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Abstract

The growing use of multicore and networked computing systems is increasing the importance of de-

veloping reliable parallel and distributed code. Testing such code is notoriously difficult, especially

for shared-memory models of programming. The actor model of programming offers a promising

alternative for developing concurrent systems based on message passing. In actor-based systems,

shared-memory access is not allowed, and the key source of non-determinism is the order in which

messages are delivered to and processed by the actors. As a result, errors may occur in actor

programs due to the incorrect interleaving of messages, conflicting constraints on what messages

can be delivered, or errors in the sequential code within individual actors. The research community

has expended a great deal of effort on the testing and verification of concurrent systems. However,

much of this effort has been general in nature or focused on shared-memory models.

Given the differences in how errors manifest in actor programs, it seems natural that tools and

techniques for testing such programs should take into account the particular nature of the actor

model. To effectively and efficiently automate the detection of these errors, we propose a set of

tools and techniques specifically designed to systematically explore the different behaviors of actor

programs resulting from possible message delivery schedules.

Specifically, this dissertation presents Basset, a general framework for the systematic testing of

actor systems developed with languages that compile to Java bytecode. This framework provides

a common set of capabilities designed and implemented to take advantage of actor semantics. By

building these capabilities into a language-independent core, they are available for use by any

instantiation of the framework. This dissertation illustrates the practicality and effectiveness of

this approach by presenting two tool instantiations of the Basset framework: one for the Scala

programming language and the other for the ActorFoundry library for Java. The implementation

of Basset was built as an extension to Java PathFinder, a popular model checker for Java, in order
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to leverage capabilities that already exist in that model checker. The Basset framework approach

directly enables the relatively quick development of testing environments for actor-based languages

and/or libraries that compile to Java bytecode.

This dissertation also considers the effectiveness of dynamic partial-order reduction techniques

as they relate to the exploration of actor programs. The use of dynamic partial-order reduction

speeds up systematic testing by pruning parts of the exploration space. However, the level of

potential pruning is highly dependent on the order in which messages are considered for processing.

This dissertation presents an evaluation of a number of heuristics for choosing the order in which

messages are explored in Basset. The experiments show that the choice of heuristic can affect the

number of execution paths that need to be explored by over two orders of magnitude.
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Chapter 1

Introduction

The growing use of multicore and networked computing systems is increasing the importance of

developing reliable parallel and distributed code. Unfortunately, developing and testing such code

is very hard, especially using shared-memory models of programming, which often results in con-

currency bugs such as atomicity violations, data races and deadlocks. An alternative for writing

parallel and distributed code is message passing, where multiple autonomous agents communicate

by exchanging messages.

In the Actor programming model, these autonomous agents are called actors. The actor model

provides message passing with object-style data encapsulation [Agh86, AMST97]. By default,

messages in the actor model are asynchronous; other forms of communication, such as remote-

procedure-call style synchronous messages, are defined in terms of asynchronous messages [Agh86].

Each actor has its own thread of control, a unique actor name (its virtual address), and a mail-

box. If an actor is busy, messages sent to it are queued in its mailbox. When an actor is done

with processing a message, it checks its mail queue for another message. In response to processing

a message, an actor may do one or more of three actions: update its own local state (including

updates that can change the actor’s behavior), send messages to actors that it knows about, and

create new actors.

Many actor-oriented programming systems have been developed, including ActorFoundry [AF],

Akka [Akk], Axum [Micb], Charm++ [KK93], E [Mil06], Erlang [Arm07], Jetlang [Jet], Jsasb [Jsa],

Kilim [SM08], Newspeak [New], Ptolemy [EJL+03], Revactor [Rev], Salsa [VA01], Scala [OSV08],

Singularity [HL07], ThAL [Kim97], and the Asynchronous Agents Framework used in Microsoft

Visual Studio 2010 image processing software [Mica]. While some of these systems are entirely new

languages designed around actors, others are libraries and frameworks built for existing languages.

Taking into account the wide-spread use of the Java language, it should come as no surprise
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that several of the above languages and libraries target the creation of actor programs that compile

to Java bytecode. These systems include ActorFoundry, Akka, Jetlang, Jsasb, Kilim, SALSA, and

Scala. The research represented in this dissertation focuses on the use of two of these systems: the

Scala programming language and the ActorFoundry library for Java.

ActorFoundry [AF] is a Java framework developed at the UIUC’s Open Systems Laboratory.

It provides an Application Programming Interface (API) that allows developers to develop actor

programs in a familiar language and includes a runtime architecture to execute those programs

in an efficient manner. Programs consist of actor objects that encapsulate an actor’s state and

behavior, and that implicitly handle the receipt of messages via methods written by the developer.

The API supports the creation of new actors, the sending of asynchronous messages to other ac-

tors, and synchronized messaging in a Remote Procedure Call (RPC) style. By default, a deep

copy of message contents is made to ensure there is no shared-memory interaction between actors.

ActorFoundry also supports behavior changes by providing a mechanism based on Java annota-

tions for constraining which message types can be received. At execution time, actor objects are

associated with Java threads utilizing an efficient continuation-based thread pool approach based

on Kilim [SM08]. Section 2.2 provides additional details on ActorFoundry.

Scala [OSV08] is a programming language developed by Martin Odersky and his group at the

EPFL’s Programming Methods Laboratory. The language is a statically-typed blend of object-

oriented and functional programming features. It compiles to Java bytecode and allows easy inte-

gration of Scala and Java code. The language is becoming increasingly popular and is already used

for systems such as Twitter’s core message queue [Ven09]. Although developers are able to utilize

Java’s thread-based concurrency mechanisms, the primary construct for concurrency in Scala is

actors [Sca, OSV08]. Like ActorFoundry, Scala also provides classes to implement actor objects

and utilizes a thread pool at execution time to provide more efficient execution [HO07]. Unlike

ActorFoundry, Scala supports explicit message receipt and utilizes a pattern matching mechanism

to constrain which messages can be received at a given point.

The rest of this chapter is organized as follows. Section 1.1 presents challenges in testing actor

programs. Section 1.2 briefly summarizes the main statement of our work. Section 1.3 provides an

overview of our actor testing framework. Section 1.4 describes our current work on using dynamic
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partial-order reduction heuristics to allow more efficient exploration of actor programs. Section 1.5

summarizes the contributions of this dissertation. Finally, Section 1.6 presents an overview of the

rest of this dissertation.

1.1 Challenges for Testing Actor Programs

While the research community has expended a great deal of effort on the testing and verification

of concurrent systems, much of this effort has been general in nature or focused on shared-memory

models. In the theoretical model of actor-based systems, however, communication via shared

memory is not allowed. The key source of non-determinism is instead the order in which messages

are delivered to and processed by the actors. While actor programming avoids some of the bugs

inherent in shared-memory programming, e.g., low-level data races involving access to shared data,

actor programs still can have bugs: for example, there may be an unsafe ordering of messages to

an actor, conflicting constraints on what messages can be delivered, or incorrect sequential code

within individual actors.

The systematic testing of an actor system requires that we exhaustively test the different orders

in which messages are delivered to the actors that make up the system. Effectively, systematic

testing is a form of model checking where the model being considered is an implementation model

(i.e., the actual code that implements the system) instead of a model of the system design or

an abstraction of the system, as would be used in the more traditional form of model checking.

Tools which systematically explore real code have become increasingly prevalent and include Bo-

gorVM [RDH03], CMC [MPC+02], CHESS [MQ07], Java PathFinder [VHB+03], JNuke [ASB+04],

and Zing [AQR+04].

Although exploring the different message orderings for an actor program is somewhat differ-

ent than exploring thread interleavings, systematic testing and model checking remain appropriate

techniques for checking actor program reliability by automatically finding potential concurrency

bugs. Unfortunately, the use of these techniques on real actor programs is not without its own

problems. The systematic testing of actor programs can be complicated by the underlying im-

plementation of an actor system. Actor libraries often include a complex, multithreaded runtime

system for execution of actor programs. While these runtime systems enable efficient execution of
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actor programs, because of the complexity and scheduling choices in the runtime system, they can

make exploration of such programs impossible or inefficient. The complexity of an actor system’s

underlying architecture interferes with our ability to test and explore what is really important: the

functionality and interaction of the actors themselves. Indeed, the goal of checking actor systems

is most often to check the actor programs and not the underlying library used to implement these

programs. Given the differences in how errors manifest in actor programs, it seems natural that

tools and techniques for testing such programs should take into account the particular nature of

the actor model.

To address the performance issues discussed above and to take into account the nature of specific

actor or distributed systems implementations, research has mostly focused on tools tailored to just

a single system [AE01, AG06, BB07, FS07, SA06, YCW+09, YKKK09]. Unfortunately, while this

approach enables systematic actor program testing for a particular library or language, it does not

leverage similarities across different actor systems and offers little in the way of reusable components

and techniques. As a result, implementations of complex algorithms must be reimplemented for

each actor system.

1.2 Thesis

This dissertation presents our efforts to help alleviate some of the above listed problems on testing

actor programs. Specifically, we propose a general framework and environment for the systematic

testing of actor programs that compile to Java bytecode. Our thesis is that:

It is possible to build a general framework that (1) allows efficient exploration of actor

programs written in languages that compile to Java bytecode and (2) facilitates the reuse

of testing capabilities across such languages.

In support of this thesis, this dissertation presents research in two main areas: (1) the development

of a common framework along with two instantiations of the framework for ActorFoundry and

Scala, and (2) the expansion and improvement of the capabilities of the framework, in particular,

the use of dynamic partial-order reduction heuristics to allow more efficient systematic exploration

of actor programs being explored.
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1.3 Systematic Testing Framework

In this section we briefly summarize our framework for systematic testing of actor programs, which

we have named Basset. This initial portion of our work supports our hypothesis that a common

framework for systematic testing of actor programs can be used to provide efficient exploration

of such programs, provide a means of quickly developing testing environments for different actor

libraries and languages, and facilitate reuse across those multiple tools.

Basset is focused on the automated systematic testing of actor programs which have been

compiled to Java bytecode. Our choice of Java reflects the popularity of this language and the

availability of Java-based actor systems. Such actor programs can be written using several lan-

guages and libraries that include ActorFoundry [AF,KSA09], Akka [Akk], Jetlang [Jet], Jsasb [Jsa],

Kilim [SM08], SALSA [VA01], and Scala [OSV08].

The Basset framework provides a common set of testing and state-space exploration capabilities

specifically designed and implemented to take advantage of actor semantics and it facilitates their

reuse across any instantiation of the framework. Furthermore, the framework directly enables the

relatively quick development of testing environments for actor-based languages and/or libraries

that compile to Java bytecode. Basset is able to support different actor systems with only a

thin adaptation layer required for each system. Once a language adapter for a particular actor

library has been created, the resulting instantiation (i.e., tool) is able to take advantage of common

capabilities such as deadlock detection, state pruning, dynamic partial-order reductions, etc. We

have instantiated the Basset framework for two actor languages. Specifically, we support actor

programs written using the ActorFoundry [AF] library for Java and those written in the Scala

language [OSV08] (which compiles to Java bytecode). Our support for Scala is based on the actor

library from the standard Scala distribution.

The framework has been designed and implemented with extensibility in mind and is intended

to serve as a platform for further research into the testing of actor programs. We expect that

this research will directly support and facilitate additional work in this area. In fact, Bokor et al.

have already used our Basset framework for their work on model checking fault-tolerant distributed

protocols [BKSS11].

In order to leverage work in model checking, we built Basset on top of Java PathFinder (JPF),
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a popular explicit-state model checker for Java bytecode [VHB+03, JPF]. JPF was developed at

NASA for checking programs written directly in the Java language. It has been used in numerous

research projects (e.g., see [JPF]). JPF provides a specialized Java Virtual Machine that supports

state backtracking and control over nondeterministic choices such as thread scheduling. Prior to

our work, JPF did not have any direct support for actors, i.e., for high-level choices such as message

scheduling. Note that although we use JPF, our techniques could be used in conjunction with other

explicit-state model checkers such as Bandera [CDH+00], BogorVM [RDH03], CMC [MPC+02],

JCAT [DIS99], JNuke [ASB+04], SpecExplorer [VCST05], or Zing [AQR+04].

One might ask why it is necessary to build a new framework instead of using JPF to directly

check programs written against actor libraries such as Scala and ActorFoundry. The answer lies

in how these actor libraries work. The Scala and ActorFoundry libraries include complex, multi-

threaded runtime systems for execution of actor programs. While these runtime systems enable

efficient execution of actor programs, because of the complexity and scheduling choices in the run-

time systems, they make exploration of the programs impossible or inefficient. For instance, JPF

cannot even execute all the ActorFoundry library, as the ActorFoundry uses Java networking li-

braries for exchanging messages between actors [AG06,BB07]. JPF can execute the Scala library,

but the resulting state space is huge: for example, exploration of the states of a simple Scala

helloworld application did not complete in an hour! Even after we simplified parts of the Scala

library, JPF still took over 7 minutes to check helloworld. The exploration state space is large,

not because of the complexity of the actor program code, but because of the runtime architecture.

A design goal for Basset was the efficient exploration of actor application code itself and not

the exploration of the actor libraries. Therefore, Basset does not check the actual library code

but focuses instead on exposing potential bugs in the application code due to message scheduling,

which is the source of non-determinism in actor-based programs. Specifically, the adaptation layer

in Basset replaces the implementation of an actor library with much simpler code that still provides

the same interface to the actor application but enables a much faster exploration. The result is a

highly efficient system to test actor code: Basset takes less than one second to check helloworld.

Figure 1.1 provides a high-level view of the software layers that make up the Basset environ-

ment. Basset supports direct exploration of an actor program’s unmodified application code itself,

6



Actor Program

Language Adapter

Basset Core

Java PathFinder

Figure 1.1: Basset systematic testing environment software layers

not the actor libraries and runtime architectures. A Basset instantiation for a particular language

effectively replaces the language’s complex runtime architecture. A language adapter layer devel-

oped specifically for a particular language redirects calls from the application code to the Basset

core testing architecture. The Basset core, in conjunction with the Java PathFinder tool which

it extends, performs the duties normally handled by an actor language’s runtime architecture and

manages the systematic exploration of different message delivery orderings as well. It is important

to note that this architectural approach of using a shared, common core facilitates reuse of testing

capabilities (e.g., dynamic partial-order reductions) across multiple actor languages and libraries.

To validate the implementation of the Basset framework and our tool instantiations for Ac-

torFoundry and Scala, we ran a series of experiments using nine subjects programs, representing

various communication patterns. Both ActorFoundry and Scala versions of the programs were

created. The number of possible message delivery schedules needed to explore the behavior of

these programs ranged from 6 for a simple client-server subject to over 60,000 for our porting of

a publicly available MPI example [Pi], which computes an approximation of π by distributing it

across a set of worker actors. The results for state space pruning experiments using state compar-
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ison demonstrated that using an actor-specific state abstraction for comparison could reduce the

number of states explored by up to 71.65% over JPF’s built in state comparison and reduce the

number of execution paths that need to be run in their entirety by over 83.33%.

Of particular note were the results of our experiments applying dynamic partial-order reduction

(DPOR) techniques to the explorations. As expected, the pruning that resulted was quite large (up

to 99.96% fewer states). However, we also noted a large variation (over two orders of magnitude)

in the number states that could be pruned based on on the order in which messages were considered

for processing by the DPOR algorithm. This observation is what motivated our investigation of

ordering heuristics introduced in the next section. Chapter 3 provides more detail on Basset and

its capabilities.

1.4 Dynamic Partial-order Reduction Heuristics

We next introduce our work on the use of heuristics to increase the efficiency of dynamic partial-

order reduction (DPOR) techniques. A key challenge in testing actor programs is their inherent

nondeterminism: even for the same input, an actor program may produce different results based

on the schedule of arrival of messages. Systematic exploration of possible message arrival sched-

ules is required both for testing and for model checking concurrent programs [CGP99,SA06,FS07,

AE01,AG06,BB07,YCW+09,YKKK09,FG05,God96]. However, the large number of possible mes-

sage schedules often limits how many schedules can be explored in practice. Fortunately, such

exploration need not enumerate all possible schedules to check the results. Partial-order reduc-

tion (POR) techniques speed up exploration by pruning some message schedules that are equiv-

alent [CGP99, SA06, YCW+09, FG05, God96, KWG09, JSM+09]. Dynamic partial-order reduction

(DPOR) techniques [SA06,FG05,VGK08] discover the equivalence dynamically, during the explo-

ration of the program, rather than statically, by analyzing the program code. The actual dynamic

executions provide more precise information than a static analysis that needs to soundly over-

approximate a set of feasible executions. Effectively, based on the exploration of some message

schedules, a DPOR technique may find that it need not explore some other schedules. This allows

DPOR techniques to prune a substantial part of the exploration space.

It turns out that pruning using DPOR techniques is highly sensitive to the order in which
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messages are considered for exploration. For example, consider a program which reaches a state

where two messages, m1 andm2, can be delivered to some actors. If a DPOR technique first explores

the possible schedules after delivering m1, it could find that it need not explore the schedules that

first deliver m2. But, if the same DPOR technique first delivers m2, it could happen that it

cannot prune the schedules from m1 and thus needs to perform the entire exhaustive exploration.

We recently observed this sensitivity in our work on building a systematic testing framework for

actors described in the previous section, and Godefroid mentioned it years ago [God96]. Dwyer et

al. [DPE06] consider the use of heuristics in determining search paths that will more quickly find

errors in shared-memory systems. However, we are not aware of any prior attempt to analyze what

sorts of message selection orders lead to better pruning in DPOR for message-passing systems.

We consider the following questions regarding message-ordering heuristics:

• What are some of the natural heuristics for ordering scheduling decisions in DPOR for

message-passing systems?

• What is the impact of choosing one heuristic over another heuristic?

• Does the impact of these heuristics depend on the DPOR technique?

• Can we predict which heuristic may work better for a particular DPOR technique or subject

program?

We define eight different heuristics and evaluate the impact each has on pruning the search space

for several test subjects. The evaluation is performed using three different DPOR implementations:

one based on the algorithm used for dCUTE [SA06] (see Section 2.7.2) and the other two based

on dynamically computing persistent sets [FG05, God96] (see Section 2.7.1). The persistent set

technique was considered both stand-alone and in combination with sleep sets [God91,God96]. As

our evaluation platform, we use the Basset framework described in Section 1.3.

The evaluation results show that different heuristics can lead to substantial differences in prun-

ing, up to two orders of magnitude. In Chapter 4 we summarize the advantages and disadvantages

of various heuristics. In particular, we point out what types of programs, based on the communi-

cation pattern of the actors, may benefit the most from which heuristics. For example, in pipelined

computations, it is more efficient to first schedule messages for the early stages in the pipeline.
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These insights provide important guidelines for exploring actor programs in practice: based on

the type of the program, the user can instruct an exploration tool to use a heuristic that provides

better pruning, resulting in a faster exploration and more efficient bug finding.

1.5 Contributions

This dissertation makes the following contributions:

• Introduces the concept of a general framework for exploration of actor programs that explic-

itly takes into account the nature of these programs.

• Provides an implementation of the general framework concept in a tool called Basset which

uses the Java PathFinder model checker. Basset has been released as a publicly available

extension for JPF called jpf-actor. Basset can be downloaded from either the NASA JPF

website [JPF] or the Basset homepage [Bas].

• Provides instantiations of the Basset framework for actor programs written in the Actor-

Foundry library and in the Scala programming language. These instantiations illustrate the

viability of and value provided by the framework concept in general and the Basset framework

in particular. The instantiations also provide the first state exploration engines for these two

actor systems, which are based on very different design decisions.

• Incorporates two known optimization techniques: dynamic partial-order reduction [SA06,

CGP99] and state comparison/hashing [SL08, CGP99] in Basset. Due to the nature of the

Basset framework, these two techniques for speeding up exploration were automatically avail-

able for use with both the ActorFoundry and the Scala instantiations of the Basset framework,

thus illustrating the reuse of tools and techniques made possible by the common framework

concept.

• Evaluates the Basset framework on several subjects. The evaluation shows that a single

framework can systematically explore programs in an effective manner for multiple languages.

Additionally, we show that Basset’s approach of exploring only application code (and not un-
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derlying system libraries) allows for more efficient exploration than if the underlying runtime

architecture of the actor system were also considered.

• Identifies and presents eight ordering heuristics that can be applied when using dynamic

partial-order reduction to limit the search space during systematic testing of actor-based

programs.

• Evaluates these ordering heuristics for three DPOR techniques: one based on the algorithm

used for dCUTE and two others based on persistent sets. The persistent set technique was

considered both stand-alone and augmented with sleep sets.

• Summarizes the observed advantages and disadvantages of the identified heuristics, and

presents preliminary guidelines regarding the use of heuristics based on the characteristics of

the program under test.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides an overview of key

concepts and software used throughout the dissertation. This includes a discussion of the actor

programming model, ActorFoundry library, Scala programming language, Java PathFinder frame-

work and dynamic partial-order reduction. Chapter 3 offers a more detailed look at the Basset

systematic testing framework and its ActorFoundry and Scala instantiations. This chapter includes

both an illustrative example and experimental results. Chapter 4 follows with a presentation of our

work on message-ordering heuristics for improving the efficiency of dynamic partial-order reduc-

tions. Finally, Chapter 5 discusses work related to the material presented in the dissertation, and

Chapter 6 concludes with a summarization of the contributions of our work and a brief discussion

of possible future work related to this research.
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Chapter 2

Background

In this chapter we discuss concepts and software that are used throughout the remainder of this

dissertation. Section 2.1 provides a brief introduction to the actor programming model. Sec-

tions 2.2 and 2.3 present overviews of the ActorFoundry library and Scala programming language,

respectively. Section 2.4 introduces the concept of state-space exploration. Section 2.5 provides

an overview of the Java PathFinder program model checker. Section 2.6 discusses how state-space

exploration facilitates the systematic testing of actor programs. Section 2.7 discusses the role

dynamic partial-order reduction plays in improving the efficiency of that state-space exploration.

2.1 Actor Programming Model

In the actor programming model [Agh86,AMST97], an actor is an autonomous concurrent object

which interacts with other actors by explicitly sending messages. By default, these messages are

asynchronous; other forms of communication, such as remote-procedure-call style synchronous

messages, are defined in terms of asynchronous messages [Agh86]. Conceptually, each actor is

viewed as having its own thread of control, a unique actor name (its virtual address), and a

mailbox, as depicted in Figure 2.1. If an actor is busy, messages sent to it are queued in its

mailbox. When an actor is done with processing a message, it checks its mail queue for another

message. In response to processing a message, an actor may do one or more of three actions:

• Send messages: Messages may be sent to other actors or to itself, provided the sender

knows the name of the recipient.

• Create new actors: Newly created actors have their own unique names and an associated

mail queue. Upon creation, only the creator knows the name of the new actor, but names

may be communicated in messages.
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Figure 2.1: Schematic representation of an actor

• Update local state: Changes can be as straightforward as updates to local variables or

they can change the future behavior of the actor. For example, the changes can determine

the types of messages that the actor will accept in the future.

An actor program may have different executions (even for the same input) based on the in-

terleaving of messages exchanged between the actors, in much the same way as a multithreaded

program may have different executions based on the interleaving of accesses to shared memory.

Each actor operates independently. Consequently, if two actors send messages concurrently, the

order of arrival of those messages is indeterminate. Moreover, no assumption is made about the

routing of messages; therefore, two messages sent from the same actor to the same recipient may

arrive in any order. Although in some variants of actors message order between pairs of actors is

maintained, not requiring the order of messages between two actors to be maintained by default

allows greater flexibility in the implementation: for example, a client may send requests to an actor

operating as a common receptionist for requests. This actor then forwards it to a stateless server.

If the order of messages is not required to be preserved, the behavior of the system would be the

same whether the receptionist forwards the requests to a single actor, or to one of a collection of

actor servers. Of course, message order can always be explicitly constrained; this requires imposing

additional synchronization protocols. In some actor languages, message order between two actors

can be easily expressed in terms of constraints (see below).
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While the actor model does not guarantee in-order message delivery, it does guarantee that

the messages are eventually delivered. Of course, in a real distributed implementation, messages

may be lost, just as processors may crash or buffers may overflow in an implementation of a

sequential program. Using an abstraction that guarantees message delivery enables us to reason

about the liveness properties of actor systems. Lossy messages can always be modeled by explicitly

representing channels as actors which nondeterministically lose messages. This is not difficult to

do, but can be prohibitively expensive during the testing of reasonably complex systems due to

state-space explosion. Although the behavior of an actor in response to a message is deterministic,

there are a number of ways of essentially causing the behavior to be governed by a nondeterministic

coin flip. The simplest is to make use of an actor which sends itself a message, causing the next

message to be ignored rather than processed. Since this message would be shuffled with other

messages, whether some message is lost or not would be nondeterministic.

Because of the asynchrony inherent in distributed systems, it is generally not feasible for the

sender to know what the state of a recipient will be when it receives a message. For example, a free

printer may ask a spooler for a print job, but the spooler may be empty. In many actor languages,

the developer may specify synchronization constraints which are used to postpone requests until

the recipient is in a state where it can process the request [HA92]. Actor runtimes implement

these constraints by reordering messages. Moreover, actor languages typically provide higher level

language constructs for “synchronous” or request-reply communication, where a value is returned

by the actor receiving a message; the sending actor waits until this value is received before carrying

out further computation. These constructs can be translated into basic actor constructs [MT97].

Actors enable programmers to think in terms of objects as agents, a natural view of concurrency.

Because an actor processes only one message at a time, access to an actor’s state is serialized. Thus,

actors avoid low level data races to variables in its state, and avoid the potential for deadlocks

related to preventing those races. In essence, actors raise the level of abstraction, allowing larger

computation steps to be viewed as a logical unit.

Although certain types of bugs inherent in shared-memory based programs are avoided, bugs

may still occur in actor code: the interleaving of messages to an actor whose ordering should have

been constrained may result in an incorrect behavior, the use of synchronous communication or
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synchronization constraints can result in a deadlock, or the sequential code within an actor can

have errors. Some sources of bugs in actor programs are the result of the deficiencies in the current

generation of actor languages and libraries. For example, a critical issue for actor programs is

the cost of sending messages. In many actor languages and libraries, the cost of message passing

is minimized by transferring ownership rather than by copying data. Unfortunately, these actor

languages and libraries require the programmer to ensure that passing messages by transferring

data ownership is correct: i.e., the sender does not subsequently attempt to access the data. This

dissertation does not deal directly with this particular problem. The tools and techniques presented

herein assume that data is either copied or that ownership issues are correctly handled.

As mentioned in the introduction, some actor-oriented programming systems include Actor-

Foundry [AF], Akka [Akk], Axum [Micb], Charm++ [KK93], E [Mil06], Erlang [Arm07], Jet-

lang [Jet], Jsasb [Jsa], Kilim [SM08], SALSA [VA01], Scala [OSV08], Newspeak [New], Ptolemy

II [EJL+03], Revactor [Rev], ThAL [Kim97], Singularity [HL07], and the Asynchronous Agents

Framework used in Microsoft Visual Studio 2010 image processing software [Mica]. Many of these

systems support use of languages or libraries that generate executable Java bytecode [AF, Akk,

Jet, Jsa, SM08, VA01, OSV08, HO07]. This involves implementing Java classes for actor names,

mail queues, threads, and state. Moreover, constraints which filter messages based on the state

of an actor may be specified. The commonality of these structures is a part of what motivates

us to develop a unified, generic framework in which actor state exploration can be performed and

optimized. Of particular note are the ActorFoundry actor library for Java [AF] and the Scala pro-

gramming language [OSV08]. These two systems were used extensively in the research underlying

this dissertation.

2.2 ActorFoundry

Let us consider one of the actor programming languages for which we created a testing tool instance

based on our Basset framework. The imperative actor language ActorFoundry is implemented as a

Java framework [KSA09]. Figure 2.2 shows a Hello World program in ActorFoundry that illustrates

some key actor constructs.

Classes such as HelloActor that describe an actor’s behavior extend osl.manager.Actor. An
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public class HelloActor extends osl.manager.Actor {

ActorName worldActor = null;

@message

public void hello() throws RemoteCodeException {

worldActor = create(WorldActor.class);

call(stdout, "print", "Hello ");

send(worldActor, "world");

}

}

public class WorldActor extends osl.manager.Actor {

@message

public void world() throws RemoteCodeException {

call(stdout, "print", "Hello ");

}

}

Figure 2.2: “Hello World” program in ActorFoundry illustrating several constructs

actor may have local state comprised of primitive values and objects, and this local state is assumed

to not be shared among actors. In ActorFoundry, an actor can communicate with another actor in

the program by sending asynchronous messages using the library method send. The sending actor

does not wait for a message to arrive at the destination and be processed. Rather, it continues

execution with the next program statement as soon as the message is sent. In contrast, the library

method call sends a synchronous message to an actor. This is actually accomplished by sending an

asynchronous message, but then blocking the sender until the message is delivered and processed

at the receiver and a reply is returned. An actor definition includes method definitions that

correspond to messages that the actor can accept and these methods are annotated with @message.

Both send and call can take arbitrary number of arguments that correspond to the arguments of

the corresponding method in the destination actor class.

The library method create creates an actor instance of the specified actor class. It can take

arbitrary number of arguments that correspond to the arguments of the constructor. Message

parameters and return types should be of the type java.io.Serializable. The library method

destroy kills the actor calling the method. However, actors cannot destroy other actors. Messages

sent to the killed actor are never delivered. Note that both call and create may throw a checked

exception RemoteCodeException indicating that a failure occurred in a remote actor or that a new

actor could not successfully be created.
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We next present an informal semantics for relevant ActorFoundry constructs so we are able

to more precisely describe the algorithms in Section 2.7. Consider an ActorFoundry program P

consisting of a set of actor definitions including a main actor definition that receives the initial

message. send(a,msg) appends the contents of the message msg to the message queue of actor a.

Each actor has a queue; we will use Qa to denote the message queue of an actor a. We assume

that at the beginning of execution the message queue of all actors is empty.

The ActorFoundry runtime first creates an instance of the main actor and then sends the initial

message to it. Each actor executes the following steps in a loop: remove a message from the

queue (termed as an implicit receive statement from here on), decode the message, and process the

message by executing the corresponding method. During the processing, an actor may update the

local state, create new actors, and send more messages. An actor may also throw an exception. If

its message queue is empty, the actor blocks waiting for the next message to arrive. Otherwise,

the actor nondeterministically removes a message from its message queue. The nondeterminism in

choosing the message models the asynchrony associated with message passing in actors. In other

words, we can model the delivery order nondeterminism by nondeterministically choosing from

among all available messages.

An actor executing a create statement produces a new instance of an actor. We assume that

the new actor is assigned a fresh integer identifier obtained by incrementing a global counter. An

actor is said to be alive if it has not already executed a destroy statement or thrown an exception.

An actor is said to be enabled if the following two conditions hold: the actor is alive, and the actor

is not blocked due to an empty message queue or executing a call statement.

A variable pca represents the program counter of the actor a. For every actor, pca is initialized

to the implicit receive statement. Conceptually, we can describe the semantics of an actor program

as being executed by a scheduler that executes one actor at a time. This scheduler executes a loop

inside which it nondeterministically chooses an enabled actor a from the set P. It executes the

next statement of the actor a, where the next statement is obtained by calling statement at(pca).

During the execution of the statement, the program counter pca of the actor a is modified based

on the various control flow statements; by default, it advances to the next statement.

The concrete execution of an internal statement, i.e., a statement not of the form send, call,
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create, or destroy, takes place in the usual way for imperative statements. The loop of the scheduler

terminates when there is no enabled actor in P. The termination of the scheduler indicates either

the normal termination of a program execution or a deadlock state (when at least one actor in P

is waiting for a call to return).

2.3 Scala

The Scala programming language was conceived by Martin Odersky and his research group at

EPFL. It is a statically-typed general purpose language that is essentially a blend of object-oriented

and functional programming features. Scala primarily supports development of programs that run

on the Java Virtual Machine (JVM). It also supports development for Microsoft’s .NET Framework

CLR, but for purposes of this dissertation we are interested only in the version which compiles to

Java bytecode. Scala code can integrate quite seamlessly with Java code as they share a common

runtime representation and both run on a JVM. No doubt this interoperability has been a factor

in the language’s increasing popularity; it is already being used for systems such as Twitter’s core

message queue [Ven09].

The primary mechanism for concurrency in Scala is actors [Sca, OSV08]. Like ActorFoundry,

Scala also has a complex runtime architecture that manages the actors and their communication.

We illustrate some of the actor-related language features of Scala using the simple Scala example

in Figure 2.3. The ClientServer driver code first creates two Actor objects—a server and a client—

using the new instruction in Scala. This creates an object just like it would for any other class and

returns an object reference. The driver then starts the two actors by invoking their start methods.

Our example Server actor simply stores and retrieves an integer value. In Scala, each actor

extends the Actor trait. Here, the Server actor uses react to explicitly request and process a

message from its mailbox. Scala uses pattern matching to specify which messages it can receive

and what action to perform. Messages that do not match any of the cases are left in the mailbox

for future processing. Essentially, the program calls react passing in a partial function expressed

as a series of cases. For our example, the Server actor accepts three types of messages: (1) integers

which it stores in the variable value, (2) the string get which results in a call to the reply method

where sender information is extracted from the original message and a message containing the reply
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object ClientServer extends Application {

val server = new Server

val client = new Client(server)

client.start

server.start

}

class Client(server: Actor) extends Actor {

var v1: Int = _

var v2: Int = _

def act() = {

server ! 5

v1 = (server !? "get").asInstanceOf[Int]

println("value v1 = " + v1)

v2 = (server !? "get").asInstanceOf[Int]

println("value v2 = " + v2)

// assert (v1 == v2);

server ! "shutdown"

}

}

class Server extends Actor {

var value: Int = _

def act() = loop {

react {

case v: Int => value = v

case "get" => reply(value)

case "shutdown" => exit()

}

}

}

Figure 2.3: Simple Scala client/server example

contents is sent to the original sender, and (3) the string shutdown, which instructs this actor to

terminate itself by calling the exit method.

Our example Client actor communicates with the server. The client first uses the ! operator

to asynchronously send a message containing the value 1 to the Server actor. The client then uses

the !? operator to send a synchronous get message to the server to retrieve the current stored

value. Note that the !? operator essentially performs a remote procedure call. In other words,

after the client sends the get message, it blocks until it receives a reply from the server and then

stores the return value into the variable v1 or v2. After the client gets the value a second time, it

finally terminates the server by asynchronously sending it a shutdown message using the ! operator.

It should be noted that this example has multiple different behaviors depending on the order in

which messages are delivered to the server. A detailed discussion of these behaviors, along with an

ActorFoundry version of this example, can be found in Section 3.1.
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2.4 State-Space Exploration

Systematic testing and model checking can improve program reliability by automatically finding

potential bugs. A key element of these approaches is state-space exploration (e.g., [CGP99]). To

explore the complete state space of a program for a given input, one needs to explore all feasible

execution paths of the program.

More specifically, state-space exploration starts from an initial program state and explores the

states that could be reached by some execution of the program. Different exploration paths may

occur as a result of non-deterministic choices encountered during the execution (e.g., which thread

should be executed next or, for actor programs, which message should be delivered next).

2.5 Java PathFinder

Java PathFinder (JPF) is an extensible, explicit-state model checker for Java [VHB+03, JPF] de-

veloped at NASA Ames. The initial version of JPF [Hav99] was developed as a translator from

Java to Promela, the language used by the SPIN model checker [Hol97]. Subsequently, it was

redeveloped as a specialized Java Virtual Machine (JVM) that supports the direct exploration and

systematic testing of unmodified Java programs. JPF itself is written in Java and runs on top of

a host, native JVM.

Key to the tool’s raison d′être, is its ability to provide control over non-deterministic choices.

The default choices in JPF are thread scheduling and explicit choices made in the code with the JPF

library call Verify.getInt (analogous to VS toss in VeriSoft [God97]). To enable the exploration

of the state space that results from these choices, JPF supports efficient state backtracking to

restore previously visited states. The tool uses storing and restoring of states as opposed to the

re-execution approach found in tools like CHESS [MQ07] or dCUTE [SA06]. JPF also supports

the pruning of exploration paths, providing both standard state comparison capabilities and the

option of creating custom state comparators. JPF also supports several POR techniques.

JPF cannot directly handle native methods (i.e., methods written in languages other than Java,

such as C, C++, or assembly). To alleviate this problem, JPF provides an interface, called the

Model Java Interface (MJI), for communication between the specialized JVM and the host JVM
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(analogous to the Java Native Interface (JNI) used for communication between Java and C in JVMs

written in C). The MJI interface is also extremely useful for both extending the capabilities of JPF

and for performance purposes. For example, MJI allows applications running on JPF to access

the internal information used by the interpreter. Also, since JPF is a bytecode interpreter that

runs on top of a regular JVM, the execution of Java programs on JPF is significantly slower than

executing them directly on a regular JVM. Performance critical components of an application can

be reimplemented at the MJI level.

2.6 State-Space Exploration and Actor Programs

To systematically test an actor program for a given input, we need to explore all distinct execution

paths of that program. In other words, it is necessary to explore the state-space of the program.

In this section, we consider the exhaustive exploration of an actor program in more detail. In the

following section, we take a look at how one might perform a more efficient exploration.

2.6.1 Näıve Exploration

An execution path can be viewed intuitively as a sequence of program statements executed, or as

we will see later, it suffices to have just a sequence of messages received. In this work, we assume

that the program always terminates and a test harness is available, and thus we focus on exploring

the paths for a given input. In this case, a simple, systematic exploration of an actor program

can be performed using a näıve scheduler: beginning with the initial program state, the scheduler

nondeterministically picks an enabled actor and executes the next statement for that actor. If the

next statement is implicit receive, the scheduler nondeterministically picks a message for the actor

from its message queue. The scheduler continues to explore a path in the program by making

these choices at each step. After completing execution of a path (i.e., when there are no additional

statements to be executed), the scheduler backtracks to the last scheduling step (in a depth-first

strategy) and explores alternate paths by picking a different enabled actor or a different message

from the ones chosen previously.
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2.6.2 Macro-Steps

Note that the number of paths explored by the näıve scheduler is exponential in the number

of enabled actors and the number of program statements in all enabled actors. However, an

exponential number of these schedules are equivalent. A crucial observation is that actors do not

share state: they exchange data and synchronize only through messages. Therefore, it is sufficient

to explore paths where actors interleave at message receive points only. All statements of an actor

between two implicit receive statements can be executed in a single atomic step called a macro-

step [SA06,AMST97]. At each step, the scheduler nondeterministically picks an enabled actor and

a message from the actor’s message queue. The scheduler records the ids of the actor and the

message, and executes the program statements as a macro-step. A sequence of macro-steps, each

identified by an actor and message pair (a,m), is termed a macro-step schedule. At the end of a

path, the scheduler backtracks to the last macro-step and explores an alternate path by choosing

a different pair of actor and message (a,m).

2.7 Dynamic Partial-Order Reduction

Note that the number of paths explored in the previous section using a macro-step scheduler is

exponential in the number of deliverable messages at each step. This is because the scheduler, for

every step, executes all permutations of actor and message pairs (a,m) that are enabled before the

step. However, messages sent to different actors may be independent of each other, and it may be

sufficient to explore all permutations of messages for a single actor instead of all permutations of

messages for all actors [SA06].

An important optimization for state-space exploration is partial-order reduction (POR). POR

techniques attempt to limit exploration to all distinct, feasible behaviors by minimizing the number

of redundant execution paths that are explored [CGP99,God96]. POR achieves this using an inde-

pendence relation among events to be processed [God96]. Dynamic POR (DPOR) techniques com-

pute this independence dynamically during the program exploration [FG05,SA06,VGK08], which

can make them more precise than static POR techniques that need to soundly over-approximate

possible message interactions.
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The independence between certain events results in equivalent paths, in which different orders

of independent events occur. The equivalence relation between paths is exploited by dynamic

partial-order reduction (DPOR) algorithms to speed up automatic testing of actor programs by

pruning parts of the exploration space. For actor programs, one form of equivalence can be captured

dynamically using the happens-before relation [Fid88,Lam78,SA06], which yields a partial order on

the state transitions in the program. The goal of augmenting a scheduler with a DPOR algorithm

is to avoid exploring redundant paths, i.e., to explore only one or a small number of linearizations

for each partial order or equivalence class.

We next describe two stateless DPOR algorithms for actor programs: one based on dynamically

computing persistent sets [FG05] (adapted for testing actor programs) and the other one used

in dCUTE [SA06]. Note that the algorithms presented below re-execute the program from the

beginning with the initial state in order to explore new program paths. However, the algorithms

can easily be modified to support checkpointing and restoration of intermediate states, because

these operations do not change DPOR fundamentally.

2.7.1 DPOR based on Persistent Sets

Flanagan and Godefroid [FG05] introduced a DPOR algorithm that dynamically tracks dependent

transitions and computes persistent sets [God96] among concurrent processes. They presented

the algorithm in the context of shared-memory programs. Figure 2.4 shows our adaptation of

their algorithm for actor programs, which also incorporates the optimization discussed by Yang et

al. [YCGK07]. The algorithm computes persistent sets in the following way.

The scheduler method is responsible for controlling a single execution of an actor program.

The scheduler is repeatedly called to re-execute the program from the beginning with the initial

state in order to explore new program paths. This is done until the compute next schedule method

indicates the exploration is completed. The scheduler method takes as input an actor program P

and keeps track of the following data as it executes: program counters pca1 through pcan for each

actor in the program, message queues Qa1 through Qan for each actor, and a counter i that keeps

track of the current transition. The algorithm also tracks information about the scheduling points

that are encountered during executions, which it maintains as a list of transitions path c.
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scheduler(P)
pca1 = la10 ; pca2 = la20 ; . . . ; pcan = lan0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i+ 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s 6= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

// actor a′ “causes” s
path c[k].Sp.add((a′, ));

execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i− 1;
while j ≥ 0

if path c[j].Sp is not empty
path c[j].schedule =

path c[j].Sp.remove();
path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);
path c[i].Sp.add((a, ));

return (a,msg id);

Figure 2.4: Dynamic partial-order reduction algorithm based on persistent sets
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The scheduler consists of two while loops, one nested inside the other. The outer loop drives

the overall execution of the actor program by selecting messages to be delivered to actor. As

long as an actor with a deliverable message exists, the scheduler will continue to execute the

program. The message to deliver is selected by calling the next method. During the initial run of

the program, for every scheduling point, the next method nondeterministically selects an enabled

actor (as represented by a call to the choose method, which is underlined) and adds all of the

pending messages for the selected actor to the persistent set Sp. For subsequent re-executions of

the program, the method returns the message that was recorded in the previous execution (modulo

changes made by the compute next schedule method at the end of the previous execution). If the

transition counter has advanced beyond the point that there are previously recorded transitions,

then new transitions are nondeterministically selected.

The inner while loop processes program statements until the actor completes processing the

current message or encounters a receive statement. In other words the loop executes all of the

statements in a macro-step (as defined in Section 2.6). If the current statement is a send(a, v)

statement, say at transition i in the current schedule, the schedule analyzes all the receive state-

ments executed by a earlier in the same execution path (represented as path c). If a receive, say at

position k < i in the schedule, is not related to the send statement by the happens-before relation

(checked in the call to method canSynchronize), the scheduler adds pending messages for a new

actor a′ to the persistent set Sp at position k in path c. The actor a′ is “responsible” for the send

statement at i, i.e., a receive for a′ is enabled at k, and it is related to the send statement by the

happens-before relation. The code that determines actor a′ is not shown here.

When there are no deliverable messages remaining, the execution of the actor program P is

complete. The schedule calls the compute next schedule method to determine the schedule for

the next re-execution of the program. The next schedule is essentially the schedule that was just

executed with some small adjustments. The final transition in path c is updated so that a different

message is selected upon re-execution. Specifically, path c.schedule is selected from the persistent

set Sp. If the persistent set is empty, there are no more choices for this transition, and the number

of transitions in the path is reduced by one. If all transitions are removed from the path, no further

executions are necessary (i.e., the exploration is complete).
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scheduler(P)
pca1 = la10 ; pca2 = la20 ; . . . ; pcan = lan0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i+ 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s 6= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

path c[k].needs delay = true;
execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i− 1;
while j ≥ 0

if path c[j].next schedule 6= (⊥,⊥)
(a,m) =path c[j].schedule;
(b,m′) =path c[j].next schedule;
if a == b or path c[j].needs delay

path c[j].schedule =
path c[j].next schedule;

if a 6= b
path c[j].needs delay = false;

path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);

path c[i].next schedule = next(a,msg id);
return (a,msg id);

Figure 2.5: Dynamic partial-order reduction algorithm based on dCUTE approach
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2.7.2 DPOR in dCUTE

Figure 2.5 shows the DPOR algorithm that is a part of the dCUTE approach for testing open,

distributed systems [SA06]. Since we do not, in this context, consider open systems (i.e., systems

that interact with external entities in their environment), we ignore the input generation aspects

of dCUTE. The algorithm proceeds in a fashion quite similar to the algorithm for persistent sets:

during the initial run of the program, for every scheduling point, the scheduler nondeterministically

picks an enabled actor (call to the choose method, which is underlined) and explores permutations

of messages enabled for the actor. During the exploration, if the scheduler encounters a send

statement of the form send(a, v), it analyzes all the receive statements seen so far in the same path.

If a receive statement is executed by a, and the send statement is not related to the receive in

the happens-before relation, the scheduler sets a flag at the point of the receive statement. The

flag indicates that all permutations of messages to some other actor a′ (different from a) need to

be explored at the particular point. The exploration proceeds in a nondeterministic fashion again

from there on. A more detailed discussion of the algorithm can be found in [SA06].

It is apparent that the two algorithms presented in Figure 2.5 and Figure 2.4 are quite similar.

Both initially consider a set of all messages for a single actor a at some point in the execution

of the program and, while exploring the paths that begin with the receive event for one of those

messages, the algorithms look for message send events to the actor a that are not related (by the

happens-before relation) to the receive event of one the originally considered messages to a.

The key difference between the algorithms is how they add messages to that original set. The

persistent set algorithm adds all messages for the actor a′ whose receive event was related to the

above message send event. In contrast, the dCUTE algorithm also adds all the messages for another

actor, but selects that actor in a somewhat arbitrary way. The algorithm merely indicates that all

messages to some other actor a′ (different from a) must be considered. The selection of that actor

is nondeterministic or, more accurately, implementation dependent.
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Chapter 3

Systematic Testing Framework

In this chapter we present the overall structure of our systematic testing framework, which we

have named Basset.1 the capabilities provided by the framework. The core of the framework

contains common, language-independent functionality for running actor programs and exploring

different message schedules. It interfaces with adaptation layers that are developed for specific

actor languages. As discussed previously, the goal for Basset is to provide a platform efficient for

state-space exploration but not necessarily efficient for straightline execution of actor programs.

This goal affects the design decisions we made for the execution of actors.

This chapter is organized as follows. We first present an example actor program to illustrate key

actor concepts and our approach to exploring actor programs in Section 3.1. Then, in Section 3.2, we

introduce the overall architecture of the framework. Section 3.3 presents the actor program layer,

including a discussion of the framework’s test drivers. Section 3.4 presents the responsibilities

and capabilities of the Basset core. Section 3.5 discusses optimizations we built into Basset to

facilitate more efficient exploration of actor programs. Section 3.6 describes our integration with

the Java PathFinder (JPF) framework that underlies Basset. Section 3.7 introduces our framework

instantiations (i.e., language adapters) at a high level. Sections 3.8 and 3.9 provide more details

on the instantiations for ActorFoundry and Scala, respectively. Section 3.10 presents the results of

experiments performed using Basset. Section 3.11 concludes our discussion of this work.

1Some of the material presented in this chapter, as well as Sections 1.3 and 2.1, is derived from previously published
work [LDMA09]. The original publication is available at http://www.computer.org/ and the copyright is held by
IEEE: A Framework for State-Space Exploration of Java-Based Actor Programs. Steven Lauterburg, Mirco Dotta,
Darko Marinov and Gul Agha. Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering. pages 468–479, IEEE Computer Society. c© 2009 IEEE.
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3.1 Example

To illustrate some key actor concepts along with the Basset approach to exploration of actor

programs, we use a simple example. Our example is a simplified version of a sample actor program

available on ScalaWiki [ScW], a popular web site that provides several widely used resources for

Scala, including code samples contributed by some developers of the Scala programming language.

Using Basset, we discovered a bug in this sample code. Here, we present a version of the code

implemented using Java and the ActorFoundry library, assuming that the readers are more familiar

with Java than with Scala. For comparison purposes, a simplified version of the program written

in Scala is presented in Figure 2.3.

Figure 3.1 shows the code for our example. The test driver first creates two actors—a server and

a client—using the create method from ActorFoundry. This method takes the class of the actor

(ActorFoundry heavily uses Java reflection) and, optionally, arguments for the class’ constructor.

The method creates an actor and returns an ActorName object that represents a handle to the actor.

(Because ActorFoundry supports distributed applications and mobility of actor code, create does

not return an actual reference to the created actor.) The test driver then asynchronously sends a

message to the Client actor using ActorFoundry’s send method to initiate the exploration. The send

method takes as arguments an ActorName indicating the message’s destination, a String indicating

the message type (i.e., the name of the method that will process the message in the receiving

actor), and any arguments required for the specified message type. Since the message start is sent

asynchronously to the client, the test method continues execution (in this case the method itself

terminates right away, but the entire program keeps working as there are alive actors).

Our example Server actor simply stores and retrieves an integer value. (The actual server

from the ScalaWiki code was keeping track of an inventory of items with specified prices and

quantities.) In ActorFoundry, each actor is a subclass of the Actor class. Each actor can process a

set of messages as denoted with the @message annotation on the appropriate methods. In addition

to storing and retrieving the value, the Server actor can also process a shutdown message, which

instructs this actor to terminate itself as it invokes the destroy method from ActorFoundry.

Our example Client actor communicates with the server. The client first sends to the server

an asynchronous message to store the value 1. The client then sends a message to the server to
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class Driver extends Actor {

@message public void test(String[] args) {

ActorName server = create(Server.class);

ActorName client = create(Client.class, server);

send(client, "start");

}

}

class Server extends Actor {

int value = 0;

@message void set(int v) {

value = v;

}

@message int get() {

return value;

}

@message void shutdown() {

destroy("server has finished processing");

}

}

class Client extends Actor {

ActorName server;

Client(ActorName s) {

server = s;

}

@message void start() {

send(server, "set", 5);

int v1 = call(server, "get");

System.out.println("value v1 = " + v1);

int v2 = call(server, "get");

System.out.println("value v2 = " + v1);

// assert (v1 == v2);

send(server, "shutdown");

}

}

Figure 3.1: Example code using ActorFoundry

retrieve the value, using the call method for synchronous remote procedure call. Namely, after

the client sends the get message, it blocks until it receives a reply from the server and then stores

the return value into the appropriate variable. Note that the client retrieves the value twice, and

in our example code, compares the return values when the assert is uncommented. (The actual

code from ScalaWiki was also retrieving the inventory of items twice but performing two different

computations on the inventory.) The client finally terminates the server.

The cause of problems in this example is the order of message deliveries. In general, actor

systems do not guarantee in-order delivery of the messages; in other words, the default commu-
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Figure 3.2: Possible message schedules and final states: correct, incorrect, correct, warning

nication channels between the actors are not FIFO. However, anecdotal experience shows that

assuming in-order delivery is a common cause of programming errors in many actor programs. In

our example, for instance, the server need not process the message set before the first message

get. Figure 3.2 shows some possible executions for our example program. Specifically, if the server

interleaves processing of set between the two get messages, it will return inconsistent values for

v1 and v2. While this execution is not very likely (e.g., we ran our example code on the standard

Scala run-time 1000 times, and it always processed set before the first get), it is possible. The

program therefore has an atomicity violation. (The Scala developers confirmed the bug that we

reported for their code from ScalaWiki.)

Given an actor program, Basset can explore (all) different program executions due to different

message orderings. Basset starts the execution from the test driver and explores non-deterministic

choices that arise when several messages can be delivered. Basset also provides two well known

optimizations that can prune exploration: dynamic partial-order reduction [SA06, CGP99] (see

Section 3.5.2) and state comparison [SL08,CGP99] (see Section 3.5.1). For this example, we discuss

how Basset performs a stateful search using Basset’s customized state comparison for pruning.

Figure 3.3 shows the state space that Basset explores for our example code. Each state of an

actor program consists of the state of actors (in our example, the field value in the server and

the variables v1 and v2 in the client) and a message cloud (with all messages that have been sent
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Figure 3.3: State space for the example program

but not yet delivered and can be thus delivered in any order). In Figure 3.3, a slash denotes an

undefined state variable. Note also the ret messages that represent the return values of synchronous

calls; these messages are not explicitly visible in the code, but the ActorFoundry library internally

handles sending them.

The state space has 21 different states (including the starting state). We have labeled some of

these states (e.g., A, B... E, F1, F2...) to be able to refer to them in the following text. The edges

between states represent transitions that process messages. Each edge is labeled with the message

that is delivered for that transition. Each box contains information about the state of the Server

and Client actors as well as a list of the messages that have been sent, but not yet delivered. As
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shown in Figure 3.3, the Server actor’s state consists of the value field and the Client actor state

consists of the v1 and v2 variables.

In this example, Basset explores 21 states and finds two potential bugs. In the state labeled E

(for “error”) in Figure 3.3, the values of v1 and v2 differ, being 0 and 1, respectively. (If the assert

is uncommented, Basset would report a bug and stop the exploration for that path.) Additionally,

in the state labeled F4 (for “final state 4”), Basset generates a warning since the server actor is

not alive while there are undelivered messages for that actor. This case occurs when the server

processes shutdown before set, as shown in Figure 3.2.

Note that Basset explores only 21 states for this example due to a stateful search that compares

states using a custom comparison for actor programs. This comparison allows Basset to detect

that states B and D can each be visited through more than one execution. Without the comparison,

Basset would explore both the subpath from B to F2 and the subpath from D to F3 twice during the

exploration, resulting in a total of 27 explored states.

As an alternative to stateful exploration, Basset also supports dynamic partial-order reduction

for actor programs. For this example, using the dCUTE partial-order reduction results in a total

of 19 explored states when messages are considered for delivery to actors in the order in which

the recipient actors were created. It is interesting to note that that if messages are considered for

delivery in the reverse order, there would be no reduction in the number of transitions explored.

This dependency on selection order is discussed further in Chapter 4.

We discuss Basset’s state comparison and dynamic partial-order reduction capabilities in more

detail in Section 3.5 and our experiments with these techniques in Section 3.10.

3.2 Basset Architecture

In Section 1.3 we briefly introduced the Basset testing framework and the two tool instantiations

that were developed for ActorFoundry and Scala. This section provides an overview of Basset’s

architecture including the common, language-independent functionality for running actor programs

and exploring different message schedules.

As we developed Basset, there were several objectives we tried to keep in mind. Naturally,

these objectives affected the design decisions we made for the various aspects of the software.
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Figure 3.4: Basset systematic testing environment software layers

A discussion of some of these objectives follows: For example, one objective was to minimize

changes to the application code to be tested. In our experience, we have been largely successful

in this endeavor. Actor application code can be run without changes using Basset. It is, however,

necessary to write short test drivers, similar to those a developer might create using a testing

framework like JUnit (http://junit.org). Of course, test drivers like these would be necessary for

any approach for testing actors. Such testing would require creating a scenario with one or more

actors and sending them messages to process.

A second objective was to provide a platform that would support efficient testing and state-

space exploration. There are two elements to this objective: First, we were willing to forgo fast

straightline execution of actor code, in favor of more efficient state-space exploration. Second,

we chose to focus our efforts on the testing of user-written application code rather than consider

both the applications and the underlying runtime architectures on which they execute. Our initial

experiments showed that complete exploration of an actor application including its runtime library

was impractical. The runtime libraries underlying the user-written code are complex multithreaded

libraries that effectively prohibited the use of tools such as Java PathFinder (JPF). So as to allow
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more complete testing of application code written by the developers, we chose to remove the runtime

architectures from consideration. We realize, of course, that by doing so our testing may not expose

all errors that could occur in a production environment. However, we are able to discover problems

that are due to errors in the application code. This approach is analogous in some ways to how a

tool like JPF tests user applications written in Java. JPF is itself a Java Virtual Machine (JVM).

By performing testing using JPF, testers are not running their applications on the actual JVM

that would be used in production, and may miss errors inherent in the JVM. Similarly, the Basset

core software is an abstraction of the complex actor runtime architectures that will be used in

production environments.

A third objective was to facilitate the reuse of testing techniques and capabilities across mul-

tiple languages. Specifically, we wanted capabilities such as dynamic partial-order reduction to be

available to all instantiations of the framework. Again, our efforts here were largely successful.

This does not mean that all such capabilities are always entirely transparent to the different in-

stantiations, but efforts were made to do so where possible, and to keep any code necessary in the

adaptation layers to a minimum.

As discussed earlier, we view the Basset testing environment as having four primary layers.

Figure 3.4 displays a high level view of these layers. The base layer of our software environment is

the Java PathFinder (JPF) model checker (described in Section 2.5). The Basset Core provides a

common set of systematic testing capabilities that are built as an extension to JPF and handle the

special requirements of systematically exploring the behavior of actor programs. Actor programs

developed using ActorFoundry or Scala interface with the Basset core through the use of a language

adapter which redirects actor-related operations to the Basset core instead of the language’s normal

runtime library. The sections that follow present these layers and other aspects of the Basset

framework and its instantiations in more detail.

3.3 Actor Program Layer

At the top of our software stack is the actor program to be tested. As discussed above, one of

objectives when designing our framework was to be able to systematically test actor programs

without changes to the source code. Basset allows actor programs to be written normally in the
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supported languages (i.e., ActorFoundry or Scala). It is not necessary to alter or instrument the

code to explore its behavior with our framework.

We have been successful in our efforts to do this to the degree that the testing of a given subject

does not attempt to ascertain the internal state of the actors. Note that Basset’s limitations in this

respect are no different than would be encountered with other testing approaches. For example,

ActorFoundry does not expose actual actor references to other actors; only the runtime architecture

can access the actor object directly. ActorFoundry facilitates actor mobility by using ActorName

objects to provide a level of indirection. Since Basset effectively replaces ActorFoundry’s runtime

library during testing, it should not be overly difficult to expose the actual Actor objects to our

test drivers, thus allowing the use of Java reflection to inspect an actor’s internal state. We leave

this as future work for Basset.

3.3.1 Drivers

Although users do not need to change the source code of their programs, they do need to write

test drivers to facilitate Basset’s exploration of the subject. Note, however, that similar driver

code would be necessary for any unit testing of actor applications, so this is not entirely specific to

Basset. The test drivers can be as simple as the one shown in Figure 3.1. This particular driver is

written for a simple ActorFoundry program and is itself an ActorFoundry actor. It can receive just

a single message type, test, that creates two test subject actors and then sends a single message

to the client actor to start execution of the program.

We also support the creation of slightly more complex drivers. In the simple example above,

all of the code in the test message is subject to exploration by Basset. This is fine for this simple

example since the creation of the actors themselves does not involve sending messages. However,

actors are often used to represent open systems (i.e., systems that interact with their environment).

For these systems, it may be the case that we wish to explore the behavior of the program as it

reacts to “external” messages after the system has been started and reached a steady-state. Since

the messages sent from inside the test method (including messages sent by actor constructors) will

be systematically explored in their entirety, any start-up processing related messages would also

be explored. Exploring these messages combined with “external” test messages could easily result

36



in a huge state space whose exploration would be both impractical and undesirable.

To remedy this problem, drivers can be created with an additional setUp method. Basset does

not explore the interleaving of messages sent as a result of executing the code in the setUp method.

Actors are created and messages are processed in order of creation until there are no deliverable

messages remaining (i.e., the program has reached a steady state). Only then does Basset send a

test message to the driver to begin exploration.

3.4 Basset Core

The Basset core is the heart of our systematic testing framework. Effectively, it is an abstraction

of the complex runtime architectures included with many actor systems. However, rather than

supporting just a single execution of an actor program, the core supports the systematic exploration

of message delivery schedules.

When testing programs with Basset, language adapters developed for the actor systems sup-

ported by Basset (currently ActorFoundry and Scala) are used to redirect actor related API calls

to the Basset core. Basset manages the overall exploration of possible message delivery schedules

by handling the following functions: actor state management (e.g., keeping track of created and

destroyed actors), actor execution (e.g., managing actor objects and controlling thread switching),

and message scheduling and management (e.g., handling the details of scheduling and delivering

messages, such as tracking message causality when partial-order reductions are used). In this sec-

tion, we first provide more details about these three functions, then discuss our overall exploration

algorithm, and finally present Basset’s error detection facilities.

3.4.1 Actor State Management

Each actor program creates several actors that compute and exchange messages. Various actor

libraries provide different specialized behavior for actors. The Basset core therefore does not

create the concrete actors by itself but delegates that task to particular instantiations. The core

only maintains generic information about actors, keeping track of all actors created and destroyed

during an execution, and the status for each actor, which can be one of the following: executing,

waiting for a general message, or blocked waiting on a reply for synchronous message (such as the
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call method shown in Figure 3.1). Basset uses all this information for efficient message scheduling

(Section 3.4.3), during state comparison to prune redundant execution segments (Section 3.5.1),

and to facilitate deadlock detection (Section 3.4.5).

3.4.2 Actor Execution

A critical aspect of any actor system is how to execute the actor code that processes each message.

Semantically, each actor has its own thread of control. However, efficient implementations of actor

libraries [HO07, SM08] typically do not assign one native thread/process per actor and do not

create a new thread whenever a new actor is created, since these operations are expensive; instead,

they employ thread pools to reuse threads for new actors, migrate actors among threads, and/or

use more lightweight parallel constructs, such as the Java Fork/Join Framework [Lea00] from the

java.util.concurrent package in the Java 7 version of the standard Java library. ActorFoundry,

for instance, uses a continuation-based thread pool approach based on Kilim [SM08]. And Scala

also utilizes a thread pool as part of its approach to unifying threads and events [HO07].

Since Basset aims for efficient exploration (not execution) of actor programs, Basset uses a

separate ActorThread object/thread for each actor. Exploring all possible fine-grain interleavings of

instructions from these threads would be very costly (see Section 3.10.1) and is not necessary when

actors have no shared state. Some actor libraries allow state sharing but most avoid it, say, by using

functional languages (e.g., Erlang [Arm07]), pass-by-copy rather than pass-by-reference messages

(e.g., ActorFoundry [AF]), or a type system based on linear types to statically check for absence

of sharing. Hence, Basset uses the macro-step semantic [AMST97,SA06] for actor execution: after

Basset delivers a message to an actor, the actor executes atomically until the next receive point

(which either encounters a synchronous call or finishes the processing of the message and waits for a

new message). The soundness of macro-step semantics is discussed elsewhere [AMST97]. Similarly

as for creating actors, the Basset core does not itself create actor threads but delegates that task

to particular instantiations, which provide the main control for the processing of one message.
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3.4.3 Message Management and Scheduling

Central to Basset’s exploration capabilities are its message management and scheduling functions.

Actors communicate by exchanging messages. Basset again delegates the creation of concrete

messages to instantiations, but it maintains a message cloud of all messages that were sent but not

yet delivered to actors. The main loop in Basset controls the delivery schedule of these messages.

Whenever the cloud contains more than one deliverable message, Basset non-deterministically

chooses to deliver one of these messages to its receiver actor. Basset then systematically explores

all possible program executions that arise from the delivery of the messages in the cloud, using

either state comparison (Section 3.5.1) or dynamic partial-order reduction (Section 3.5.2) to prune

the exploration. Currently the use of state comparison and dynamic partial-order reduction in

Basset are independent and mutually exclusive. However, recent work [YCGK08,YWY06] proposes

combining the two techniques, and we leave it as future work to explore this possibility for Basset.

It is important to point out that not all messages are deliverable at all times. One reason is

that an actor can terminate itself (e.g., using destroy in ActorFoundry as shown in Figure 3.1)

while there are still sent but undelivered messages for that actor. In this case, the message can

never be delivered, and Basset reports this as a warning of potential program error. Another

reason is that most actor libraries allow the specification of constraints indicating the messages

that actors can receive. Scala, for instance, expresses these constraints by pattern matching on the

messages [OSV08]. If a message sent to an actor does not match any of its patterns, the message

cannot be delivered until the behavior of the actor changes such that its new pattern matching

accepts the message.

Basset delegates state management functions (e.g., state restoration for backtracking) to the

underlying JPF tool on which Basset is built. Section 2.5 provides more detail regarding the

capabilities provided by JPF.

3.4.4 Exploration Algorithm

Figure 3.5 shows the pseudo code of the algorithm that Basset uses to explore all possible message

delivery schedules for an actor program (modulo pruning based on state matching or DPOR). The

algorithm maintains two sets of program states: states that need to be explored and states that
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StatesToExplore = { initial program state } // singleton
V isitedStates = {} // empty set of states

while (StatesToExplore is not empty) {
State = choose a state from StatesToExplore
StatesToExplore = StatesToExplore− {State}
DeliverableMsgs = filter deliverable messages from State.Cloud
for each (Msg in DeliverableMsgs)

Cloud = State.Cloud // set of message objects
Cloud = Cloud− {Msg}
Actors = State.Actor // set of actor objects
NewMsgs, NewActors = process Msg by the Msg.Receiver actor
// processing can send new messages, create new actors,
// and change the local state of the receiver actor
// (including destroying the actor itself)
Cloud = Cloud ∪NewMsgs
Actors = Actors ∪NewActors
NewState = pair of Cloud and Actors
if (NewState /∈ V isitedStates) {

V isitedStates = V isitedStates ∪ {NewState}
StatesToExplore = StatesToExplore ∪ {NewState}

}
}

}

Figure 3.5: Pseudo-code for exploration in Basset

have already been visited. The set of StatesToExplore initially contains only the starting state.

The algorithm first non-deterministically selects a State to explore and removes it from the set

StatesToExplore. Every State is a pair of Cloud (of messages) and the state of Actors. From

the Cloud, the algorithm selects all DeliverableMsgs that can be delivered to the Actors in the

current state. (Recall that some messages cannot be delivered due to constraints or terminated

actors.) Then, the algorithm iteratively selects a message from this set, removes it from the cloud,

and delivers it to the receiver actor. At this point, Basset gives control to the receiver actor so

that it can process the message. While processing the message, the actor can modify its internal

state, send messages to actors (including itself), create new actors, or destroy itself (if the language

allows this). Upon encountering a message receive (implicit, either in a synchronous call or in

waiting to process a new message), the actor gives the control back to the exploration loop. Any

modification on the program state performed by the executing actor (e.g., new messages sent, new
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actors created, the actor’s state changed, or the actor’s self destruction) are reflected in the current

Cloud and Actors that together form the NewState. If this NewState has not already been visited, it

is added to both VisitedStates and StatesToExplore. The exploration then continues until there

are no states to be explored.

3.4.5 Error Checking

Basset provides several general checks for executions of actor programs. As illustrated in Section 3.1,

Basset can be used to check for state assertions (expressed using arbitrary Java expressions) and for

undeliverable messages at the end of an execution path (due to actors being terminated or blocked).

Basset can also detect deadlocks. An obvious deadlock occurs when several actors are blocked, each

waiting for another (in a cycle) to return from a synchronous call. Another type of deadlock can

occur when the execution reaches a final program state where no alive actor can make progress.

Since actors are often used to develop open systems, such a final state is not necessarily a deadlock;

it may be that actors are waiting for a new message from the environment [Agh86,AMST97,SA06].

To check for deadlocks in such cases, Basset allows the user to “close” the system by providing a

model of the environment (as another actor).

The developer can decide which environment best models an error for each specific program,

thus providing greater flexibility. Basset defines two built-in environments that can be used to

check the user program:

• TOTAL: the environment can send any new message (except a return from a synchronous

call). An error is reported only if there is some actor that is blocked because of a synchronous

communication. Any other idle (non-terminated) actor will not be considered to be in error.

This is the default behavior and the user code does not need to be modified to be checked

under this condition.

• EMPTY: The environment can send no new messages. An error is reported if at the end

of an execution there exists some alive (either blocked or idle) actor. In other words, this

environment expects all actors to have terminated at the end of the program execution.

Beyond this, the developer is given the ability to provide a customized definition of the envi-
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ronment, which can be used to finely model the states for which an actor has to be considered in

an error.

3.5 Basset Core Optimizations

One of the key problems with systematic testing and explicit state model checking is the “state-

space explosion” problem. The non-determinism inherent in concurrent systems such as actor

programs often results in state spaces that can be extremely large and impractical to explore in a

brute force manner. Two approaches to helping alleviate the problem are stateful search which uses

state comparison to identify previously visited states and dynamic partial-order reduction (DPOR)

which identifies redundant orderings of transitions. Both approaches seek to identify and prune

exploration paths that do not need to be explored. In Sections 3.5.1 and 3.5.2 we briefly describe

Basset’s state comparison and DPOR capabilities. And in Section 3.5.3 we consider the effect of

combining multiple transitions/steps into larger steps

3.5.1 State Comparison

Basset can perform a stateful exploration, checking whether a new state has been already visited

previously, effectively comparing one state against a set of states. This is a standard operation

in explicit-state model checking [CGP99]. A challenge for object-oriented programs (whose state

include heaps with connected objects) is that states need to be compared for isomorphism [Ios01,

MD05, BKM02]. Namely, two states are equivalent when their heaps have the same shape among

connected objects and the same primitive values, even if they have different object identities.

Typical comparison of states for isomorphism involves linearizing the entire states into an integer

sequence that normalizes object identities such that isomorphic states have equal sequences [Ios01,

MD05]. The JPF tool, on top of which Basset is implemented, provides such state comparison.

In addition to JPF’s default state comparison, Basset provides a custom comparison that has

been specialized for the actor domain. For example, an additional challenge for actors is that

the top-level state items—actors and message clouds—are sets. The usual linearization does not

specially treat sets but simply compares them at the concrete level at which they are implemented

(say, as arrays or lists) and thus could find two sets with the same elements to be different because
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of the order of their elements. To compare states of actor programs, we provided in Basset a known

heuristic that first sorts set elements and then linearizes them as usual [d’A07]. This heuristic offers

more opportunity to identify equivalent sets and states but does not guarantee all equivalent states

will be found: the sorting is done only for the elements without following any pointers from these

elements, and thus does not handle arbitrary graph isomorphism [SL08].

3.5.2 Partial-Order Reduction

As an alternative to performing stateful exploration with path pruning, we adapted three dynamic

partial-order reduction (DPOR) techniques to work with the framework. The first is a DPOR for

actor programs proposed in dCUTE [SA06]. The second is an adaptation of a DPOR based on dy-

namically computing persistent sets [FG05]. The third combines our persistent set implementation

with sleep sets [God91,God96]

These reductions use the happens-before relation [Lam78] to avoid executing message schedules

that can be identified as equivalent. They identify situations where only a subset of the messages

available for delivery need be considered when non-deterministically choosing which message to

deliver next. To facilitate the use of these partial-order reductions, we extend the actor and

message representations to optionally include vector clocks, which can be used to efficiently track

the happens-before relation for message send and receive events [Fid88, SA06]. Since the benefit

of these partial-order reductions is sensitive to the order in which messages (and their receiving

actors) are considered for delivery, Basset provides eight different orderings. Our experiments using

DPOR are briefly discussed in Section 3.10 and are presented in greater detail in Chapter 4.

3.5.3 Step Granularity

The primary source of non-determinism for actor programs is the order in which messages are

delivered to the actors. When exploring different message schedules, the standard step used by

Basset consists of all instructions starting from some actor receiving a message up to the next point

where the same actor can receive a message. This step is called a macro-step [AMST97, SA06].

Provided that an actor program is limited to message passing only, no interleaving of different actor

threads is necessary, i.e., all the behaviors of the program with fine-grained thread interleaving
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can be obtained with the macro-step interleaving. Basset always explores macro-steps of actor

programs.

An additional consideration is whether to merge macro-steps from several actors when there is

only one message in the cloud. We refer to such steps that combine several deterministic macro-steps

from different actors as Big steps. Recall the state space from Figure 3.3. After the set(1) message

is executed from the starting state, the rest of the execution until the F1 state is deterministic:

there are several macro-steps alternatively executed by the server and client actors, but there is

always one message in the cloud. A Big step would thus execute the program until F1, without

performing state comparison for the intermediate states shown in the figure. In contrast, a Little

step executes only one macro-step at a time and performs state comparison for each intermediate

state. In other words, Figure 3.3 shows the exploration that Basset performs for Little step.

Whether Big or Little steps provide faster exploration is not immediately clear. The trade-off

is that Big steps are faster for straightline execution since they perform longer executions without

stopping to compare states, but Big steps can miss the opportunity to find equal states and thus

end up re-executing a number of states, resulting in a slower overall exploration. For example,

in the state space from Figure 3.3, Big steps would miss that states B and D are equal along two

different execution paths and would thus end up re-executing twice the code from B to F2 and

from D to F3. On the other hand, Little steps have slower straightline execution and more frequent

state comparison, which can find more opportunities to avoid re-execution but also runs the risk

that frequent comparisons end up finding different states and only unnecessary slow down the

exploration. Whether re-execution or state comparison is more costly depends on the particular

execution platform and frequency with which states are repeated during state exploration. Our

experiments with Java PathFinder and subject actor programs described in Section 3.10 show that

Little step performs better than Big step.

3.6 JPF Implementation

We implemented our Basset framework as an extension to Java PathFinder (JPF), an extensible,

explicit-state model checker for Java [VHB+03, JPF]. We provided a general overview of JPF’s

capabilities in Section 2.5. In this section we provide specifics on how we developed Basset to
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interact with JPF, along with a description of changes that we made to the JPF core.

The key extension we made to JPF is in the control of thread scheduling. Recall from Sec-

tion 3.4.2 that the Basset architecture puts each actor in its own thread. The actor code itself is in

Java (more precisely, compiled to Java bytecode). Additionally, Basset has a main controller thread

that decides which actor(s) should be executed at which point. We wrote the main controller itself

in Java so that it also runs on JPF’s JVM (and not on the host JVM). All these threads are actual

JPF/Java threads. Based on the macro-step semantics (Section 3.4.2) it is not necessary to explore

all fine-grained interleavings of these threads; the non-determinism in actor programs is due to the

order in which messages are processed by the actors. Therefore, Basset enables only one of these

threads at a time.

Note that the thread switch could not be efficiently implemented in pure Java executing on

JPF’s JVM. To ensure that execution properly switched back and forth between actor threads

and Basset’s main controller thread, we needed greater control over thread switches than the Java

language supports. Namely, the main loop in Basset proceeds as follows: Basset’s main controller

thread chooses one actor to execute (more specifically, one message to deliver to an actor that

then starts processing the message), and when that actor blocks (waiting to receive a message),

the main controller should execute to schedule another actor. However, once the actor blocks, it

cannot explicitly return control to the main controller at the Java level.

For exploration purposes, we do not want more than one thread enabled at any given time. We

want to seamlessly switch back and forth between Basset’s main controller thread and whichever

actor thread needs to process a message. Effectively, we wanted to efficiently and atomically

perform three actions: disable the current thread, enable a disabled thread, and yield control to

the newly enabled thread. We also wanted to combine this set of actions into a single scheduling

event from the perspective of JPF.

To accomplish this, we extended JPF, using JPF’s MJI interface to implement our own atomic

thread switches as described above. In effect, this simplified the task performed by JPF’s default

thread scheduler, as there would never be more than one thread enabled at any given time.

The only change we made which directly impacted JPF’s core code was to eliminate the creation

of JPF backtracking points when switching back and forth between the actor threads and the main
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Figure 3.6: UML class diagram for language adaptation layers

controller thread. Since the JPF main loop is structured around executing only one thread in a

transition, we modified the JPF core code to enable longer transitions. This allows us to consider

the selection and delivery of a message by Basset’s controller thread and the processing of that

message by an application’s actor thread as a single transition. To the best of our knowledge, this

is the first JPF extension that considered state transitions with bytecodes executed by more than

one Java thread.

3.7 Framework Instantiations

We next describe our instantiations of Basset for the ActorFoundry and Scala libraries. By instan-

tiating the framework for a library, we effectively create a new state-space exploration tool for that

library. That tool automatically has all of the capabilities that are built into the framework, such

as state comparison or partial-order reduction.

In each case, we started from the existing actor library and modified/simplified it with the

following goals: (1) preserve the API of the library from the perspective of the actor programs

(such that we can check unmodified actor applications); (2) simplify the library, considering that

we want fast exploration (for relatively small program states) and not necessarily fast execution
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(for relatively large program states, e.g., scaling up to thousands of actors); and (3) connect the

library into the Basset framework to enable exploration. Our modifications removed some parts

of libraries (e.g., distribution of actors across various computers, because our goal is to check the

actor applications, not libraries, and distribution is an implementation feature of the library and

not a semantic part of the applications) and replaced or modified other parts (e.g., the Actor class

in ActorFoundry, as described below). While these modifications of libraries may appear time

consuming from their description, they were actually much easier to perform than building the

general Basset framework.

Figure 3.6 shows a UML class diagram for building part of software connecting the two in-

stantiations into the Basset framework. The key entities that Basset manipulates are actors, actor

threads, and messages. Basset does not directly create the objects for all these related entities

but instead uses the Abstract Factory design pattern [GHJV95] or, in some cases, uses modified

versions of the target language’s library code. During execution, the Basset core itself refers to the

IItemsFactory interface, and each instantiation provides concrete classes that can be used to create

appropriate entities. The concrete instantiation classes implement the abstract methods from the

core classes, i.e., canBeDelivered and deliverMessage. In the next section, we provide a more de-

tailed look at the implementation of our ActorFoundry instantiation as a means of shedding light

on how one might build a language adaptation layer for a different actor language.

The changes required to create this adaptation layer are not large, but they required a deep

understanding of both the ActorFoundry implementation and how Basset worked internally. How-

ever, the code provided here (along with the code for the Scala language adapter) should serve

as a good model for the development of future framework instantiations. The code for both the

ActorFoundry and Scala instantiations is publicly available as part of the Basset software. It can be

downloaded from either the NASA JPF website [JPF] or the Basset homepage [Bas]. In Section 3.9

we comment on some of the differences encountered while developing the Scala instantiation. We

do not, however, go into the same level of detail as we do for ActorFoundry.
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3.8 ActorFoundry

ActorFoundry is a Java library, and it was fairly straightforward to connect it to Basset. To create

the adaptation layer for this language, we performed the following tasks: (1) we modified several

classes in the ActorFoundry library, (2) we created a FoundryItemsFactory class for use by Basset’s

core, and (3) we modified the startup class used to appropriately execute and test ActorFoundry

programs in Basset.

3.8.1 Library Class Modifications

The Basset core manipulates several actor program entities during testing. Specifically, it keeps

track of actors, actor threads, and messages. Basset does not need to know all of the specifics

of these entities for particular instantiations. Rather, it manipulates them solely through the

Java interfaces that expose the information it is concerned about. The interfaces are IActor,

IActorName, IActorThread, and IMessage. Each of these interfaces is implemented by a correspond-

ing Java class (i.e., CoreActor, CoreActorName, CoreActorThread, and CoreMessage) that contains

fields and methods used by Basset to manage the exploration of an actor program. For instance,

both CoreActorThread and CoreMessage contain code related to the vector clocks used by Basset’s

dynamic partial-order reduction algorithms.

CoreActor, CoreActorThread and CoreMessage are abstract classes that must be implemented

by a specific language implementation layer. CoreActorName, on the other hand, is a concrete

class. These actor names are used to provide a level of indirection in some actor languages, which

allows capabilities such as actor location transparency. This type of functionality is present in

ActorFoundry but it is not used in our Scala instantiation. CoreActorName objects are also used

internally within Basset.

To modify the ActorFoundry library for use with Basset, we modified six classes currently

provided by the library and added one new class. As a result of these changes, many of the

other classes that make up ActorFoundry were effectively “disconnected”. In other words, our

code changes either redirected interaction with certain components to the Basset core or, in a

few small instances, disabled the functionality. Many other ActorFoundry classes continue to be

used without any changes. Thus, to use the ActorFoundry instantiation, it is necessary to include
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the ActorFoundry library in the Basset environment and to add our modified classes before the

ActorFoundry library.

The ActorFoundry capabilities that we disabled were primarily related to the runtime library’s

support for distributed actor systems. For example, ActorFoundry supports the migration of actors

from one machine to another. This capability is largely transparent from the perspective of the

application code that developers write. Since Basset’s focus is the testing of that application code,

we did not need to support these capabilities.

We next discuss the specific modifications and additions made to the ActorFoundry library.

The six library classes that were modified or replaced are: osl.manager.basic.BasicActorImpl,

osl.manager.Actor, osl.manager.ActorImpl, osl.manager.ActorMsgRequest, osl.manager.ActorName

and osl.util.DeepCopy. In addition to these modified classes, we also added one new class:

osl.manager.ActorMessage.

Actor Class

ActorFoundry does expose actors in the API (more precisely in the internal API used within the

library), so we had to preserve that the actor class be named Actor. Since this class had no

superclasses in the original library, we could easily turn it into a subclass of the Basset actor class

(i.e., CoreActor) and then modify it to provide both functionality required by the ActorFoundry

library as well as that required by the Basset framework. There was no specific constructor for

Actor, so we added one with a single statement: super(new ActorName()); where ActorName is a

class from ActorFoundry.

The CoreActor class includes methods to query and update the status of an actor that Basset

maintains. At any point during the execution of an actor program, a given actor has one of the fol-

lowing Basset defined states: EMPTY (the state of an actor before it is fully created), SUSPENDED

(when an actor’s constructor is executed), ACTIVE (when an actor is processing a message), WAIT-

ING (when an actor is waiting for a message to be received), WAITING ON REPLY (when an

actor is waiting for a reply message for a synchronized RPC-style call), TERMINATED (when

an actor terminates its computation – in Scala, such actors can be restarted) and DESTROYED

(when an actor has been deleted).
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class Actor extends CoreActor {

...

@Override public boolean canBeDelivered(IMessage imsg) {

ActorMessage msg = (ActorMessage) imsg;

if (isDestroyed())

return false;

if (isWaitingOnReply() && msg.isReturnMessage())

return true;

return isWaiting() && !isDisabled(imsg);

}

// checks if the actor’s method to be called is disabled

private boolean isDisabled(IMessage imsg) {

...

}

...

}

Figure 3.7: ActorFoundry’s canBeDelivered method

An important part of overriding the CoreActor class is creating a concrete version of the

canBeDelivered method. The purpose of this method is to tell Basset whether or not a spe-

cific message can be delivered to the actor. For ActorFoundry, the answer is based on both the

state of the actor (which is tracked by Basset) and whether or not ActorFoundry has enabled any

constraints that would prevent delivery of the message. Normally, this check would be performed

by ActorFoundry’s scheduler. Since Basset is now performing the scheduler’s functions, we need to

provide the code to determine the deliverability of the message. To achieve this, we implemented

the canBeDelivered method as shown if Figure 3.7. canBeDelivered calls methods provided in

CoreActor to determine the status of the actor (see above) as well as an isDisabled method that

was essentially copied from elsewhere in the ActorFoundry library.

As discussed above, we did not implement support for functionality such as ActorFoundry’s

distributed actors or node services. Although we did not change any code, the following methods

in the Actor class are not supported by Basset: migrate, cancelMigrate, extension, extensionImpl,

invokeService, invokeServiceImpl.

ActorName Class

The ActorName class in ActorFoundry consists of a single field of type Name and methods for se-

rialization and deserialization. Name objects are generated by ActorFoundry’s name service and
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include information required to manage distributed actors, such as physical address, etc. Since

we were not interested in supporting these capabilities, we modified ActorName to just extend our

CoreActorName class. CoreActorName is a simple class consisting of an id field, which is incremented

each time a new actor is created, and a String (i.e., ”JPF Actor-” + id) used by Basset to display

actor information during exploration. There is also an optional String field that can be used to

display additional information. This field is not used for ActorFoundry, but it is used for the Scala

language adapter.

ActorImpl and BasicActorImpl Classes

The ActorImpl class and its subclass BasicActorImpl constitute the second level of ActorFoundry’s

actor runtime implementation. The Actor class described above provides the interface that the

programmer uses to create applications. The BasicActorImpl and ActorImpl classes, on the other

hand, provide the interface to the ActorManager, translating user service requests (e.g., message

requests) into actual service invocations on the ActorManager. Additionally, ActorImpl extends the

Task class which is the lightweight thread implementation for Kilim [SM08]. ActorFoundry uses

the Kilim library to provide an efficient thread pool-based approach for actor execution.

For exploration purposes, Basset associates each actor with its own thread rather than using

a thread pool approach. The switching of threads in the Java PathFinder JVM is not particu-

larly expensive as it would be in a regular multithreaded JVM. To accomplish this, we changed

ActorImpl to extend CoreActorThread (which itself extends the Java Thread class) instead of Task.

The only other changes to ActorImpl were quite minor. We changed the protection level on the

actorInitialize method from protected to public so that it could be accessed directly from Basset,

and we added a simple constructor for the class:

public ActorImpl(Actor actor) {super(actor);}

While the changes to ActorImpl were minimal, the changes required for the BasicActorImpl

class were more extensive. To begin with, BasicActorImpl also needed a simple constructor:

public ActorImpl(Actor actor) {super(actor); createMethodTable();}

The createMethodTable method and its supporting methods create a table of message types available

in the actor. This is essentially a performance enhancement that front-loads the identification of
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valid message types into the actor creation process.

We next replaced the processMessage method with a new processDeliveredMessage method.

processMessage processed messages from a mail queue that is populated by ActorFoundry’s runtime

architecture. The new processDeliveredMessage method accepts and processes a single message

from the received field in CoreActor. As part of this change, the execute method has also effectively

been disabled. Basset explores message interleavings and is now responsible for message delivery.

Since Basset never delivers more than one message at a time to an actor, the execution loop

provided by execute is no longer necessary.

The implCall method required several changes to interface with Basset. First, it was modified

to create ActorMessage objects based on ActorMsgRequests. These messages are then sent using the

call method in CoreActorThread. A larger change was required to the implCall method’s handling

of replies to the call. When waiting for a reply, ActorFoundry’s implCall method searches its mail

queue looking for either a reply message or an error message, ignoring other messages delivered to

the queue. Our modified version of the code no longer has a mail queue, and Basset only transfers

control to the actor if it has a reply or error message. This difference required this portion of the

method to be rewritten. implSend method was also modified to create ActorMessage objects based

on ActorMsgRequests. These messages are then sent using the send method in CoreActorThread.

It was also necessary to modify the implDestroy method to update the actor’s status to DE-

STROYED (note: actors are never removed entirely in Basset) and the implCreate method to

route the request to create a new actor to the Basset core rather than to ActorFoundry’s actor

manager. Note that the Basset core does not directly create the new actor; rather, it passes on the

information to the FoundryItemsFactory described below.

Finally, several methods were disabled as their functionality is either not supported or was

moved elsewhere. For example, we do not currently support the ActorFoundry’s special ac-

tors for stdin, stdout, and stderr that are set up in the initializeActor method. The other

code in this method was moved to the FoundryItemsFactory class. The findConstructor method

was also moved to the FoundryItemsFactory class. Since we do not support actor migration,

the actorPostMigrateRebuild was no longer needed. Also, the functionality provided by the

actorDeliver method is subsumed by the Basset core.
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public class FoundryItemsFactory implements IItemsFactory {

public Object[] createActorObjects(Object ref) {

ActorCreateRequest request = (ActorCreateRequest) ref;

Class<?> actorClass = request.behToCreate;

Object[] conArgs = request.constructorArgs;

ActorName newActorName = null;

Actor newActor = null;

BasicActorImpl newActorThread = null;

try {

newActor = createActorClass(actorClass, conArgs);

newActorName = (ActorName) newActor.getActorName();

newActorThread = new BasicActorImpl((Actor) newActor);

ActorCreateRequest copyReq = (ActorCreateRequest) request;

newActorThread.actorInitialize(null, newActorName, copyReq);

newActor._init(newActorThread);

} catch (Exception e) {

throw new RuntimeException(e.getMessage());

}

return new Object[] { newActorName, newActor, newActorThread };

}

protected Actor createActorClass(Class<?> actorClass, Object[] conArgs) {

// create the actor behavior object.

Actor newActor = null;

try {

if (conArgs == null || conArgs.length == 0) {

newActor = (Actor) actorClass.newInstance();

} else {

Constructor<?> constructor = findConstructor(actorClass, conArgs);

newActor = (Actor) constructor.newInstance(conArgs);

}

} catch (Exception e) {

e.printStackTrace();

throw new RuntimeException(e.getMessage());

}

return newActor;

}

private Constructor<?> findConstructor(Class<?> classType, Object[] args)

throws NoSuchMethodException { <code omitted> }

public IMessage createMessage(Object... args) {

return null;

}

}

Figure 3.8: ActorFoundry’s FoundryItemsFactory class
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ActorMessage and ActorMsgRequest Classes

By default, ActorFoundry creates a copy of a message’s content when performing a send or call.

To do this, ActorFoundry’s DeepCopy class uses Java Serialization to create deep copies of a mes-

sage’s arguments. This Java feature is not supported by JPF at this time. Rather than attempt

to extend JPF to handle this functionality, we developed an alternative approach that creates a

deep copy of an arbitrary object using JPF’s Model Java Interface (MJI) that recursively tra-

verses each of the object’s fields to create a replica. The resulting MJICopier class (located in the

gov.nasa.jpf.actor.util package) was coded with efficiency in mind and is likely to have appli-

cability beyond just the Basset framework. The DeepCopy class provided by ActorFoundry was

replaced in its entirety by a simple class that uses this new MJICopier utility.

In ActorFoundry, the Actor class does not directly create a message. Rather, it creates an

ActorMsgRequest which is passed on to the implSend or implCall method in BasicActorImpl. These

methods then send the request to an actor manager that in turn handles actual message creation

and processing. We could have changed Actor to directly create ActorMessage objects. Instead, we

chose to handle the conversion in the implSend and implCall methods as described above in our

discussion of the ActorImpl and BasicActorImpl classes. Although this decision to delay creation

of the ActorMessage may seem arbitrary, it was actually consistent with our desire to minimize

changes to the ActorFoundry code. Minimizing code changes was a guiding principle intended to

make maintenance of the ActorFoundry adaptation layer easier if and when the ActorFoundry code

base changes. The only changes we made to ActorMsgRequest were related to the new DeepCopy

class described above. The ActorMessage class is an entirely new class that extends CoreMessage. It

keeps track of all the information stored in ActorMsgRequest and provides support to allow Basset

to more easily create return messages (for RPC-style calls) and error messages (i.e., a special form

of return message used in error situations).

3.8.2 FoundryItemsFactory Class

The current interface for items factories specifies only two methods. The createActorObjects

method is intended to return an array of three objects: one each of CoreActorName, CoreActor,

and CoreActorThread. Originally, creation and initialization of these three objects were handled
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public class Basset {

...

if (language.equals(ACTOR_FOUNDRY)) {

platform = new Platform(new FoundryItemsFactory());

platform.setTestDriverName(subjectDriver);

try {

// create test driver actor

String driverClassName = args[0];

Class<?> driverClass = Class.forName(driverClassName);

ActorName driver = PlatformUtil.createActor(driverClass);

// create String array containing arguments for the driver

String[] driverArgs = new String[args.length - 1];

System.arraycopy(args, 1, driverArgs, 0, args.length - 1);

// message interleavings are NOT explored during setup

PlatformUtil.send(driver, "setUp", (Serializable) driverArgs);

platform.setUp();

// message interleavings are explored during test

PlatformUtil.send(driver, "test", (Serializable) driverArgs);

platform.test();

} catch (Exception e) {

e.printStackTrace();

}

}

...

}

Figure 3.9: Startup class modifications for ActorFoundry

by three separate factory methods. In practice, this turned out to be impractical due to the

interdependencies among the three objects.

The createMessage method is intended to create CoreActorMessage objects. Typically, the

factory methods are called by the Platform class, Basset’s primary controller. However, we chose

not to use the factory method for our ActorFoundry implementation (though we do for our Scala

adapter). As discussed in section 3.8.1, we create messages in the BasicActorImpl’s implSend

method. What is important is that we kept message creation in the adaptation layer and did not

place language-specific code in the Basset core.

3.8.3 Startup Class

When executing Basset to perform tests, one must specify the language in which the subject pro-

gram is written. This is done by specifying the appropriate runtime option. For example, to indicate
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that the test subject is written using ActorFoundry, one would specify +basset.language=foundry.

To run the simple server example in Figure 3.1 using Basset, one would type something like the

following:

bin/jpf +basset.language=foundry gov.nasa.jpf.actor.Basset server.Driver

This would cause JPF to execute the main Basset class using the server.Driver class as a test

driver. To support ActorFoundry we needed to update the Basset class to recognize the language

value foundry and add code to launch ActorFoundry programs. The code we added to the Basset

class creates an instance of the framework’s Platform class and requests that it create a test driver

actor (recall that the driver classes for test subjects are written as ActorFoundry actors). Code

was also added to create and send a setUp message to the driver actor, followed by a test message.

Figure 3.9 shows the important aspects of these changes.

3.9 Scala

Our support for Scala is based on the actor library from the standard Scala distribution. The

changes we needed to make for Scala were somewhat different than those for ActorFoundry. This

is primarily due to the Scala language’s compilation model (from Scala source files to Java class

files) and the rich API that the Scala actor library exposes to Scala applications. As with the

ActorFoundry language adapter, the Scala adapter did not require the development of a large

amount of new code. However, the development of that code did require an in-depth understanding

of both the Scala and Basset codebases.

A key issue is that our adaptation layer for Scala needs to subclass the actor class from Basset

and also needs to provide the actual interface of the Scala actor. To solve this issue, we used

the Adapter design pattern [GHJV95] to translate the calls that a Scala application makes on an

actor object into appropriate calls to the Basset actor. Moreover, it was not possible to add a

field to the existing Scala Actor trait (a trait can be thought of as a Java abstract class) to point

to its corresponding Basset actor, because of the way that Scala compiles trait’s fields [OSV08].

Therefore, we maintain this correspondence as a map outside of the Scala Actor trait. Each actor

operation translates calls from the Scala world into the Basset world using this map.

We do not go into details about the implementation of this instantiation in this dissertation.
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However, as mentioned at the end of Section 3.7, the code for the Scala instantiation is available

with the Basset distribution at either the NASA JPF website [JPF] or the Basset homepage [Bas].

3.10 Framework Experimental Results

We present several experiments using the Basset framework. We first briefly compare the state-

space exploration of a trivial helloworld Scala application using Basset versus an exploration using

the standard Scala library executing on JPF. We then describe the subject programs used to

more quantitatively evaluate Basset for ActorFoundry and Scala. We finally present experimental

results comparing the different state-space reduction options available in Basset. All experiments

were performed using Sun’s JVM 1.6.0 13-b03 on a 3.4GHz Pentium 4 workstation running Red

Hat Enterprise Linux 5. We set the time limit to one hour, and we show partial results in cases

where the exploration did not finish in an hour.

3.10.1 Basset Versus Original Library

As discussed in Chapter 1, one of the motivations for developing a framework specifically for actors

was that general exploration tools can be very inefficient due to the complexity of how actor

systems are implemented. To illustrate the increased efficiency obtained by exploring an actor

program using Basset instead of directly exploring an actor program and its library running on

JPF, we ran an experiment to compare performance of these two options. Recall that our goal is to

check actor applications, not actor libraries. However, the libraries already exist in Java bytecode,

so it is natural to ask whether we can run them on JPF. Specifically, instead of developing Basset,

could we have taken a Scala application with the existing Scala library and run it directly on JPF?

Our experiments show that such direct exploration is possible but extremely slow, even after several

simplifications to the library. The reason is that the Scala library is a complex, multithreaded piece

of code, and exploring it on JPF results in exploring a very large number of thread interleavings.

More concretely, we wrote in Scala a simple helloworld application shown in Figure 3.10.

The program merely creates a single actor that prints Hello World. Running this code with the

unmodified Scala library on JPF did not finish in an hour! We then simplified the library by:

(1) removing a timer thread, (2) disabling actor garbage collection, and (3) reducing the size of
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import scala.actors.Actor._

object HelloWorld {

def main(args: Array[String]): Unit = {

actor {

System.out.println("Hello World")

}

}

}

Figure 3.10: Simple Scala helloworld program

the thread pool that the library uses to execute actors. JPF still took over 7 minutes to explore

this application. In contrast, the Scala instantiation of Basset takes a fraction of a second for this

application. The key reasons for this speedup are that Basset uses a simplified framework with

the macro-step semantics [AMST97,SA06] for exploration and does not interleave executions from

different threads, and it does not explore the complex code of the Scala library on which Scala

applications typically run.

Though we did not perform a similar experiment for ActorFoundry, we would expect similar

results in that JPF would not be able to effectively explore the original library. In fact, the library

code for ActorFoundry contains network calls that the publicly available JPF does not even support

as they depend on native code in standard Java libraries. Projects by Artho and Garoche [AG06]

and Barlas and Bultan [BB07] provide solutions for modeling some of these calls, but the original

ActorFoundry library would still have a prohibitively large number of thread interleavings. Using

the simplified library in our Basset framework, thread interleavings are manageable for exploring

interesting programs.

3.10.2 Subjects

Our Basset experiments use ten actor programs listed in Tables 3.1 and 3.2. The server subject

is our running example described in Section 3.1. Three of the subjects implement more complex

algorithms and were previously used in the dCUTE study [SA06]: leader is an implementation of

a leader election algorithm; spinsort is a simple distributed sorting algorithm, and shortpath is

an implementation of the Chandy-Misra’s shortest path algorithm [CM82]. The fibonacci subject

computes the n-th element in the Fibonacci sequence. mergesort and quicksort are implementa-

58



A
ct

o
rF

o
u

n
d

ry
S

ca
la

E
x
p

er
im

en
t

R
es

ou
rc

es
S

ta
ti

st
ic

s
R

es
o
u

rc
es

S
ta

ti
st

ic
s

S
ta

te
T

im
e

M
em

o
ry

#
o
f

#
o
f

M
sg

s
#

o
f

T
im

e
M

em
o
ry

#
o
f

#
o
f

M
sg

s
#

o
f

S
u

b
je

ct
R

ed
u

ct
io

n
(s

ec
)

(M
B

)
S

ta
te

s
D

el
iv

er
ed

E
x
ec

s
(s

ec
)

(M
B

)
S

ta
te

s
D

el
iv

er
ed

E
x
ec

s

N
on

e
16

8
9

7
6
9

7
6
8

1
6
8

2
8

1
1
0

7
6
8

7
6
7

1
6
8

J
P

F
C

om
p

.
9

6
5

1
8
8

2
9
9

9
1
1

8
2

8
0

1
4
4

4
fi

b
on

ac
ci

A
ct

or
C

om
p

.
8

7
1

1
0
5

1
8
4

6
9

8
5

4
3

7
5

2
D

P
O

R
-L

C
A

15
1
0
6

4
9
5

4
9
4

1
0
2

1
3

1
0
0

1
4
7

1
4
6

3
2

D
P

O
R

-E
C

A
10

9
0

2
8
9

2
8
8

6
4

3
3

1
6
0

7
6
8

7
6
7

1
6
8

N
on

e
24

1
1
9

1
4
6
7

1
4
6
6

3
7
4

4
4

1
2
2

1
4
6
7

1
4
6
6

3
7
4

J
P

F
C

om
p

.
17

9
5

6
7
1

8
6
4

1
0
6

1
9

9
3

2
5
5

3
4
1

4
2

le
ad

er
A

ct
or

C
om

p
.

15
9
4

4
6
5

6
5
1

7
3

1
6

9
4

1
8
7

2
3
7

3
4

D
P

O
R

-L
C

A
21

1
4
7

9
1
1

9
1
0

1
8
8

3
0

1
6
5

6
6
7

6
6
6

1
3
8

D
P

O
R

-E
C

A
14

1
1
3

4
9
3

4
9
2

1
0
1

2
8

1
1
9

6
1
2

6
1
1

1
2
6

N
on

e
18

88
4
7
4

1
1
3
0
6
7

1
1
3
0
6
6

3
3
2
6
4

2
3
1
6

4
1
9

1
1
3
0
6
6

1
1
3
0
6
5

3
3
2
6
4

J
P

F
C

om
p

.
55

9
3
5
9

2
1
4
5
0

3
2
7
7
0

3
0
8
0

7
3

1
3
1

1
0
5
4

2
7
2
9

2
0

m
er

ge
so

rt
A

ct
or

C
om

p
.

19
7

2
0
5

6
0
8
1

1
0
9
0
9

7
2
7

2
5

1
1
7

2
7
0

7
1
9

4
D

P
O

R
-L

C
A

6
7
2

4
0

3
9

8
9

8
2

3
9

3
8

8
D

P
O

R
-E

C
A

11
8
6

2
1
2

2
1
1

5
4

1
7

1
0
5

2
1
1

2
1
0

5
4

N
on

e
-

-
-

-
-

3
6
0
1

4
2
6

2
1
5
6
7
4

2
1
5
6
7
3

6
4
4
9
2

J
P

F
C

om
p

.
-

-
-

-
-

4
9
2

2
4
8

1
2
5
3
8

2
9
9
4
3

4
6
8

p
h

il
os

op
h

er
s

A
ct

or
C

om
p

.
-

-
-

-
-

1
8
0

1
8
5

3
5
0
4

8
4
9
9

1
5
0

D
P

O
R

-L
C

A
-

-
-

-
-

1
8
6

2
9
0

6
1
6
8

6
1
6
7

8
0
6

D
P

O
R

-E
C

A
-

-
-

-
-

1
5
2
8

3
7
8

6
4
3
7
3

6
4
3
7
2

9
1
2
2

N
on

e
23

00
4
1
8

1
6
8
6
4
6

1
6
8
6
4
5

6
0
4
8
0

3
5
2
3

4
6
3

1
6
8
6
4
5

1
6
8
6
4
4

6
0
4
8
0

J
P

F
C

om
p

.
11

5
1
9
9

4
4
3
6

7
0
0
3

7
2
0

5
2

2
4
9

3
4
6

8
9
3

1
2

p
i

A
ct

or
C

om
p

.
60

1
5
6

1
6
5
2

3
3
7
6

1
2
0

3
9

2
4
0

1
8
8

5
5
4

4
D

P
O

R
-L

C
A

22
1
3
0

7
3
4

7
3
3

1
0
5

3
7

1
9
7

7
3
3

7
3
2

1
0
5

D
P

O
R

-E
C

A
10

8
6

1
6
6

1
6
5

2
4

1
5

1
3
6

1
6
5

1
6
4

2
4

T
a
b

le
3
.1

:
C

om
p

ar
in

g
d

iff
er

en
t

st
at

e-
sp

ac
e

re
d

u
ct

io
n

te
ch

n
iq

u
es

in
B

as
se

t

59



A
ct

o
rF

o
u

n
d

ry
S

ca
la

E
x
p

er
im

en
t

R
es

ou
rc

es
S

ta
ti

st
ic

s
R

es
o
u

rc
es

S
ta

ti
st

ic
s

S
ta

te
T

im
e

M
em

o
ry

#
o
f

#
o
f

M
sg

s
#

o
f

T
im

e
M

em
o
ry

#
o
f

#
o
f

M
sg

s
#

o
f

S
u

b
je

ct
R

ed
u

ct
io

n
(s

ec
)

(M
B

)
S

ta
te

s
D

el
iv

er
ed

E
x
ec

s
(s

ec
)

(M
B

)
S

ta
te

s
D

el
iv

er
ed

E
x
ec

s

N
on

e
36

01
5
2
2

1
7
6
8
7
1

1
7
6
8
7
0

3
8
2
4
5

8
5
2

3
7
3

4
3
4
3
8

4
3
4
3
7

1
1
0
8
8

J
P

F
C

om
p

.
36

01
5
1
6

8
3
2
7
8

1
8
3
7
3
4

3
9
9
5

2
9

1
2
3

4
3
5

1
1
9
6

5
q
u

ic
k
so

rt
A

ct
or

C
om

p
.

20
75

4
6
5

4
2
4
7
2

1
0
5
8
7
7

2
0
2
1

1
4

1
0
4

1
2
0

3
0
9

2
D

P
O

R
-L

C
A

8
1
0
8

7
4

7
3

1
6

7
8
5

3
7

3
6

8
D

P
O

R
-E

C
A

39
2

2
6
0

1
3
2
8
1

1
3
2
8
0

2
7
7
2

3
3

1
6
4

9
1
2

9
1
1

2
1
0

N
on

e
-

-
-

-
-

6
4
0

3
7
2

2
2
5
2
2

2
2
5
2
1

4
1
5
2

J
P

F
C

om
p

.
-

-
-

-
-

2
1
5

2
0
7

6
5
1
3

7
3
0
3

1
0
8
1

sc
al

aw
ik

i
A

ct
or

C
om

p
.

-
-

-
-

-
1
7
9

2
1
7

5
4
5
6

6
2
6
7

8
3
6

D
P

O
R

-L
C

A
-

-
-

-
-

9
2
3

3
8
2

2
2
5
2
2

2
2
5
2
1

4
1
5
2

D
P

O
R

-E
C

A
-

-
-

-
-

1
9
7

2
6
4

4
6
4
4

4
6
4
3

8
3
6

N
on

e
4

4
2

2
7

2
6

6
6

7
7

2
6

2
5

6
J
P

F
C

om
p

.
6

4
1

2
4

2
4

5
6

7
5

2
3

2
3

5
se

rv
er

A
ct

or
C

om
p

.
5

4
1

2
1

2
2

4
6

7
6

2
0

2
1

4
D

P
O

R
-L

C
A

4
4
2

1
9

1
8

4
7

7
7

2
6

2
5

6
D

P
O

R
-E

C
A

5
5
8

2
7

2
6

6
6

7
2

1
8

1
7

4
N

on
e

17
8

2
3
8

1
0
0
0
0

9
9
9
9

3
6
1
4

2
2
3

2
4
5

1
0
0
0
0

9
9
9
9

3
6
1
4

J
P

F
C

om
p

.
38

1
2
0

8
8
7

1
7
7
2

1
4
0

3
5

1
2
6

5
3
4

1
1
6
0

6
9

sh
or

tp
at

h
A

ct
or

C
om

p
.

18
1
1
0

2
6
1

6
0
8

2
8

2
0

1
1
5

2
3
0

5
5
6

2
2

D
P

O
R

-L
C

A
13

8
9

2
8
7

2
8
6

9
8

1
6

1
1
4

2
8
7

2
8
6

9
8

D
P

O
R

-E
C

A
50

1
5
4

1
6
9
0

1
6
8
9

4
0
8

5
8

2
1
2

1
6
9
0

1
6
8
9

4
0
8

N
on

e
89

2
0
0

5
0
4
6

5
0
4
5

1
1
5
2

1
1
8

2
3
4

5
0
4
5

5
0
4
4

1
1
5
2

J
P

F
C

om
p

.
22

9
9

5
2
8

8
6
1

3
1

1
8

1
0
3

3
1
7

5
0
8

2
4

sp
in

so
rt

A
ct

or
C

om
p

.
15

1
0
0

2
8
7

4
5
9

1
9

1
7

1
0
1

2
6
9

4
3
2

2
4

D
P

O
R

-L
C

A
37

1
4
5

1
2
9
0

1
2
8
9

2
8
8

4
3

1
8
2

1
2
8
9

1
2
8
8

2
8
8

D
P

O
R

-E
C

A
12

1
2
7
4

5
0
4
6

5
0
4
5

1
1
5
2

1
4
5

1
8
1

5
0
4
5

5
0
4
4

1
1
5
2

T
a
b

le
3
.2

:
C

o
m

p
a
ri

n
g

d
iff

er
en

t
st

at
e-

sp
ac

e
re

d
u

ct
io

n
te

ch
n

iq
u

es
in

B
as

se
t

(c
on

ti
n
u

ed
)

60



tions of distributed sorting algorithms that use a standard divide-and-conquer strategy to carry out

the computation. philosophers is an implementation of the classic dining philosophers problem,

where both the philosophers and the resources/forks are modeled as actors. pi is a porting of a

publicly available [Pi] example for Message Passing Interface, which computes an approximation

of the π number by splitting the task among a set of N worker actors. Finally, scalawiki is the

original client-server application previously available from the ScalaWiki website. Our use of Bas-

set exposed an atomicity violation in this code, which has been corrected in the latest version of

the example. We did not translate the entire scalawiki from Scala into ActorFoundry but only

translated the simplified server.

All of these subjects can be executed in the standard environments for Scala or ActorFoundry.

No modification to the subjects’ code was necessary to explore them using Basset. Several of these

subjects (namely, fibonacci, leader, mergesort, pi, pipesort, quicksort, and server) are included

as part of the publicly available release of Basset. The software can be downloaded from either the

NASA JPF website [JPF] or the Basset homepage [Bas].

3.10.3 State-Space Reduction

In this section we illustrate the use of some of the framework’s capabilities. Specifically, we present

the results of experiments that were run using the different state-space reduction capabilities that

are built into the framework. Our experiments use ten actor programs listed in Tables 3.1 and 3.2.

In most cases, two versions of each subject were created: one using ActorFoundry and the other

using the Scala language. The two exceptions are scalawiki and philosophers.

As discussed in Section 3.4, Basset provides two mechanisms for reducing the exploration of a

state space: state comparison and dynamic partial-order reductions based on the happens-before

relation. In addition to the default state comparison provided by JPF, we implemented a custom

state comparison to improve the identification of previously visited states. The abstraction we use

for state comparison allows for more aggressive pruning of redundant message schedules, which, in

turn, results in faster state-space exploration.

Tables 3.1 and 3.2 show the results of experiments comparing JPF’s standard state comparison

(JPF Comp.), our custom actor state comparison (Actor Comp.), and the dCUTE dynamic partial-
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order reduction adapted for actor programs and implemented in Basset (DPOR-LCA and DPOR-

ECA). For reference purposes, results without state comparison or partial-order reduction (None)

have also been provided.

For each type of state-space reduction, we tabulate the total exploration time in seconds,

memory usage in MB, the number of states identified during the entire exploration, the total

number of messages (across all executions) that were delivered during the exploration, and the

total number of execution paths completed in their entirety (i.e., paths that reached a final state

where no messages can be delivered). Effectively, the number of states and the number of messages

are the number of nodes and the number of edges, respectively, in the state-space graph that Basset

explores for a program. The variations in numbers between ActorFoundry and Scala are due to

differences in how the subjects were implemented and how the drivers establish the initial state.

Execution time typically improves as we progress through the three types of state comparison,

from None to the JPF comparison to the Actor comparison. In nearly all cases, the Actor compari-

son results in the fastest of these explorations. The single exception is for the ActorFoundry server

experiments, where using no comparison was the fastest. In this case, we suspect the overhead of

performing comparisons outweighed the potential savings for such a small number of executions.

Memory utilization remains reasonable across all of the experiments, usually varying in line with

the total number of explored states. Similar to reducing execution time, the Actor comparison

reduces the number of explored states and the number of delivered messages. As the abstraction

used by the state comparison is refined to consider only relevant state differences, the number of

states and executions that can be pruned increases. As a result, the number of executions is not

a particularly meaningful statistic when state comparison is used. The pruning of exploration can

greatly reduce the number of executions that finish.

As previously mentioned in Section 1.4, the partial-order reduction is very sensitive to the order

in which it chooses actors and messages for message delivery. To illustrate this, we ran experiments

using two different orderings: DPOR-ECA delivers messages to actors based on the order in which

the receiving actors were created (i.e., from earliest to most recent), while DPOR-LCA delivers

messages in the reverse order (i.e., from most recent to earliest).

The results show that state comparison and partial-order reduction provide different speedups,
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Experiment Resources Statistics

Execution Memory # of Max # of Msgs
Language Subject Step Size Time (sec) (MB) States Depth Delivered

fib Big 7 15 119 6 318
Little 5 15 104 10 184

leader Big 19 16 433 7 995
Little 13 16 464 11 651

foundry server Big 2 10 10 4 26
Little 2 10 20 6 22

shortpath Big 15 18 309 8 705
Little 13 18 260 10 608

spinsort Big 13 18 247 7 599
Little 10 18 286 10 459

fib Big 5 25 40 6 109
Little 5 24 42 9 75

leader Big 10 28 131 7 308
Little 8 26 186 11 237

scala server Big 3 23 10 4 25
Little 3 23 19 5 21

shortpath Big 20 28 274 8 639
Little 18 28 229 10 556

spinsort Big 16 27 220 7 552
Little 13 27 268 9 432

Table 3.3: Comparing step granularity in Basset – Big vs. Little steps

with one or the other being better for different subjects. The differences in results between DPOR-

LCA and DPOR-ECA illustrate that it is worthwhile to investigate heuristics for determining

orderings of messages for actors. Our work along these lines is presented in Chapter 4. We believe

that Basset provides an excellent research platform for such experiments on state-space exploration

of actor programs, in the same way that JPF has provided an excellent research platform for state-

space exploration of sequential and multithreaded Java programs.

3.10.4 Step Granularity

In Section 3.5.3, we discussed the trade-off associated with performing explorations using Big

steps versus Little steps. We performed experiments to compare the performance of state-space

explorations that enforced Little steps with explorations that allowed combining multiple Little

steps into Big steps when appropriate. Each experiment was performed using our optimized Actor
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state comparison (since the previous sections show it to be the fastest of all state comparison

alternatives considered). Table 3.3 shows the results of these experiments. For both Little and

Big step granularity, we tabulate several items: (1) the total exploration time in seconds, (2) the

maximum memory usage in MB, (3) the number of states visited during the entire exploration (note

that revisiting the same state multiple times is greatly reduced by the use of state comparison), (4)

the maximum exploration depth (i.e., the number of steps in the longest exploration path), and

(5) the total number of messages delivered across all exploration paths.

Recall from Section 3.5.3 that when using Little step granularity, a step (i.e., transition) corre-

sponds to the delivery and processing of a single message. However, when using Big step granularity,

the delivery and processing of multiple messages are combined into a single step. In the absence

of state comparison (which identifies opportunities to prune paths from the state space), using Big

steps would result in the same number of messages being delivered but fewer states. Additionally,

we would expect some amount of savings compared to Little steps due to less overhead for state

management. However, as the results in Table 3.3 show, the use of Big step granularity combined

with state comparison has a negative impact on the overall exploration cost. For the subjects we

evaluated, Little step granularity results in explorations that are faster and require less memory

than explorations using Big step granularity. This is due to increased opportunities for state prun-

ing exposed by using the smaller step size for our subject programs. In other words, when we use

Big steps, state comparison is not performed after the processing of every message. As a result,

Basset does not detect previously seen states and does not prune the exploration.

Even though combining multiple message deliveries into a single Big step reduces the number

of steps for an exploration, the higher level of pruning obtained using Little steps can still reduce

the number of steps by an even greater amount than Big steps. This is the case for 4 out the 10

experiments we ran. And when we consider the overall execution time, the number of messages

delivered is even more important than the number of states. In all cases, the use of Little steps

resulted in both a lower number of messages delivered and an execution time that was less than or

equal to that obtained using Big steps.

Given the limited number of subjects used in these experiments, it may be premature to say

that Little step granularity is always faster. Subjects may exist where Big step granularity could
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provide better performance. Whether such subjects exist or if there are other circumstances where

combining steps results in faster exploration remain open questions for future investigation.

3.11 Summary

In this chapter we described Basset, a general framework for the systematic testing of Java-based

actor programs. We instantiated it for two systems: the Scala programming language and the

ActorFoundry library. Our experience with Basset suggests that a general purpose framework

for automated testing of actors can be efficient and effective. Experimental results show that

using Basset to explore the state space of actor program executions is more efficient than directly

exploring the code and its libraries. Experiments also suggest that Basset can effectively explore

executions of actor programs, as demonstrated by the discovery of a previously unknown bug in

a sample Scala code available from the ScalaWiki web site (the bug was fixed after the authors

confirmed our bug report).

We believe that Basset can serve as an excellent research platform for work on testing actor

programs and distributed systems. In fact, it is already being used for such efforts [BKSS11,KTL+].

In the future, we expect Basset to be instantiated for more actor systems. We plan to investigate

further capabilities and optimizations in Basset, and to use it to test other actor-oriented and

message passing-based applications. Basset simplifies the development of tools for the automated

testing of programs in new actor languages and runtime libraries, while at the same time making

new techniques for testing implemented in the framework readily available for its tool instantiations.
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Chapter 4

Dynamic Partial-Order Reduction
Heuristics

In this chapter we present our examination of using message-ordering heuristics to improve the

efficiency of dynamic partial-order reduction (DPOR) techniques for actor programs.1 This work

was performed using the Basset framework described in Chapter 3. While evaluating Basset, we

observed that the order in which messages are considered for exploration at a given state can affect

the number of states that can be pruned by a DPOR algorithm. Our results in this chapter show

that proper selection of message-ordering heuristics can reduce the number of states explored by

over two orders of magnitude.

As discussed in Chapter 1, we considered four questions in our investigation:

• What are some of the natural heuristics for ordering scheduling decisions in DPOR for

message-passing systems?

• What is the impact of choosing one heuristic over another heuristic?

• Does the impact of these heuristics depend on the DPOR technique?

• Can we predict which heuristic may work better for a particular DPOR technique or subject

program?

The remainder of this chapter is organized as follows. In Section 4.1 we present an example

which illustrates how the order in which messages are selected for exploration can impact the overall

efficiency of DPOR pruning. In Section 4.2 we present a set of heuristics that we have seen being

1Some of the material presented in this chapter, as well as Sections 1.4, 2.2, 2.6, and 2.7, is derived from previously
published work [LKMA10]. The original publication is available at www.springerlink.com, and the copyright is held
by Springer-Verlag. It is included with kind permission from Springer Science+Business Media: D.S. Rosenblum
and G. Taenzer (Eds.), Fundamental Approaches to Software Engineering 2010, Evaluating Ordering Heuristics for
Dynamic Partial-Order Reduction Techniques, Volume 6013 of Lecture Notes in Computer Science, 2010, pages
308–322, Steven Lauterburg, Rajesh Karmani, Darko Marinov and Gul Agha (Authors). c© Springer-Verlag Berlin
Heidelberg 2010.
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class Master extends Actor {

ActorName[] workers;

int counter = 0;

double result = 0.0;

public Master(int N) {

workers = new ActorName[N];

for (int i = 0; i < N; i++)

workers[i] =

create(Worker.class, i, N);

}

@message

void start() {

int n = 1000;

for (ActorName w: workers)

send(w, "intervals", self(), n);

}

@message

void sum(double p) {

counter++;

result += p;

if (counter == workers.length) {

for (ActorName w: workers)

send(w, "stop");

destroy("done");

}

}

}

class Worker extends Actor {

int id;

int nbWorkers;

public Worker(int id, int nb) {

this.id = id;

this.nbWorkers = nb;

}

@message

void intervals(ActorName master, int n) {

double h = 1.0 / n;

double sum = 0;

for (int i = id; i <= n; i += nbWorkers) {

double x = h * (i - 0.5);

sum += (4.0 / (1.0 + x * x));

}

send(master, "sum", h * sum);

}

@message

void stop() { destroy("done"); }

}

class Driver extends Actor {

static void main(String[] args) {

ActorName master =

create(Master.class, args[0]);

send(master, "start");

}

}

Figure 4.1: ActorFoundry code for the pi example

used or that we felt were reasonable candidates for use. In Section 4.3 we present the results of

an evaluation of the heuristics we identified along with our initial insights into why the heuristics

performed as they did. And finally, in Section 4.4 we conclude our discussion of this work.

4.1 Illustrative Heuristics Example

To illustrate key DPOR concepts and how different message orderings can affect the exploration

of actor programs, we use a simple example actor program that computes the value of π. It is

a porting of a publicly available MPI example [Pi], which computes an approximation of π by

distributing the task among a set of worker actors.

Figure 4.1 shows a simplified version of this code developed using the ActorFoundry library.

The Driver actor creates a master actor which in turn creates a given number of worker actors to
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carry out the computation. The Driver actor sends a start message to the master actor which in

turn sends messages to each worker. The worker actors perform their part of the computation and

send the result back to the master actor, which collects and reduces the partial results. After all

results are received, the master actor instructs the workers to terminate and then terminates itself.

All messages in this example are sent asynchronously using ActorFoundry’s send method (i.e., no

RPC-style synchronous calls are used). See Section 2.2 for more details about ActorFoundry.

Figure 4.2 shows the search space for this program with master actor M and two worker actors

A and B. Each state in the figure contains a set of messages. A message is denoted as XY where

X is the actor name and Y uniquely identifies the message to X. We assume that the actors are

created in this order: A, B, M . (Note: since the Worker actors are created by the Master actor’s

constructor, they are actually created and assigned actor ids before the Master actor.) Transitions

are indicated by arrows labeled with the message that is received, where a transition consists of

the delivery of a message up to the next delivery.

The boxed states indicate those states that will be visited when the search space is explored

using a DPOR technique, and when actors are chosen for exploration according to the order in

which the receiving actors are created. Namely, the search will favor exploration of messages to be

delivered to A over those to be delivered to B or M , so if in some state (say, the point labeled K)

messages can be delivered to both A and B, the search will first explore the delivery to A and only

after that the delivery to B. To illustrate how this ordering affects how DPOR prunes execution

paths, consider the state at point G. For this state, the algorithm will first choose to deliver the

message B1. While exploring the search space that follows from this choice, all subsequent sends

to actor B are causally dependent on the receipt of message B1. This means that DPOR does not

need to consider delivering the message MA before B1. This allows pruning the two paths that

delivering MA first would require. Similar reasoning shows that DPOR does not need to consider

delivering B2 before A2 at points S and T , and that it does not need to consider delivering B1 at

point K. In total, this ordering prunes 10 of 12 paths, i.e., with this ordering, only 2 of 12 paths

are explored.

The shaded states indicate those states that will be visited when the search space is explored

using the same DPOR, but when actors are chosen for exploration according to the reverse-order
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Figure 4.2: State space for pi example with two worker actors

in which the receiving actors are created. This means that the search will favor exploration of

messages to be delivered to M over those to be delivered to B or A. This reverse-ordering causes

DPOR to prune execution paths differently. Consider the state at point H. For this state, the

algorithm will first choose to deliver the message MB. Following this path, it comes to point J ,

where the delivery of message A1 results in message MA being sent. This send to actor M is

not causally dependent on the receipt of message MB. This means that the DPOR also needs to

consider delivering the message A1 before MB at point H. As the search continues, it discovers

that it does not need to consider delivering A2 before B2 at points U , V , and W ; and also it does

not need to consider delivering A1 at point K. In total, the reverse-ordering prunes 9 of 12 paths,

69



which is one fewer than when the messages are selected in the order in which the receiving actors

are created. As shown in Section 4.3, this difference in the number of paths pruned increases as

the number of worker actors increases.

We can see from this simple example that the order in which messages are selected can impact

the efficiency of DPOR. In the next section we consider several heuristics for message ordering, and

then in Section 4.3 we evaluate the effectiveness of those heuristics.

4.2 Natural Heuristics

The example in Section 4.1 illustrates the idea that scheduling decisions may affect the efficiency of

DPOR techniques. In the algorithms presented in Section 2.7, the scheduling choices are represented

by the calls to the choose method (underlined). The DPOR algorithms implemented in the Basset

framework first collect all possible enabled messages for the actors at a given state, and then

explore some ordering for processing this set of messages. The key question, therefore, is how do

we determine the order in which messages are considered for a given state.

We present eight possible heuristics for ordering messages:

1. Earliest created actor (ECA) sorts the enabled actors by their creation time in the ascending

order. The intuition is to capture the “asymmetry” between some actors in terms of the

communication pattern.

2. Latest created actor (LCA) is similar to ECA but sorts the enabled actors by their creation

time in the descending order.

3. Queue (FIFO) sorts the actors based on the time of the earliest message sent to them, in

the ascending order. This heuristic captures the common implementation order of choosing

messages from a scheduling queue.

4. Stack (LIFO) sorts the actors based on the time of the last message sent to them, in the

descending order.

5. Lowest number of deliverable messages (LDM) sorts the actors by the number of messages in

their respective message queue, in the ascending order. The intuition is that the actors that
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have received more messages so far in the computation are likely to receive more messages

later in the computation.

6. Highest number of deliverable messages (HDM) sorts the actors by the number of messages

in their respective message queue, in the descending order.

7. Highest average messages sent (HMS) prioritizes the actors which have been sending the

highest number of messages per received message, based on the exploration history. The

intuition is that the actors that have been sending more messages in the past are more likely

to send more messages in the future.

8. Send graph reachability (SGR) is based on information collected during prior executions.

Specifically, it maintains a directed graph where nodes represent actors and edges indicate

that a message was sent from the first node to the second at some point in the exploration.

Now, consider two messages: one to actor A, and one to actor B. If actor B is reachable

in the graph from actor A and no such path exists from actor B to actor A, then SGR will

prioritize actor A over actor B. The intuition is that actor B is less likely to cause a message

to be sent to actor A.

These eight heuristics capture some intuition based on the functioning of the DPOR algorithms

and on the patterns of communication in actor programs. While our list of heuristics is not

complete by any means, we believe that it is sufficiently representative to help us develop a better

understanding of how the use of heuristics can affect the effectiveness of DPOR algorithms.

4.3 Heuristics Evaluation

To evaluate the different heuristics for dynamic partial-order reduction, we conducted experiments

using three different DPOR techniques: one based on the algorithm used for dCUTE [SA06] (see

Section 2.7.2) and the other two based on dynamically computing persistent sets [FG05,God96] (see

Section 2.7.1). The persistent set technique was considered both stand-alone and in combination

with sleep sets [God91,God96]. Each of the heuristics and DPOR techniques were implemented in

the Basset framework presented in Chapter 3.
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dCUTE Persistent dCUTE Persistent
# of time # of time # of time # of time

Heur. Subject Paths [sec] Paths [sec] Subject Paths [sec] Paths [sec]

ECA 3821 209 19683 1119 288 18 288 18
LCA 216 15 216 15 5970 326 5970 326
FIFO 972 60 3240 179 1794 95 1791 94
LIFO chameneos 2031 108 4899 275 pipesort 1080 54 1080 56
LDM 753 46 3375 184 size=4 384 23 384 24
HDM 3821 215 19683 1206 2072 110 1480 85
HMS 3691 218 19683 1217 307 19 307 19
SGR 3821 204 19683 1169 288 18 288 18
ECA 684 49 327 24 7038 411 3822 267
LCA 16 4 16 4 32 5 32 7
FIFO 68 7 40 5 572 36 368 37
LIFO fib(5) 81 10 81 10 quicksort 243 20 243 24
LDM 508 37 261 20 size=6 6390 357 2502 152
HDM 526 40 263 22 5118 315 2804 193
HMS 82 9 66 8 195 16 183 16
SGR 684 49 327 25 7038 401 3822 246
ECA 101 7 101 7 516 20 392 16
LCA 188 10 188 10 680 23 640 21
FIFO 122 8 119 7 360 15 238 10
LIFO leader 125 8 125 8 shortpath 859 29 750 25
LDM 133 9 133 9 graph A 585 23 492 19
HDM 88 7 88 7 562 23 419 17
HMS 141 9 126 8 540 21 453 17
SGR 101 7 101 7 516 20 392 15
ECA 120 13 120 13 7216 239 2658 67
LCA 945 81 19845 1952 7462 366 1865 62
FIFO 120 14 120 17 3488 194 528 28
LIFO pi 945 82 19845 2145 shortpath 6472 295 2638 184
LDM 5 workers 120 14 120 37 graph B 7326 340 1178 44
HDM 706 97 3424 333 13438 716 2756 134
HMS 945 140 19845 2154 3618 195 783 24
SGR 153 17 567 121 7216 266 2658 68

Table 4.1: Comparison of different ordering heuristics (the best results are in bold)

We first describe the subject programs used to quantitatively evaluate the heuristics. We then

present experimental results comparing the different heuristics for two of the DPOR techniques,

namely dCUTE and persistent sets without sleep sets. We then present additional results for

experiments where we included the use of sleep sets. All experiments are performed using Sun’s

JVM build 1.6.0 24-b07 on a 2.80GHz Intel Core2 Duo running Ubuntu release 10.04 LTS.
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4.3.1 Subject Programs

Our experiments use the eight actor subjects listed in Table 4.1. All of the programs are either

originally written using the ActorFoundry library [Agh86,AMST97] or ported to that environment.

The pi subject is the example described in Section 4.1. However, the results shown here are for

a configuration using five worker actors. Two of the subjects implement more complex algorithms

previously used in the dCUTE study [SA06]: leader is an implementation of a leader election algo-

rithm; and shortpath is an implementation of the Chandy-Misra’s shortest path algorithm [CM82].

The shortpath subject appears twice in the results: once for a graph with 4 nodes (shortpathA),

and again for a graph with 5 nodes (shortpathB). Note that the two graphs are dissimilar. The

fib subject computes the n-th element in the Fibonacci sequence. quicksort is an implementa-

tion of a distributed sorting algorithm that uses a standard divide-and-conquer strategy to carry

out the computation. pipesort is a modified version of the sorting algorithm used in the dCUTE

study [SA06]. chameneos is an implementation of the chameneos-redux benchmark from the Great

Language Shootout (http://shootout.alioth.debian.org). Several of these subjects (specifi-

cally, fib, pi, pipesort, quicksort and shortpath) are included as part of the publicly available

release of Basset. The software can be downloaded from either the NASA JPF website [JPF] or

the Basset homepage [Bas].

4.3.2 Results and Observations

Table 4.1 shows the results of experiments comparing the different heuristics for the DPOR based

on persistent sets and the one used for dCUTE. For each heuristic, we tabulate the total number

of paths executed and the total exploration time in seconds. The results suggest that the efficiency

of the two DPOR techniques is greatly dependent on the order in which messages are selected for

exploration.

Recall the four research questions posed at the beginning of this chapter. The first question has

been discussed in Section 4.2 where we describe some intuitive ordering heuristics to guide DPOR

algorithms. We address the remaining three questions now by making observations on the results
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in Table 4.1.

What is the impact of choosing one heuristic over another heuristic?

Table 4.1 shows that for 6 out of 8 experiments, one of the heuristics (but not necessarily

the same) performs the best, i.e., there is no tie for the best performing heuristic. In the case

of pipesort the tie between ECA and SGR is due to the relationship between the two heuristics.

Specifically, ECA is the tie-breaking heuristic for SGR.

SGR performs the same as ECA for 6 out of 8 experiments. However, for the remaining two

experiments, SGR performs worse than ECA. This suggests that the SGR heuristic, despite its

usage of additional information, does not offer any advantage over ECA.

We also observe that the difference between the best and the worst heuristic can be very large.

For example, for the quicksort subject sorting an array of size 6 and the dCUTE DPOR, the

best heuristic (LCA) has two orders of magnitude (more precisely, 220X) fewer executions than

the worst performing heuristic (ECA). Note that both these heuristics are natural orders on the

scheduling queue. In fact, the dCUTE DPOR algorithm as originally presented [SA06] employs the

ECA ordering. The second best performing heuristic (HMS) for quicksort still explores 6 times

as many executions as the best heuristic. For the other subjects, the ratio between the number of

executions in the worst and the best case ranges from 2X (for leader) to 91X (for chameneos).

In general, the exploration time strongly correlates with the number of executed paths. This

observation suggests that the better heuristics do not have a significant computation cost, and

thus their reduction in the number of executions directly translates into savings in the exploration

time. There are exceptions: for the subject shortpathB, the exploration time does not correlate

with the number of paths executed as closely as other experiments. We believe that this is due to

our experiments using Basset which is built on top of JPF and uses checkpointing and restoring to

explore different paths, rather than re-execution. Hence, the time may relate more to the number

of states visited instead of the number of executions, or stated differently, the time may depend

more strongly on the length of all executions instead of the number of executions.

Does the impact of these heuristics depend on the DPOR technique?

Although the results differ between the two DPOR algorithms for the experiments, the results
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exhibit a similar ranking of heuristics for both algorithms. In other words, for a given subject,

heuristics that perform well for one DPOR technique tend to perform well for the other. Similarly,

a heuristic that performs poorly typically does so for both DPOR algorithms.

It is evident from the table that for all 8 experiments, the best heuristic exactly matches for

both DPOR algorithms. Moreover, even the worst heuristic matches for 7 out of 8 experiments.

Can we predict which heuristic may work better for a particular DPOR technique or

subject program?

We found that which heuristic performs the best relates to the communication patterns em-

ployed by the program. For example, in a pipelined computation (e.g., pipesort), it is more efficient

to schedule first the actors that represent the early stages in the pipeline. On the other hand, in

a divide-and-conquer tree (e.g., fib), it is more efficient to schedule child actors before the parent

actor.

Indeed, the ECA heuristic is the best performing heuristic for pipesort. ECA prioritizes actors

in the early stages of a pipeline, and this enables the DPOR algorithms to collect all possible

messages for actors in the later stages of the pipeline.

For 3 out of 8 subjects, the LCA heuristic performs the best among all heuristics. Two of these

subjects—fib and quicksort—employ a divide-and-conquer approach. The remaining subject,

chameneos, has a request-reply pattern between a broker and many clients. LCA allows the DPOR

algorithm to collect all possible messages sent from the clients to the broker before exploring all

the permutations of this set of messages.

For subjects with arbitrary graphs and communication patterns, the FIFO heuristic outper-

forms the remaining heuristics. For instance, the input graphs for shortpathA and shortpathB are

dissimilar, and the effectiveness of several heuristics varied between the two experiments. Yet, the

FIFO heuristic is the most effective heuristics for both inputs.

We performed some additional experiments for shortpath (not shown in the table) to identify

how much the choice of heuristic depends on the program input rather than program code. In

particular, the input to shortpath is a graph, and the messages exchanged depend on the topology

of this graph. We considered seven more graphs (all with four or five nodes) in addition to the two
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for which the results are shown. While there is some variation of the results, in all the cases, FIFO

is the best heuristic, either by itself, or together with some other heuristics (e.g., for a graph that

is a list, there is only one execution path for any heuristic). These results are not conclusive, but

they strongly suggest that the choice of heuristic depends on the program (and its communication

pattern) more than on the input. We believe that it would be worthwhile to evaluate how shortpath

performs for all graphs of various given sizes. These and other more exhaustive experiments using

different communication patterns may be able to shed more light on how communication patterns

and topology affect heuristic performance and could lead to better heuristic selection. We leave

such extended studies for future work.

In summary, the results suggest the following set of guidelines for selecting a heuristic before

the exploration of a program. (1) If there is no well-defined topology and communication pattern

in the program (or if this communication pattern is not known a priori), then the default heuristic

should be FIFO, since it is never the worst and sometimes is even the best heuristic. (2) If the

communication pattern is a pipeline, then ECA should be used. (3) If the communication pattern

is a divide-and-conquer tree, then LCA should be used.

4.3.3 Heuristics and Sleep Sets

In the previous subsection we evaluated several heuristics using two different but similar dynamic

partial-order reduction implementations. To see how heuristics would perform under more disparate

conditions, we performed a series of experiments using persistent sets augmented with sleep sets.

We implemented a variant of the persistent set algorithm which includes sleep sets in our Basset

framework. Sleep sets is a partial-order reduction technique, which is based on the history of

exploration [God91]. Specifically, sleep sets record the transitions that have already been explored

from a particular configuration, and avoid exploring them in successor configurations until some

condition is met. Sleep sets can further prune the number of transitions and paths that are explored

over using persistent sets alone [God96].

In Table 4.2 we present the results of experiments comparing the different heuristics for per-

sistent sets both with and without the addition of sleep sets. As in Table 4.1, we tabulate the

total number of paths executed in their entirety and the total exploration time in seconds. We
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also include the total number of transitions executed. We have repeated the results obtained for

persistent sets (from Table 4.1) to help put the sleep set results in perspective. The results using

sleep sets continue to show that the efficiency of the two DPOR techniques is dependent on the

order in which messages are selected for exploration. However, the savings that can be obtained by

choosing one heuristic over another is not as pronounced as was seen with our experiments using

persistent sets on their own or those using the dCUTE algorithm.

As expected, using persistent sets together with sleep sets often results in a significant reduction

in states explored compared to persistent sets on their own. In fact, all programs for all heuristics

have exactly the same number of paths. To see the savings that results from using different message-

ordering heuristics, one needs to look beyond the number of paths executed in their entirety and

consider the number of transitions that are executed to explore those paths. A lower number of

transitions implies that some of the redundant paths that were ultimately pruned were pruned

earlier than they were using a different heuristic.

Due to the much better pruning afforded by sleep sets, we see more modest differences in the

savings provided by the different heuristics. For example, our persistent set experiments showed

that using the ECA heuristic for the quicksort subject resulted in 119x more execution paths and

107x more transitions than the LCA heuristic. Using persistent sets combined with sleep sets,

however, the number of completed execution paths was the same, and the difference in transitions

was less than double (1.74x to be precise). The greatest difference we saw was in our experiments

for was for shortpathB: the HDM heuristic executed 1.93x more transitions than the HMS heuristic.

For seven of the eight subjects, the best performing heuristic remained the same with or without

sleep sets. However, for shortpathB, FIFO is replaced by HMS as the best performer. It should be

noted, however, that shortpathB is also one of the three subjects where adding sleep sets reduced

the number of completed execution paths from what was obtained using persistent sets alone

(shortpathA and leader are the other two). In most cases, the number of paths executed using the

best heuristic for persistent sets is the same as the number of paths executed by all heuristics using

persistent plus sleep sets. In the case of shortpathB, the lowest number of paths for persistent

set experiments is 528, but the number of paths obtained for all heuristics when using persistent

plus sleep sets is 296. This may indicate that a better result for shortpathB could be obtained by
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persistent sets using a message-ordering scheme other than the eight heuristics we identified.

Although the use of different heuristics with sleep sets did not provide savings as significant as

those seen for the dCUTE algorithm or for persistent sets alone, our experiments show their use

is still clearly beneficial. And in cases where sleep sets are not in use, the benefit of considering

message ordering is quite large – over two orders of magnitude in some cases. One should also

consider that the overhead of using sleep sets in conjunction with persistent sets is greater than that

for using persistent sets alone. The experiments that we performed were done in an environment

for systematically testing actual code. In such an environment, the cost of executing transitions

is much higher than it would be if were model checking a simpler model. In the latter case, the

overhead of using the sleep sets extension could have a more detrimental impact on the overall

performance of the model checking exercise, thus contraindicating its use.

4.4 Summary

Based on our work with actor systems, we believe that systematic exploration of message schedules

is a viable approach to address the important but challenging problem of testing actor programs.

As shown in this chapter, dynamic partial-order reduction (DPOR) techniques can significantly

speed up systematic exploration, but they are also highly sensitive to the order in which messages

are explored. We described and compared several heuristics that can be used for ordering messages.

Our results show up to two orders of magnitude difference in the number of executions explored

based on which heuristic is used. Moreover, our analysis of the results identified some initial guide-

lines that, based on the type of program, can aid selection of a good message-ordering heuristic

before the exploration. Questions remain, however. For instance, how can one balance the poten-

tially conflicting goals of improving DPOR performance and guiding exploration for the purpose of

more quickly finding bugs? Given the growing use of systematic testing as an approach to improv-

ing the quality of actor-based and distributed systems, further investigation into message-ordering

heuristics should be considered.

79



Chapter 5

Related Work

This chapter provides a brief overview of work related to this dissertation. The work most related to

the Basset framework is on model checking actor programs. Sen and Agha present dCUTE [SA06]

which checks actor programs written using a simplified actor library, by re-executing the programs

for various message schedules. Both dCUTE and Basset use a dynamic partial-order reduction

based on the happens-before relation to avoid exploring equivalent schedules. dCUTE combines this

partial-order reduction with a mixed concrete and symbolic execution for test generation [GKS05,

SMA05, CDE08]. In contrast, Basset provides a common framework for stateful exploration of

Java-based actor libraries and handles full actor libraries for Scala and ActorFoundry (including

dynamic creation and destruction of actors). Also, Basset is built on top of JPF and can reuse its

functionality for state-space exploration (e.g., heuristics for ordering exploration).

The Erlang language has also received a lot of attention. Fredlund and Svensson present

McErlang [FS07], a stateful model checker for actor programs written in the Erlang programming

language [Arm07]. McErlang, which is itself written in Erlang, modifies the concurrency system

of the Erlang run-time library. A previous model checker for Erlang, etomcrl [AE01], checked

Erlang programs by translating them into µCRL [GP95] and using off-the-shelf model checkers.

This approach is similar to the very first version of JPF [Hav99] which checked Java programs by

translating them into Promela and using SPIN [Hol97].

Another approach by Claessen et al. [CPS+09] proposes finding race conditions in Erlang code

during unit testing by using Quviq QuickCheck [Hug07] and a new randomizing scheduler for

Erlang called PULSE. This scheduler chooses and records the order in which messages are delivered

during testing. However, since it randomly chooses processes to run, it does not facilitate the

systematic exploration of all possible message schedules like Basset. Furthermore, Basset does not

focus on one language/library but provides a general framework built on an existing tool (JPF)
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and additionally incorporates several existing optimizations for exploration.

Bordini et al. [BFVW06] present a translation from AgentSpeak, a widely used agent-oriented

programming language, into Java bytecode so that the original program could be verified using JPF.

Agents in AgentSpeak share many similarities with actors. For instance, an agent communicates

only by exchanging messages, and it has a private mailbox to queue up messages that cannot be

processed immediately, just like actors. While their work focused on mapping AgentSpeak features

into Java constructs, so that the resulting program can be executed in JPF, we instead focused on

creating an extension for JPF so that different Java-based actor systems can be tailored to Basset

with a minimum effort.

Also related to Basset is work on checking distributed systems [AG06, BB07, Sto00, HGC04,

YCW+09, YKKK09]. In particular, Artho and Garoche [AG06] and Barlas and Bultan [BB07]

provide frameworks for executing distributed Java code in JPF. A key problem is that such code

uses network calls that JPF does not support as they depend on native code from the Java standard

libraries. Artho and Garoche solve this problem by instrumenting the bytecode, whereas Barlas

and Bultan’s NetStub framework utilizes stub classes [BB07]. These solutions are conceptually

similar to Basset in that they replace/avoid the standard Java network library similar to how

Basset replaces actor libraries. These solutions would be also valuable for checking migration of

actors. However, both frameworks focus on low-level communication, whereas Basset focuses on

high-level exploration of possible behaviors for actor programs.

Also along these lines, Yang et al. developed MODIST [YCW+09] to model check unmodified

distributed systems (that may or may not be actor-based) in a Windows environment. Their ap-

proach inserts a thin layer between the application processes and the operating system to intercept

and systematically explore system actions with an independent model checking engine. MODIST

also simulates potential sources of errors such as system crashes and message reordering. In con-

trast to work that focuses on testing systems before moving them into production, Yabandeh et

al. propose an approach to identifying and avoiding errors in deployed distributed systems written

in the Mace language [KAB+07]. Their CrystalBall [YKKK09] approach continuously performs

state-space exploration of a system’s global state and its potential behavior. This is done concur-

rently with the actual execution of the production system. Rather than attempting to exhaustively
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explore a systems behavior from an initial state (like Basset), the approach explores behavior based

on current system states and attempts to steer system execution away from potential errors.

Basset was developed to support the systematic testing of actual program code. Although not

specifically targeted at actor-based or distributed systems, several other tools which systematically

explore actual code for concurrent systems have been introduced over the years. VeriSoft [God97],

the first model checker of this sort, targets code written in the C language. CMC [MPC+02] also

targets C and additionally C++. Tools such as BogorVM [RDH03], Java PathFinder [VHB+03]

and JNuke [ASB+04] are focused on software written in the Java language. CHESS [MQ07] is

targeted at Microsoft’s .NET and also supports the Win32 and Singularity platforms.

Partial-order reduction is an important optimization for alleviating the state-space explosion in

model checking [CGP99, ABH+97, FG05, God96, YCW+09]. As discussed in Section 3.5.2, Basset

provides dynamic partial-order reduction capabilities based on the happens-before relation in order

to avoid exploring unnecessary message schedules. It also facilitates state-space reduction through

the use of state comparison to determine when to prune exploration. At present, the use of dynamic

partial-order reduction and the use of state comparison are mutually exclusive in Basset. Recent

work by Yang et al. [YCGK08] and Yi et al. [YWY06] proposes combining these two optimizations,

which we plan to explore as a possible capability for Basset in the future.
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Chapter 6

Conclusions

This dissertation presents our efforts to help alleviate some of the difficulties that arise when testing

actor programs. For example, one goal of our work was to address the inefficiencies that arise when

testing actor systems that include complex, multithreaded runtime architectures. The complexity

of an actor system’s underlying architecture interferes with our ability to test and explore what is

really important: the functionality and interaction of the actors themselves. If we consider the goal

of checking actor systems to be the testing of the actor programs themselves and not the underlying

library used to implement them, we can define more tractable testing scenarios. This does not mean

that the underlying runtime architectures do not need to be tested. They do. Rather, we view the

Basset framework’s approach of testing just the actors themselves as an application of the principle

of separation of concerns to testing.

Another goal of our work was to provide a means to leverage similarities across different actor

systems and to demonstrate that it is possible to build reusable components and techniques. To

address these goals, we propose a general framework and environment for the systematic testing of

actor programs that compile to Java bytecode. In brief, our thesis is the following:

It is possible to build a general framework that (1) allows efficient exploration of actor

programs written in languages that compile to Java bytecode and (2) facilitates the reuse

of testing capabilities across such languages.

We described Basset, a general framework and systematic testing environment for exploring

Java-based actor programs. We implemented the Basset framework on top of Java PathFinder

(JPF), and created tool instantiations of the framework for two systems: the Scala programming

language and the ActorFoundry library. Our experience with Basset shows that a general purpose

framework for automated testing of actors can be efficient and effective. Our experimental results
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show that using our Basset-based tools to explore the state space of actor program executions is

more efficient than directly exploring the code and its libraries. For instance, a simple helloworld

actor program and its simplified runtime library took over 7 minutes to explore using JPF. The

same actor program could be explored in less than a second using Basset.

We demonstrated Basset’s ability to support the reuse of exploration capabilities by develop-

ing two state-space reduction techniques. The first, a specialized state comparator for the stateful

search of actor programs enables more aggressive pruning of the search space than the generic com-

parator provided with JPF. The second technique is dynamic partial-order reduction (DPOR) for

actor programs. We implemented multiple DPOR algorithms in the core of the Basset framework,

and each is available for use by both the ActorFoundry and Scala tool instantiations. While im-

plementing these DPOR algorithms, we noted that although they significantly sped up systematic

exploration, they were highly sensitive to the order in which messages are explored. This observa-

tion led to our investigation of the impact that message-ordering heuristics can have on reducing

the exploration state space.

We described and compared several heuristics that can be used for ordering messages. Our

results show up to two orders of magnitude difference in the number of executions explored can

be realized based on how messages are ordered. Moreover, our analysis of the results discovered

guidelines that, based on the type of program, can aid selection of a good heuristic before the

exploration.

We next reiterate the contributions of this dissertation and conclude with some final remarks.

6.1 Contributions

This dissertation makes the following contributions:

• Introduces the concept of a general framework for exploration of actor programs that explic-

itly takes into account the nature of these programs.

• Provides an implementation of the general framework concept in a tool called Basset which

uses the Java PathFinder model checker. Basset has been released as a publicly available

extension for JPF called jpf-actor. Basset can be downloaded from either the NASA JPF
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website [JPF] or the Basset homepage [Bas].

• Provides instantiations of the Basset framework for actor programs written in the Actor-

Foundry library and in the Scala programming language. These instantiations illustrate the

viability of and value provided by the framework concept in general and the Basset framework

in particular. The instantiations also provide the first state exploration engines for these two

actor systems, which are based on very different design decisions.

• Incorporates two known optimization techniques: dynamic partial-order reduction [SA06,

CGP99] and state comparison/hashing [SL08, CGP99] in Basset. Due to the nature of the

Basset framework, these two techniques for speeding up exploration were automatically avail-

able for use with both the ActorFoundry and the Scala instantiations of the Basset framework,

thus illustrating the reuse of tools and techniques made possible by the common framework

concept.

• Evaluates the Basset framework on several subjects. The evaluation shows that a single

framework can systematically explore programs in an effective manner for multiple languages.

Additionally, we show that Basset’s approach of exploring only application code (and not un-

derlying system libraries) allows for more efficient exploration than if the underlying runtime

architecture of the actor system were also considered.

• Identifies and presents eight ordering heuristics that can be applied when using dynamic

partial-order reduction to limit the search space during systematic testing of actor-based

programs.

• Evaluates these ordering heuristics for three DPOR techniques: one based on the algorithm

used for dCUTE and two others based on persistent sets. The persistent set technique was

considered both stand-alone and augmented with sleep sets.

• Summarizes the observed advantages and disadvantages of the identified heuristics, and

presents preliminary guidelines regarding the use of heuristics based on the characteristics of

the program under test.
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6.2 Final Remarks

We believe that our work significantly enhances the viability of systematic testing and message

schedule exploration as an approach to addressing the important but challenging problem of testing

actor programs. At the same time, we realize that there are many related opportunities to build

on this work.

The Basset framework has been designed and implemented with extensibility in mind and is

intended to serve as a platform for further research into the testing of actor programs. We expect

that this research will directly support and facilitate additional work in this area. In fact, Bokor

et al. have already used our Basset framework for their work on model checking fault-tolerant

distributed protocols [BKSS11]. Basset has also been used as the development platform for work

by Karmani et al. on the development of improved dynamic partial-order reduction techniques

for actor programs [KTL+] (this work has recently been submitted for publication). We also feel

that there is additional work in the area of DPOR heuristics. For instance, there has been recent

work on combining DPOR techniques with stateful exploration [YWY06, YCGK08], and we plan

to evaluate the effectiveness of heuristics for such approaches.

Basset simplifies the development of environments for the testing of programs in new Java-based

actor languages and runtime libraries. As a result, we expect to instantiate the framework for more

actor systems. For instance, preliminary work has already been performed for a Basset-based tool

for Erjang [Erj], a Java-based virtual machine for the Erlang programming language [Arm07].

Parallel and distributed programming are becoming the norm, and message passing-based ap-

proaches such as the actor model offer a promising alternative for developing parallel and distributed

code. Testing such code, however, is extremely challenging due to the non-determinism of message

delivery schedules. Nonetheless, as evidenced by the growing number of actor-oriented languages

and libraries, the actor model is increasing in popularity. In this dissertation, we presented Basset,

a framework to support the systematic testing of actor-based programs. Basset supports the devel-

opment of testing tools for Java-based actor languages and libraries. Perhaps equally important,

Basset offers an environment to explore new ideas for the testing and state-space exploration of

actor-based programs and other message-passing systems. It is already being used for this purpose,

and we hope that it will continue to be used going forward.
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