we used stratified sampling [40]:
we divided all violations into strata based on the property and from each stratum randomly
selected a number of violations, in proportion to the ratio of the stratum’s size to the to-
tal number of violations. We excluded 21 manually written properties from inspection and
did not monitor 206 automatically mined properties because of issues with these properties,
discussed in Section 2.4.2.
Our inspection goal was to find as many bugs as possible while increasing the chance

that the developers accept the resulting pull requests. Therefore, multiple authors of our
paper [118] inspected most violations. For manually written tests and manually written
properties, first, two reviewers independently inspected each violation and classified it as:

TrueBug. A potential bug to be confirmed by reporting to the developers or by checking
if it was already fixed;

FalseAlarm. The violation does not indicate a bug in the code but effectively a bug/im-
precision in the property; or

HardToInspect. The violation is hard to classify as a TrueBug or a FalseAlarm, because
source code is missing or is particularly hard to reason about.

Next, the independent reviewers met to discuss and agree on the classifications they had
independently assigned and to resolve cases in which one reviewer had classified a violation
as a TrueBug but the other had given another classification. Cases where they still could
not agree were classified as TrueBug if any one of the reviewers had classified as a TrueBug.
A third reviewer then met with the two initial reviewers to confirm all violations that were
classified as TrueBugs. For automatically mined properties, we followed a similar procedure:
two reviewers inspected each violation reported from monitoring automatically mined prop-
erties while running manually written tests. For automatically generated tests, only one
reviewer inspected each violation because we had built enough experience from inspecting
the violations from manually written tests.
For each violation that we classified as a TrueBug, we submitted a bug report and/or a

fix (pull request) to the developers of the respective project to check whether they agree
that a code change can be beneficial. As discussed in Section 2.5, inspecting violations and
submitting pull requests to developers is challenging. For inspections alone, each of the two
initial reviewers spent between 4 mins and 54 mins per violation. Summing up all the time
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to meet for resolving disagreements, to prepare pull requests, to iterate over them internally,
to communicate with developers, and to record and process the status of each pull request,
we estimate that it took over 1200 hours just for this process of inspecting and creating pull
requests. The next section discusses the inspection results and other experimental results.
We carefully prepared pull requests, trying to obtain an “upper bound” on the effectiveness

of the properties. That is, some violations that we classified as TrueBugs may have been
ignored by developers running a tool on their own or in the absence of our carefully prepared
pull requests. We did not simply submit bug reports indicating the violation of a property in
a codebase; we were concerned that developers may not understand the property or care to
change the code. Instead, we submitted pull requests that included a proposed code change.

2.3 RESULTS

We aim to evaluate the effectiveness of existing properties for finding bugs when monitoring
test runs in open-source projects. We discuss here some quantitative aspects of the results.

2.3.1 Research Questions

We investigated the following research questions (RQs):

RQ1 What is the runtime overhead of monitoring?

RQ2 How many bugs are found from violations?

RQ3 What are the false alarm rates among violations?

2.3.2 RQ1: Runtime Overhead of Monitoring

Table 2.3 shows the runtime overhead (Overhead[%]) from monitoring 42 manually writ-
ten properties. We measured overhead only for manually written (and not automatically
generated) tests, because they pass in all 200 projects (while some automatically generated
tests fail, making it hard to reliably measure overhead). Runtime overhead is computed as
(mop− base)/base ∗ 100%, where mop is the time to run tests with monitoring and base is
time to run the tests without monitoring. As in previous JavaMOP studies, we observed
some negative runtime overheads, e.g., in P5. These can be due to noise in the time mea-
surements or due to the instrumentation changing the garbage-collection behavior of the
program, causing it to run faster [98,100,139].
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Table 2.3: Dynamic (DV) and static (SV) violations, and overhead for 42 man-
ually written properties. ManTests: manually written tests; AutoTests: auto-
matically generated tests; PID, TOTAL, AVG, MIN, MAX, “–”: as in Table 2.1

PID ManTests AutoTests
DV SV Overhead[%] DV SV

P1 13 4 187.93 – –
P2 1 1 50.96 – –
P3 20 2 110.72 0 0
P4 0 0 157.72 20 1
P5 412 2 -28.37 – –
P6 24 2 155.36 0 0
P7 1 1 201.39 – –
P8 27 7 27.88 – –
P9 384 9 239.98 0 0
P10 961 3 128.17 – –
P11 26 5 128.86 7 1
P12 0 0 248.97 558 16
P13 236 95 245.26 0 0
P14 74 1 123.09 75242 9
P15 0 0 2.30 287 3
P16 167 13 72.25 – –
P17 37 13 126.38 18 1
P18 2 1 104.53 6717 6
P19 746 5 284.76 12520 3
P20 27977 1 105.98 1493 3
P21 21 4 324.51 7241 4
P22 181430 4 338.72 – –
P23 1038 16 67.46 0 0
P24 88 5 228.58 – –
P25 31 10 69.88 – –
P26 7 5 51.50 – –
P27 0 0 84.23 1322 8
P28 414 13 14.57 0 0
P29 29 13 4.30 – –
P30 467 29 616.59 – –
F69 85120 269 13297.49 96111 64
N101 0 0 8106.04 0 0
TOTAL 299753 533 25877.95 201536 119
AVG 1498.77 2.67 129.39 1651.93 0.98
MIN 0 0 -28.37 0 0
MAX 181430 95 1036.57 75242 16

The average runtime overhead was 129.39% when monitoring only the 42 inspected prop-
erties (as shown in the table) and 330.14% when monitoring all 182 manually written prop-
erties (elided for lack of space). Therefore, the overhead of simultaneously monitoring all
properties is under 4.3× on average. We believe this runtime overhead is acceptable during
development time (not production time), considering the number of bugs we found and the
fact that the tests in these projects run relatively fast—the average additional time incurred
by JavaMOP was 4.08s for 42 properties and 12.48s for 182 properties. The relatively small
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average overhead reflects the tremendous progress made in the research community over the
last decade to make runtime verification more efficient.
Table 2.3 also shows the number of dynamic (DV) and static (SV) violations from moni-

toring 42 manually written properties on both manually written tests (ManTests) for all 200
projects and automatically generated tests (AutoTests) for 122 projects (of the 200 projects,
151 were single-module Maven projects, but the tests generated by Randoop did not compile
in 16 projects, and Randoop did not generate any test in 5 mins for 13 projects). Even when
DV is relatively high, the overhead remains reasonable.

2.3.3 RQ2: Bugs Found

We found a total of 114 SV that were TrueBugs, 110 for manually written properties and
4 for automatically mined properties. Recall that we map dynamic to static violations based
on the project being monitored, the property being violated, and the violation site. When
multiple projects use the same library (even if not the exact same version), then multiple
static violations can actually map to the same bug. Our 114 TrueBugs map to 97 unique
bugs. Because most projects evolved since we started our experiments (with then latest
versions of the projects), 2 of the unique bugs we found were already fixed in the current
latest versions. For the remaining 95 bugs, we submitted pull requests, with 74 already
accepted and only 3 rejected; the remaining 18 are still pending.

2.3.4 RQ3: False Alarm Rates

A key metric to evaluate the effectiveness of properties is the false alarm rate (FAR), i.e.,
the ratio FA/(TB + FA), where FA and TB are the number of FalseAlarms and TrueBugs
among inspected violations. For manually written properties, we inspected 652 violations—
533 from manually written tests and 119 from automatically generated tests. Table 2.4
shows, for each project in which we inspected violations, the project ID (PID), number of
inspected static violations (SV), number of violations in each classification (HTI, TB, and
FA), and false alarm rate (FAR[%]). All 69 projects in F69 have 100% FAR (no TrueBugs)
and had slightly more violations than all those with TrueBugs. 19 of 30 projects with some
TrueBug had greater than 50% FAR. The TOTAL row shows the overall FAR: for manually
written properties, it is 82.81% (110 TrueBugs and 530 FalseAlarms). For automatically
mined properties, we inspected 200 violations. We elide the breakdown per project, but the
overall FAR for automatically mined properties is 97.89% (4 TrueBugs and 186 FalseAlarms).
We further analyzed FAR along several dimensions, trying to identify where it may be
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Table 2.4: Per-project inspection summary for 42 manually written properties.
SV: static violations; HTI: hard to inspect; TB: true bugs; FA: false alarms;
FAR[%]: false alarm rate

PID SV HTI TB FA FAR[%]
P1 4 0 4 0 0.00
P2 1 0 1 0 0.00
P3 2 0 2 0 0.00
P4 1 0 1 0 0.00
P5 2 0 2 0 0.00
P6 2 0 2 0 0.00
P7 1 0 1 0 0.00
P8 7 0 6 1 14.29
P9 9 0 6 3 33.33
P10 3 0 2 1 33.33
P11 6 0 3 3 50.00
P12 16 0 7 9 56.25
P13 95 0 40 55 57.89
P14 10 0 4 6 60.00
P15 3 0 1 2 66.67
P16 13 0 4 9 69.23
P17 14 0 4 10 71.43
P18 7 0 2 5 71.43
P19 8 0 2 6 75.00
P20 4 0 1 3 75.00
P21 8 0 2 6 75.00
P22 4 0 1 3 75.00
P23 16 0 4 12 75.00
P24 5 0 1 4 80.00
P25 10 0 2 8 80.00
P26 5 0 1 4 80.00
P27 8 0 1 7 87.50
P28 13 1 1 11 91.67
P29 13 0 1 12 92.31
P30 29 1 1 27 96.43
F69 333 10 0 323 100.00
TOTAL 652 12 110 530 82.81

lower. Table 2.5 (top part) shows the FAR breakdown for manually written properties.
Violations in third-party libraries had 86.55% FAR, while violations in the project code had
80.82% FAR. Violations in single- vs. multi-module Maven projects had 81.87% vs. 86.23%
FAR, and violations for manually written tests vs. automatically generated tests had 82.51%
vs. 84.21% FAR. The similar FARs across all these dimensions suggests that the FARs are
mostly due to inherent (in)effectiveness of the properties and less due to specific code-related
factors. An interesting finding is that violations in libraries are somewhat more likely to be
false alarms, as one would expect that libraries are indeed better tested and have fewer bugs
than the project code.
Table 2.5 (bottom part) shows the breakdown for automatically mined properties. Com-
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Table 2.5: Split of inspection results along various dimensions. Column headers
are same as in Table 2.4

Type of properties SV HTI TB FA FAR[%]
Manually written 652 12 110 530 82.81
Libraries 232 9 30 193 86.55
Project code 420 3 80 337 80.82
Single-module 513 11 91 411 81.87
Multi-module 139 1 19 119 86.23
ManTests 533 7 92 434 82.51
AutoTests 119 5 18 96 84.21

Automatically mined 200 10 4 186 97.89
Libraries 122 10 0 112 100.00
Project code 78 0 4 74 94.87
Single-module 148 9 3 136 97.84
Multi-module 52 1 1 50 98.04

Table 2.6: Per-property inspection summary. Column headers are same as in
Table 2.4

Property SV HTI TB FA FAR[%]
URLDecoder_DecodeUTF8 1 0 1 0 0.00
Collections_SynchronizedCollection 22 0 19 3 13.64
Collections_SynchronizedMap 5 0 4 1 20.00
Byte_BadParsingArgs 3 0 2 1 33.33
Long_BadParsingArgs 22 0 14 8 36.36
InetSocketAddress_Port 2 0 1 1 50.00
ByteArrayOutputStream_FlushBeforeRetrieve 123 0 55 68 55.28
StringTokenizer_HasMoreElements 11 0 4 7 63.64
Math_ContendedRandom 14 0 5 9 64.29
Short_BadParsingArgs 3 0 1 2 66.67
Iterator_HasNext 157 3 4 150 97.40
31 Properties with 100% FAR 289 9 0 280 100.00
TOTAL 652 12 110 530 82.81

pared to manually written properties, the FAR values are higher along all dimensions. The
overall FAR was 97.89% (186 of 190 non-HTI violations). Compared within different dimen-
sions, the FAR values were similar, e.g., 100.00% for violations in libraries vs. somewhat lower
94.87% for violations in the project code, showing a consistent relationship with violations
of manually written properties. In brief, all these FARs appear rather high.
Table 2.6 shows the FAR values for the 42 manually written properties that we inspected

(we did not inspect violations of 21 properties, as explained in Section 2.4.2). First, only 11
properties (i.e., 26.19% of 42 inspected properties and 6.04% of all 182 properties) helped
find a TrueBug and could have provided some value to developers of some project(s). Sec-
ond, 119 properties were never violated, so they only increased the runtime overhead. These
properties may get violated if monitored on other projects. Third, all but one of the prop-
erties that we inspected caused at least one FalseAlarm and the only property without false
alarms, URLDecoder_DecodeUTF8, was violated only once. Interestingly, the property that
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was violated the most and is the least effective at bug finding, Iterator_HasNext with
97.40% FAR, is the de facto example property in research papers on property mining and
RV. Section 2.4.2 discusses why this property and others generate so many FalseAlarms.
For automatically mined properties, only 3 (i.e., 17.65% of the 17) led to at least one

TrueBug in the 200 inspected violations—FSM162, FSM33, and FSM3731, with FARs of 87.50%,
90.00% and 98.06%, respectively. FSM373 is very similar to the manually written Iterato

r_HasNext property and has similar FAR as well. Based on the very high FARs among
violations of both manually written and automatically mined properties, we conclude that
the existing properties are rather ineffective for finding bugs, because they raise too many
false alarms.

2.4 ANALYSIS OF RESULTS

We discuss some bugs we found, some issues with the properties (and opportunities to
improve them), and some developers’ responses to our pull requests (bug reports and fixes).

2.4.1 Analysis of Bugs Found

We describe some of our pull requests that the developers accepted and all three pull
requests that the developers rejected so far.
Accepted Pull Requests: The project with the largest number of accepted pull requests
in our study was joda-time, “the de facto standard date and time library for Java prior to
Java SE 8” [101]. The joda-time developers accepted all our 40 pull requests, 37 of which
based on the violations of the manually written property ByteArrayOutputStream_FlushBef

oreRetrieve (BAOS). BAOS catches cases where an underlying ByteArrayOutputStream is not
closed or flushed before retrieving the contents of the enclosing stream. The fix in our pull
requests was simply to invoke flush() before toByteArray(), toString(), or write*() on a
ByteArrayOutputStream. In all projects, 49 out of 55 BAOS pull requests that we submitted
were accepted, 1 was rejected, and the others are pending.
Another big set of bugs was found from the violations of CSC (discussed in sections 2.1

and 2.2.2) and a closely related property, Collections_SynchronizedMap. These properties
are violated if the Iterator of a synchronized Collection is accessed from code that is not
synchronized. Our fix was to put the calling code in a synchronized block. Our pull requests
for these properties were mostly accepted, or were already fixed between the start of our

1These properties are publicly available [160].
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experiments and when we wanted to report them in widely used applications—Spring-Beans,
TestNG, and XStream. We also have a pending pull request in ActiveMQ.
All the 18 bugs that we found while monitoring automatically generated tests were re-

lated to missing checks for invalid input. 17 were of the form Type_BadParsingArgs,
where Type is Long, Short, or Byte. These properties check that calls to the respective
Type.parseType(String s, int r) methods do not have s empty or null. 12 pull requests
were accepted, 1 has been rejected, and 4 are pending. The remaining (and still pending)
invalid-input-related pull request was for a violation of InetSocketAddress_Port property
which checks that the int port number used to create new java.net.InetSocketAddress

objects is between 0 and 65535, inclusive.
Finally, we found 4 bugs from monitoring the properties that Pradel et al. [159] mined auto-

matically. Of these, 3 were duplicates of bugs found from monitoring manually written prop-
erties, so we did not report them again. The additional bug (with a pending pull request) was
from a violation of FSM33, where removeFirst() was invoked on a java.util.LinkedList

object without first checking that it was not empty.
Rejected Pull Requests: Three of our pull requests were rejected, mostly because we had
limited domain knowledge. In XStream, we submitted a pull request for a Collections_Syn

chronizedMap violation, but the developer rejected it and responded: “...there’s no need to
synchronize it... As explicitly stated in the documentation, XStream is not thread-safe dur-
ing setup... this is documented behavior.” In JSqlParser, we reported a missing check for
the validity of s in Long.parseLong(String s, int i). The developer responded: “...The
parser itself ensures that only long values are passed to LongValue. So do you have a prob-
lematic SQL, that produces a NumberFormatException?” Indeed, the violation was from
monitoring an automatically generated test, but since the violation is in a public class, it
could lead to unhandled exceptions in applications that depend on JSqlParser but which do
not thoroughly sanitize their own input SQL queries. In threerings.playn, we submitted a
fix for a BAOS violation and the developer responded: “JsonAppendableWriter automatically
flushes the target stream when done() is called, as is documented in the Javadoc for done.
So an additional flush is unnecessary.” Indeed, BAOS did not detect the flush because the
property is buggy. The violation occurred in a method which casts a java.io.OutputStream

to java.io.Flushable before invoking flush(). However, BAOS was written to only track
calls of flush() on java.io.OutputStream and its subtypes, whereas Flushable is a super-
type of OutputStream. JavaMOP, therefore, correctly finds a violation of the property, but
the property is incorrect. We submitted a bug report for BAOS to the JavaMOP repository
and confirmed that it did not affect any other BAOS-related pull request that we sent.
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2.4.2 Issues with Monitored Properties

We next discuss why we did not monitor some properties or inspect some violations, and
give examples to show why the properties reported a lot of false alarms.
Ignored Manually Written Properties: We inspected all (652) static violations (SV)
from 42 manually written properties. 21 other manually written properties had violations,
but we did not inspect them: (1) 8 *StaticFactory properties may, at best, find performance
bugs not functional bugs (459 SV); (2) 2 *_Obsolete properties get violated for every call
to Dictionary() or Enumeration(), which were written as “suggestion” properties that
should not lead to bugs (518 SV); (3) 4 *_StandardConstructors properties were marked
as potentially reporting false alarms (430 SV); (4) 2 Enum_* properties were buggy and get
violated on every invocation of Enum methods (874 SV); (5) 1 Serializable_UID property
gets violated when a Serializable class does not declare a serialVersionUID, which can be
trivially checked statically (2348 SV); and (6) 4 more properties were ignored because they
did not report violation sites (93 SV). We reported 16 of these property issues, together with
7 bugs that we found in other properties during our inspections— 23 bug reports total—to
JavaMOP developers.
Ignored Automatically Mined Properties: Although we originally obtained 223 mined
properties from Pradel et al., we monitored only 17, because a brief manual inspection of
properties found that 206 had one or more of the following issues: (1) the property (FSM) was
very large, sometimes having tens of transitions and/or states, making it hard to understand
and to inspect its violations; (2) the property relates only methods in the javax.swing.* or
java.awt.* libraries; (3) the property imposes unnecessary temporal order on methods of
multiple unrelated object types; and (4) the property imposes unnecessary temporal order
on unrelated methods of the same object type. We did not report or attempt to improve the
automatically mined properties. Pradel et al. [159] acknowledge that some of these proper-
ties are of low quality and develop a system to prune some violations of mined properties.
However, it would be better to additionally evaluate the property mining techniques on
larger, more diverse projects and confirm detected (potential) bugs with developers.
Analysis of False Alarms: The monitored properties reported many false alarms mainly
because the properties (1) did not encode all correctness conditions, or encoded wrong con-
ditions, and thus need to be improved; or (2) captured harmless misuse of APIs which would
rarely or never lead to actual bugs.
For example, consider the Iterator_HasNext property which states that each invocation

of next() on a java.util.Iterator object must be preceded by an invocation of hasNext()
that returns true on the same object. Iterator_HasNext violations led us to discover 4 ac-
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1 ArrayList<Integer> list = new ArrayList<>();
2 list.add(1);
3 Iterator<Integer> it = list.iterator();
4 if (it.hasNext()){ int a = it.next();}
5 if (list.size() > 0){
6 int b = list.iterator().next();
7 }
8 if (!list.isEmpty()){
9 int c = list.iterator().next();

10 }
11 HashMap<String, Integer> map = new HashMap<>();
12 map.put("one", 1);
13 if (map.containsKey("one")){
14 int d = map.values().iterator().next();
15 }
16 int e = list.iterator().next();
17 int f = map.values().iterator().next();

Figure 2.4: False alarms from Iterator_HasNext property

1 Map<String, String> map = new HashMap<>();
2 map.put("1", "1"); map.put("2", "2");
3 for(String key : map.keySet()) {
4 String value = map.get(key);
5 map.put(key, value + "x");
6 //map.put(key + "x", value + "x");
7 }

Figure 2.5: False alarms from Map_UnsafeIterator property

cepted bugs in the Thomas-S-B.visualee project and other researchers had previously used
Iterator_HasNext to find some real bugs in AspectJ (bug IDs #218167 and #218171 [207]).
However, Iterator_HasNext also reports a huge number of false alarms—150 of 154 non-
HardToInspect violations were false alarms—with FAR of 97.40%. Figure 2.4 illustrates
several valid invocations of Iterator.next()—lines 4, 6, 9, 14, 16, and 17—with no bugs in
the shown code. However, Iterator_HasNext will be violated for all those invocations except
the one on line 4. The example next() invocations in Figure 2.4 illustrate only a few of the
valid uses of the next() method that were violations of the Iterator_HasNext property dur-
ing our experiments. To make the Iterator_HasNext property more precise, one would need
to ensure that it encodes more valid ways of checking that an Iterator has enough elements
before invoking next(), taking into consideration various possible Collection types.
Map_UnsafeIterator is another property with false alarms; it checks whether code is mod-

ifying a java.util.Map instance while iterating over it. All 9 Map_UnsafeIterator violations
that we inspected were false alarms. To illustrate, consider the code snippet in Figure 2.5.
On each iteration, line 5 modifies the values in the Map—a valid operation. Nevertheless,
Map_UnsafeIterator is violated, because it is too restrictive and reports a violation for any
modification to the Map. If line 5 is replaced with the commented-out statement on line 6,
the standard Java library would throw a ConcurrentModificationException. We therefore
asked other JavaMOP developers (not involved in this project) why anyone would want to
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monitor this property. The response reflects one challenge in coming up with effective prop-
erties: “Invoking the put method on a map object may or may not change its key set... there
is a trade-off between accuracy and simplicity... it is up to the user; one can put more effort
into writing more fine-grained specs... so that there will be fewer false alarms reported; or
write a simple spec easily and [then] manually eliminate the false alarms.”
Roughly 20% of all the false alarms among manually written properties were from two

Closeable_* properties, with 113 violations between them. Both had 100% FAR. One of
them catches calls of close() on subtypes of java.io.OutputStream for which close() is a
no op. The other catches situations where calling close() on an OutputStream object that
is already closed has no effect. Although both of these properties can help find developers’
likely misunderstanding of the API, we classified them as FalseAlarms because they are
harmless in the current version of the code. It is debatable whether we should have classified
these as “code smells” as done in some prior work [63,143,159] and whether these were serious
enough to submit to the developers. We could not easily change the code to avoid these
problems and it is highly unlikely developers would have accepted our changes.
Automatically mined properties have similar reasons for false alarms as manually written

properties. For example, FSM373 is similar to Iterator_HasNext, so its false alarms were
similar as well. However, one additional cause of false alarms among violations of FSM373
was that it did not permit to call hasNext() multiple times successively (a self transition
is missing from a state in the FSM). FSM162 also contains transitions that are similar to
Iterator_HasNext, but also adds in a single transition on the Iterator.remove() method
such that the property is violated if remove() is called multiple times successively.

2.4.3 Developers’ Responses

We discuss some example responses and comments that developers made regarding our
pull requests, which gives a valuable insight into developers’ perception.

Developers Asked for More: After we submitted a pull request for a BAOS violation, the
apache.gora developers asked us to help check other portions of their code: “...Are there
any other instances of this behavior throughout the codebase? ...I just undertook a quick scan
of the codebase for ByteArrayOutputStream, I found the following instances. Can you please
check these out as well?” Even after we fixed these other instances that they pointed out,
the developers asked whether we would be interested to help with similar problems in their
other codebase. In another project, hoverruan.weiboclient4j, we sent a pull request that
fixed one of seven Long_BadParsingArgs violations and simply reported the other six. The
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developers fixed the remaining six within a day of accepting our pull request.

Developers Viewed Pull Requests Liberally: The joda-time developers accepted one
of our BAOS pull requests although they found it unnecessary: “While I’m not convinced it is
necessary, this will cause no harm.” We got similar comments for two pending pull requests.
In Apache Zookeeper, for the BAOS property, the developer wrote “Makes sense. I don’t see
why we shouldn’t do what you suggest (add the flush). You see why it’s a no-op currently
though, right? (and why we haven’t seen issues with this code)”. In TestNG, the developer
tagged one of our synchronization-related pull requests as a perf/enhancement and said,
“I’m not sure if it is relevant here: the lists of results should be already computed...no one is
supposed to add something new at the report phase.”

Developers Accepted Better Exception Messages: For pull requests pertaining to
missing checks for invalid inputs, developers responded well to the better error messages
that we provided. In IvanTrendafilov.Confucius, the developer responded “Looks good,
I’ll be happy to add that more helpful error message to the lib. Yes, please also add this
check for parseShort and parseByte...”. Similarly, in jriecken.gae-java-mini-profiler,
the developer commented on our suggested error message “Not sure that this is much better
than the previous behavior - the exception message is a little more helpful, but it still throws
a NumberFormatException” and requested changes to our pull request before accepting it.

2.5 DISCUSSION

Our work differs from previous evaluations of properties in the runtime verification and
property mining literature in three major ways. First, previous runtime verification studies
mostly focused on the efficiency of monitoring, but we focus on the effectiveness question:
“How good are the properties?” Second, most previous evaluations were conducted on the
DaCapo benchmarks [25] (with at most 14 projects) or with a smaller number of open-source
projects; in contrast, we use 200 open-source projects. Our results thus provide fresh insights
to researchers in both runtime verification and property mining communities, because our
evaluation is based on a substantially larger set of more diverse projects. We believe that
evaluating properties on (current) open-source projects instead of (old) benchmarks can be
more representative for assessing the effectiveness of properties from developers’ point of
view and should be strongly considered in future evaluations of properties. Third, in many
previous studies, researchers assumed that any property violations were bugs, or decided
themselves what was a bug or not, but we submit bug reports and fixes (i.e., pull requests) to
let the developers be the judges of the bugs we discovered by inspecting property violations.
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Inspecting property violations and submitting pull requests to developers took an esti-
mated 1200 hours and was challenging for three reasons. First, understanding the root
cause of a violation is non-trivial. Although JavaMOP reports the line number for each
property violation, reasoning about a change that could correct the violation often requires
deeper understanding of the code (and we were not developers on any of the 200 open-source
projects); moreover, some of the violations were in third-party libraries, so we needed to com-
prehend parts of those libraries as well. Second, it is challenging to decide what constitutes
an actual bug that should be submitted to the developers. At one extreme, we could only
submit violations that can lead to program crashes. At the other extreme, we could simply
submit every violation to the developers and see what they say, but this could unnecessarily
burden the developers (who may then blacklist us or start to “desk-reject” our pull requests if
they feel those are mostly useless to them). Even between these two extremes, it is debatable
how to classify so-called “code smells” [63,143,159] which may indicate API misunderstand-
ing by developers but are harmless in the current version of the code, e.g., calling close()

on an OutputStream instance for which close() is a no op. Third, preparing a pull request
in a way that developers would find useful requires substantial effort (another reason to not
even attempt to submit every violation) and sometimes involved multiple internal iterations
before submission. For these reasons, we reported to the developers those cases where at
least one of the authors of our paper [118] believed that a violation indicated some problem
in the current version of the code.

2.5.1 Recommendations for Finding Better Properties in the Future

Based on the experience from this study, we give several suggestions to help the prop-
erty mining and runtime verification research communities with property engineering, i.e.,
writing/discovering and evaluating more effective properties.
(1) Increased Focus on Bug-Finding Effectiveness: More focus should be on the
bug-finding effectiveness of properties, which is more important to developers than the per-
formance of monitoring. For example, the most widely used Iterator_HasNext property was
highly ineffective for finding bugs, matching the finding by Thummalapenta and Xie [198].
(2) Better Property Categorization: It is crucial to find good ways to designate the
severity levels of properties. All properties are not equal in their bug-finding effectiveness.
Some properties, when violated, indicate a bug with a very high probability. Other properties
indicate issues that may be bugs in some projects but not in others. Finally, some properties
are less severe, indicating poor coding practices and may not lead to detecting true bugs.
(3) Complementing Benchmarks: Continued use of benchmarks like DaCapo is good for
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comparison with older results and evaluating performance of new techniques, but benchmarks
should be complemented with evaluations on a larger number of open-source projects, to
assess the techniques and properties in more realistic scenarios.
(4) Confirming Detected Bugs with Developers: Evaluating on recent project ver-
sions and reporting detected bugs to developers of open-source projects should be encouraged
more. Admittedly, the process is challenging and time consuming, requiring domain knowl-
edge and communication with developers. We publicly released a list of all our pull requests,
to serve as a starting point for collecting true bugs: [189]. We found interesting results from
submitted pull requests, e.g., even “buggy” properties like BAOS led to accepted pull requests
(5) Automated Filtering of Properties and False Alarms: It is necessary to better
automatically filter out likely false alarms to improve ineffective properties. We found that
properties with too many violations were almost always ineffective. Pradel et al. [159] defined
heuristics-based automated techniques for filtering out violations when statically checking
mined properties. Gabel and Su [64], and Nguyen and Khoo [143] proposed techniques for
checking that mined properties are true properties. More work in this direction is needed,
especially because manual inspection, which we did in this dissertation, is rather tedious.
(6) Open Property Repositories: It would be beneficial to have community-driven
property repositories and standardized ways of representing properties to facilitate property
sharing—we could have evaluated more properties if it were easier to find and use them. We
started such a repository using all the properties monitored in this dissertation [161]; we plan
to continue adding more properties to this repository, and invite the research community to
contribute their properties there as well to facilitate research on engineering better properties.

2.6 THREATS TO VALIDITY

External: The results of our study may not generalize beyond the projects, tests, or prop-
erties that we evaluated. To mitigate this threat, we used a larger number of open-source
projects than had been evaluated in previous runtime verification and property mining stud-
ies. Further, the 200 projects that we used were quite diverse in size, number of tests, and
GitHub activity. Concerning the bug-finding effectiveness of properties, we used the largest
sets of manually written and automatically mined properties that we could find with our
mini-survey of the property mining and runtime verification literature, and which could easily
work with JavaMOP. JavaMOP is representative of the performance of runtime verification
tools and allows to simultaneously monitor properties written in different formalisms, mak-
ing it well suited for our large-scale evaluation of existing properties. Our study is focused
on Java and the results may differ for other programming languages.
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Internal: We wrote scripts to automate the monitoring of tests against the properties. Our
scripts that run the tests, measure overhead, and post-process results were reviewed by at
least two authors of our paper [118]. During inspection and classification of violations into
TrueBug, FalseAlarm, and HardToInspect, we initially had two reviewers inspect indepen-
dently to prevent them from influencing each other. Some violations that we labeled as
FalseAlarms may be TrueBugs. For violations that we labeled as TrueBugs, we submitted
95 pull requests and developers decide whether to accept (74 so far) or reject (3 so far).

2.7 SUMMARY

This chapter motivated the need for techniques that can reduce the overhead of performing
RV during software testing. The large-scale study of monitoring properties during testing
showed that runtime overhead is high and developers have to wait for and manually inspect
the many violations that RV generates. However, although software changes very frequently
and developers perform regression testing after every code change, there were no prior tech-
niques to optimize RV across multiple program versions. Therefore, we proposed to make
RV evolution aware [115] to reduce the overhead of performing RV during regression testing.
The rest of this dissertation presents contributions on evolution-aware RV.
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CHAPTER 3: STATIC CHANGE-IMPACT ANALYSIS AND RTS

Evolution-aware RV reduces the costs of performing RV during regression testing by fo-
cusing RV and its users on parts of code affected by changes. Therefore, change-impact
analysis [11, 31, 36, 120, 126, 169, 170, 176, 179, 220, 221], which is concerned with computing
parts of code that are affected by code changes, is a central component of evolution-aware
RV. This chapter describes static change-impact analyses that we implemented and evalu-
ated in the context of regression test selection (RTS). Evaluating the static change-impact
analyses in the context of RTS is beneficial to evolution-aware RV: we obtained an RTS
tool that enabled us to compare and combine evolution-aware RV with RTS—a well-known,
evolution-centered regression testing technique (Section 5.4.3). Note also that change-impact
analysis has been traditionally often evaluated in the context of RTS [107,114,169,176,221].
We chose static change-impact analysis because RV is already a dynamic analysis. We

expect a dynamic change-impact analysis to incur more overhead than a static change-impact
analysis when combining RV with testing. Since change-impact analysis can be performed at
different levels of program granularity, we compare static RTS based on method- and class-
level static change-impact analyses. To evaluate the quality of static change-impact analysis,
we compare static RTS based on static change-impact analysis with Ekstazi, the state-of-
the-art dynamic class-level RTS approach [68], which was previously shown to outperform a
method-level dynamic RTS approach [69]. The results show that static RTS based on class-
level change-impact analysis performs significantly better than static RTS based on method-
level change-impact analysis. Class-level static RTS also performs similarly as Ekstazi—the
static change-impact analysis was very fast but led to static class-level RTS selecting more
tests than Ekstazi, such that both RTS techniques have about the same end-to-end time.

3.1 BACKGROUND ON CHANGE-IMPACT ANALYSIS

Performing change-impact analysis to reason about how changed code can affect the be-
havior of other (unchanged) parts of code has long been studied for various software analysis
and maintenance tasks. Cai and Santelices [36], Lehnert [120], and Li et al. [126] provide de-
tailed overviews of the change-impact analysis literature. In this dissertation, we categorize
existing change-impact analysis techniques based on when they are applied, whether they
are static or dynamic, and the program granularity at which analysis is done. We highlight
here some existing work in each of these categories, and provide a rationale for the choice of
change-impact analysis that we made.
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Change-impact analysis can be performed before or after making code changes. In this dis-
sertation, we are concerned with performing change-impact analysis after code changes are
made. A different and important line of research exists on predictive change-impact analysis
that is performed before making code changes [34–36, 65, 66, 104, 127, 177]. Change-impact
analysis can be performed statically [31, 106, 114, 176] or dynamically [7, 109, 110, 147, 169].
We investigate static change-impact analysis as a basis for evolution-aware RV because we
expect dynamic change-impact analysis to be more costly. Further, the instrumentation
needed for dynamic change-impact analysis, however lightweight, may interfere with the in-
strumentation that the RV tool, JavaMOP, performs. Finally, change-impact analysis has
been applied at various program granularity levels and program representations, including
statement level [197], method level [169,176], class level [106,107], program slice [23,148], pro-
gram dependence graph [18], control-flow graph (CFG) [114], and whole-program path [110].
In the absence of existing empirical results on comparing the performance and quality of all

these granularity levels, we compared RTS based on class- and method-level change-impact
analysis for two reasons. First, recent work on dynamic RTS [67,69] showed that performing
RTS at class level provided a better end-to-end time than RTS at the method-level [220], but
no such comparison was previously performed for static RTS. Secondly, due to the growing
scale of modern software systems, other researchers have proposed to use coarser granularity
levels (i.e., methods or classes) rather than finer granularity levels (e.g., statements or CFG
edges), which are more expensive to collect [46].

3.2 BACKGROUND ON REGRESSION TEST SELECTION

Modern software projects evolve rapidly as developers add new features, fix bugs, or per-
form refactorings. To ensure that software evolution does not break existing functionality,
developers commonly perform regression testing. However, frequent re-running of full regres-
sion test suites can be extremely time consuming. Some test suites require weeks to run [175],
but waiting even a few minutes for test results can be detrimental to developers’ workflow.
In addition to reducing developers’ productivity, slow regression testing can consume a lot of
computing resources. For example, engineers at Google observed a quadratic increase in their
total test-running times [50,74,216], showing that regression testing is challenging, even for
a company with a lot of computing resources. As a result, a large body of research has been
dedicated to reducing the costs of regression testing, using approaches such as regression test
selection [69,81,149,169,174,211,220], regression test-suite reduction [80,180,185,222,225],
regression test-case prioritization [47,79,175,217,219], and test parallelization [22]. Yoo and
Harman provide a thorough survey of regression testing approaches [215].
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Regression test selection (RTS) is the most widely used approach to speeding up regression
testing [50]. RTS aims to reduce regression testing efforts by only re-running the tests
affected by code changes. An RTS technique is safe if it selects all tests whose behavior may
be affected by code changes; not running any of those tests may cause developers to miss
regressions. Prior research on RTS can be broadly split into dynamic and static techniques.
A typical dynamic RTS technique requires two types of information: (1) changes between

two code versions, and (2) test dependencies dynamically computed while running the tests
on the old code version. Given these inputs, the technique analyzes how the code changes
interact with the dependencies to determine a subset of tests that may execute (and thus
get affected by) the code changes. Dynamic and safe RTS has been drawing attention in the
literature since at least 1993 [173,215], with some newer techniques such as DejaVOO [149],
FaultTracer [220], and Ekstazi [69]. Different dynamic RTS techniques differ in safety, pre-
cision and analysis overhead [226]. Safe techniques always select all tests affected by code
changes but could also select non-affected tests. Precise techniques select only affected tests;
they do not select any non-affected tests. Techniques that collect finer-granularity depen-
dencies may be more precise, selecting fewer tests to be run, but can incur higher analysis
overhead; in contrast, techniques that collect coarser-granularity test dependencies may be
less precise but can have lower analysis overhead.
The state-of-the-art dynamic RTS technique, Ekstazi [67–69], tracks changes and depen-

dencies at the granularity level of files; for Java code, these files include bytecode classes.
Ekstazi computes (1) classes which changed between versions, and (2) classes that each test
class required while running on the old code version. Ekstazi selects to run on the new code
version only tests that depend on at least one of the changed classes. Prior experiments
with Ekstazi showed that using coarse-granularity test dependencies (at the class level) can
substantially save the end-to-end testing time (that includes time to analyze changes, run
selected tests, and update dependencies) [69]. Due to this, several open-source projects
(e.g., Apache Camel [4], Apache Commons Math [5], and Apache CXF [6]) have already
incorporated Ekstazi into their build systems [69].
Despite the recent advances in dynamic RTS, its reliance on dependencies collected dynam-

ically could limit its application in practice, making it important and timely to reconsider
static RTS. First, when performing RTS, dynamic test dependencies for the old version may
not always be available, e.g., on the first application of RTS to the project (the project may
have earlier versions). Second, dynamic test dependencies for large projects may be time-
consuming to collect. Third, for real-time systems, dynamic RTS may not be applicable,
because code instrumentation for obtaining dependencies may cause timeouts or interrupt
normal test run. Finally, for programs with non-determinism (e.g., due to randomness or
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concurrency), dependencies collected dynamically may not cover all possible traces, leading
to dynamic RTS being unsafe.
In contrast to dynamic RTS, which collects test dependencies dynamically, static RTS [11,

31,107,176] uses static program analysis to infer an over-approximation of the test dependen-
cies to enable safe test selection. However, although static RTS techniques for object-oriented
languages have been proposed over three decades ago [31,107], to our knowledge, these tech-
niques have not been studied extensively on modern, real-world projects. In particular, it is
not clear a priori which granularity level would be better for static RTS.
To investigate the safety, precision, and overhead of static RTS, we implemented one

class-level static RTS technique and one method-level static RTS technique. The class-level
static RTS technique (ClassSRTS ) uses our implementation of the class firewall [107, 125,
149,187,188] for change-impact analysis; it finds class-level dependencies by reasoning about
inheritance and reference relationships in a class dependency graph. ClassSRTS selects to
re-run test classes that transitively depends on a changed class in the dependency graph.
The method-level static RTS technique (MethSRTS ) uses a call-graph based change-impact
analysis [11,73,200]; it constructs a call graph with all test methods as entry points and se-
lects to re-run test classes that can transitively reach a changed class through a traversal of
the call graph. The ClassSRTS and MethSRTS implementations discussed in this chapter are
based on the ASM bytecode manipulation and analysis framework [10] and the T.J. Wat-
son Libraries for Analysis (WALA) [205], respectively. Chapter 4 discusses an improved
implementation of ClassSRTS in a tool called STARTS.
We evaluated these two static RTS techniques on 985 versions of 22 open-source Java

projects. We considered two variants of ClassSRTS and eight variants of MethSRTS, and we
compared them against Ekstazi. The results show that ClassSRTS has comparable perfor-
mance as Ekstazi, but ClassSRTS is occasionally unsafe. In contrast, MethSRTS performs
rather poorly: it does not provide performance benefits and is more frequently unsafe. The
latter result was somewhat surprising as one may expect finer-grain analysis at the method
level to be safer and more precise (but potentially slower) than the coarser-grain analysis at
the class level (sections 3.3.3 and 3.6 give some explanation of this surprising result).
Concerning safety, our experiments show that reflection was the reason why ClassSRTS

missed tests that Ekstazi selects in a small number of cases (Section 3.6). Therefore, we have
begun an orthogonal but complementary line of research to evaluate whether we could make
ClassSRTS safe with respect reflection [183], which we discuss Chapter 6. In conclusion,
we recommend that researchers continue improving static RTS techniques at the coarser
granularity, which already shows promising results (at least at the level of classes if not
modules or projects).
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3.3 CHANGE-IMPACT ANALYSIS FOR REGRESSION TEST SELECTION

We introduce the two static change-impact analysis techniques that we implemented at
different granularity levels and the static RTS techniques that they support: ClassSRTS uses
class-level change-impact analysis [107] (Section 3.3.1) and MethSRTS uses method-level
change-impact analysis [11, 73, 170, 176, 200] (Section 3.3.2). Although they are based on
change-impact analyses at different granularity levels, we implemented the RTS techniques
to report selected test classes to aid comparison. In the rest of this chapter, when we refer
to a test, we mean a test class. MethSRTS could, in principle, report only selected test
methods. Recent surveys on regression testing [215] and change-impact analysis [120, 126]
provide more details about static and dynamic RTS.

3.3.1 Change-Impact Analysis for Class-Level Static RTS (ClassSRTS)

Leung et al. [125] first introduced the notion of firewall to assist testers in focusing on
code modules that may be affected by program changes. Kung et al. [107] further introduced
class firewall to account for the characteristics of object-oriented languages, e.g., inheritance.
Given a set of changed classes, a class firewall computes the set of classes that may be affected
by the changes, conceptually building a “firewall” around the changed classes. The original
class firewall technique was proposed for the object-relation graph in C++ [107], and Orso
et al. [149] generalized it to the intertype relation graph (IRG) to additionally consider
interfaces in Java. Subsequently, we use types to denote classes and interfaces. To the best
of our knowledge, using the IRG and the class firewall is the only proposed technique to
perform class-level static RTS in Java.
An IRG represents the use and inheritance relations between types in a program, as defined

by Orso et al. [149]:

Definition 3.1 (intertype relation graph). An intertype relation graph, IRG, of a given
program is a triple 〈N,EI , EU〉 where:
• N is the set of nodes representing all types in the program;
• EI ⊆ N × N is the set of inheritance edges; there exists an edge 〈n1, n2〉 ∈ EI if type n1

inherits from n2, and a class implementing an interface is in the inheritance relation;
• EU ⊆ N ×N is the set of use edges; there exists an edge 〈n1, n2〉 ∈ EU if type n1 directly
references n2, and aggregations and associations are in the use relations.

Based on this definition of IRG, the class firewall is defined as the types that can (transi-
tively) reach some changed type through use or inheritance edges:
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Definition 3.2 (Class Firewall). The class firewall corresponding to a given set of changed
types τ ⊆ N is computed over the IRG 〈N,EI , EU〉 using the transitive closure of the de-
pendence relation D = (EI ∪ EU)−1; firewall(τ) = τ ◦ D∗, where −1 denotes the inverse
relation, ∗ denotes the reflexive and transitive closure, and ◦ is the relational product.

ClassSRTS takes as input the two program versions and the regression test suite T that
consists of the tests for the new version. The output is the subset of tests Ts ⊆ T that may
be affected by the changes. ClassSRTS first builds an IRG, computes the changed types
between two program versions, and adds the transitive closure of each changed type to the
class firewall. Finally, ClassSRTS returns all tests in the class firewall as the selected test
set Ts. Note that ClassSRTS need not include supertypes of the changed types (but must
include all subtypes) in the transitive closure because a test cannot be affected statically by
the changes even if the test reaches supertype(s) of the changed types unless the test also
reaches a changed type or (one of) its subtypes.

3.3.2 Change-Impact Analysis for Method-Level Static RTS (MethSRTS)

A program call graph (CG) represents invocation relationships among program meth-
ods [200]. Intuitively, starting from each root method (e.g., the main method), the call-graph
construction finds all methods that can be (transitively) invoked from the root method. A
call graph is defined as follows:

Definition 3.3 (Call Graph). A call graph CG of a given program is a pair 〈N,E〉, where:
• N is the set of all methods in the program under analysis;
• E ⊆ N ×N are the method invocation edges.

MethSRTS takes as input the two program versions and the regression test suite. The
output is Ts, the subset of tests that may be affected by the changes. A test is affected if
any of its test methods is affected. (Our experiments show that MethSRTS is rather slow,
not because it selects to run test classes instead of test methods, but because the analysis
itself is slow.) Further, changes are computed at the class level rather than the method
level because recent work [69] demonstrated that class-level changes do not require complex
modeling of changes due to dynamic dispatch (e.g., using lookup changes [170,176]), and can
be extremely fast to compute. MethSRTS first builds a call graph for the old version using
as root methods all public methods (e.g., including the “@Before” and “@After” methods)
in the test suite. Then, MethSRTS iterates over each test to check if any of its methods may
be affected by the changed types τ , i.e., if it can (transitively) reach methods in τ . Finally,
MethSRTS returns the selected set of tests.
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1 //library code
2 class L {
3 void m1() {}
4 }
5
6 //source code
7 class C1 extends L {
8 void m1(){
9 C2.m3()
10 }
11 void m2(){}
12 }
13
14 class C2 {

15 static void m3(){}

16 }

1 //test code
2 class T1 {
3 void t1() {
4 L l = new L();
5 l.m1();
6 }
7 }
8 class T2 {
9 void t2() {
10 L l = new C1();
11 l.m1();
12 }
13 class T3 {
14 void t3() {
15 C1 c = new C1();
16 c.m2();
17 }
18 }

Figure 3.1: Example code

3.3.3 Example

Although MethSRTS performs method-level change-impact analysis, a finer level of gran-
ularity than ClassSRTS, it does not necessarily deliver more precise RTS. To illustrate both
techniques, consider the example in Figure 3.1. Class L is in a library, while classes C1 and
C2 are in the code under test. T1, T2, and T3 are three tests. Suppose C2 is modified (in
gray). An dynamic RTS technique (e.g., Ekstazi), will select to re-run only T2, the only test
that executes the modified C2. We discuss the RTS results for ClassSRTS and MethSRTS.
ClassSRTS: Figure 3.2(a) shows the IRG for the example. Edges labeled “u” and “i” are
use and inheritance edges, respectively. The class firewall (enclosed in the dashed area)
consists of all classes that can potentially reach the modified class, C2. Tests T2 and T3 are
in the class firewall and thus selected. Note that T3 is selected due to the imprecision of the
class-level analysis: although T3 uses C1, it does not invoke any method of C2.
MethSRTS: Figure 3.2(b) shows the call graph for the example. The method C2.m3 in
the modified class C2 is marked in gray. From the call graph, tests T1 and T2 can reach
C2.m3 and are thus selected. Although MethSRTS can be more precise than ClassSRTS
in determining that T3 cannot invoke C2.m3, MethSRTS incurs another imprecision—even
advanced call-graph analyses cannot always precisely determine receiver object types. For
example, T1 invokes m1 with the static receiver type L; a naive call-graph analysis (e.g., CHA)
treats all subclasses of L as potential runtime receiver types. So, MethSRTS may imprecisely
select T1 that could invoke C1.m1 because C1 extends L. ClassSRTS does not have this issue;
a runtime object type is referenced by the test that instantiates it.
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Figure 3.2: Example IRG and call graph

3.3.4 Analysis Scope

Modern software projects use external libraries extensively which can slow down static
analysis in general and MethSRTS in particular. For example, in one version pair of the
project invokebinder (p1, Table 3.5), we found that using RTA call-graph analysis takes
370.8% of RetestAll time when third-party libraries are excluded from the analysis, but it
becomes 81304.2% of RetestAll time when libraries are included—orders of magnitude dif-
ference! Therefore, we consider the impacts of excluding third-party libraries for ClassSRTS
and MethSRTS as follows.

Theorem 3.1. Excluding third-party libraries cannot introduce a new type of safety issue
for ClassSRTS.

Proof. Excluding third-party libraries removes all types in the library from the IRG. If the
exclusion induced a safety issue, there must be a path from a test T to a changed type C that
contains a library type L; otherwise, the exclusion will not impact the selection results. This
implies a path from T to L and a path from L to C. However, third-party libraries are built
before the code under test. Therefore L cannot statically inherit from or use C1. Therefore,
the path from L to C does not exist. Contradiction.

Theorem 3.2. Excluding third-party libraries can introduce a new type of safety issue for
MethSRTS.

Proof. As shown in Figure 3.2, by including library code MethSRTS can select the truly
affected test T2. However, if the library is excluded, Line 11 in Figure 3.2(b) will be ignored
by the call-graph analysis because the static receiver type is L. Then, T2 only reaches C1.C1()
that does not invoke any methods from the code under test. Thus, T2 does not reach any

1Note that even when there are callbacks from the library code, the static reference to the receiver type
of the callback is usually referenced by some class from the code under test to pass to the library code; also
note that the safety issues of static RTS caused by reflection (shown in Section 3.6) exist even with library
code analysis.
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method in the modified class C2 and would not be selected. Therefore, excluding third-party
libraries can introduce a new type of safety issue for MethSRTS.

As a result, we exclude libraries for ClassSRTS (making the analysis run faster while
selecting the same set of tests), but we evaluate MethSRTS both with and without library
exclusion to investigate the cost/safety tradeoff.

3.4 IMPLEMENTATION

We describe the implementation details of our ClassSRTS and MethSRTS techniques.
Ekstazi, the dynamic RTS tool used in our evaluation, is described elsewhere [68, 69].
Change computation: Finding syntactically changed source files can be done easily using
the diff utility or version-control systems, but syntactic changes (e.g., simple reformatting)
may not translate to bytecode changes [69]. Therefore, we compute changes at the bytecode
level, leveraging the comparison utility from Ekstazi. More specifically, given two program
versions, the comparison first detects the bytecode files that differ between the versions, and
then invokes the Ekstazi API to compute smart checksums [69] (by removing debug-related
information) of those bytecode files to further filter out the files where only debug-related
information changed. Using the Ekstazi change computation also enables a fairer evaluation
and comparison of tools.
Graph construction: For ClassSRTS, we used the ASM bytecode manipulation framework
(version 5.0) [10] to construct the IRG. Our tool uses ASM to parse the bytecode of each
(changed) classfile, traversing all the fields, methods, signatures, and annotations to collect
all types that are referenced/used by the type in the classfile. It also collects all types that
the type in the classfile extends/implements. Importantly, it incrementally updates the IRG
computed from a prior version by analyzing only the classfiles that changed.
For MethSRTS, we used the call-graph analyses from the IBM WALA framework [205].

We evaluated four widely used call-graph anlayses: CHA (Class Hierarchy Analysis), RTA
(Rapid Type Analysis), 0-CFA (Control-Flow Analysis), and 0-1-CFA, in the ascending
order of precision [73, 200]. The analyses effectively differ in how they approximate the
runtime types of receiver objects, e.g., CHA does not approximate the runtime types at all,
while 0-CFA uses one set of types to approximate the runtime types. In general, a more
precise call-graph analysis may incur a higher overhead. Furthermore, WALA also allows
excluding the library code from the analysis to speed it up. Therefore, we studied these
four analyses both with and without library exclusion to investigate the cost/safety trade-
offs for MethSRTS. We used 0-CFA with library exclusion as the default MethSRTS variant
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because (1) it is recommended by the WALA tutorial [205] for general call-graph analysis
applications, and (2) our results show it to perform well among all the eight variants for
the specific application of call-graph analysis to RTS. Both tools construct the appropriate
graph (IRG or call graph) on the old program version and serialize the constructed graph
to the disk for the new version.
Graph traversal: Given an appropriate graph (IRG or call graph) and a set of changed
nodes, each tool needs to find the tests that can reach the changed nodes. Our tools always
traverse the graph representing the old version. For ClassSRTS, we evaluate two modes, of-
fline and online, that traverse the (old) graph at different points. The offline mode computes
transitive closure of the entire graph in advance (before the new version and the changes
are known) and produces a mapping from test to dependencies; the time to compute the
closure is not counted in the end-to-end time. The selection then simply checks what test
has some changes among its dependencies. The online mode computes only nodes transi-
tively reachable from the changes once it knows what those changes are; the time to compute
reachability is counted in the end-to-end time. Both modes also incrementally update the
old graph to produce a new graph for the next version; the time to perform the update is
not counted for offline, while it is counted for online. For MethSRTS, all eight variants use
the online mode. We did not try the offline mode for MethSRTS because (1) MethSRTS
performs poorly in terms of safety and precision; it is not worth further cost analysis, and
(2) MethSRTS selects many more tests than Ekstazi/ClassSRTS so its offline mode can be
predicted to be inferior to both others. To implement graph traversals, we use JGraphT [97].

3.5 EVALUATION AND RESULTS

We present our experimental setup and the results of evaluating static RTS techniques
in terms of number of selected tests, time overhead, precision, and safety. We evaluate two
variants of ClassSRTS and eight variants of MethSRTS. We compare these variants with
two baselines: RetestAll (which just runs all tests) and Ekstazi. Finally, we present some
examples of the safety and precision issues of static RTS.

3.5.1 Experimental Setup

To evaluate static RTS, we use 22 open-source projects, listed in Table 3.1. We chose these
projects among single-module Maven projects with JUnit 4 tests from (1) the original Ekstazi
paper [69], (2) one of our previous studies [115], and (3) popular GitHub Java projects with
longer-running tests (which we deliberately chose because they are more likely to benefit
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Table 3.1: Projects used in study
ID Project Name SHA kLOC Revs Tests T[s]
p1 invokebinder 8611721 2.0 66 2.2 1.7
p2 logback-encoder 4fe0f4a 3.2 43 18.7 3.4
p3 compile-testing 8d5229e 3.0 30 7.6 3.7
p4 commons-cli 3ba638a 5.9 50 23.0 3.8
p5 commons-dbutils 1429538 5.4 33 23.2 4.1
p6 commons-fileupload 1460343 4.3 54 12.0 4.8
p7 commons-validator bcb1ec4 11.9 19 61.0 4.8
p8 asterisk-java 08dda72 34.5 59 38.1 6.1
p9 commons-codec 50a1d17 17.0 63 47.5 6.5
p10 commons-compress ec07514 32.5 12 89.4 9.4
p11 commons-email 1607174 6.5 23 17.0 12.3
p12 commons-collections 1543740 54.3 66 149.6 19.9
p13 commons-lang bcb33ec 69.0 61 133.8 21.6
p14 commons-imaging b1fdec9 37.1 87 58.9 28.9
p15 commons-dbcp 1587107 18.7 31 27.2 68.9
p16 b.HikariCP 19e0c5d 9.4 49 21.0 80.2
p17 commons-io 1686461 27.7 49 93.9 91.4
p18 addthis.stream-lib 4dc3705 8.3 5 24.0 104.8
p19 commons-math 79c4719 185.4 57 450.2 109.3
p20 OpenTripPlanner aa21c92 79.3 20 135.8 277.9
p21 commons-pool2 1622091 12.8 51 19.5 294.6
p22 jankotek.mapdb eac22b7 67.9 57 144.2 515.9

Average 32.3 44.8 80.2 75.8

from RTS). Table 3.1 shows basic statistics for the projects: SHA is the initial version of
the project on which our experiments started, kLOC is the number of thousands of lines of
code in the project, Revs is the number of version pairs used in our evaluation, Tests is
the number of tests in the project, and T[s] is the time in seconds to run all the tests in
each project. kLOC, Tests, and T[s] are averages across all versions that we used.
We used Ekstazi off-the-shelf to compare with static RTS techniques. To select the ver-

sions, we followed the methodology from the original Ekstazi paper [69]. For each project,
we started with the 100 versions immediately preceding SHA and then chose the subset of
those 100 versions (1) that compiled, (2) for which mvn test ran successfully, and (3) for
which Ekstazi ran successfully with mvn ekstazi:ekstazi. Starting from the oldest version
in our list, we ran each RTS technique on the successive pairs of versions, simulating what an
end user would have experienced when using an RTS tool. We measure the number of tests
selected by each technique, the time taken to run the selected tests, and the time taken by
RTS techniques to perform the selection. The end-to-end time includes the time to collect
dependencies, analyze what tests to run, and to actually run the selected tests for the online
variants of Ekstazi and the static RTS techniques. For all the offline variants, the time
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to collect dependencies is not included. We ran all experiments on a 3.40 GHz Intel Xeon
E3-1240 V2 machine with 16GB of RAM, running Ubuntu Linux 14.04.4 LTS and Oracle
Java 64-Bit Server version 1.8.0_91.

3.5.2 Research Questions

Our study aims to answer these research questions:

• RQ1: How do static RTS techniques compare among themselves and with RetestAll and
dynamic RTS in terms of the number of tests selected to run?
• RQ2: How do static RTS techniques compare among themselves and with RetestAll and

dynamic RTS in terms of runtime?
• RQ3: How do static RTS techniques compare with a safe class-level dynamic RTS in

terms of precision and safety?
• RQ4: How do different variants of the MethSRTS influence the cost/safety trade-offs?

3.5.3 RQ1: Tests Selected

Figure 3.3 shows the percentage of tests selected by static and dynamic RTS relative to
RetestAll (the black line in the middle of each boxplot is the mean). On average, Ekstazi,
ClassSRTS, and MethSRTS select to run 20.6%, 29.4%, and 43.8% of all tests, respectively.
As expected, ClassSRTS and MethSRTS both tend to select a higher percentage of tests
than Ekstazi. We further discuss exactly how precise and safe ClassSRTS and MethSRTS
are with respect to Ekstazi in Section 3.5.5. Surprisingly, the coarser-granularity ClassSRTS
technique selects fewer tests than the finer-granularity MethSRTS technique. One reason
was discussed in Section 3.3.3, and more concrete cases are analyzed in Section 3.6. Overall,
although inferior to the state-of-the-art dynamic RTS in terms of the number of tests selected,
static RTS still selects only a fraction of all tests.

3.5.4 RQ2: Time Overhead

While the number of selected tests is an important internal metric in RTS, the time taken
for testing is the relevant external metric because a developer using RTS perceives it based on
this time. We measure time from the point of view of a developer who commits/pushes some
code changes and then waits for test results before proceeding with other tasks. Specifically,
we follow the original Ekstazi experiments [69] and compare static and dynamic RTS in
terms of the end-to-end time that includes time to (1) analyze what tests should be run,
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Figure 3.3: Percentage of tests selected

(2) run those tests, and (3) collect dependencies for future RTS2. For any RTS technique to
be beneficial, this end-to-end time must be less than RetestAll time.
Table 3.2 summarizes the end-to-end times for static and dynamic RTS relative to RetestAll.

Columns Ekstazi (offline), Ekstazi (online), ClassSRTS (offline), ClassSRTS

2Note that the dependency collection time is not counted in the end-to-end time of the offline mode.
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Table 3.2: Summary of end-to-end testing time relative to RetestAll
Ekstazi Ekstazi ClassSRTS ClassSRTS MethSRTS

(offline) (online) (offline) (online)
Project min max avg min max avg min max avg min max avg min max avg
p1 92.4 132.7 115.5 88.1 147.3 126.2 72.4 113.8 102.9 75.7 130.9 114.8 215.1 520.8 390.5
p2 82.9 122.3 105.4 85.4 146.2 121.6 64.4 114.0 90.9 65.8 127.3 99.5 190.7 270.9 220.6
p3 74.9 122.6 103.0 76.4 139.0 113.9 65.0 109.6 91.8 64.3 124.5 97.8 130.7 284.4 227.7
p4 92.4 119.4 106.7 97.0 131.2 114.3 83.0 117.7 99.3 83.0 125.0 102.2 167.1 250.3 202.5
p5 81.2 112.8 101.4 87.2 129.1 106.2 73.7 116.7 94.5 80.7 116.9 97.7 156.9 282.9 231.7
p6 73.6 124.0 93.4 70.2 148.3 98.3 61.3 114.6 85.7 62.0 125.3 87.6 123.0 230.1 175.9
p7 71.5 107.0 88.9 75.3 114.4 95.0 62.2 97.9 77.5 61.2 106.2 82.9 131.9 15688.0 9305.2
p8 31.6 109.6 44.4 31.7 117.2 49.0 25.5 104.5 42.9 24.8 330.2 54.1 85.2 458.6 352.8
p9 41.7 93.2 56.4 45.4 96.0 58.2 35.6 80.7 49.6 36.0 91.9 51.3 92.6 258.3 166.9
p10 43.6 91.3 54.1 46.1 108.9 57.9 34.7 105.0 64.2 35.6 110.2 65.3 98.2 253.1 165.8
p11 29.5 99.4 49.9 28.3 103.2 50.1 24.4 105.9 44.8 23.5 105.6 47.1 51.7 155.6 86.5
p12 28.4 101.8 44.0 26.6 109.8 45.5 25.7 102.4 51.3 25.5 252.4 55.8 61.3 4675.5 2670.4
p13 29.4 74.7 44.7 30.6 83.0 47.6 25.2 99.2 55.6 25.9 103.5 57.1 58.7 444.2 316.8
p14 20.4 104.2 46.1 23.1 111.9 48.9 19.0 107.2 54.5 19.3 107.4 55.7 39.3 136.2 81.7
p15 6.5 104.7 26.4 6.7 107.5 27.0 5.6 104.9 26.0 5.6 103.4 26.1 12.4 123.8 57.3
p16 35.1 99.8 94.5 10.9 105.3 97.0 2.8 98.1 68.4 3.0 98.8 66.9 7.8 120.5 80.0
p17 4.1 96.6 19.9 4.1 109.6 21.3 3.4 94.9 22.0 3.4 96.4 22.3 9.7 113.4 46.2
p18 31.6 45.1 35.3 31.9 46.1 36.1 29.9 43.6 34.7 30.4 44.5 34.6 103.6 109.5 107.4
p19 10.9 69.4 17.8 11.3 96.7 20.6 9.6 97.5 19.4 9.7 98.0 19.9 21.9 187.1 112.1
p20 47.8 90.9 67.1 47.9 100.7 71.0 47.0 99.3 85.9 47.1 100.5 86.2 85.8 149.7 112.5
p21 1.1 101.5 52.4 1.1 101.8 52.5 0.9 100.7 59.8 0.8 100.8 59.7 2.2 102.6 68.2
p22 0.9 102.4 41.1 0.9 104.3 42.0 0.8 87.5 52.7 0.7 89.3 53.2 1.6 177.6 117.4
Average 42.3 101.2 64.0 42.1 111.7 68.2 35.1 100.7 62.5 35.6 122.2 65.3 84.0 1136.0 695.3

(online), and MethSRTS represent the time for Ekstazi in offline and online modes,
ClassSRTS in offline and online modes, and MethSRTS, respectively. The difference be-
tween the offline and online modes of ClassSRTS is explained in Section 3.4. For Ekstazi,
the online mode collects test dependencies during test runs on the new version, while the
offline mode collects them in a separate phase (hence, the results of test runs can be obtained
faster, but the overall machine time used is higher) [69]. For each technique, we show the
minimum, maximum, and average time relative to RetestAll. The last row shows the average
for each column.
The results show that ClassSRTS and Ekstazi both provide benefits over RetestAll (with

the average end-to-end time across all projects being 62.5% to 68.2% of the RetestAll time).
Comparing ClassSRTS and Ekstazi, we find them to be fairly similar in the respective modes.
Based on the average time, ClassSRTS slightly outperforms Ekstazi (62.5% to 64.0% in the
fastest, offline modes), but we do note that Ekstazi is implemented as a plugin for the
Maven build system [68], while our implementation for ClassSRTS is not yet available as
a Maven plugin. Therefore, Ekstazi analysis involves some overhead from Maven. (Both
ClassSRTS and Ekstazi actually run tests through Maven.) In brief, we find ClassSRTS and
Ekstazi to be equally good based on these experiments. In the future, we plan to perform a
deeper comparison, especially to determine how much the analysis performed by ClassSRTS
to select tests is faster than the dynamic analysis that Ekstazi uses, because Ekstazi tends
to select fewer tests to run than ClassSRTS, as seen in Section 3.5.3. For both ClassSRTS
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Table 3.3: Safety and precision violations of static RTS compared to Ekstazi
Safety Violation % Precision Violation %

ClassSRTS MethSRTS ClassSRTS MethSRTS
Project revs min max avg revs min max avg revs min max avg revs min max avg
p1 0.0 n/a n/a n/a 13.6 33.3 100.0 48.1 4.5 33.3 66.7 50.0 6.1 33.3 66.7 45.8
p2 0.0 n/a n/a n/a 76.7 11.1 100.0 40.6 9.3 6.7 75.0 42.3 67.4 15.4 80.0 57.5
p3 0.0 n/a n/a n/a 43.3 11.1 100.0 41.9 20.0 20.0 33.3 27.5 0.0 n/a n/a n/a
p4 0.0 n/a n/a n/a 4.0 16.7 16.7 16.7 16.0 5.9 90.9 61.7 42.0 4.3 80.0 36.4
p5 0.0 n/a n/a n/a 30.3 3.2 10.0 6.8 30.3 4.8 100.0 51.1 66.7 33.3 100.0 78.6
p6 0.0 n/a n/a n/a 0.0 n/a n/a n/a 22.2 14.3 16.7 16.3 29.6 50.0 58.3 57.8
p7 0.0 n/a n/a n/a 0.0 n/a n/a n/a 36.8 3.6 25.0 16.0 79.0 1.6 96.3 75.6
p8 0.0 n/a n/a n/a 0.0 n/a n/a n/a 16.9 42.9 100.0 72.9 13.6 81.6 97.4 92.8
p9 0.0 n/a n/a n/a 1.6 6.7 6.7 6.7 6.3 25.0 40.7 28.9 44.4 48.4 93.3 87.5
p10 0.0 n/a n/a n/a 8.3 50.0 50.0 50.0 41.7 28.3 64.8 53.9 50.0 71.9 100.0 78.9
p11 0.0 n/a n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a 26.1 20.0 71.4 42.3
p12 0.0 n/a n/a n/a 6.1 0.8 100.0 25.9 39.4 0.8 98.0 50.0 63.6 7.0 99.3 85.3
p13 0.0 n/a n/a n/a 16.4 5.9 15.4 11.3 49.2 6.7 96.3 54.9 83.6 55.6 97.0 80.2
p14 0.0 n/a n/a n/a 5.8 2.8 46.1 20.6 39.1 14.0 98.0 62.4 72.4 4.4 97.3 68.3
p15 0.0 n/a n/a n/a 0.0 n/a n/a n/a 16.1 7.1 40.0 26.2 41.9 3.6 91.7 65.8
p16 2.0 100.0 100.0 100.0 0.0 n/a n/a n/a 77.5 5.6 100.0 13.1 93.9 9.5 100.0 20.9
p17 0.0 n/a n/a n/a 12.2 2.7 24.2 8.4 14.3 20.0 56.8 33.3 75.5 4.1 95.0 76.0
p18 0.0 n/a n/a n/a 0.0 n/a n/a n/a 80.0 50.0 50.0 50.0 100.0 87.0 95.7 93.9
p19 1.8 50.0 50.0 50.0 5.3 2.3 7.0 3.9 17.5 35.5 100.0 61.2 79.0 50.2 100.0 92.6
p20 0.0 n/a n/a n/a 5.0 55.8 55.8 55.8 75.0 63.0 100.0 91.0 25.0 20.9 94.1 70.6
p21 0.0 n/a n/a n/a 0.0 n/a n/a n/a 51.0 15.4 92.3 31.9 68.6 15.4 88.9 55.0
p22 0.0 n/a n/a n/a 5.3 0.7 13.5 6.5 63.2 7.9 100.0 50.1 96.5 7.9 100.0 65.7
Average 0.2 6.8 6.8 6.8 10.6 9.2 29.3 15.6 33.0 18.7 70.2 42.9 55.7 28.4 86.5 64.9

and Ekstazi, comparing the offline and online modes shows that they do not differ much,
which means that the end-to-end time is, on average, dominated by the time taken to run
the selected tests, rather than by the times to either analyze what tests to run in the case of
ClassSRTS or to compute test dependencies in the case of Ekstazi. Finally, we observe that
MethSRTS is substantially slower, not only much worse than the other RTS techniques but
even worse than RetestAll. Overall, we find that static and dynamic RTS at the class-level
have comparable performance, while MethSRTS is effectively useless.
We also point out that RTS techniques provide more benefits for projects with longer-

running tests. Counting the number of projects in which some mode on average performs
worse than RetestAll (i.e., the AVG is over 100%), we see that ClassSRTS performs worse in
two projects, while Ekstazi performs worse in five projects. However, most of those projects
have shorter-running tests, with all five of these projects having tests that run in less than 5
seconds. For such projects, one can simply use RetestAll and not attempt any RTS. In fact,
we could have even removed from our evaluation such projects with short-running tests,
but we preferred to keep them to highlight that RTS is not appropriate in all cases. An
important point is that RTS techniques should be not only as fast as possible but also as
safe as possible—any RTS technique can be simply made faster by not selecting to run some
tests, but then it risks missing regressions.
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3.5.5 RQ3: Safety and Precision

We compare the safety and precision of ClassSRTS and MethSRTS with respect to Ekstazi,
because Ekstazi is a fairly safe and precise dynamic RTS technique [69]. Recall that a safe
RTS technique selects to run all tests that could change their behavior due to the code
changes between two versions and a precise RTS technique selects to run only the tests that
could change their behavior.
Table 3.3 shows a summary of safety and precision violations, computed as follows. Let E

be the set of tests selected by Ekstazi and T be the set of tests selected by another technique
on some version. Safety, respectively precision, violations are computed3 as |E \ T |/|E ∪ T |,
respectively |T \E|/|E∪T |, to measure how much a technique is less safe, respectively precise,
than Ekstazi; lower percentages are better. For each of the four combinations (of two types of
violations and two static RTS techniques), we tabulate four metrics: revs is the percentage of
all versions in which the technique was unsafe/imprecise (i.e., the percentage was not 0), and
MIN, MAX, and AVG are the minimum, maximum, and average, respectively, percentages
of tests missed (for safety) or selected extra (for precision). Intuitively, AVG captures how
bad the safety/precision violations are when they happen in a project. We use “n/a” when
there were no safety/precision violations for the project. The last row shows the average for
each column; we treat “n/a” as 0 when computing the overall averages.
Table 3.3 shows several interesting results. One surprising result for us is that ClassSRTS

was rarely unsafe. Only 2 projects had safety violations, averaging 0.2% across all versions
of all projects evaluated. (Some example safety violations are discussed in Section 3.6.)
Moreover, we found that MethSRTS is both less safe and less precise than ClassSRTS, i.e.,
method-level static RTS is much less effective than class-level static RTS. On average, across
all 22 projects, the percentages of versions in which ClassSRTS incurs safety violations and
precision violations are 0.2% and 33.0%, respectively. For MethSRTS, these percentages
increase to 10.6% and 55.7%, respectively (10.4 and 22.7 percentage points more unsafe and
imprecise, respectively, than ClassSRTS). ClassSRTS is also more effective than MethSRTS
in terms of number of projects with safety violations: 2 projects for ClassSRTS vs. 14 projects
for MethSRTS. (The number of projects with a precision violation is the same, 21, for both
techniques.) Comparing the MIN, MAX, and AVG values shows the same trend, i.e., when
there is a safety or precision violation, MethSRTS is more unsafe or imprecise.

3We consider the union of tests selected by both Ekstazi and the technique to avoid division by zero in
cases where Ekstazi does not select any test but a static RTS technique selects some tests.
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Table 3.4: Impacts of different call-graph analyses on MethSRTS
Tests Selected % Safety Violation % Precision Violation % Time %

Project CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA
p1 74.8 74.0 70.7 70.7 48.1 48.1 48.1 48.1 45.0 44.4 45.8 45.8 777.8 493.7 390.5 387.2
p2 27.8 21.9 21.9 21.9 40.5 40.6 40.6 40.6 61.0 57.5 57.5 57.5 515.2 280.6 220.6 222.1
p3 39.7 32.7 29.4 29.4 75.0 47.5 41.9 41.9 19.7 30.0 n/a n/a 571.2 571.5 227.7 237.6
p4 44.7 40.8 39.0 38.7 16.7 16.7 16.7 15.0 39.8 35.8 36.4 36.1 441.8 257.5 202.5 203.3
p5 68.9 68.8 59.8 59.8 n/a n/a 6.8 6.8 75.0 75.1 78.6 78.6 484.9 346.4 231.7 247.6
p6 35.8 34.0 34.0 34.0 n/a n/a n/a n/a 60.3 57.8 57.8 57.8 263.5 193.3 175.9 176.0
p7 52.4 50.6 58.1 58.1 n/a n/a n/a n/a 72.2 71.2 75.6 75.6 661.0 659.8 9305.2 121213.1
p8 25.4 23.7 15.5 10.3 n/a n/a n/a 71.4 94.8 94.5 92.8 93.0 470.5 403.8 352.8 427.5
p9 21.6 21.6 15.8 15.8 n/a n/a 6.7 5.0 90.0 90.0 87.5 87.5 435.9 231.5 166.9 167.1
p10 35.8 35.8 35.8 35.8 50.0 50.0 50.0 50.0 78.9 78.9 78.9 78.9 378.5 237.0 165.8 169.6
p11 15.3 15.3 15.1 14.6 n/a n/a n/a 11.1 42.9 42.9 42.3 42.3 143.2 100.6 86.5 86.3
p12 61.0 61.0 59.0 59.0 50.8 50.8 25.9 25.9 85.4 85.4 85.3 85.3 496.5 395.1 2670.4 416.1
p13 61.2 61.2 51.3 51.1 13.9 13.9 11.3 11.6 82.5 82.5 80.2 79.8 880.1 713.6 316.8 235.6
p14 40.9 40.9 40.0 40.0 20.6 20.6 20.6 20.6 68.7 68.7 68.3 68.3 109.5 88.1 81.7 82.4
p15 36.6 36.6 36.6 36.6 n/a n/a n/a n/a 65.8 65.8 65.8 65.8 69.1 61.1 57.3 59.0
p16 98.1 100.0 96.5 93.0 94.1 n/a n/a 12.5 24.4 24.3 20.9 23.4 121.8 125.6 80.0 79.4
p17 37.7 37.2 18.2 18.2 n/a n/a 8.4 8.4 86.1 85.5 76.0 76.0 113.5 85.8 46.2 47.3
p18 95.8 95.8 95.8 95.8 n/a n/a n/a n/a 93.9 93.9 93.9 93.9 134.1 131.0 107.4 106.3
p19 36.0 35.8 28.9 28.9 n/a n/a 3.9 3.9 94.4 94.4 92.6 92.5 356.3 267.2 112.1 107.7
p20 31.4 31.4 17.5 17.5 n/a n/a 55.8 58.1 89.2 89.2 70.6 70.6 158.2 194.1 112.5 128.6
p21 61.4 61.4 57.1 57.1 n/a n/a n/a n/a 58.6 58.6 55.0 55.0 73.3 70.7 68.2 67.8
p22 71.7 71.4 67.8 67.8 7.1 6.5 6.5 6.5 66.0 65.8 65.7 65.7 118.1 112.0 117.4 107.1
Average 48.8 47.8 43.8 43.4 18.9 13.4 15.6 19.9 67.9 67.8 64.9 65.0 353.4 273.6 695.3 5680.7

3.5.6 RQ4: MethSRTS Variants

Impacts of call-graph analyses: Table 3.4 summarizes the results comparing different
call-graph analyses for MethSRTS. For each analysis, columns 2–5 present the average per-
centage of tests selected for all versions in each project, while columns 6–9/10–13/14–17
present the safety/precision/overhead information. From the table, we observe three things.
First, in general, more precise call-graph analyses tend to select fewer tests. For example, on
average, CHA selects 48.8% of tests, while 0-1-CFA selects 43.4% of tests. This is because
some changed nodes may be reachable from tests in imprecise call graphs but not reachable
in precise call graphs. Second, there is no clear trend for safety issues because the precision
of call-graph analyses does not directly impact the soundness of the constructed call graphs;
instead, the safety issues are usually due to reflection and library exclusion. Third, although
0-1-CFA has a much higher time overhead, it has similar precision with 0-CFA while being
the most unsafe of all the four variants. 0-1-CFA is very expensive because it spends a
lot of time to approximate possible runtime types of the receiver object for each method
invocation [200]. Comparing 0-CFA and 0-1-CFA, 0-CFA has much fewer safety issues and
lower overhead; comparing CHA and RTA, RTA has much fewer safety issues and lower
overhead. Therefore, 0-CFA (also suggested by WALA developers) and RTA seem to be the
most suitable for MethSRTS.
Impacts of library exclusion: To study the impacts of analyzing library code, for each
project, we ran WALA with and without library exclusion on only one randomly selected
version pair. We do not run for all versions, because analysis without library exclusion is
quite slow. We set a timeout of 3 hours for each version pair. The results are shown in
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Table 3.5: Impacts of library exclusion on MethSRTS (only one version pair,
not all pairs, per project)

Tests Selected % Safety Violation % Precision Violation % Time %
exclusion no exclusion exclusion no exclusion exclusion no exclusion exclusion no exclusion

Project CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA
p1 100.0 100.0 100.0 100.0 n/a n/a n/a n/a n/a n/a n/a n/a 450.0 370.8 5550.0 81304.2
p2 0.0 0.0 100.0 100.0 n/a n/a n/a n/a n/a n/a 100.0 100.0 478.1 237.5 5475.0 97087.5
p3 33.3 0.0 66.7 66.7 50.0 100.0 n/a n/a n/a n/a n/a n/a 678.1 609.4 5271.9 73028.1
p4 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 4.3 4.3 4.3 4.3 627.0 316.2 6573.0 71027.0
p5 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 81.8 81.8 81.8 81.8 474.5 333.3 4452.9 53649.0
p6 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 50.0 50.0 50.0 50.0 402.1 261.7 3542.6 47459.6
p7 44.3 44.3 44.3 44.3 n/a n/a n/a n/a 96.3 96.3 96.3 96.3 600.0 585.5 4960.0 65352.7
p8 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 97.4 97.4 97.4 97.4 566.1 496.6 3819.1 54051.5
p9 97.8 97.8 97.8 97.8 n/a n/a n/a n/a 88.9 88.9 88.9 88.9 501.9 226.0 4018.3 34651.0
p10 1.2 1.2 1.2 1.2 n/a n/a n/a n/a n/a n/a n/a n/a 437.1 243.8 3788.6 34364.8
p11 41.2 41.2 41.2 41.2 n/a n/a n/a n/a 42.9 42.9 42.9 42.9 204.6 122.9 1681.7 20593.1
p12 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 64.8 64.8 64.8 64.8 678.4 553.8 3670.8 32296.5
p13 98.5 98.5 98.5 DNF n/a n/a n/a DNF 48.1 48.1 48.1 DNF 958.1 752.1 6385.5 DNF
p14 13.5 13.5 13.5 13.5 n/a n/a n/a n/a 71.4 71.4 71.4 71.4 80.8 61.5 595.3 7551.1
p15 96.3 96.3 96.3 96.3 n/a n/a n/a n/a n/a n/a n/a n/a 157.4 136.1 507.0 5935.8
p17 97.7 97.7 97.7 97.7 n/a n/a n/a n/a 67.4 67.4 67.4 67.4 181.8 151.7 758.8 6142.2
p19 100.0 100.0 100.0 DNF n/a n/a n/a DNF 94.2 94.2 94.2 DNF 527.3 422.4 2527.9 DNF
p21 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 44.4 44.4 44.4 44.4 108.1 104.0 181.7 1106.3
p22 58.0 58.0 58.0 58.0 n/a n/a n/a n/a 50.0 50.0 50.0 50.0 140.8 130.3 586.5 4919.1
Average 72.7 71.0 79.8 77.5 2.6 5.3 n/a n/a 47.5 47.5 52.7 50.6 434.3 321.9 3386.7 36343.1

Table 3.5, where “DNF” means that the run timed out. (Note that the corresponding times
in tables 3.5 and 3.4 do not match because Table 3.5 is for only one version pair for each
project.) 0-CFA and 0-1-CFA timed out for all projects without library exclusion, so we
do not show them. Additionally, the analyses failed due to memory constraints for three
projects (p16, p18, and p20); we do not show these rows. From the results in Table 3.5, we
observe two things. First, without library exclusion, the more expensive and precise RTA
analysis does not pay off—RTA selects the same number of tests as the less expensive CHA
in all cases, for projects where neither analyses timed out. Second, the analysis overhead
relative to RetestAll is much higher without library exclusion than with library exclusion. For
commons-math (p19), CHA overhead is 2527.9% without library exclusion but 527.3% with
library exclusion because without library exclusion, 33,770 more classes need to be analyzed
for this project. The analysis time for RTA is even higher without library exclusion. In p19,
the RTA times out. RTA has such a high overhead because it spends significant time to
compute the sets for approximating potential runtime types of the receiver object for every
method invocation [200]. Overall, these results demonstrate that call-graph analyses without
library exclusion are not practical for static RTS due to the high cost and precision issues.
In fact, method-level static RTS unfortunately appears impractical in all configurations.

3.6 QUALITATIVE ANALYSIS

We discuss safety and precision violations; cases where static RTS does not select some
test(s) that Ekstazi selects or selects some test(s) that Ekstazi does not select. An unsafe RTS
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technique is bad in a non-obvious way—it can be deceivingly fast but risk missing regressions.
Our analysis of safety violations identifies some cases where static RTS techniques were
unsafe in our experiments. In contrast, an imprecise RTS technique is bad in an obvious
way; the imprecision is reflected in the end-to-end time. These cases show current limitations
of static analysis for RTS and can provide insight on improving static RTS in the future.

3.6.1 Safety Violations of Static RTS

Safety violations due to reflection.: In commons-math, between versions 2773215 and
c246b37, ClassSRTS and MethSRTS miss to select nine tests that Ekstazi selects. The
relevant change is to the abstract class AbstractFieldIntegrator, extended by several
∗FieldIntegrator classes (e.g., ClassicalRungeKuttaFieldIntegrator) that are defi-
nitely affected by the change. All techniques do select multiple tests, such as Classi

calRungeKuttaFieldIntegratorTest. The nine additional tests that only Ekstazi se-
lects are in ∗FieldStepInterpolatorTest classes (e.g., ClassicalRungeKuttaFieldStep

InterpolatorTest) that extend AbstractRungeKuttaFieldStepInterpolatorTest. As
shown in Figure 3.4, ClassicalRungeKuttaFieldStepInterpolatorTest invokes the method
doInterpolationAtBounds in AbstractRungeKuttaFieldStepInterpolatorTest that in-
vokes setUpInterpolator, which in turn invokes createButcherArrayProvider in the
same class. The latter method (red dashed box) gets ∗FieldStepInterpolator instances,
replaces "StepInterpolator" with "Integrator", and uses reflection to create the new
∗FieldIntegrator instance. ClassSRTS and MethSRTS are unsafe because they do not
detect the potential use edge (red dashed arrow) due to reflection, and do not select re-
lated tests. In contrast, Ekstazi tracks the precise class dependencies, even in the presence
of reflection, and detects that the ∗FieldStepInterpolatorTest instances depend on the
corresponding ∗FieldIntegrator instances.
Safety violation due to library exclusion: In compile-testing, between versions
8d5229e and 40c141b, both Ekstazi and ClassSRTS select the same two tests, but Meth-
SRTS with library exclusion is unsafe and selects no test. The relevant code change is to
the class Compilation. As shown in Figure 3.5, test JavaSourcesSubjectFactoryTest can
reach method compile in the changed class Compilation (marked in gray). The underlined
statement in JavaSourcesSubjectFactoryTest invokes methods on ASSERT, a class in the
third-party library truth. When third-party libraries are excluded from call-graph analysis,
MethSRTS does not analyze the underlined statement and fails to select the test.
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abstract class AbstractRungeKuttaFieldStepInterpolatorTest: 
private <T extends RealFieldElement<T>> RungeKuttaFieldStepInterpolator<T> setUpInterpolator 
(…) {  
  RungeKuttaFieldStepInterpolator<T> i = createInterpolator(f, t1 > t0, new 
FEODE<T>(eqn).getMapper());  
  FieldButcherArrayProvider<T> p = createButcherArrayProvider(f, i);  
  …} 
private <T extends RealFieldElement<T>> FieldButcherArrayProvider<T> 
createButcherArrayProvider(Field<T> f, RungeKuttaFieldStepInterpolator p){  
  FieldButcherArrayProvider<T> integrator = null;  
  ...  
  String ipolName = p.getClass().getName();  
  String integ = ipolName.replaceAll("StepInterpolator", "Integrator");  
  integ = clz.getConstructor(...).newInstance(f, f.getOne());  
  ... }  
protected <T extends RealFieldElement<T>> void doInterpolationAtBounds(Field<T> f, double 
epsilon) {  
  RungeKuttaFieldStepInterpolator<T> ipol= setUpInterpolator(f, new SinCos<T>(f), 0.0, new 
double[] { 0.0, 1.0 }, 0.125);  
   …}

u

class ClassicalRungKuttaFieldStepInterpolatorTest extends 
AbstractRungeKuttaFieldStepInterpolatorTest: 
… 
@Test public void interpolationAtBounds() {  
  doInterpolationAtBounds(Decimal64Field.getInstance(), 1.0e-15);}  
…

u

u

class 
ClassicalRungKuttaFieldIntegrator 
extends AbstractFieldInterpolator: 
…

abstract class 
AbstractFieldIntegrator: 
…

i

u

u
i

use
inheritance

Figure 3.4: ClassSRTS safety violation due to reflection

call edge

call edge
transitive call edge

public class JavaSourcesSubjectFactoryTest  
public void invokesMultipleProcesors_asIterable() {  
…  
  ASSERT.about(javaSource()).that(JavaFileObjects.forResource(“HelloWorld.java")) 
.processedWith(Arrays.asList(noopProcessor1, noopProcessor2)).compilesWithoutError();  
…}

final class CompilationClause implements CompileTester  
public SuccessfulCompilationClause compilesWithoutError()

final class Compilation 
static Result compile(Iterable<? extends Processor> 
processors, Iterable<? extends JavaFileObject> sources) 

Figure 3.5: Safety violation due to third-party library exclusion (MethSRTS)

3.6.2 Precision Violations of Static RTS

Imprecision due to class-level analysis: In asterisk-java, between versions 166f2

93 and d6bfce1, Ekstazi selects four tests, while ClassSRTS selects four additional tests
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due to the imprecision of analyzing at the class level. The setup method of AsteriskAg
entImplTest calls new AsteriskServerImpl(). The method onManagerEvent in the class
AsteriskServerImpl contains checks for the type of event, e.g., if (event instanceof

AgentCalledEvent). Therefore, ClassSRTS finds a transitive static dependency of Ast

eriskAgentImplTest on AgentCalledEvent, which changed between the mentioned ver-
sions. However, the actual run of AsteriskAgentImplTest never invokes onManagerEvent

in AsteriskServerImpl (the relevant conditional is never executed), and Ekstazi correctly
does not track this dependency.

class ManagerConnectionImplTest:  
@Test public void testRegisterUserEventClass() {  
  ManagerReader mgrR; 
  mgrR = createMock(ManagerReader.class); 
  mc = new MockedManagerConnectionImpl(mgrR,   mW, mS);  
  mc.registerUserEventClass(...); 
  assertEquals("...", 1, mc.createReaderCalls);  
} 

class MockedManagerConnectionImpl 
extends ManagerConnectionImpl:  
public int createReaderCalls = 0;  
public MockedManagerConnectionImpl(mR, mW, 
mS){  
  this.mR = mR; this.mW = mW; this.mS = mS; }  
@Override protected ManagerReader 
createReader(…){  
  createReaderCalls++; return mR; } 

class ManagerConnectionImpl:  
private ManagerReader reader; 
protected ManagerReader createReader(...) {  
  return new ManagerReaderImpl(...); }  
public void registerUserEventClass(...) {  
  if (reader == null) { reader = createReader(...); }  
} 

class ManagerReaderImpl: 
private final EventBuilder eventBuilder;  
public ManagerReaderImpl(...) {  
  this.eventBuilder = new EventBuilderImpl();  
  ...  
} 

class EventBuilderImpl: 
…

u

i
u

u

X
u
i

use
inheritance

Figure 3.6: ClassSRTS precision violation due to dynamic dispatch

Imprecision due to dynamic dispatch: For the same asterisk-java versions, Fig-
ure 3.6 shows simplified code for a case where ClassSRTS finds a false transitive depen-
dency of the test ManagerConnectionImplTest on the changed class EventBuilderImpl

(marked in gray) due to dynamic dispatch. ManagerConnectionImplTest uses MockedMa

nagerConnectionImpl that extends ManagerConnectionImpl and overrides createReader.
ManagerConnectionImpl uses class ManagerReaderImpl which in turn uses the changed class
EventBuilderImpl. Therefore, ClassSRTS finds that ManagerConnectionImplTest depends
on the changed class. However, during the test run, when ManagerConnectionImplTest

invokes ManagerConnectionImpl.registerUserEventClass to check how many times the
createReader is called, the overriding method createReader in MockedManagerConnection

Impl is executed instead of createReader in the parent class. The use edge from ManagerC

onnectionImpl.createReader to ManagerReaderImpl is never executed and should not be
considered (the red cross), i.e., the edge exists statically but not dynamically as ManagerC
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onnectionImpl.createReader is never executed. In brief, ClassSRTS has this imprecision
due to dynamic dispatch.

call edge
transitive call edge

X

public class FileItemHeadersTest  
public void testFileItemHeaders()

public class DiskFileItem  
public String toString()

final class Streams 
public static String checkFileName(String fileName) 

org.junit.Assert 
static void assertEquals(Object expected, Object actual) 

java.util.Formatter$FormatSpecifier 
private void printString(Object arg, Locale l) throws IOException { 
…print(arg.toString());…  
}

Figure 3.7: MethSRTS precision violation due to dynamic dispatch

Compared with ClassSRTS, MethSRTS is even less precise in identifying potential targets
for dynamic dispatch. For example, between versions 1460430 and 1475836 of commons-

fileupload, while Ekstazi and ClassSRTS select 6 and 7 tests, respectively, MethSRTS
selects all 12 tests. Figure 3.7 shows a simplified call graph for FileItemHeadersTest which
invokes JUnit’s assertEquals, which, in turn, transitively invokes printString in library
class FormatSpecifier. To resolve toString in FormatSpecifier, even the most advanced
0-1-CFA cannot precisely determine the runtime type of the Object receiver. So, all classes
overriding Object.toString are potential targets including DiskFileItem.toString which
transitively invokes a method in the changed class Streams (in gray). This example, as the
one in Section 3.3.3, shows ClassSRTS is more precise because any possible runtime object
type has to be referenced by a test to instantiate it.

3.7 THREATS TO VALIDITY

Internal: Our static RTS prototypes and scripts for running experiments may contain
bugs. To mitigate risks, we use well-known libraries, e.g., ASM and WALA. We also wrote
unit tests to check basic functionality, and we implemented some sanity checks for numbers
generated from scripts, e.g., we check that the offline and online variants of both ClassSRTS
and Ekstazi select the same tests.
External: The projects in our study may not be representative, so our results may not
generalize. To address this, we used 985 versions from 22 open-source projects varying in
size, application domain, number of tests, and test-suite running time. However, all our
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projects are single-module Maven projects. The results could differ for bigger, multi-module
Maven projects, but we expect that these results could show RTS to be even better as we
generally find RTS to be more effective for projects with longer-running tests.
Construct: We chose Ekstazi as the ground truth against which to evaluate static RTS
techniques. Ekstazi is a state-of-the-art, publicly available tool for dynamic RTS, but may
still not represent the ground truth for all RTS.

3.8 SUMMARY

This chapter presented our implementation of several variants of two change-impact anal-
yses and their evaluation in the context of RTS. ClassSRTS, based on class-level change-
impact analysis, outperforms MethSRTS, based on method-level change-impact analysis,
and ClassSRTS performs similarly as dynamic RTS. The next chapter describes STARTS,
our tool for ClassSRTS, whose efficient change-impact analysis is a central component of
evolution-aware RV techniques (Chapter 5). We also use STARTS for comparing and com-
bining evolution-aware RV techniques with RTS.
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CHAPTER 4: STARTS: CHANGE-IMPACT ANALYSIS AND RTS TOOL

We present STARTS, a tool for static change-impact analysis and STAtic Regression T est
Selection. In Chapter 3, we used a prototype tool to evaluate static change-impact analysis
at different granularity levels in the context of RTS. The results show that (1) static RTS
which uses a class-level change-impact analysis significantly outperforms static RTS which
uses a method-level change-impact analysis, and (2) static RTS which uses a class-level static
change-impact analysis performs comparably with the state-of-the-art dynamic RTS tool,
Ekstazi [68, 69]. The results are encouraging, showing that static class-level change-impact
analysis can be a core component of evolution-aware RV techniques (as we show Chapter 5).
The results also show that static RTS is practical and worthy of further research.
The STARTS tool that we present in this chapter is a robust, publicly-available tool

for performing static change-impact analysis and static RTS. STARTS constructs a class-
level dependency graph relating all types (including classes, interfaces, and enums) in an
application and computes a transitive closure for each type to find what are its dependencies.
In STARTS, static RTS is a special case of change-impact analysis where the only types
whose transitive closure are computed are the test classes, and the result of the transitive
closure computation are the dependencies of each test class. STARTS determines the types
that changed by computing the checksum of each type’s corresponding compiled classfile
(.class file) and comparing the computed checksum with the one that was computed in
the prior version. In the change-impact analysis mode, STARTS returns all types with a
changed dependency as impacted by the changes. In the RTS mode, STARTS selects to run
impacted tests, which are tests whose transitive dependencies include a changed type.
Summary of Changes to the Initial Prototype: We made several improvements to
our initial prototype [117] to make STARTS more robust and usable on real, large software
projects. We added support for multi-module Maven projects and made several optimiza-
tions to make STARTS faster, including parsing only constant pools instead of entire class-
files, saving dependencies as a type-to-dependencies map instead of a dependency-to-types
map, using graph library with faster transitive closure computation (yasgl [213], instead of
JGraphT [97]), and incrementally caching dependencies.
Evaluation and Publicly-Available Artifacts: We evaluated STARTS on 32 Maven-
based projects from GitHub. We find that STARTS selects on average 35.2% of all tests,
leading to an end-to-end runtime (consisting of the time to select what tests to run plus time
to run those tests) that is 81.0% of RetestAll time to run all tests. STARTS scales well,
and for 11 projects with longer-running tests that take over one minute to run, STARTS
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selects on average 40.5% of all tests, leading to an end-to-end runtime that is only 68.2% of
RetestAll time. STARTS source code is publicly available on GitHub at https://github.
com/TestingResearchIllinois/starts and binary code is released on Maven Central. A
video demo of STARTS can be found at https://youtu.be/PCNtk8jphrM.

4.1 USAGE

In this section, we describe how developers can integrate and use STARTS in their projects,
as well as how to download and install from source. STARTS is a Maven plugin [137] and
can be easily integrated with any Maven-based Java project.

Integrating STARTS. The easiest way to integrate STARTS with a project is to add the
latest version of the STARTS plugin from Maven Central to the project’s pom.xml file:

<plugin>
<groupId>edu.illinois</groupId>
<artifactId>starts−maven−plugin</artifactId>
<version>${latest_STARTS_version}</version>

</plugin>

Detailed instructions, with example, for integrating STARTS into a Maven project can be
found in the README.md file at the root of the STARTS repository [191].

Installing STARTS from source. The STARTS source code GitHub [191] can be installed
by running the following command from the cloned STARTS directory:

$ mvn install

Using STARTS. Developers can use STARTS to perform several tasks: (1) finding types
that changed semantically at the bytecode level (2) performing change-impact analysis (i.e.,
finding types that are impacted by the changes), (3) finding tests that are impacted by the
changes without running those tests, and (4) finding and running tests that are impacted by
the changes. To achieve these tasks, developers can invoke several STARTS Maven goals:

$ mvn starts:help # list all goals
$ mvn starts:diff # find types that changed semantically
$ mvn starts:impacted # find types impacted by changes (change−impact analysis mode)
$ mvn starts:select # find (but not run) impacted tests
$ mvn starts:starts # find and run impacted tests (RTS mode)
$ mvn starts:clean # delete STARTS artifacts
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The first goal, starts:help, lists all the Maven goals in STARTS and what they can be
used for. The other five goals are related to change-impact analysis and RTS. starts:diff
displays all the Java types (including classes, interfaces, and enums) that changed since
the last time STARTS was run. starts:impacted runs STARTS in change-impact anal-
ysis mode; it displays all types (not just test classes) that are impacted by the changes.
starts:select displays, but does not run, the test classes that are impacted by the changes
since the last time STARTS was run, where the display can be to screen or to file—allowing
developers more flexibility in their test selection process, to first select impacted tests and
then run those tests later. starts:starts runs the impacted tests; it performs the functions
of the previous goals (except starts:help), plus execution of the impacted tests. Finally,
starts:clean removes all artifacts that STARTS stored from a previous run (in a .starts

directory), resetting STARTS so that in the next run, all types are considered changed (and
all tests are selected to be run, if using starts:starts).
STARTS provides several options that give some flexibility to the user. The most impor-

tant option is whether or not to update the STARTS artifacts after invoking a goal. As
described in Section 4.2.2, STARTS keeps track of the checksums of all types from the pre-
vious run, storing them to disk and using them in the new run to find impacted types/tests.
All goals for change-impact analysis and RTS in STARTS provide an update∗Checksums

option, which, when true, updates the stored checksums after a run. This option is set to
true by default for the starts:starts goal, but is false by default for all other goals.

4.2 TECHNIQUE AND IMPLEMENTATION

We describe the technique implemented in STARTS and the STARTS Maven plugin.

4.2.1 Technique

STARTS performs static change-impact analysis and static RTS at the class level—
impacted types (respectively, tests) are selected at the class (not method) level and the
dependencies of these types (respectively, tests) are also computed at the class/type level.
Our recent work [117], discussed in Chapter 3, showed that static RTS based on class-
level change-impact analysis outperformed static RTS based on method-level change-impact
analysis and was comparable with the state-of-the-art class-level dynamic RTS technique
Ekstazi [69]. Thus, we implemented STARTS to perform class-level change-impact analysis
and static RTS, based on the idea of a class firewall [107,125,149], which encloses impacted
types that need to be retested and tests that need to be rerun because they may behave
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Figure 4.1: STARTS Architecture

differently after code changes. The class firewall is computed on an intertype relationship
graph (IRG) where each node is a type (i.e., class, interface, enum, etc) in the application
and there is a directed edge from one type τ to another type τ ′ if τ has a direct use or
inheritance dependency on τ ′. Test class nodes are also included in the IRG. If τc is a type
that changed, then τ is impacted by the change to τc iff 〈τ, τc〉 ∈ E∗, where E is the set
of all edges in the IRG, and ∗ denotes the reflexive and transitive closure. The class fire-
wall is the set of all types that can transitively reach any of the types that changed in the
IRG, and can therefore be defined as firewall(Tc) = Tc ◦ (E−1)∗, where Tc is the set of
all types that changed, −1 denotes the inverse relation, and ◦ denotes relation composition.
Given (1) classfiles for all types (obtained from compiling a new version) in an application
and (2) checksums of classfiles from a prior version, STARTS can output the set of changed
types (Tc), the class firewall (firewall(Tc)), and Ti, the set of impacted tests. Ti is computed
as the set difference between the set of all tests in the new version and the set of tests that
are not in firewall(Tc) (which is computed from the old version). We compute Ti this way
to include any newly-added tests while still using the IRG computed on the old version.

4.2.2 Implementation

Figure 4.1 shows the STARTS architecture, containing components to: (1) find dependen-
cies among types in the application, (2) construct the IRG, (3) find changed types between
two versions of the application, (4) store checksums of all types from the current version,
(5) select the tests impacted by the changed types, and (6) run impacted tests.
Finding Dependencies Among Types. STARTS needs to compute the dependencies
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among all types in the application. The prototype in our prior work [117], discussed in
Section 3.4, used ASM to parse all the bytecode in the compiled classfile of a given type
in order to compute its dependencies. However, parsing entire classfiles just to find depen-
dencies is rather slow because it requires to recursively visit each type’s fields, methods,
signatures, and annotations to collect all the types that are referenced. STARTS improves
on computing dependencies among types by only reading the constant pool in each classfile
to determine all types that the type in the classfile may depend on. We use the recent Oracle
jdeps tool [95], now part of the standard Java library, to read the constant pools. After the
new version of an application has been compiled to produce classfiles, STARTS makes a
single jdeps invocation (via the jdeps API) to parse all classfiles in the application at once,
and then processes the jdeps output in memory to find the dependencies for each type.
Constructing the Dependency Graph. The IRG contains an edge from one type to each
of its dependencies. We use a custom graph library called yasgl [213] to construct graphs
and to find tests that can transitively reach some changed type. We add each type as a
node in a yasgl graph and add dependencies computed by jdeps as edges between nodes in
the graph. With a yasgl graph, STARTS computes the transitive closure of each test class
to find all types that each test depends on. Our initial prototype [117] used JGraphT [97],
but yasgl is faster for computing the transitive closure. For example, yasgl takes 1.4 sec
to compute the transitive closure for a graph with 41,960 nodes and 509,946 edges (coming
from a single module of a project with 110 test classes). JGraphT takes 2.7 sec to compute
the same transitive closure, a difference that accumulates when considering all the modules
in the project. Note that the yasgl IRG that STARTS uses does not distinguish between use
edges and inheritance edges, as done in our initial prototype and in prior work [149].
Finding Changed Types. STARTS finds the types that changed since the last time it
was run. STARTS uses the same checksum function from Ekstazi [68, 69] to compute a
checksum that ignores debug-related information for each classfile and stores that checksum
to a file. STARTS tracks changes in classfiles because the corresponding source file can be
different yet result in the same classfile that is actually executed, so tracking classfiles is
more precise. Also, STARTS uses checksums for checking whether a classfile is modified
instead of seemingly faster methods like timestamps, which can be unreliable (e.g., Maven’s
incremental build system is broken [135] and often recompiles every type on each run, so one
cannot rely on the timestamps of the classfiles). Once compilation is complete in the new
version, STARTS computes the checksums of all compiled classfiles and compares against
the stored checksums computed from the previous version for each file. If the old and
new checksums differ, STARTS considers that type to have changed. If the type had no
previously computed checksum (i.e., a new type was added), its checksum is stored for
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future runs. Finally, if a type for which STARTS previously computed a checksum cannot
be found in the new version (i.e., an old type was deleted), then that type is no longer stored
in the checksum file for future runs. If there is no checksum file on disk (e.g., on the very
first run, or after running mvn starts:clean), STARTS considers all types as changed.
Computing and Storing Checksums. In our initial prototype [117], as well as in Ekstazi,
the transitive closure of each test class in the graph was stored as a mapping from each test
class to its dependencies, i.e., a test-to-types mapping. Further, there was one dependency file
per test. Once a tool computed the set of types that changed, it then checked the dependency
file of each test to see if the test depends on any of the changed types. However, we
observed that STARTS discovers many more test dependencies than Ekstazi, due to inherent
imprecision of static analysis, and that many tests shared a lot of these dependencies. As
a result, we reversed the dependency storage format in STARTS to reduce the amount of
repetitive checking of test dependencies by storing a type-to-tests mapping. STARTS stores
in a single file a mapping from each type in the application to the set of tests that depend
on that type. This file is stored in a directory called .starts under the root directory of
the application. More precisely, if the application is a multi-module Maven-based project,
STARTS creates multiple .starts directories, each with its own type-to-tests-mapping file,
under each module, and the types may span across modules if that is where the dependencies
lead. Updating the checksums that are stored on disk after invoking a STARTS goal on a
new version can be turned on or off, as described in Section 4.1.
The type-to-tests storage format that STARTS uses, together with processing only one

file on disk, greatly improves the performance of selecting impacted tests. For example, in
one project, STARTS takes 22.9 sec to check if any of the dependencies changed when using
the type-to-tests, single-file format, but the same check takes 79.8 sec with Ekstazi’s test-
to-types, multiple-files format. One possible modification of the test-to-types format could
be to first read all the files and then reverse the mapping (in memory) to be from type to
tests before comparing checksums. However, this modification would still incur the cost of
reading potentially many files from disk and it would put the mapping-reversal process on
the critical path from when testing is initiated until developers obtain test results—mapping
reversal in STARTS can happen in a separate offline phase that is not on the critical path.
Selecting Impacted Tests. STARTS uses the type-to-tests dependency mapping from the
previous version and the set of all changed types to find the tests that are not impacted
by changes. STARTS then computes the impacted tests as the difference between the set of
all tests in the current version and the set of non-impacted tests. Thus, newly-added tests
are always in the set of impacted tests. Dependency graph construction on the new version
is not required to find impacted tests (allowing quicker computation of impacted tests).
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Rather, STARTS reads the type-to-tests dependency file which was computed based on the
dependency graph constructed in the previous version. The fact that STARTS requires
only compile-time information to find impacted tests can allow a clean separation of phases:
an analysis phase ( a) finds changes and impacted tests, an execution phase ( e) runs the
impacted tests, and a graph computation phase ( g) builds the dependency graph and uses
it to create a type-to-tests mapping for the next version1. This separation can enable the
choice to run STARTS in an “online mode” (the a, e, and g phases are run together) or an
“offline mode” (the a and e phases can run separately from or in parallel with the g phase).
We did not yet implement goals to toggle the online/offline modes, but report times for
offline mode as the time for online mode minus the time for the g phase. starts:select

displays the impacted tests but does not run them.
Running Impacted Tests. STARTS computes the set of selected tests to run as previ-
ously described: it excludes non-impacted tests from the set of all tests in the application.
Specifically, STARTS dynamically adds the non-impacted tests to the set of tests that Sure-
fire plugin is already configured to not run. As a result, when STARTS invokes the Maven
Surefire plugin to run the tests, Surefire will run only the tests that are impacted by the
changes. The goal starts:starts will perform all the previous steps to find changed types,
select impacted tests, and run those selected tests.

4.2.3 Important STARTS Options

STARTS provides a number of other options, in addition to turning on/off the checksum
file updates (Section 4.1).
Caching jdeps output. One consideration in the design of STARTS is how to handle the
output of running jdeps on third-party libraries (JARs). Many projects do not frequently
change their library versions and using jdeps to parse the library code on each version would
needlessly repeat work. STARTS therefore provides options to (1) use a preprocessed cache,
(2) incrementally build the cache on each version, and (3) parse the third-party libraries on
each version. The default is to incrementally build the cache on each version. When STARTS
encounters a JAR in the application’s classpath, it first checks whether a corresponding
jdeps output file exists in the jdeps-cache directory, which is found in each module of the
application. If there is one, STARTS reads it; otherwise, STARTS runs jdeps on the JAR,
uses the jdeps output for its current processing, and stores the jdeps output for that JAR
in a file in the jdeps-cache directory. The names of the files in the jdeps-cache directory

1The g phase in STARTS is analogous to the coverage-collection (c) phase in Ekstazi and other dynamic
RTS techniques where separation of c and e phases is harder to achieve in practice.
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match the Group/ArtifactId/Version convention of naming Maven-based projects [136], and
have a .graph extension.
If there is a cache (possibly computed elsewhere or even from different applications),

STARTS can be configured to specify the location of this cache. The following command
shows using an RTS-related goal with a preprocessed cache, where ${GRAPH_CACHE} is the
directory containing the preprocessed jdeps output for each third-party library and the jdeps
output files are organized as described for the default option:

$ mvn starts:starts −DgCache=${GRAPH_CACHE}

If no cache is input or the cache is empty, STARTS runs jdeps on all libraries per version.
File Formats for Checksums and Dependencies. STARTS supports two formats for
storing the checksums of all types in the application and the tests that transitively depend on
them: the new type-to-tests (ZLC) format and the old test-to-types (CLZ) format (proposed
in Ekstazi). Section 4.2.2 describes these formats and their tradeoffs. ZLC is the default file
format that STARTS uses. To run STARTS using the CLZ file format:

$ mvn starts:starts −DdepFormat=CLZ

Controlling STARTS Artifact Storage. Configuring different logging levels can control
the amount of information that STARTS stores between runs, where the logging levels are the
same as in the java.util.logging API. When running at the default logging Level.INFO,
STARTS stores only the checksum and dependency file, .starts/deps.zlc, between runs.
At Level.FINEST, STARTS will store all its files: the lists of all/impacted/non-impacted
tests, the dependencies that jdeps computed, the classpath that STARTS used, the yasgl
graph that STARTS constructed internally, and the set of changed types. Running at logging
level Level.FINER will store only .starts/deps.zlc, the set of impacted tests, and the set
of all tests. To run STARTS while storing all its files:

$ mvn starts:starts −DstartsLogging=FINEST

4.3 EVALUATION

We ran all experiments on a 3.40 GHz Intel Xeon E3-1240 V2 machine with 16GB of RAM,
running Ubuntu Linux 16.04.3 LTS and Oracle Java 64-Bit Server version 1.8.0_144. We
evaluated STARTS on 32 Maven projects. These projects include 21 single-module Maven
projects we used in our previous study [117] and 11 multi-module Maven projects that we
did not evaluate before, showing that STARTS can be integrated into larger Maven projects.
We ran STARTS on each project over a number of versions and measured the number of
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Table 4.1: Statistics about selected tests and end-to-end time of STARTS com-
pared to RetestAll

Project SHAs ALL Selected Selected RTA[s] Offline Online Breakdown
[#] [#] [%] Time [%] Time [%] a e g Comp.

headius/invokebinder 68 2.1 1.6 76.0 3.3 110.7 134.8 0.0 20.0 20.0 60.0
google/compile-testing 32 7.3 3.1 44.1 4.4 118.3 137.6 0.0 18.3 13.3 68.3
apache/commons-cli 52 23.0 10.2 44.1 4.8 109.4 126.1 0.0 10.3 10.3 79.3
logstash/logstash-logback-encoder 45 18.2 3.7 23.5 5.6 112.8 129.8 0.0 13.7 12.3 74.0
apache/commons-dbutils 15 24.6 8.2 33.0 5.6 109.1 121.6 0.0 13.0 13.0 73.9
apache/commons-validator 22 61.0 13.8 22.6 6.6 93.5 107.2 0.0 17.1 11.4 71.4
apache/commons-fileupload 8 12.0 3.8 31.2 6.8 98.2 102.1 0.0 12.9 5.7 81.4
apache/commons-codec 65 47.4 2.1 4.5 9.3 69.5 73.9 0.0 10.1 7.2 82.6
srt/asterisk-java 47 38.1 2.3 6.0 9.6 70.2 79.4 0.0 18.4 10.5 71.1
apache/commons-functor 20 164.0 23.2 14.1 10.7 91.7 96.3 0.0 8.7 5.8 85.6
apache/commons-compress 12 89.4 23.8 26.6 13.3 79.8 83.5 0.0 25.9 4.5 69.6
apache/commons-email 10 18.0 5.4 30.0 16.2 68.0 71.9 0.0 39.7 6.0 54.3
square/retrofit 13 32.2 10.3 32.2 21.1 79.7 86.8 5.9 43.0 9.7 41.4
apache/commons-lang 63 133.7 42.8 32.0 24.8 73.3 76.8 0.0 35.3 4.7 60.0
apache/commons-collections 12 164.0 7.2 4.4 25.3 58.3 58.9 0.0 10.0 1.3 88.7
AdoptOpenJDK/jitwatch 23 26.0 10.6 40.6 26.4 58.4 60.9 0.0 62.5 4.4 33.1
graphhopper/graphhopper 8 106.8 70.1 65.7 29.8 90.8 97.3 0.0 45.2 6.9 47.9
apache/commons-imaging 89 58.8 21.5 37.9 29.5 65.2 67.5 0.0 51.5 3.5 45.0
cloudera/oryx 17 58.0 17.3 29.8 37.6 85.0 91.3 6.0 40.1 6.6 47.3
robovm/robovm 11 32.0 9.1 28.4 39.5 107.5 111.6 1.4 5.7 3.6 89.3
ninjaframework/ninja 6 102.0 55.0 53.9 40.5 93.6 120.3 7.2 42.0 22.5 28.3
Average(SHORT) 30.4 58.0 16.4 32.4 17.6 87.8 96.9 1.0 25.9 8.7 64.4
apache/commons-math 63 449.9 42.4 9.4 98.3 28.9 30.3 0.3 36.8 4.7 58.2
addthis/stream-lib 7 24.0 5.4 22.6 106.4 47.5 48.4 0.0 88.8 2.1 9.1
apache/commons-io 13 99.2 23.4 23.5 132.0 43.4 43.9 0.0 85.0 1.2 13.8
brettwooldridge/HikariCP 18 26.4 22.4 84.7 132.9 95.2 96.6 0.8 92.9 1.5 4.8
opentripplanner/OpenTripPlanner 9 136.0 76.4 56.2 179.3 82.3 85.4 1.8 83.9 3.7 10.5
undertow-io/undertow 28 220.1 151.5 68.8 181.0 80.5 82.9 1.1 82.4 2.9 13.6
Graylog2/graylog2-server 14 187.6 25.8 13.8 284.0 103.5 106.3 1.8 6.0 2.6 89.6
apache/commons-pool 16 20.0 6.7 33.4 303.1 56.8 57.0 0.0 96.1 0.3 3.5
openmrs/OpenMrs 20 244.1 101.7 41.7 315.0 48.1 49.8 1.8 83.6 3.5 11.1
aws/aws-sdk-java 7 134.1 58.0 43.5 424.0 96.5 97.2 0.2 45.2 0.7 54.0
jankotek/mapdb 7 173.6 81.7 47.3 449.1 67.3 68.5 0.6 77.9 1.6 19.9
Average(LONG) 18.4 155.9 54.1 40.5 236.8 68.2 69.7 0.8 70.8 2.3 26.2
Average(OVERALL) 26.2 91.7 29.4 35.2 93.0 81.0 87.6 0.9 41.3 6.5 51.3

impacted tests that STARTS selected to run, relative to the number of all tests. We also
measured the percentage of end-to-end time taken by STARTS relative to the end-to-end
time for running all tests, i.e., RetestAll. The STARTS end-to-end time includes the time
to compile, perform selection, run the impacted tests, and update dependencies for the next
run, while the RetestAll time is compile time plus time to run all tests. We include compile
time because, after a change, a continuous integration system, e.g., Travis [201], typically
also compiles the application. We wanted to evaluate any savings in the overall build time
when using STARTS. Table 4.1 shows for each project (sorted by increasing RetestAll time),
the number of versions evaluated (SHAs [#]), average number of all tests across all versions
(ALL), average number of tests selected by STARTS (Selected [#]), average percentage of all
tests selected by STARTS (Selected [%]), RetestAll time (RTA[s]), and average percentage
of RetestAll time that STARTS takes, for both the “online” mode (Online Time [%]) (Sec-
tion 4.2.2) that includes time for the a, e, and g phases, and the “offline” mode (Offline Time
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Figure 4.2: Correlation between project end-to-end test time vs. percentage of
time to run STARTS

[%]) that excludes time for the g phase. The last columns break down STARTS time into a,
e, g and compilation (Comp.) times. In the offline mode, a developer can get test results
faster by not having to wait until STARTS finishes the computation of dependencies before
seeing those test results—dependency and transitive closure computation can be removed
from the developer’s critical path.
We divide the projects in Table 4.1 into short-running if RetestAll takes less than one

minute (upper part) and long-running if RetestAll takes more than one minute (lower part).
Table 4.1 shows that STARTS runs fewer tests compared with RetestAll: STARTS selects
between 4.4% (apache/commons-collections) and 84.7% (brettwooldridge/HikariCP) of all
tests, with an average of 35.2% of all tests across all projects. Table 4.1 shows that STARTS
also provides time savings, with an average end-to-end time of 81.0% of RetestAll time
in the offline mode, and 87.6% of RetestAll time in the online mode. STARTS provides
greater time savings for long-running projects (68.2% in the offline mode and 69.7% in the
online mode) than for short-running projects (87.8% in the offline mode and 96.9% in the
online mode). STARTS is more expensive than RetestAll (i.e., the offline percentage of
RetestAll time is greater than 100%) in six (of 21) short-running projects and only one (of
11) long-running project. As expected, STARTS is better suited for long-running projects.
Figure 4.2 plots the correlation between the average RetestAll time per project (x-axis) and
the percentage time savings from the STARTS offline mode (y-axis); the Kendall-τb value is
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−0.3, and p < 0.01, a weak negative correlation. Finally, the breakdown of the end-to-end
time shows that STARTS spends most of its non-compilation time in the e phase (41.3% of
end-to-end time, on average), while a and g take up much smaller percentages. The time for
short-running projects is dominated by compilation and these projects likely cannot benefit
much from any RTS, including STARTS

4.4 LIMITATIONS

In our previous study [117], we found that static RTS performed comparably with dynamic
RTS (we evaluated against Ekstazi) in terms of time. However, we also found that static
RTS is as expected, less precise than dynamic RTS and can be unsafe. (An RTS technique
is precise if it selects to run only the impacted tests, and safe if it does not miss to select
an impacted test.) We also found that reflection was the only cause of unsafety of static
RTS when compared with Ekstazi. STARTS does not yet address these safety and precision
limitations of static RTS. STARTS can be unsafe when the path between tests and changed
types can only be reached via reflection, and is inherently imprecise because the static
dependencies it finds among the types in the application may not be runtime dependencies.
STARTS also assumes that there is no test-order dependence [77,223].

4.5 SUMMARY

This chapter presented STARTS, our tool for static change-impact analysis and RTS.
STARTS performs change-impact analysis and RTS at the class level, inspired by the results
from Chapter 3. Our evaluation showed that change-impact analysis in STARTS is quite
efficient—6.5% of end-to-end RTS time, on average. Therefore, we use STARTS as the
change-impact analysis component in evolution-aware RV techniques, and for comparing
and combining evolution-aware RV with RTS, as we discuss next in Chapter 5.
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CHAPTER 5: EVOLUTION-AWARE RUNTIME VERIFICATION

The results from Chapter 2 showed that Runtime Verification (RV) can help to find many
bugs by monitoring program executions against formal properties. Developers should ideally
use RV whenever they run tests, to find more bugs earlier. However, the results from
Chapter 2 also showed that, despite tremendous research progress over the last two decades,
RV still incurs high overhead in (1) machine time to monitor properties, and (2) developer
time to wait for and inspect violations from test executions that do not satisfy the properties.
Moreover, all prior RV techniques consider only one program version and wastefully re-
monitor unaffected properties and code as software evolves.
In this chapter, we present the first evolution-aware RV techniques that reduce RV over-

head across multiple program versions. Regression Property Selection (RPS) re-monitors
only a subset of properties, namely those that can be violated in parts of code affected
by changes, reducing machine time and developer time overhead of RV. Violation Message
Suppression (VMS) simply shows only new violations to reduce developer inspection time
after code changes; it does not reduce machine time overhead. Regression Property Priori-
tization (RPP) splits RV in two phases: properties more likely to have violations that help
find bugs are first monitored in a critical phase to provide faster feedback to the developers;
the rest are monitored in a background phase. Both RPS and VMS utilize the class-level
static change-impact analysis technique implemented in STARTS, as discussed in chapters 3
and 4, to compute the parts of code affected by the changes.
We compare our techniques with the evolution-unaware (base) RV when monitoring test

executions in 200 versions of 10 open-source projects. RPS and the RPP critical phase
reduce the average RV overhead from 9.4× (for base RV) to 1.8×, without missing any new
violations. VMS reduces the average number of violations 540×, from 54 violations per
version (for base RV) to one violation per 10 versions. Our evolution-aware RV techniques
can be used together and they are complementary to techniques that make base RV faster
on single program versions. We also evaluated to what extent regression test selection (RTS)
alone can reduce the overhead of RV as software evolves, since RTS already selects to rerun
a subset of tests after code changes. The RTS technique that we used for evaluation is the
one that we implemented in STARTS, as discussed in Chapter 4. The results show that,
compared with base RV, RTS alone did not achieve as much overhead reduction as, and
should be combined with, our evolution-aware RV techniques.
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1 Collections_SynchronizedCollection(Collection c, Iterator i) {
2 Collection c;
3 creation event sync after() returning(Collection c):
4 call(∗Collections.synchronizedCollection(Collection)){ this.c = c;}
5 event syncMk after(Collection c) returning(Iterator i):
6 call(∗Collection+.iterator())&&target(c)&&Thread.holdsLock(c){}
7 event asyncMk after(Collection c) returning(Iterator i):
8 call(∗Collection+.iterator())&&target(c)&&!Thread.holdsLock(c){}
9 event access before(Iterator i) :

10 call(∗Iterator.∗(..))&&target(i)&&!Thread.holdsLock(this.c){}
11 ere: (sync asyncMk) | (sync syncMk access)
12 @match{ RVMLogging.out.println(/∗violation message∗/); }
13 }

(a) Collections_SynchronizedCollection (CSC)

1 StringTokenizer_HasMoreElements(StringTokenizer s) {
2 event hasnexttrue after(StringTokenizer s) returning(boolean b):
3 (call(boolean StringTokenizer.hasMoreTokens()) ||
4 call(boolean StringTokenizer.hasMoreElements()))&&target(s)&&b
5 event next before(StringTokenizer s):
6 (call(∗ StringTokenizer.nextToken()) ||
7 call(∗ StringTokenizer.nextElement())) && target(s)
8 ltl: [ ](next => (∗) hasnexttrue)
9 @violation { RVMLogging.out.println(/∗violation message∗/); }

10 }

(b) StringTokenizer_HasMoreElements (STHME)

1 URLDecoder_DecodeUTF8() {
2 event decode before(String enc) :
3 call(∗ URLDecoder.decode(String, String)) && args(∗, enc) {
4 if (enc.equalsIgnoreCase("utf−8") || enc.equalsIgnoreCase("utf8"))
5 return;
6 RVMLogging.out.println(/∗violation message∗/); }
7 }

(c) URLDecoder_DecodeUTF8 (URLD)

1 class A {
2 String a(List i, String sep) {
3 String o = "";
4 for (Object a : i) {
5 o += a.toString() + sep;
6 } return o; }}
7

8 class B extends A {
9 String b(List l) {

10 String i;
11 − i = a(l, " ");
12 + i = a(Collections.synchronizedList(l), " ");
13 return i.trim(); }
14 Boolean flag() { return true; }}
15

16 class C {
17 String c(List<String> l) {
18 B b = new B(); D d = new D();
19 String s = b.b(l);
20 return d.d(s, b.flag()) + ": " + s; }}
21

22 class D {
23 String d(String s, boolean flag) {
24 StringTokenizer t = new StringTokenizer(s);
25 String out = "";
26 if (flag) {
27 if(t.hasMoreTokens()){out=t.nextToken();}
28 } else { out = t.nextToken(); }
29 return out; }}
30

31 class E {
32 void e(String u,String e) throws Exception{
33 D d = new D(); assert(!u.isEmpty());
34 String url = d.d(u, false);
35 if (url.startsWith("https")) {
36 String s = URLDecoder.decode(url, e);
37 System.out.print(s); }}}

(d) Example evolving code

Figure 5.1: Example properties and evolving code that we use to illustrate base
RV and evolution-aware RV techniques

5.1 EXAMPLE

Our running example is necessarily detailed to show the specifics of RV and programs
that evolution-aware RV techniques exploit, and to highlight differences between the RPS
variants in later sections. We illustrate properties that we monitor, how evolution-unaware
base RV works in the JavaMOP [92,99,132] tool used in our experiments, and violations.

5.1.1 Examples of Monitored Properties

In our running example, we use the three properties in figures 5.1a–5.1c, written in Java-
MOP syntax [90]; they helped find several confirmed bugs [118]. Properties have three parts:
(1) events : relevant method calls or field accesses, (2) a specification: logical formula over the
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events, and (3) a handler : action to take when events match (or violate) the specification.
Collections_SynchronizedCollection (CSC): CSC checks that code synchronizes on a
synchronized Collection before iterating over it [42]. Not synchronizing on such Collection

before iterating “may result in non-deterministic behavior” [41]. CSC defines four events in
lines 3–10 of Fig. 5.1a: (1) sync (lines 3–4) occurs when Collections.synchronizedCollec

tion is called to create a Collection, c, (2) syncMk (lines 5–6) occurs when c.iterator is
called to obtain an Iterator i in a thread that holds the lock on c, (3) asyncMk (lines 7–8)
occurs when c.iterator is called without first locking on c, and (4) access (lines 9–10)
occurs when accessing i from a thread that does not hold c’s lock. When sync occurs,
JavaMOP creates a monitor object to listen for CSC events (hence the creation keyword).
CSC’s specification (line 11 of Fig. 5.1a) is an Extended Regular Expression which matches

if the code either (1) creates c (sync event) and obtains i without first locking on c (asyncMk
event), or (2) creates c (sync event) and obtains i from a thread that locks on c (syncMk
event) but accesses i from a thread that does not lock on c (access event). When a CSC
monitor receives an event that causes its specification to match, its handler (line 12) is
invoked. The handler can be any code, but most properties, including CSC, just print a
violation to warn developers of a potential bug.
StringTokenizer_HasMoreElements (STHME): STHME checks that getting tokens
from StringTokenizer, st, is only done after checking that st has more elements [193].
STHME (Fig. 5.1b) defines two events: (1) hasnexttrue (lines 2–4) occurs when st.hasMor

eElements or st.hasMoreTokens is invoked and returns true, and (2) next (lines 5–7) occurs
when st.nextElement or st.nextToken is invoked. STHME specification (line 8) is a past-
time LTL formula [129] stating that a next event on st must be preceded by a hasnexttrue

event on st. When STHME specification does not hold, line 9 prints a violation.
URLDecoder_DecodeUTF8 (URLD): URLD checks that URLs are decoded from
UTF-8, to avoid producing incompatible URLs [202, 203]. URLD’s only event, decode

(lines 2–5 in Fig. 5.1c), occurs if URL is decoded with non-UTF-8 encoding. The handler
on line 6 prints a violation on each decode event.

5.1.2 Base RV, Causes of Overhead, and Property Violations

We describe the example Java code in Fig. 5.1d and violations that occur when JavaMOP
is used to monitor its execution against the CSC, STHME, and URLD properties. The
example code is hypothetical, created to illustrate our techniques.
Example Code: Fig. 5.1d shows five classes—A, B, C, D, and E—and two versions—line 11
in the old version is replaced with line 12 in the new version. A.a() concatenates the string
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1 public class TC {
2 @Test public void testC() {
3 B b = new B(); C c = new C(); D d = new D();
4 List<String> l1 = Arrays.asList("1", "2");
5 assert(b.b(l1).equals("1 2"));
6 assert(c.c(l1).equals("1: 1 2"));
7 assert(d.d("1 2", false).equals("1")); } }
8

9 public class TE {
10 @Test public void testE() throws Exception {
11 E e = new E(); String u = "https://bing.com";
12 assert(e.e(u + " b", "ISO−8859−1").equals(u)); } }

Figure 5.2: Tests for code in Fig. 5.1d

representation of all elements in its input List. B extends A and B.b() invokes A.a() to get
a string representation of the input List, which it then trims to remove leading or trailing
white space. C.c() first invokes B.b() to obtain a string representation of its input List,
which it prints after prefixing with the first sub-string, obtained from D.d(). D.d() tokenizes
the input string and returns the first token; for performance reasons, it only checks that
the input string has more than one token if its caller sets flag (e.g., the caller may already
ensure non-emptiness). E.e() decodes an encoded HTTPS URL from a string after ensuring
the string is not empty and invoking D.d() to get the first sub-string.
Monitoring and Causes of RV Overhead: We use the code in Fig. 5.1d to describe
three RV concepts: instrumentation, monitor creation, and event/violation handling. Let
us consider what happens when the tests in Fig. 5.2 are run on the old version of Fig. 5.1d.
During class loading, JavaMOP instruments all statements in classes A through E that can
generate events mentioned in the properties. The instrumentation causes events to be trig-
gered during execution. Example instrumentation points in Fig. 5.1d include (1) before
creating an Iterator on line 4 which may trigger CSC events, (2) after hasMoreTokens and
before nextToken on line 27, and before line 28, which may all trigger STHME events, and
(3) before line 36 which may trigger URLD events. At runtime, monitors are created to listen
for and handle events. In the old version, only STHME and URLD monitors are created;
creation event for CSC never occurs because List l on line 11 is not a synchronized

Collection. One STHME monitor is created when the first relevant event occurs on each
StringTokenizer; only one URLD monitor is created at the start of execution (unlike CSC
and STHME, URLD has no parameters). Base RV induces high runtime overhead due to
managing very many monitors and dispatching even more events to monitors [98,132], e.g.,
with base RV, one project in our evaluation with 78 thousand lines of code created over 232
million monitors, which received almost 3 billion events.
Violations: When events occur that match or violate a monitor’s specification, the violation
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Specification Collections_SynchronizedCollection has been violated on line B.b(B.java:11). Documentation for this
property can be found at https://runtimeverification.com/monitor/annotated−java/__properties/html/java/util/
Collections_SynchronizedCollection.html
A synchronized collection was accessed in a thread−unsafe manner.

Figure 5.3: An example property violation

handler prints a violation, like in Fig. 5.3. A violation contains the violated property name,
the location (i.e., fully qualified class name, method, source file name, and line number) of
the last event that caused the violation, a URL for the property definition, and a sentence
describing the violation. These help developers to reason whether a property violation is a
true bug or false alarm.
We distinguish between violation instances, the list of violations, and the set of violations .

Violation instances repeat, e.g., if property-violating code is in a loop or executed by multiple
tests. We map violation instances of the same property that occur at the same location to
the same violation. Developers may prefer to only see violations, but seeing all violation
instances can help in debugging. Running tests in Fig. 5.2 on old version of Fig. 5.1d
generates two violations from three violation instances. Lines 7 and 12 in Fig. 5.2 cause two
instances of a STHME violation by executing t.nextToken on line 28 of Fig. 5.1d without
calling t.hasMoreTokens. Line 12 in Fig. 5.2 causes one instance of a URLD violation by
executing line 36 of Fig. 5.1d to decode a non-UTF-8 encoded URL. It can be time consuming
to inspect/debug violations [118]. We next discuss evolution-aware RV techniques which aim
to reduce runtime overhead of RV and show fewer violations as software evolves.

5.2 EVOLUTION-AWARE RV TECHNIQUES

We describe our evolution-aware RV techniques which leverage software evolution to reduce
the runtime overhead of base RV across multiple program versions and to focus developers
on new violations after a change. Base RV (illustrated through the example in Section 5.1)
is evolution-unaware. For example, running base RV on the new version of code in Fig. 5.1d
would re-monitor all available properties and re-incur the entire overhead wastefully because
the code change does not affect (i.e., alter the behavior of) all classes, e.g., E is unaffected.
Further, properties whose events are only generated from unaffected classes cannot have
any new violations after the code change. Finally, it may be desirable to monitor on the
developer’s critical path, from when they launch tests to when they see the test results, only
properties that are more likely to find bugs than others, e.g., based on a project’s history.
Section 5.2.1 defines safety and precision, two notions that we use in this dissertation

to analyze and measure the quality of our evolution-aware RV techniques. Section 5.2.2
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describes RPS, our technique to re-monitor only properties that can have new violations
after a code change, and also includes our definition of affected classes and how RPS uses
affected classes to select the subset of properties to re-monitor in a new program version.
Section 5.2.3 describes various RPS variants. Sections 5.2.4 and 5.2.5 describe our other
two evolution-aware RV techniques, VMS and RPP, respectively. RPS, VMS, and RPP can
be used separately or together, and we illustrate them throughout this section using the
example from Fig. 5.1.

5.2.1 Safety and Precision

Safety measures loss in violation-finding (and thus potential bug-finding) ability. Preci-
sion measures minimality. We define safety and precision relative to base RV and relevant
violations. In this dissertation, relevant violations are new violations—violations that are
in the new version, but not in the old version, after accounting for violations that merely
changed line numbers in the code. Definition 5.1 allows developers to plug in other notions
of relevant violations.

Definition 5.1. Relevant Violation: Relevant violations for an evolution-aware RV tech-
nique are those due to the changes.

Definition 5.2. Safety: An evolution-aware RV technique is safe if it finds all relevant
violations that base RV finds.

Definition 5.3. Precision: An evolution-aware RV technique is precise if it finds only rel-
evant violations that base RV finds.

5.2.2 Regression Property Selection (RPS)

RPS reduces accumulated base RV overhead by re-monitoring only properties that can
be violated in parts of code affected by changes [115]. For RPS to be useful, its end-to-end
time (i.e., time to select properties plus time to re-monitor selected properties) must be less
than base RV time. Thus, we consider changes and affected parts of code at the class-level
granularity, which was more effective than only finer-granularity levels (e.g., statements or
methods) for other evolution-aware techniques [69,117,218]. The reason is that the analysis
at the class level achieved a better balance of efficiency (class-level analysis is faster than
analyses at finer granularity) and precision (class-level analysis may capture more than
necessary because it is coarser grained).
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The notion of affected classes is central to RPS; it relates code changes with the properties.
Intuitively, a property should be re-monitored only if its events can be generated from some
class affected by the code change. That is, affected classes are those that can generate
events that lead to new violations after code changes. Conversely, a class that is unaffected
by a change cannot generate an event that leads to a new violation. Formally, RPS variants
compute affected classes as those that satisfy some of the following conditions, which capture
when a class may generate events that lead to new violations after a code change:

Definition 5.4. Affected Class: For RPS, a class C is affected by a change if (1) C changed,
(2) C transitively depends (via inheritance or use) on a class that changed, or (3) a class
that satisfies (1) or (2) can pass objects to C.

Condition 3 captures classes whose control flow may change (leading to new events and
violations) if received objects change. For example, in Fig. 5.1d, D does not depend on the
changed class (B) or its transitive dependents (C and TC); if only B.flag() changes to return
false on line 14, then the “else” branch on line 28, instead of the “then” branch on line 27
will execute, leading to a STHME violation.

Definition 5.5. Regression Property Selection (RPS): A technique to select and re-monitor,
in a new program version, only properties that may have new violations.

RPS has four steps: (1) construct a class dependency graph (intertype relationship graph)
from the new program version, (2) find affected classes, (3) select properties, and (4) re-
monitor selected properties.

Definition 5.6. Class Dependency Graph (intertype relationship graph): A graph that has
a node for each class in the program and an edge from class C to class C′ if C depends on
C′ via inheritance or use.

B AC

DE

TC

TE

Figure 5.4: Class dependency graph (intertype relationship graph) for Fig-
ures 5.1d and 5.2. Edges mean “depends on”; the changed class is colored

Step 1: RPS constructs the intertype relationship graph in Fig. 5.4 for the new version of
the code in Fig. 5.1d and the tests in Fig. 5.2.
Step 2: Strong RPS computes affected classes from the intertype relationship graph as
affected(Tc) = Tc ◦ (E−1)∗ ◦ E∗, where Tc is the set of changed and new classes, E is the
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set of edges in the intertype relationship graph, ∗ is the reflexive and transitive closure, ◦ is
the relational image, and −1 is the inverse relation. Observe that affected(Tc) captures the
three conditions in Definition 5.4. In our example, Tc = {B}; only B changed (Condition
1). Tc ◦ (E−1)∗ = {B, C, TC}; TC and C transitively depend on Tc (Condition 2). Lastly,
affected(Tc) = {A, B, C, D, TC}; A and D may generate new events due to changes to B or the
interaction of C with B (Condition 3). E, TE /∈ affected(Tc) since they cannot generate new
events. Although elided in our example due to space limits, newly added classes are in Tc,
so RPS re-monitors properties that may be violated in newly added classes.
Steps 3 and 4: RPS re-monitors only CSC and STHME in the new version. No (new) events
for URLD are generated in affected. So, RPS saves the time to re-monitor URLD (if both
tests are run) and developer time for (re-)inspecting URLD violations. Any URLD violations
must be in E and cannot be new violations, because E 6∈ affected(Tc).
Discussion of RPS: If a property was not instrumented into the old version, but code
changes can cause it to be violated in affected, RPS selects it, e.g., CSC is selected by strong
RPS. Two CSC violation instances occur in the new version in Fig. 5.1d; lines 4–6 iterate
over the synchronized Collection initialized on line 12 without locking on it, matching the
left disjunct in CSC’s specification (line 11, Fig. 5.1a), so the handler (line 12) prints the
violation in Fig. 5.3.
Base RV does not consider changes, dependencies, or classes that generate events for each

property. After each change (e.g., from line 11 to line 12 in Fig. 5.1d), base RV re-monitors
all properties and shows old and new violations. In our example, base RV shows three
violations: the two STHME and URLD violations from the old version, plus the new CSC
violation. RPS shows only the old STHME violation, plus the new CSC violation. Note
that RPS by itself is not precise; it does not show only new violations. Showing only new
violations is the goal of VMS (Section 5.2.4).

5.2.3 RPS Variants

RPS determines (1) what properties to select and (2) where in the program to instru-
ment selected properties. The strong RPS described in Section 5.2.2 is safe under certain
assumptions: it selects to re-monitor all properties for which events can be generated from
all affected classes (“what”) and instruments them throughout the program (“where”), in-
cluding third-party libraries and even unaffected classes. However, that strong RPS variant
is imprecise (it may instrument and monitor selected properties in unaffected classes). We
describe here a second, more precise strong RPS variant. Weak RPS variants trade some
safety for further overhead reduction. Weak RPS variants differ in what affected classes they
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use for selecting properties and where they instrument selected properties.
Strong RPS Safety Assumptions: Strong RPS is safe under the following assumptions:
(1) the intertype relationship graphis complete, (2) there are no test order dependencies [21,
77,223], and (3) dynamic language features, e.g., reflection and classloading, do not introduce
additional intertype relationship graph edges.
Notation: Subscripts show how affected classes are computed. ps1 computes affected1(Tc) =

Tc ◦ (E−1)∗ ◦ E∗ (Definition 5.4). ps2 computes affected2(Tc) = Tc ◦ ((E−1)∗ ∪ E∗), which
consists of only classes that either depend transitively on Tc (dependents) or Tc transitively
depends on (dependees); affected2 is more unsafe than affected1 because it omits condition 3
from Definition 5.4 to not include classes, e.g., D in Fig. 5.4, that may generate new events
because they receive objects from dependents of Tc. ps3 relaxes Definition 5.4 even further
by omitting condition 3; it computes affected3(Tc) = Tc ◦ (E−1)∗, i.e., only dependents of Tc.
Once the corresponding set of affected classes (affected) has been used to select the prop-

erties to re-monitor (namely properties whose events may be generated from affected(Tc)),
we obtain more variants by choosing “where” to instrument the selected properties. We can
reduce where to instrument the selected properties, in order to obtain more reduction of
base RV overhead, at two levels: (1) do not instrument the selected properties in unaffected
classes in the program but still instrument all third-party library classes loaded into the
JVM, and (2) do not instrument the selected properties in any third-party library class.
For the first level of instrumentation reduction, we use the superscript c to show that

unaffected classes in the program (i.e., complement of affected(Tc)) are not instrumented:
psc1 excludes (affected1)c, psc2 excludes (affected2)c, and psc3 excludes (affected3)c. To see the
benefit of not instrumenting affected(Tc)c, consider ps1 and psc1, which are both safe. psc1
is safe because unaffected classes cannot generate any new events or alter the sequence
of events for the selected properties, so they cannot have new violations. However, psc1
can be more efficient and more precise (i.e., show fewer old violations) than ps1 if selected
properties can generate events from classes in (affected1)c. For example, in the intertype
relationship graph of Fig. 5.4, if a selected property p can generate events from B∈affected1
and E∈(affected1)c, and tests TC and TE are run, psc1 can save the time to monitor p in E.
(Note that when safety assumptions of strong RPS do not hold, ps1 is safer than psc1; by
instrumenting selected properties in unaffected classes, ps1 can find some violations that
psc1 miss.) On the other hand, not instrumenting affected(Tc)c can make weak RPS variants
more unsafe—an weak RPS variant that instruments all classes has a chance to find some
violations from instrumented classes that are not in the computed affected(Tc).
The second level of instrumentation reduction does not instrument any third-party library

class. We denote weak RPS variants that exclude all third-party library classes with ` in
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Table 5.1: “What” properties RPS variants select
What ps1 ps2 ps3
properties in ∆ 3 3 3

properties in dependents of ∆ 3 3 3

properties in dependees of ∆ 3 3 7

properties in dependees of dependents of ∆ 3 7 7

Table 5.2: “Where” RPS variants instrument properties
Where (i ∈ {1, 2, 3}) psi psci ps`i psc`i
affected 3 3 3 3

affected(Tc)c 3 7 3 7

third-party library classes 3 3 7 7

the superscript. For example, psc`3 means that affected3 is used to select properties, classes in
(affected3)c are not instrumented and third-party library classes are also not instrumented.
ps`3 means that affected3 is used to select properties and only third-party library classes are
not instrumented. In sum, we evaluate strong RPS (ps1, psc1) and 10 weak RPS variants: ps2,
ps3, psc2, psc3, ps`1, ps`2, ps`3, psc`1 , psc`2 , and psc`3 . Tables 5.1 and 5.2 distinguish RPS variants in
terms of what part of the intertype relationship graph is used for selecting properties, and
where the selected properties are instrumented; 3 means inclusion and 7 means exclusion.
Efficiency/Safety Tradeoff: Weak RPS variants trade some safety for lower runtime
overhead. Fig. 5.5 shows two lattices of RPS variants; lower variants can be less safe (left
lattice) but more efficient (right lattice) than higher ones. ps2 computes {A, B, C, TC} as
affected2. D is not in affected2, so ps2 can miss new STHME violations, e.g., when changing
only true to false on line 14 in Fig. 5.1d—ps2 does not even re-monitor STHME for this
change. If such cases are rare, then ps2 can be safe but have lower overhead than strong
RPS. In general, ps2 can be unsafe if there is data flow to classes that are not dependents
or dependees of Tc. ps3 computes affected3 as {B, C, TC}—dependents of Tc—which includes

ps1, psc1

ps2

ps3

psc2

psc3

ps`1

ps`2

ps`3

psc`1

psc`2

psc`3

ps1

ps2

ps3

psc1

psc2

psc3

ps`1

ps`2

ps`3

psc`1

psc`2

psc`3
Figure 5.5: Lattices of RPS variants. Left lattice ordered by “less safe than”.
Right lattice ordered by “more efficient than”
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neither Tc’s dependees, e.g., A, nor dependees of Tc’s dependents, e.g., D. Therefore, ps3 can
be more unsafe than ps2, e.g., if A changes such that a new violation results from events
that are local to A, ps2 will find that new violation, but ps3 will not find it. Technique
psc3 could miss new violations that psc2 finds. In fact, psc3 misses the new CSC violation
after the change in Fig. 5.1d; it selects to re-monitor CSC but does not instrument A, so
asyncMk is not triggered. Excluding third-party library classes from instrumentation can
also be unsafe, e.g., if A or D are third-party library classes. Weak RPS variants that do not
instrument affected(Tc)c can be faster but safe if changes only lead to new violations in Tc and
its dependents. Lastly, for weak RPS, false alarms can result from excluding classes from
instrumentation. For example, if the STHME property’s hasnexttrue event is triggered
from a third-party library class that is not instrumented, and the next event is triggered in
affected(Tc), a violation will occur even though the program satisfies the STHME property.

5.2.4 Violation Message Suppression (VMS)

VMS improves base RV by showing only new violations. Showing only new violations
right after a change is more effective than showing old plus new violations to get developers
to act—they are still in the mental context of the change and are the ones who can best
address new violations [146].

Definition 5.7. Violation Message Suppression (VMS): A technique to show, in a new
program version, only new violations that did not occur in an old version.

Base RV shows three violations in the new version of the example in Fig. 5.1d: line 4 (two
instances), line 28 (two instances), and line 36 (one instance). The latter two were in the
old version, and their line numbers did not change. (More generally, VMS does not simply
check equality of line numbers but builds a likely mapping between old and new line numbers
based on code context.) In the new version, VMS shows only the violation on line 4, instead
of showing all three. VMS can be used with RPS to reduce the old violations shown by RPS.
Running RPS on new version of Fig. 5.1d will show two violations (lines 4 and 28); VMS
shows only one (line 4).
VMS’ inputs are the violations from the old and new versions, plus the source files in both

versions. Each violation, v = 〈p, c, l〉, contains a triple of the property name (p) that was
violated, and the class (c) and line number (l) of the last event that violated the property.
Let V1 and V2 be the set of violations from monitoring the old version (P1) and the new
version (P2), respectively. VMS computes Vnew, the set of new violations that are in P2 but
not in P1. VMS does not simply compute V2 \ V1 that may report many old violations for
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which only the line numbers changed. Using only line numbers to match statements in two
code versions performs poorly [168].
For each class Cδ ∈ Tc, where Tc is the set of changed classes (including newly added and

renamed classes), VMS first creates a mapping, MCδ , from line numbers in the source file
of Cδ in P2 to line numbers with the likely same statement in the corresponding source file
in P1. Each line number in P2 maps to at most one line number in P1; some line numbers
in P2 may not be in MCδ . Note that MCδ is likely (i.e., not exact) as it is based on simple
syntactic and not semantic equivalence; the latter is rather challenging and does not scale
currently [75,128]. MC is identity if C did not change. Then, VTcnew=∪Cδ∈TcVMS(V1,V2,MCδ),
where VMS(V1,V2,MCδ)={〈p,Cδ, l〉∈V2 | @l′∈MCδ(l) ∨ 〈p,Cδ,MCδ(l)〉/∈V1}. Let T ′c be the
set of unchanged classes. New violations in T ′c are VT

′
c

new= ∪C∈T ′
c
VMS(V1,V2,MC). Vnew =

VTcnew∪VT
′
c

new is the output of VMS. VT
′
c

new is non-empty when interactions with changed classes
cause new violations in T ′c , or when test non-determinism i.e., “flakiness” [20,21,77,132,181]
leads to non-determinism during monitoring.
Discussion of VMS: VMS can save developer time for inspecting violations but slightly
increases machine time, e.g., VMS increases time by <1% in our experiments. As we showed
with our example, VMS can further reduce violations shown by RPS.

5.2.5 Regression Property Prioritization (RPP)

Developers may be more interested in violations of critical properties than other violations,
e.g., violations of properties that previously helped find bugs may be more critical. RPP
partitions RV into two phases: a critical phase and a background phase. After a code
change, the critical phase immediately re-monitors (manually or automatically selected)
critical properties and provides results to developers. The background phase separately re-
monitors other properties. Developers get delayed feedback if non-critical properties are
violated. RPP allows (manually or automatically) moving properties between the phases
as properties become more or less critical during software evolution. To evaluate RPP,
we consider previously violated properties as critical. RPP is inspired by regression test
prioritization [49,86,175,190,215], but we are first to propose RPP for reducing RV overhead
as software evolves.
Discussion of RPP: The benefit of RPP is to remove the re-monitoring of non-critical
properties from developers’ critical path (from the moment of submitting code changes to the
moment of getting feedback). RPP’s disadvantage is that it delays the time for developers
to get feedback if non-critical properties are violated. RPS and VMS can be used with
RPP—RPP merely first runs some subset of selected properties.
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5.3 IMPLEMENTATION

We present our implementation of RPS, VMS, and RPP.

5.3.1 Regression Property Selection (RPS)

Building IRG, Computing Changes and Affected Classes: We used STARTS [117,
119] to build intertype relationship graphs, compute Tc, find affected(Tc) in P1, and persist
checksums of classes in P1 to disk. The checksums are used to compute the classes that
changed between P1 and P2. STARTS is a publicly available regression test selection (RTS)
tool that implements most of these steps. By default, STARTS computes affected3, which
suffices for RTS [107,117,119,149], but is not sufficient for strong RPS. We extended STARTS
to compute affected1 and affected2. We chose STARTS because it is static and fast—it re-
quires neither test runs nor code instrumentation to find dependencies among classes, or
compute affected(Tc). We monitor test executions, so using a dynamic technique to com-
pute dependencies or affected(Tc) would incur additional overhead. Also, instrumentation
performed by a dynamic technique could interfere with JavaMOP instrumentation.
Monitoring: We used JavaMOP [99,132] to monitor test executions against formal prop-
erties. JavaMOP is publicly available [92], uses AspectJ for load-time instrumentation, and
allows monitoring many properties in one execution. JavaMOP was used in several RV
studies [26, 45, 89, 115, 118, 132, 163, 166]. In each version, we follow publicly available in-
structions [91] to build and attach a JavaMOP agent [145] with selected properties to the
JVM that executes tests.
Selecting Properties to Re-monitor: The properties re-monitored are those for which
affected(Tc) can generate events. To select properties, we first used the AspectJ compiler
to very quickly and statically weave all available properties into affected(Tc), and record
properties whose aspects get weaved. If aspects from a property do not get weaved into any
class in affected(Tc), its events cannot be generated from affected(Tc) at runtime. Time to
select properties is part of RPS end-to-end time, so we optimized static weaving to be as
fast as possible—only 3.3s on average in our experiments.

5.3.2 Violation Message Suppression (VMS)

VMS implementation is straightforward: (1) take violations from P1 and P2, (2) remove
violations generated in P2 if line mapping can map the same violation to a likely corre-
sponding line number in P1 (after taking care of renames), and (3) report any remaining
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Table 5.3: Projects in our study
Name #Test KLOC t[%][s] tmop/ttests

commons-dbcp 26 20.1 56.5 2.0
imglib2 74 44.2 11.3 3.7
commons-lang 130 69.5 22.4 3.9
jackson-core 79 31.7 11.2 5.6
commons-io 96 29.2 106.5 5.8
commons-math 432 180.4 93.6 6.4
imaging 63 37.6 18.4 6.4
javapoet 17 7.9 10.7 7.2
stream-lib 24 8.4 127.1 12.2
opentripplanner 126 78.7 55.1 40.5
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Figure 5.6: Test time vs. base RV
overhead for several projects

violations generated in P2 as likely new violations. Our line mapping extends the jDiff utility
of jEdit [96], a Java implementation of Myers’ classic algorithm [142].

5.3.3 Regression Property Prioritization (RPP)

We considered critical properties to be those that were violated in the project’s history.
In the first version of each project, there is no history, so there is a choice to monitor all
properties in either the critical or background phase. It is not clear which of these choices
is better; monitoring all properties in the either phase for the first version unfairly increases
its average overhead. Therefore, we split properties into critical and background phases
after the first version, depending on whether they were violated in the first version. We do
not include the first version when computing the average overheads of each phase. From
the second version onward, if a property gets violated in the background phase, our RPP
implementation moves it to the critical phase in the next version. We leave it as future work
to investigate criteria for moving properties which have not been violated after a while from
the critical phase back to the background phase.

5.4 EVALUATION

Before we answer the research questions, we describe our experimental setup.

5.4.1 Research Questions

We answer the following research questions:

• RQ1: How much does RPS reduce the machine time overhead of base RV?
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• RQ2: How many violations does VMS show and how safe are RPS variants?

• RQ3: How much does RPP reduce time for developers to get feedback on critical
properties?

5.4.2 Experimental Setup

Projects: Table 5.3 shows 10 open-source, Maven-based Java projects from GitHub used
in our study, 9 of which we also used in prior work [117,119,182]. #Test is average number
of test classes used (we skipped very few test classes from 6 projects due to problems with
JavaMOP instrumentation), KLOC is average thousands of lines of code, t[%][s] is average
test time, and tmop/ttests is average base RV overhead.
Properties: We used 199 manually written properties found to be good in our prior
study [118]. The properties were written to formalize Java APIs [113, 132] and are pub-
licly available [161].
Versions: We started from a recent commit in each project and went back into the history,
to select 20 commits/versions where (1) at least one .java file changed, (2) all tests pass
without JavaMOP, and (3) all tests pass with JavaMOP.
Running Experiments: We wrote scripts to automate running tests, collect violations
and measure time for three configurations on each version: (1) without JavaMOP, (2) with
base RV, and (3) with each evolution-aware RV technique. For RPS, the most common case
is that .java file changes modify the bytecode, so properties may need to be re-monitored.
If .java file changes do not modify bytecode, we skip tests (no re-monitoring); time is only
spent to check for changes. If changes affect bytecode, but no properties are selected to be
re-monitored, all tests are run without JavaMOP, and the end-to-end time is the time to
compute changes, find affected(Tc), check if properties need re-monitoring, and run tests.

5.4.3 RQ1: Overhead reduction from RPS

We present RV overhead in multiples (×), as the ratio tmop/ttests, where tmop is time with
JavaMOP and ttests is time without JavaMOP. We first show on a sample of 89 projects
whether the high overhead induced by base RV can be seen in open-source projects with
short- (<10s), medium- (10s–300s), and long-running (>300s) tests. These 89 projects were
sampled from our prior studies [117–119, 182] and from the Apache continuous integration
server. Fig. 5.6 plots ttests (x-axis, log scale, in seconds) vs. tmop/ttests (y-axis). Projects in
all three categories exhibit high overhead, so high base RV overhead is not a fixed cost that
is more pronounced in projects with shorter-running tests. Squares show projects in this
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Figure 5.7: Runtime overheads of, and violations from base RV (BL), RPS
variants (ps), VMS, and RTS (ts) with 161 properties

study. We did not evaluate our techniques on the other projects because (1) tmop − ttests is
too small for RPS to be beneficial, (2) test-running times are high for long-running projects
which requires more resources than we have to evaluate them, or (3) we could not get 20
versions that satisfy our criteria.
Solid bars in Fig. 5.7 show average runtime overhead of base RV (BL) and the RPS variants

(ps) discussed in Section 5.2.3. All overheads are computed from end-to-end time including
time for analysis, running tests, and monitoring test executions. The results show several
points. First, all RPS variants reduced the average base RV overhead, which is 9.4×. Strong
RPS variants, ps1 and psc1, have 7.9× and 7.5× overhead, respectively. As expected, weak
RPS variants with fewer classes in affected(Tc) achieve more reduction. psc`3 is the most
efficient weak RPS variant, with 2.5× overhead. Second, comparing BL and BL` shows that
base RV spends about 36% of overhead on third-party library code: (BL−BL`)/BL. Since
psc1 is safe under certain assumptions, and, as we show in Section 5.4.4, excluding unaffected
and third-party library classes was safe in our experiments, psc`1 may, in general, achieve the
best efficiency/safety tradeoff among weak RPS variants.
We also evaluated how much regression test selection (RTS) [33,52,53,69,72,81,117,174,

215,218] can reduce base RV overheads during software evolution. RTS is a general approach
(independent of RPS) for reducing the overhead of regression testing by re-running only a
subset of tests whose behavior can differ after code changes. We previously noted that RTS
can also reduce base RV overhead, since RTS already reduces testing overhead [115]. We
evaluate a static class-level RTS technique, implemented in STARTS, which uses the same
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intertype relationship graphas RPS. (Other RTS techniques compute dependencies dynam-
ically [53, 69, 218], but it was challenging to evaluate them because their instrumentation
often clashed with JavaMOP.) Since RTS can select more tests than those whose behavior
differs after a code change, it may be imprecise as an evolution-aware RV technique (Sec-
tion 5.2.1). So, we also evaluated RPS plus RTS to see how these two can together further
reduce base RV overhead.
The four rightmost solid bars in Fig. 5.7 show the overhead with RTS, with and without

libraries. ts shows combination of RTS with base RV, i.e., rerun a subset of tests but re-
monitor all properties, while ps3ts shows RPS (using variant ps3) plus RTS, i.e., rerun a
subset of tests and re-monitor a subset of properties. When measuring the overhead, we
used end-to-end RTS time, which includes the time to select the tests. Combining base RV
with RTS has 6.4× overhead, compared with 9.4× for base RV. RPS plus RTS gives lower
overhead (5.9×) than RTS alone, showing that RPS can provide value even where RTS is
used. Since RTS can be unsound, it may incorrectly miss to select tests [52, 69, 117, 174],
which makes RTS an unsafe evolution-aware RV technique. Finally, as we show in RQ2,
RTS by itself is imprecise; it should be combined with VMS to show only new violations.

5.4.4 RQ2: VMS and RPS Safety

We discuss the results of VMS and how we used these results to guide our manual checking
of RPS safety. The striped bars in Fig. 5.7 show average number of violations from all
techniques evaluated in Section 5.4.3; the vms bar shows VMS average. The most significant
result is that VMS is orders of magnitude more precise than RPS. For four projects, no new
violation occurred in the range of versions.
Further, library exclusion results in very little difference in the average number of viola-

tions, which is good, because most violations can still be found when libraries are excluded.
Very few violations in the libraries makes sense because libraries are widely used and tend to
be better tested. We manually checked all violations that are not generated when libraries
are excluded and found 87.5% of them to be in the third-party libraries themselves, and not
in the project code. Among these, only one was a new violation and it was due to a library
version change—all events leading to the violation were in the new version of the library, so
library exclusion did not lead to missing any new violation in the projects. All violations
that are missed in projects when excluding libraries were not new violations, providing some
justification for excluding libraries when one does not care about violations in libraries, and
partial explanation for why library exclusion did not lead to missing new violations.
RPS Safety: Wemanually confirmed safety of RPS variants by checking if all new violations
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Figure 5.8: Runtime overheads with Regression Property Prioritization’s critical
(cr) and background (bg) phases

from VMS were also reported by each variant. VMS reported a total of 33 new violations
in 16 of the 200 versions across all projects. Of these, 5 were due to flakiness, which we
confirmed by re-running several times (i.e., these 5 violations could also have happened in
the old version). All RPS variants found 27 of the new violations, but all missed one new
violation. The one new violation that all variants missed was the aforementioned library
version change. It is surprising that weak RPS variants were safe in our experiments, since
they are theoretically unsafe. Therefore, we carried out further manual inspection of the
changes involved in the 16 versions with new violations, to see why weak variants were safe.
We found that all new violations happened due to events in affected3, a subset of affected1
and affected2, so all the variants were able to catch the new violations. This further explains
why weak RPS variants were safe in our experiments (Section 5.4.3 showed that excluding
library classes did not lead to missing new violations in the projects).

5.4.5 RQ3: RPP Effectiveness

Fig. 5.8 shows RPP results, where the RPS variants do not exclude libraries. The first
finding is that RPP alone (noRPS) overhead for monitoring background properties (bg) is
roughly three times more than its overhead for monitoring critical properties (cr). The
second finding is that overheads for cr and bg do not sum up to base RV overhead. For all
projects, but one, cr+bg of noRPS is greater than BL. Being greater is expected because
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time to run tests is repeated between cr and bg. The surprising project is opentripplanner,
where the sum of cr and bg is less than BL for monitoring all properties together, likely due
to reduced memory pressure when the properties are split. Finally, cr with ps3ts has only
1.8× overhead, compared with 9.4× for base RV.

5.5 DISCUSSION

We highlight internal details of RPS and properties that contributed the most monitors
and events in each project.
RPS Internals: Our analysis of data from running RPS shows that changes are small
compared to the size of the program, and that our analysis is very fast compared to the
time for monitoring. The data here is for ps1. The average intertype relationship graph
in our experiments had 720 nodes and 3706 edges. On average, Tc contained 7 nodes each
version, leading to an average of 233 nodes in affected(Tc). The total analysis time was 4.3%
of the end-to-end time—this includes the time to find affected(Tc), repackage the Jar file
with selected properties, and to find the classes from which new events may be generated
after a code change. The rest of the time is spent on monitoring.
Different properties dominated base RV overhead: We measured the number of
monitors created, events triggered, and the top two properties that contribute the most
monitors (Top M) and events (Top E). No property always dominated monitor creation or
event generation, but two properties, Iterator_HasNext and StringBuilder_ThreadSafe

are in Top M for all projects. No property dominates Top E. Iterator_HasNext and
StringBuilder_ThreadSafe are quite common in Top E and generate most events in open-
tripplanner, the project with the highest base RV overhead. Iterator_HasNext helped
find several bugs [118], so developers may still want to monitor it. We are not aware that
StringBuilder_ThreadSafe previously helped find bugs.

5.6 THREATS TO VALIDITY

Internal: Due to non-determinism, program behavior may change from one run to an-
other, even on the same program version. Such non-determinism may be intended in the
code under test (e.g., threads could interleave in different ways in different runs), due to
unintended test flakiness [20,77,108,131,153,181,184], or even due to program interactions
with JavaMOP. We mitigated this threat by ensuring that the results were consistent across
many experimental runs. The scripts and tools that we used in our experiments may contain
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bugs. To mitigate this threat, multiple authors of our paper [116] reviewed the scripts, and
we used JavaMOP and STARTS, which are both robust open-source tools which continue
to be improved.
External: Our findings may not generalize to other RV tools, programs written in other
programming languages, or programs which evolve differently than the ones we used. Certain
aspects of our experimental design help address these threats. First, we evaluated JavaMOP,
which is a popular and representative RV tool that also incorporates some ideas from other
RV tools. Second, our evolution-aware RV techniques are not Java-specific and should apply
to other programming languages. Lastly, we leave as future work to explore longer and more
varied evolution histories of open-source projects.
Construct: STARTS, the tool that we used for static change-impact analysis, can miss to
report some classes as affected if the dependencies between classes and the changed code
happen only through dynamic language features such as reflection [117]. However, current
results show that our evolution-aware RV techniques are safe. Further, our recent work on
making STARTS reflection aware [183] began to address this threat.

5.7 SUMMARY

This chapter presented three evolution-aware RV techniques that we implemented to re-
duce RV overheads during software evolution—Regression Property Selection (RPS), Viola-
tion Message Suppression (VMS), Regression Property Prioritization (RPP)—and explored
their efficiency/safety tradeoff, compared with state-of-the-art evolution-unaware RV (i.e.,
base RV) that monitors programs from scratch after every code change. Our techniques
reduced base RV overhead from 9.4× to as low as 1.8×, were safe, and showed two orders of
magnitude fewer violations than base RV. Our results provide strong evidence that taking
evolution into account can help to significantly reduce base RV overhead when used during
regression testing of evolving software.
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CHAPTER 6: RELATED WORK

We describe research related to our work on properties (Section 6.1), change-impact analysis
(Section 6.2), RTS (Section 6.3), STARTS (Section 6.4), and RV (Section 6.5).

6.1 STUDIES OF PROPERTIES

The properties used in prior research were either manually written [89, 113, 132] or auto-
matically mined [19,37,43,63,105,111,112,122,143,144,155–157,165,207,209,224]. Robillard
et al. [171] provide a survey of automatic property mining techniques. In this dissertation we
studied the largest set of publicly-available manually written properties (those from Lee et
al. [113,132,161]) and automatically mined properties (those from Pradel et al. [156,159,160])
that we could find. The sets of manually written and automatically mined properties that
we used are properties of the standard Java library API.
Previous research considered how to mine properties with lower false alarm rates (FAR).

Weimer and Necula [208], Le Goues and Weimer [111], and Yang et al. [212] use heuristics to
filter candidate mined properties to produce properties which have lower FAR [111, 208] or
which may be more interesting to developers [212]. Gabel and Su [64] proposed an automated
technique for testing that mined properties are necessary for program correctness. Our study
(Chapter 2) is different in focus, scale, type and, expressiveness of properties. Whereas the
aforementioned research focused on increasing the likelihood of mining properties with low
FAR, we focus on the bug-finding effectiveness of existing properties during RV of test exe-
cutions. We use a larger number of open-source projects and tests. Further, properties used
in the aforementioned research are project-specific, while we use project-agnostic properties
of the standard Java library. Lastly, properties in the aforementioned research are mostly of
the pattern (ab)∗—a occurs before b; a and b are events on the same object/type. We check
properties that are more expressive (they are not limited to two events and can be expressed
in different formalisms) and general (they can relate events on multiple objects/types).
Most of the literature on property mining that we surveyed (see Section 2.2.2) was either

evaluated on benchmarks (e.g., 7 of 17 papers were evaluated on DaCapo) or on a small
set of open-source projects (6 of 17 papers were evaluated on 4–7 open-source projects).
Some papers did not use any projects but instead the mined properties were evaluated (in
4 of 17 papers) by means of recall and precision against existing properties derived from
a small collection of classes or from prior work. Evaluating properties on a larger set of
open-source projects can provide a more indicative picture of the bug-finding effectiveness
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of the properties in code that developers commonly write.
Our process for evaluating mined properties is similar to Doc2Spec [224] whose authors

obtained violations of mined properties in 138 open-source projects, manually filtered out
false alarms (73.9% of the violations) and reported suspected bugs to the developers of
the projects. Our work is different (1) in the way that the violations are obtained (they
perform static analysis of selected client code that use the API from which the properties
are mined, whereas we find dynamic violations while running tests that shipped with our
subject projects), (2) in scope (they evaluate automatically mined properties, but we evaluate
both manually written and automatically mined properties), and (3) in purpose (their goal
was to evaluate specifically how good Doc2Spec is for finding bugs, whereas our goal is to
evaluate how good generally are properties when they are monitored during test executions
in open-source projects).

6.2 CHANGE-IMPACT ANALYSIS

Change-impact analysis is a well-studied topic concerned with identifying parts of code
that may be affected by code changes [7, 30, 31, 66, 75, 148, 169, 179]. We provided a brief
background on change-impact analysis in Section 3.3. Lehnert [121] provides a richer tax-
onomy of change-impact analysis techniques. Further, several reviews, surveys, and studies
of change-impact analysis literature are available, e.g., by Cai and Santelices [36], by Lehn-
ert [120], and by Li et al. [126]. Change-impact analysis is central to evolution-aware RV
techniques. In this dissertation, we investigated the use of the firewall technique [107, 149]
for computing the affected parts of code on which to focus RV after code changes.

6.3 REGRESSION TEST SELECTION

Our idea for evolution-aware RV [115] was inspired by RTS [69, 81, 107, 149, 169, 174, 176,
220], an evolution-centered technique for reducing regression testing costs. RTS has been
studied for more than three decades. In this dissertation, we described how the change-
impact analysis technique that we implemented works and how the change-impact analysis
gives us a static class-level RTS tool, STARTS, for free. We described all of these, together
with the large-scale evaluation that we performed, in chapters 3 and 4. Further, our imple-
mentation of STARTS allowed us to evaluate our evolution-aware RV techniques in settings
where RTS is already being used (Section 5.4.3). To the best of our knowledge, the work
presented in chapters 3 and 4 is the first extensive evaluation of class- and method-level static
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RTS techniques and their comparison with the state-of-the-art class-level dynamic RTS for
modern software projects. We discuss in this section some related work on dynamic and
static RTS. Other researchers published more comprehensive surveys on regression testing
in general, and RTS in particular [24, 51–53,172,215].
Dynamic RTS: Rothermel and Harrold [173,174] investigated RTS for C programs. They
dynamically collected coverage on the old version to perform RTS using a control-flow graph
(CFG) analysis. Harrold et al. [81] further extended this work to handle Java language
features and incomplete programs (their technique can work without requiring the analysis
of third-party libraries that a project depends on). Because CFG analysis can be time
consuming for large software, Orso et al. [149] proposed a two-phase analysis, a partitioning
phase to filter out non-affected classes from an Intertype Relation Graph and a selection
phase to perform CFG analysis only on classes retained after the first phase. They also
evaluated a class-level RTS technique (called “HighLevel”), but it did not compute transitive
dependencies on use edges; moreover, it computed dependencies on the supertypes of changed
types and not only on the subtypes.
To improve the efficiency of dynamic RTS, a number of techniques at coarser-granularity

levels (e.g., method- or class-level) rather than the finer-granularity CFG level were proposed.
Ren et al. [169] and Zhang et al. [220, 221] applied change-impact analysis at the method-
level, based on call graphs, to improve RTS. Recently, Gligoric et al. [69] proposed Ekstazi,
a dynamic RTS technique at the class/file level. Although Ekstazi performs coarser-level
analysis and may select more tests than prior work, it was demonstrated to have a sufficiently
lower end-to-end testing time to be adopted by some open-source projects. Zhang [218]
proposed a hybrid class- and method-level dynamic RTS approach, and showed that it is
more precise and faster than Ekstazi. While these dynamic RTS techniques can be safe,
they require dynamic test coverage information which may be absent, costly to collect, or
require prohibitive instrumentation (e.g., for non-deterministic or real-time code). All of
these will likely make it costly to combine dynamic RTS with RV. Therefore, in our work,
we investigated static RTS techniques.
Static RTS: Kung et al. [107] first proposed static RTS based on class firewall, i.e., the
statically computed set of classes that may be affected by a change. Ryder and Tip [176]
proposed a call-graph-based static change-impact analysis technique and evaluated only one
call-graph analysis (0-CFA) on 20 versions of one project [170]. Badri et al. [11] further ex-
tended call-graph-based change-impact analysis with a CFG analysis to enable more precise
impact analysis, but they did not evaluate it on RTS. Skoglund and Runeson [187,188] per-
formed a case study of class firewall, but they used dynamic coverage information together
with class firewall to perform RTS, whereas we apply the class firewall purely statically.
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Although the literature contains many static RTS techniques, extensive studies of these
techniques are lacking. In particular, prior to our study (Chapter 3), evaluations of static
RTS techniques on modern open-source projects were lacking, so it was not clear how static
and dynamic RTS techniques compare in terms of safety, precision, and overhead. Our re-
sults show that the static RTS that we implement in STARTS performs similarly as the
state-of-the-art dynamic RTS approach, Ekstazi, in terms of overhead. However, the results
also show that, compared with Ekstazi, STARTS is less precise and unsafe due to reflection
in a small number of cases. We have recently started exploring ways to make static RTS
safer with respect to reflection [183]. This and other potential improvements to STARTS (see
Section 7) will benefit the evolution-aware RV techniques that we build on top of STARTS.
The static RTS techniques presented in this dissertation are representative of all prior work
on class-firewall-based analyses [107] and call-graph-based analyses [176].

6.4 ON THE GROWING RESEARCH IMPACT OF STARTS

Since the time we evaluated and released STARTS, there have been other projects that
build on or use STARTS. Thus, there is a growing body of work that could benefit from safety
(and precision) improvements of static RTS. Chen and Zhang [39] studied the use of STARTS
for reducing mutation testing costs. We used STARTS as a central component of techniques
for evolution-aware RV [115]—STARTS was the change-impact analysis component when
we adapted RV to the context of software evolution by focusing RV and its users on affected
parts of code [116] (Chapter 5). We compared the class-level RTS in STARTS with the
module-level RTS commonly used in large software ecosystems, e.g., at Facebook, Google
and Microsoft [76]. We found that STARTS can reduce the test-selection rate in those
ecosystems by 10x. Zhu et al. [226] used STARTS as part of the RTSCheck framework for
checking RTS tools. Finally, we recently published our work on making static RTS safer by
making STARTS reflection aware [183].
Several researchers recently published Master’s theses and a doctoral dissertation where

STARTS played a role [1,78,103,130,214]. Hadzi-Tanovic [78] published our initial results on
reflection-aware static RTS. Karlsson [103] evaluated the safety, performance, and precision
impact on static RTS of limiting the transitive closure computation on the IRG to fixed
depths, instead of using the full transitive closure. Lundsten [130] described a preliminary
comparison of STARTS with a machine-learning based RTS approach inspired by Machal-
ica et al. [133]. Yilmaz [214] compared STARTS with an information-retrieval based RTS
approach. Lastly, Al-Refai [1] compared RTS based on UML class diagrams with the RTS
performed by STARTS.
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6.5 RUNTIME VERIFICATION

Many RV techniques and tools were proposed in almost two decades since the first papers
on what is now called RV [55,83,84], mostly concerned with speeding up RV on one program
version. Example techniques (1) improve the efficiency of synthesizing monitors [85], (2) im-
prove the efficiency of monitor garbage collection [98,100,132], (3) create a virtual machine
to make RV more efficient in production [9], (4) reduce RV overhead by sharing informa-
tion among monitors [45, 132, 163], (5) support efficient monitoring of properties written in
different formalism [13, 82, 138, 139], (6) analyze observed executions in monitors to infer
characteristics of unseen executions [28, 29], (7) allow RV to monitor multiple properties
in one execution [100, 132], (8) reduce the time that RV wastes in loops [162], etc. Tools
include Eagle [12], JavaMOP [92, 99, 132], jMonitor [102], JPaX [83], MarQ [166], MOP-
Box [26], Mufin [45], Ruler [13], and TraceMatches [2, 27]. We used JavaMOP because it is
publicly available [92] and developed in the same group/department. The interested reader
may find overviews of the RV research landscape elsewhere, including a comparison with
other quality assurance techniques [124], an overview [16], a tutorial [56] and a taxonomy of
RV tools [57]. Further, the international competition on runtime verification has been held
since 2014 to provide community impetus for improving existing RV tools and validating
new ones [14,15,17,58,167].
Javed and Binder [94] recently conducted a study of multiple RV tools when monitoring

test executions in many open-source projects. Specifically, they use JavaMOP, MarQ, and
Mufin to monitor two manually written properties while running 286,638 tests in 1,777 open-
source projects. They measure the runtime overhead and memory consumption of these
tools but did not evaluate the bug-finding effectiveness of the properties on these projects.
Further, they monitor these two properties one at a time, not simultaneously as we do for
199 properties in this dissertation. We are encouraged to see that, following our large-scale
study of performing RV while running developer written and automatically generated tests
in open-source projects [118], other researchers started conducting large-scale evaluations of
other RV tools apart from JavaMOP.
The work presented in this dissertation is a culmination of research towards realizing the

idea of evolution-aware RV which we proposed [115]. We initially proposed three techniques
to achieve evolution-aware RV, all of which depended on efficient and effective change-impact
analysis. Therefore, we implemented and evaluated STARTS, a static class-level change-
impact analysis and RTS tool (chapters 3 and 4). The first technique that we proposed
was Regression Property Selection (RPS), which we have now realized (Chapter 5). The
second technique that we proposed was Regression Monitor Selection (RMS), which prevents
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monitors for selected properties from being created in parts of code that are not affected by
the code changes. The instrumentation reduction approaches in Section 5.2.3 already achieve
this goal. We leave as future work to compare these instrumentation reduction approaches
with RMS as originally proposed. The third technique that we proposed was to simply
combine RTS with RV, which we evaluated in Section 5.4.3—this combination alone did not
achieve much overhead reduction compared with performing RV from scratch after every
code change. Regression Property Prioritization (RPP) and Violation Message Suppression
(VMS), were not in our original evolution-aware RV proposal [115] but were inspired by our
experience while using RV on multiple program versions.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

We presented the first results on using Runtime Verification (RV) to find more bugs from
tests that developers already have. Although the potential for RV to be used during software
testing was previously mentioned, there was no prior investigation of the effectiveness and
efficiency of using RV during software testing as an early-stage bug-finding approach. Fur-
ther, all prior research on RV considered only one program version, although rapid change
and continuous integration are hallmarks of today’s software development. Thus, using ex-
isting RV techniques during testing of rapidly-evolving software would needlessly, repeatedly,
and wastefully incur overhead in re-monitoring parts of code that are not affected by code
changes. The contributions of this dissertation address these problems.
First, we conducted a large-scale study of the efficiency and effectiveness of performing

RV during software testing. The results of the study show that RV helped find many bugs
that existing tests alone could not catch and developers accepted most of the pull requests
that we submitted to fix such bugs. However, the results also show that RV incurs high
overhead, both in terms of execution time and the time that developers spend waiting for and
inspecting violations. Second, we proposed the idea of evolution-aware RV as a way to reduce
the overhead incurred by RV across multiple program versions, by re-monitoring only the
parts of code affected by code changes. Third, since our proposed ideas for evolution-aware
RV depend critically on fast change-impact analysis, we implemented class- and method-
level static change-impact analyses. Our evaluation of these change-impact analyses in the
context of RTS showed that class-level static RTS both outperformed method-level static
RTS and performed similarly as the state-of-the-art dynamic RTS technique. Fourth, we
implemented techniques for evolution-aware RV that amortize the runtime overhead of RV
across multiple program versions and show developers only new violations that occur after
code changes. Our evolution-aware RV techniques reduced accumulated runtime overhead
of RV by up to 10× and showed two orders of magnitude fewer violations, without missing
any new violation in the projects and versions that we evaluated.
The results in this dissertation provide compelling evidence that taking software evolu-

tion into account is very effective for reducing the overhead of RV across multiple program
versions. The following are some avenues for future work, building on the work presented in
this dissertation:

Better Properties: We provided a set of recommendations for future work on obtaining
properties that are more effective at finding true bugs when performing RV during software
testing (Section 2.5.1). It is essential for the RV community to come up new approaches
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for repairing existing properties and for mining more effective properties. The adoption
of RV in practice hinges on the quality of the properties.

Library-Level Properties vs. Project-Specific Properties: We plan to evaluate
whether project-specific properties that are manually written from a project’s API doc-
umentation or automatically mined from a project have a lower false alarm rate (FAR),
compared to the standard library API-level properties that we used in this dissertation.

Mixed-Granularity Change-Impact Analysis: To further speed up our evolution-aware
RV techniques, we plan to improve the precision of change-impact analysis. One idea is
to perform a method-level analysis on top of the current class-level analysis, as Zhang
recently did for RTS in HyRTS [218].

Static RTS: Open research directions that we are interested to tackle are how to make
static RTS more precise, how to make static RTS safer with respect to other potential
sources of unsafety (such as dependency of tests on external files or native code), and how
to apply static RTS to other programming languages. Future plans for STARTS include
(1) developing faster checksum and dependency storage formats; (2) supporting other build
systems, such as Bazel or Gradle; (3) making STARTS usable in continuous-integration
systems, such as Jenkins or Travis; (4) evaluating STARTS on larger projects than those
we evaluated; (5) creating a STARTS IDE plugin to promote greater community adoption;
and (6) improving the scalability of STARTS in ultra-large software ecosystems [76].

A Tool for Evolution-Aware RV: We plan to develop a robust open-source evolution-
aware RV tool that others can use in their own software development and research. We
already released STARTS as part of our dissertation work [191]. STARTS is already being
used in other research [1, 39, 76,78,103,130,183,214,226].

Further Analysis of Evolution-Aware RV Results: One surprising result from our
evaluation of evolution-aware RV techniques is that weak RPS techniques that we de-
signed to trade off some safety for better efficiency were safe in our experiments. We
plan to experiment with more projects and longer version histories to better empirically
characterize the safety of the weak RPS techniques in practice.

Scaling Evolution-Aware RV to Larger Software Systems: As the first line of work
on evolution-aware RV, we have so far studied RV with, and evaluated our evolution-aware
RV techniques on, medium-sized projects. We plan to investigate how to scale RV, and our
change-impact analysis, RTS, and evolution-aware RV techniques to much larger projects,
in terms of lines of code, test-running time, and RV overhead.

Evolution-Aware RV in Developer Settings: We plan to adapt and deploy evolution-
aware RV to real continuous integration (CI) pipelines of real-world projects. We also plan
to integrate evolution-aware RV into IDEs, for use as developers write their code. These
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will enable studies of evolution-aware RV technique usage by developers. We previously
studied how developers perform RTS inside IDEs [71] and that experience can help us in
studying IDE-based evolution-aware RV as well.

Evolution-Awareness for other Formal Methods: Evolution-aware RVmerely scratches
the surface when it comes to making dynamic-analysis based formal methods more usable
during regression testing. We plan to investigate principles and techniques for evolution
awareness in other formal methods apart from RV.

Given the large number of bugs that RV helped find during our research, the significant
reduction in RV overhead achieved by evolution-aware RV, and the plans that we have for
further improvements, we expect our research could lead to a new era where lightweight
formal methods like runtime verification are routinely used by developers. We believe that
using RV during software testing can greatly improve software quality, that evolution-aware
RV opens a new direction for integrating RV into everyday software testing, and that it is
time for research to start paying more attention to development-time RV, in addition to
deployment-time RV which was previously well studied.
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