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ABSTRACT

Software affects every aspect of our lives, and software developers write tests to check soft-

ware correctness. Software also rapidly evolves due to never-ending requirement changes,

and software developers practice regression testing – running tests against the latest project

revision to check that project changes did not break any functionality. While regression test-

ing is important, it is also time-consuming due to the number of both tests and revisions.

Regression test selection (RTS) speeds up regression testing by selecting to run only tests

that are affected by project changes. RTS is efficient if the time to select tests is smaller than

the time to run unselected tests; RTS is safe if it guarantees that unselected tests cannot be

affected by the changes; and RTS is precise if tests that are not affected are also unselected.

Although many RTS techniques have been proposed in research, these techniques have not

been adopted in practice because they do not provide efficiency and safety at once.

This dissertation presents three main bodies of research to motivate, introduce, and

improve a novel, efficient, and safe RTS technique, called Ekstazi. Ekstazi is the first

RTS technique being adopted by popular open-source projects.

First, this dissertation reports on the first field study of test selection. The study of logs,

recorded in real time from a diverse group of developers, finds that almost all developers

perform manual RTS, i.e., manually select to run a subset of tests at each revision, and they

select these tests in mostly ad hoc ways. Specifically, the study finds that manual RTS is

not safe 74% of the time and not precise 73% of the time. These findings showed the urgent

need for a better automated RTS techniques that could be adopted in practice.

Second, this dissertation introduces Ekstazi, a novel RTS technique that is efficient

and safe. Ekstazi tracks dynamic dependencies of tests on files, and unlike most prior

RTS techniques, Ekstazi requires no integration with version-control systems. Ekstazi
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computes for each test what files it depends on; the files can be either executable code

or external resources. A test need not be run in the new project revision if none of its

dependent files changed. This dissertation also describes an implementation of Ekstazi for

the Java programming language and the JUnit testing framework, and presents an extensive

evaluation of Ekstazi on 615 revisions of 32 open-source projects (totaling almost 5M lines

of code) with shorter- and longer-running test suites. The results show that Ekstazi reduced

the testing time by 32% on average (and by 54% for longer-running test suites) compared to

executing all tests. Ekstazi also yields lower testing time than the existing RTS techniques,

despite the fact that Ekstazi may select more tests. Ekstazi is the first RTS tool adopted

by several popular open-source projects, including Apache Camel, Apache Commons Math,

and Apache CXF.

Third, this dissertation presents a novel approach that improves precision of any RTS

technique for projects with distributed software histories. The approach considers multiple

old revisions, unlike all prior RTS techniques that reasoned about changes between two

revisions – an old revision and a new revision – when selecting tests, effectively assuming a

development process where changes occur in a linear sequence (as was common for CVS and

SVN). However, most projects nowadays follow a development process that uses distributed

version-control systems (such as Git). Software histories are generally modeled as directed

graphs; in addition to changes occurring linearly, multiple revisions can be related by other

commands such as branch, merge, rebase, cherry-pick, revert, etc. The novel approach

reasons about commands that create each revision and selects tests for a new revision by

considering multiple old revisions. This dissertation also proves the safety of the approach

and presents evaluation on several open-source projects. The results show that the approach

can reduce the number of selected tests over an order of magnitude for merge revisions.
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Kumar, P. Madhusudan, Manoj M. Prabhakaran, Dan Roth, Rob A. Rutenbar, Hari Sun-

daram, Mahesh Viswanathan, Tandy Warnow, and Tao Xie. My hosts at the interviews

ensured that I feel comfortable and everything runs smoothly.

vi



Parts of this dissertation were published at ASE 2014 [78] (Chapter 2); ICSE Demo

2015 [74] and ISSTA 2015 [75] (Chapter 3); and CAV 2014 [76] and a technical report [77]

(Chapter 4). I would like to thank the audience at the conferences for their comments,

which were used to improve the presentation in this dissertation. Additionally, I would like

to thank anonymous reviewers of the conference papers for their invaluable comments. Last

but not least, I am honored that the ISSTA 2015 paper on Ekstazi won an ACM SIGSOFT

Distinguished Paper Award.

My research was funded by Saburo Muroga Fellowship, C.L. & Jane W-S. Liu Award

for Exceptional Research Promise, C.W. Gear Outstanding Graduate Student Award for

Excellence in Research and Service, Mavis Future Faculty Fellowship, IBM X10 Innovation

Grant, Universal Parallel Computing Research Center, and National Science Foundation.

Last but not least, I would like to thank my sister Mirjana, my mother Vera, my father

Zivko, and Jessy for their never-ending love, care, and support.

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Study of Manual RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Novel RTS Technique for Two Code Revisions . . . . . . . . . . . . . . . . . . . 6
1.5 Novel RTS Approach for Distributed Software Histories . . . . . . . . . . . . . . 8
1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 Manual Regression Test Selection . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Evaluating Manual RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Manual vs. Automated RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 Regression Test Selection with Dynamic File Dependencies . . . . . . . 35
3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Technique and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 4 Regression Test Selection for Distributed Software Histories . . . . . . . 65
4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Test Selection Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



CHAPTER 5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1 Manual Regression Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Build Systems and Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Class-based Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 External Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Code Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Granularity Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 Other Work on RTS for Two Revisions . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8 Distributed Version Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 96

CHAPTER 6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 97

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ix



LIST OF TABLES

2.1 Statistics for projects used in the study of manual RTS . . . . . . . . . . . . . . 12
2.2 RTS capabilities of popular IDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Statistics for projects used in the evaluation of Ekstazi . . . . . . . . . . . . . 47
3.2 Test selection results using Ekstazi . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Legend for symbols used in tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Ekstazi without and with smart checksum . . . . . . . . . . . . . . . . . . . . . 53
3.5 Ekstazi with method and class selection granularity . . . . . . . . . . . . . . . 54
3.6 Test selection with FaultTracer and Ekstazi . . . . . . . . . . . . . . . . . . . 55
3.7 Current Ekstazi users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Statistics for several projects that use Git . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Statistics for projects used in the evaluation of S1

merge, S
k
merge, and S0

merge . . . 84

x



LIST OF FIGURES

1.1 Part of software history of the Linux Kernel . . . . . . . . . . . . . . . . . . . . . 8

2.1 Algorithm for computing a set of available test methods at each test session . 16
2.2 Distribution of test selection ratio with and without single-test sessions . . . . 18
2.3 Relationship between time to execute unselected tests and selection time . . . 21
2.4 The number of tests selected by manual and automated RTS for P14 . . . . . . 27
2.5 Distribution of selected tests for P14 with and without single-test sessions . . . 28
2.6 Relationship of RTS with relative size of code changes for P14 . . . . . . . . . . 29
2.7 Distribution for P14 of selection, analysis, and execution time . . . . . . . . . . 31
2.8 Example of a pattern when developer alternates selection and regular runs . . 33

3.1 Example test code (left) and code under test (right) . . . . . . . . . . . . . . . . 36
3.2 Dependency matrices collected for code in Figure 3.1 . . . . . . . . . . . . . . . 36
3.3 Integration of an RTS technique in a typical build with a testing framework . 38
3.4 Number of available and selected tests (a,c) and end-to-end time (b,d) . . . . . 50
3.5 End-to-end mvn test time for Apache CXF . . . . . . . . . . . . . . . . . . . . . 57

4.1 Example of a distributed software history . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Extension of a software history (Figure 4.1) with git merge b1 b2 . . . . . . . . 67
4.3 Extension of a software history (Figure 4.1) with git rebase b1 . . . . . . . . . 69
4.4 Extension of a software history (Figure 4.1) with git cherry-pick n2 . . . . . 70
4.5 Extension of a software history (Figure 4.1) with git revert n6 . . . . . . . . . 70
4.6 Sk

merge may select more tests than S1
merge; n1 = n4 and δ1(m) ≠ δ2(m) . . . . . . 75

4.7 Example history to show that using lca (n2) rather than dom (n1) is not safe . 82
4.8 Percentage of selected tests for real merges using various options . . . . . . . . 84
4.9 History statistics of projects used for generated software histories . . . . . . . . 87
4.10 S1

merge/S
0
merge (speedup) for various numbers of commits in each branch . . . . 88

xi



LIST OF ABBREVIATIONS

A Analysis Phase

AE Analysis and Execution Phases

AEC Analysis, Execution, and Collection Phases

API Application Programming Interface

AST Abstract Syntax Tree

C Collection Phase

DVCS Distributed Version Control System

E Execution Phase

ECFG Extended Control-Flow Graph

GUI Graphical User Interface

IDE Integrated Development Environment

JVM Java Virtual Machine

LOC Lines of Code

RTS Regression Test Selection

tts Traditional Test Selection

VCS Version Control System

xii



CHAPTER 1

Introduction

Software controls every aspect of our lives, e.g., ranging from communication to social net-

works to entertainment to business to transportation to health. Therefore, software correct-

ness is of utmost importance. Correctness issues – bugs – in software may lead to significant

financial losses and casualties. We have witnessed the high cost of bugs far too many times.

Prior studies estimate that bugs cost global economy more than $300 billion per year [10,46].

Despite the risk of introducing new bugs while making changes, software constantly

evolves due to never-ending requirements. Thus, software developers have to check, at each

project revision, not only correctness of newly added functionality, but also that the recent

project changes did not break any previously working functionality.

Software testing is the most common approach in industry to check correctness of soft-

ware. Software developers usually write tests for newly implemented functionality and in-

clude these tests in a test suite (i.e., a set of tests for the entire project). To check that

project changes did not break previously working functionality, developers practice regression

testing – running test suite at each project revision.

Although regression testing is important, it is costly because it frequently runs a large

number of tests. Some studies [38, 48, 67, 109, 117] estimate that regression testing can take

up to 80% of the testing budget and up to 50% of the software maintenance cost. The cost

of regression testing increases as software grows. For example, Google reported that their

regression-testing system, TAP [65,146,149], has had a linear increase in both the number of

project changes per day and the average test-suite execution time per change, leading to a

quadratic increase in the total test-suite execution time per day. As a result, the increase is

challenging to keep up with even for a company with an abundance of computing resources.

Other companies and open-source projects also reported long regression testing time [47,94].
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Regression test selection (RTS) is a promising approach to speed up regression testing.

Researchers have proposed many RTS techniques (e.g., [69, 82, 89–91, 138, 161]); Engström

et al. [68] present a survey of RTS, and Yoo and Harman [157] present an extensive survey

of regression testing including RTS. A traditional RTS technique takes four inputs—two

project revisions1 (new and old), test suite at the new revision, and dependency information

from the test runs on the old revision—and produces, as output, a subset of the test suite for

the new revision. The subset includes the tests that can be affected by the changes; viewed

dually, the subset excludes the tests that cannot be affected by the changes and thus need

not be rerun on the new revision. RTS is efficient if selecting tests takes less time than total

running time of unselected tests, precise if tests that are not affected are also unselected,

and safe if it guarantees that selected tests exclude only tests whose behavior cannot be

affected by the changes.

While RTS was proposed over three decades ago [68, 71, 157], it has not been widely

adopted in practice, except for the substantial success of the Google TAP system [65,146,149]

and the Microsoft Echelon system [92,93,144]. Unfortunately, TAP performs RTS only across

projects, e.g., the YouTube project depends on the Guava project, so all YouTube and all

Guava tests are run if anything in Guava changes, but all YouTube and no Guava tests

are run if anything in YouTube changes. In other words, TAP provides no benefit within

a project . However, most developers work on one isolated project at a time rather than on

a project from a huge codebase as done at Google. Such smaller projects would require a

finer-grained technique for more precise RTS. On the other side, although Echelon is more

precise (as it tracks basic blocks), it only prioritizes [66,139] but does not select tests to run.

The lack of practical RTS tools leaves two options for developers: either automatically

rerun all the tests or manually perform test selection. Rerunning all the tests is safe by

definition, but it can be quite imprecise and, therefore, inefficient. In contrast, manual test

selection, which we will refer to as manual RTS, can be unsafe and imprecise: developers

can select too few tests and thus miss to run some tests whose behavior differs due to code

changes, or developers can select too many tests and thus waste time. In sum, a large number

of developers would benefit from an automated RTS technique that works in practice.

1We use commit and revision interchangeably to refer to a single node in a software history graph.
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The key requirement for an RTS technique to be adopted is that the end-to-end time is

shorter than the time to run all tests in the testing framework [110,113], while guaranteeing

safety. A typical RTS technique has three phases: the analysis (A) phase selects tests to

run, the execution (E) phase runs the selected tests, and the collection (C) phase collects

information from the current revision to enable the analysis for the next revision. Most

research has evaluated RTS techniques based on the number of selected tests, i.e., implicitly

based on the time only for the E phase; a few papers that do report time (e.g., [124, 154])

measure only A and E phases, ignoring the C phase. To properly compare speed up (or slow

down) of RTS techniques, we believe it is important to consider the end-to-end time (A +

E + C) that the developer observes, from initiating the test-suite execution for a new code

revision until all test outcomes become available.

1.1 Thesis Statement

Our thesis is three-pronged:

(1) There is a need for an automated RTS technique that works in practice.

(2) It is possible to design and develop a safe and efficient RTS technique that can be

adopted in practice.

(3) It is possible to improve precision of RTS techniques for projects with distributed

software histories.

1.2 Contributions

To confirm the thesis statement, this dissertation makes the following contributions:

• The dissertation presents the first study of RTS in practice. The study shows that most

developers manually select to run only a subset of tests, and they select these tests in

mostly ad hoc ways. Manual test selection is both unsafe and imprecise: developers

select too few tests and thus miss to run some tests whose behavior differs due to code

3



changes, or developers select too many tests and thus waste time. Additionally, the

study shows that existing automated RTS techniques are inefficient as they take sub-

stantial time for analysis and collection phases. In sum, a large number of developers

would benefit from an automated RTS technique that works in practice.

• The dissertation introduces a novel technique for RTS, named Ekstazi, which is safe

and efficient. Ekstazi computes for each test what files it depends on. A test need

not be run in the new project revision if none of its dependent files changed. Ekstazi

takes a radically different view from the existing RTS techniques: while the existing

RTS techniques sacrifice efficiency for precision by keeping fine-grained dependencies

(e.g., method), Ekstazi sacrifice the precision for efficiency by keeping coarse-grained

dependencies (i.e., files). In addition to Ekstazi being safer than the existing tech-

niques, our evaluation on 32 projects, totaling almost 5M LOC, shows that Ekstazi is

efficient: it reduced the end-to-end time 32% on average (and 54% for longer-running

test suites) compared to executing all tests. Ekstazi also has lower end-to-end time

than the state-of-the-research RTS technique [158], despite the fact that Ekstazi se-

lects more tests. Ekstazi is the first RTS tool adopted by several popular open-source

projects, including Apache Camel, Apache Commons Math, and Apache CXF.

• The dissertation presents a novel approach to improve precision of RTS techniques for

projects with distributed software histories. All prior RTS techniques reason about

changes only between two revisions – an old revision and a new revision – effectively

assuming a development process where changes occur in a linear sequence. However,

most projects nowadays use distributed version-control systems. Software histories

are generally modeled as directed graphs; in addition to changes occurring linearly,

multiple revisions can be related by other commands, e.g., branch, merge, rebase,

cherry-pick, revert, etc. Unlike any prior RTS technique, our novel approach reasons

about commands that create each revision to select tests for a new revision by consid-

ering multiple old revisions. We also prove the safety of the approach and present an

evaluation on several open-source projects. The results show that the approach can

reduce the number of selected tests over an order of magnitude for merge revisions.
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The rest of this chapter describes in more detail these three bodies of research.

1.3 Study of Manual RTS

Despite the importance of RTS, there was no prior research that studied if and how devel-

opers actually perform manual RTS, and how manual and automated RTS compare. Our

anecdotal experience shows that many developers select to run only some of their tests, but

we do not know how many developers do so, how many tests they select, why they select

those tests, what automated support they use for manual RTS in their Integrated Develop-

ment Environment (IDE), etc. Also, it is unknown how developers’ manual RTS practices

compare with any automated RTS technique proposed in the literature: how does develop-

ers’ reasoning about affected tests compare to the analysis of a safe and precise automated

RTS technique? The potential need for adoptable automated RTS tools makes it critical to

study current manual RTS practice and its effects on safety and precision.

This dissertation presents the results of the first study of manual RTS and a first com-

parison (in terms of safety, precision, and performance) of manual and automated RTS.

Specifically, we address the following research questions:

RQ1. How often do developers perform manual RTS?

RQ2. What is the relationship between manual RTS and size of test suites or amount

of code changes?

RQ3. What are some common scenarios in which developers perform manual RTS?

RQ4. How do developers commonly perform manual RTS?

RQ5. How good is current IDE support in terms of common scenarios for manual RTS?

RQ6. How does manual RTS compare with automated RTS, in terms of precision, safety,

and performance?

To address the first set of questions about manual RTS (RQ1-RQ5), we extensively

analyzed logs of IDE interactions recorded from a diverse group of 14 developers (working
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on 17 projects, i.e., some developers worked on multiple projects during our study), including

several experts from industry [120]. These logs cover a total of 918 hours of development,

with 5,757 test sessions and a total of 264,562 executed tests. A test session refers to a run of

at least one test between two sets of code changes. We refer to test sessions with a single test

as single-test sessions, and test sessions with more than one test as multiple-test sessions. To

address RQ6, we compared the safety, precision, and performance of manual and automated

RTS for 450 test sessions of one representative project, using the best available, at the time

of the study, automated RTS research prototype [158].

Several of our findings are surprising. Regardless of the project properties (open-source

vs. closed-source, small vs. large, few tests vs. many tests, etc.), almost all developers per-

formed manual RTS. 62% of all test sessions executed a single test, and of the multiple-test

sessions, on average, 59% had some test selection. The pervasiveness of manual RTS es-

tablishes the need to study manual RTS in more depth and compare it with automated

RTS. Moreover, our comparison of manual and automated RTS [158] revealed that manual

RTS can be imprecise (in 73% of the test sessions considered, manual RTS selects more tests

than automated RTS) and unsafe (in 27% of the test sessions considered, manual RTS selects

fewer tests than automated RTS). Finally, our experiments show that current state-of-the-

research automated RTS may provide little time savings: the time taken by an automated

RTS tool2, per session, to select tests was 130.94±13.77 sec (Mean±SD) and the (estimated)

time saved (by not executing unselected tests) was 219.86±68.88 sec. These results show a

strong need for better automated RTS techniques and tools.

1.4 Novel RTS Technique for Two Code Revisions

Lightweight Technique: We propose Ekstazi (pronounced “Ecstasy”)3, a novel RTS

technique based on file dependencies. Ekstazi is motivated by recent advances in build

systems [2, 3, 7–9, 50, 70, 115] and prior work on RTS based on class dependencies [67–69,

2This measures only the analysis time to identify the affected tests (A) but not the collection time (C).
3The word “ekstazi” in the Serbian language has the same meaning as the word “ecstasy” in the English

language: a feeling or state of intensely beautiful bliss (http://en.wiktionary.org/wiki/ecstasy); the
name evolved over time: eXtreme Test Selection → eXtreme Test seleCtion → Ecstasy → Ekstazi.
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97, 108, 124, 142] and external resources [54, 88, 117, 154], as discussed further in Chapter 5.

Unlike most prior RTS techniques based on finer-grained dependencies (e.g., methods), Ek-

stazi does not require integration with version-control systems: Ekstazi does not explicitly

compare the old and new code revisions. Ekstazi computes for each test entity (be it a

test method or a test class) what files it depends on; the files can be either executable code

(e.g., .class files in Java) or external resources (e.g., configuration files). A test need not

be rerun in the new revision if none of its dependent files changed.

Adoption Approach: We note that testing frameworks, such as JUnit, are widely adopted

and well integrated with many popular build systems, such as Ant or Maven. For example,

our analysis of 666 most active, Maven-based4 Java projects from GitHub showed that at

least 520 (78%) use JUnit (and 59 more use TestNG, another testing framework). In addition,

at least 101 projects (15%) use a code coverage tool, and 2 projects even use a mutation

testing tool (PIT [127]). Yet, no project used automated RTS. We believe that integrating

a lightweight RTS technique with an existing testing framework would likely increase RTS

adoption. Ideally, a project that already uses the testing framework could adopt RTS with

just a minimal change to its build script, such as build.xml or pom.xml.

Implementation: We implement the Ekstazi technique in a tool integrated with the

JUnit testing framework. Our tool handles many features of Java projects/language, such

as packing of .class files in .jar archives, comparison of .class files using smart checksums

(e.g., ignoring debug information), instrumentation to collect dependencies using class load-

ers or Java agents, reflection, etc. Our tool can work out-of-the-box on any project that uses

JUnit. The Ekstazi tool is available from http://www.ekstazi.org.

Extensive Evaluation: We evaluate Ekstazi on 615 revisions of 32 Java projects, ranging

from 7,389 to 920,208 LOC and from 83 to 641,534 test methods that take from 8 seconds to

2,565 seconds to execute in the base case, called RetestAll (that runs all the tests) [110]. To

the best of our knowledge, this is the largest evaluation in any RTS study, and the first to

report the end-to-end RTS time, including the C phase. The experiments show that Ekstazi

reduces the end-to-end time 32% on average (54% for longer-running test suites) compared

4We cloned 2000 most active Java projects but filtered those that did not use Maven, because our
automated analysis considers only pom.xml files.
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Figure 1.1: Part of software history of the Linux Kernel

to RetestAll. Further, Ekstazi reduces the time 47% on average (66% for longer-running

test suites) when the C phase is performed in a separate, off-line run [48, 63].

We also compare Ekstazi with FaultTracer [158], a state-of-the-research RTS tool

based on fine-grained dependencies, on a few projects that FaultTracer can work on. Not

only is Ekstazi faster than FaultTracer, but FaultTracer is, on average, even slower than

RetestAll. We discuss, in Section 3.5, why the main result—that Ekstazi is better than

FaultTracer in terms of the end-to-end time—is not simply due to FaultTracer being a

research prototype but a likely general result. In sum, Ekstazi tracks dependencies at our

proposed file granularity, whereas FaultTracer tracks dependencies at a finer granularity.

While Ekstazi does select more tests than FaultTracer and has a slightly slower E phase,

Ekstazi has much faster A and C phases and thus has a lower end-to-end time.

Ekstazi has already been integrated in the main repositories of several open-source

projects where it is used on a regular basis, including in Apache Camel [16], Apache Com-

mons Math [23], and Apache CXF [26].

1.5 Novel RTS Approach for Distributed Software Histories

Previous RTS techniques, which we will call traditional RTS techniques, viewed software his-

tory as a linear sequence of commits to a centralized version-control system (as was common

for CVS or SVN). However, modern software development processes that use distributed

version-control systems (DVCSs) do not match this simplistic view. Software version histo-
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ries that use DVCSs, such as Git and Mercurial, are complex graphs of branches, merges,

and rebases of the code that mirror more complex sharing patterns among developers. For

example, Figure 1.1 shows a part of the Linux Kernel Git repository [111]: this software

history is a complex graph, with multiple branches being merged. (There is a case in Linux

where 30 branches are merged at once.) We empirically find that such complexities are not

isolated to the Linux Kernel development: most open-source codebases perform frequent

merges. Section 4.4 reports detailed results for a number of open-source projects; we find

about third of the commits to be merge-related.

We consider the problem of RTS for codebases that use DVCS commands. One possible

baseline approach is to apply traditional RTS by picking an arbitrary linearization of the

software history. While this technique is safe (recall that a safe technique does not miss tests

whose outcome may be affected by the change), we empirically demonstrate that this tech-

nique can be very imprecise (recall that an imprecise technique can select many tests whose

outcome cannot be affected by the change). Instead, we propose the first approach that ex-

plicitly takes into account the history graph of software revisions. We have implemented our

approach and show, through an evaluation on several open-source code repositories, that our

approach selects on average an order of magnitude fewer tests than the baseline technique,

while still retaining safety.

We evaluate our approach both on real open-source code repositories that use DVCS

and on distributed repositories that we systematically generate from projects that use a

linear sequence of commits. As part of our approach, we propose and compare two options

for selecting tests at each merge revision of such repositories. These options have different

trade-offs in terms of cost (how many traditional RTS analysis, i.e., A, need to be performed

to compute the selected tests) and precision (how many tests are selected to be run, while

maintaining safety). (Note that the saving in the number of tests reflects in time saving for E

and C phases.) In particular, we describe a fast option for code merges that does not require

any traditional RTS analysis between two revisions but still achieves a reduction in terms of

the number of tests, 10.89× better than a baseline technique that performs one traditional

RTS for a merge point. Another option, which performs one traditional RTS analysis for

each branch being merged, achieves additional reduction of 2.78× in the number of tests,
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but potentially requires many RTS analysis runs. We propose a heuristic to choose one of

the options based on the shape of the software history. We also prove safety of the options,

assuming that the traditional RTS analysis is safe.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2: Manual Regression Test Selection

This chapter presents our study of manual RTS in practice; the results of this study

were a part of the motivation for RTS techniques presented in chapters 3 and 4.

Chapter 3: Regression Test Selection with Dynamic File Dependencies

This chapter presents the contributions of the Ekstazi RTS technique for two code

revisions, which substantially speeds up end-to-end regression testing time compared

to RetestAll technique.

Chapter 4: Regression Test Selection for Distributed Software Histories

This chapter presents the contributions of a novel RTS approach for projects with

distributed software histories, which improves efficiency of any RTS technique at many

code revisions.

Chapter 5: Related Work

This chapter overviews the various bodies of work that are related to the contributions

of this dissertation.

Chapter 6: Conclusion and Future Work

This chapter concludes the dissertation and presents various directions for future work

building upon the contributions of this dissertation.
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CHAPTER 2

Manual Regression Test Selection

This chapter presents the first study of manual RTS in practice; the results of the study

were a part of the motivation for our work presented in chapters 3 and 4. This chapter is

organized as follows. Section 2.1 first describes our research methodology and experimental

setup, and then discusses how developers actually perform manual RTS. Section 2.2 presents

our comparison of manual and automated RTS. Section 2.3 describes potential improvements

for manual and automated RTS. Section 2.4 presents threats to validity.

2.1 Evaluating Manual RTS

We first present our methodology for analyzing manual RTS data to answer the research

questions RQ1-RQ5 (listed in Section 1.3), and we then summarize our findings.

2.1.1 Methodology

We analyzed the data collected during a previous field study [120], in which the authors of the

study unobtrusively monitored developers’ IDEs and recorded their programming activities

over three months. The collected data has been used in several prior research studies [118,

120, 150] on refactoring and version control; the work presented in this dissertation is the

first to focus on the (regression) testing aspects.

To collect data, the study participants were asked to install a record-and-replay tool,

CodingTracker [51], in their Eclipse [60] (Indigo) IDEs. Throughout the study, CodingTracker

recorded detailed code evolution data, ranging from individual code edits, start of each test,

and test outcome (e.g., pass/fail) up to high-level events like automated refactoring invoca-
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Project Test Sessions Test [methods] Selected Tests Selective

Sessionstotal single-test debug min max avg min max avg sum timemin

P1 41 20 8 1 7 4.68 1 7 2.59 106 89 28.57%

P2 218 152 68 1 886 43.70 1 886 9.71 2,116 203 77.27%

P3 41 28 9 1 530 19.46 1 530 15.61 640 2 38.46%

P4 94 33 22 170 182 176.23 1 173 103.16 9,697 26 59.02%

P5 1,231 883 852 1 172 83.00 1 141 13.01 16,019 374 99.71%

P6 18 7 5 1 13 6.00 1 13 4.11 74 0 18.18%

P7 55 54 43 1 8 6.47 1 8 1.13 62 34 0.00%

P8 612 446 306 1 59 34.29 1 44 2.56 1,565 89 92.77%

P9 443 362 117 1 132 85.86 1 124 5.66 2,508 246 81.48%

P10 178 108 29 1 126 48.54 1 124 14.48 2,577 139 64.29%

P11 129 108 27 1 19 15.29 1 9 1.64 211 53 95.24%

P12 176 121 74 1 121 105.53 1 120 19.39 3,413 153 94.55%

P13 51 36 22 1 18 12.86 1 18 5.53 282 3 0.00%

P14 450 146 103 72 1,012 889.32 1 1,010 113.40 51,031 242 98.36%

P15 156 78 60 1 1,663 13.40 1 1,663 12.98 2,025 9 28.21%

P16 1,666 855 462 1 1,606 1,416.10 1 1,462 103.24 171,990 420 98.40%

P17 198 157 50 1 6 1.83 1 4 1.24 246 23 31.71%

∑ 5,757 3,594 2,258 - - - - - - 264,562 2,113 -

Ari Mean 338.65 211.41 132.76 - - 174.27 - - - 15,562.47 124.31 59.19%

Table 2.1: Statistics for projects used in the study of manual RTS
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tions and test session executions. CodingTracker uploaded the collected data to a centralized

repository using existing infrastructure [150].

In this study, we only consider data from participants who had more than ten test

sessions. Overall, the data encompasses 918 hours of code development activities by 14 de-

velopers, of whom five are professional programmers and nine are students. The professional

programmers worked in software companies on projects spanning various domains such as

marketing, banking, business management, and database management. The students were

Computer Science graduate students and senior undergraduate summer interns, who worked

on a variety of research projects from six research labs at the University of Illinois. The

programming experience of our study participants varied: one developer had less than 5

years, eight developers had between 5–10 years, and five developers had more than 10 years.

None of the study participants knew how we would analyze the collected data; in fact, we

ourselves did not know all the analyses we would do at the time the data was collected.

In the rest of this section, we discuss the tool used, the projects analyzed, the challenges

faced, and the answers we found to the questions RQ1-RQ5.

CodingTracker

CodingTracker integrates well with one of the most popular IDEs, Eclipse [99]. Developers do

not explicitly interact with CodingTracker during their workflow, and thus, the data recorded

by CodingTracker is as close as possible to what developers normally do. CodingTracker

collects information about all test sessions. Because test-selection data is available at every

test session, we were able to capture developers’ manual RTS decisions. Each test session

includes a list of executed tests, their execution time, and their status on completion (e.g.,

pass or fail). Further, CodingTracker collects information about code changes that happen

between test sessions.

Moreover, because test-selection data is available at every test session, we were able to

capture developers’ manual RTS decisions more realistically and at a finer granularity than

one could attempt to infer otherwise, e.g., based only on differences between commits in a

version control system (VCS) [13, 57, 58, 79, 153].
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While CodingTracker logs provide a treasure trove of data, they have limitations. First,

CodingTracker logs cannot fully confirm that developers performed manual RTS. In theory,

developers could have installed some Eclipse plugin that would perform automated RTS

for them. However, we are not aware of any automated RTS tool that works in Eclipse.

Moreover, we have noticed significant time delays between code changes and the start of test

sessions, which likely correspond to developers’ selection times (i.e., time that developers

spend reasoning about which tests to run) and not automated tool runs. Therefore, we as-

sume that developers manually selected the tests in each test session. Second, CodingTracker

collects information about code changes but not entire project states. The original motiva-

tion for CodingTracker was a study of refactorings [120], which needed only code changes,

so a design decision was made for CodingTracker to not collect the entire project states (to

save space/time for storing logs on disk and transferring them to the centralized repository).

However, the lack of entire states creates challenges to exactly reconstruct the project as

the developer had it for each test session (e.g., to precisely count the number of tests or to

compile and run tests for automated RTS). Sections 2.1.1 and 2.2.1 discuss how we address

these challenges.

Projects Under Analysis

As mentioned earlier, we analyzed the data from 14 developers working on 17 research and

industrial projects, e.g., a Struts web application, a library for natural-language processing,

a library for object-relational mapping, and a research prototype for refactoring. Note that

some developers worked on several projects in their Eclipse IDE during the three-month

study; CodingTracker recorded separate data for each project (more precisely, CodingTracker

tracks each Eclipse workspace) that was imported into Eclipse.

Table 2.1 is a summary of test-related data that we collected1. For each project, we first

show the number of test sessions. Our analysis showed that a large number of these sessions

execute only one test. We refer to such test sessions as single-test sessions. Further, we

found that many of these single-test sessions execute only one test that had failed in the

1Due to the conditions of Institutional Review Board approval, we cannot disclose the true names of
these projects.
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immediately preceding session. We refer to such sessions as debug test sessions. Next, we

show the number of available tests, i.e., the total number of tests in the project at the time of

a test session, discussed in more detail in Section 2.1.1. Then, we show the number of selected

tests, i.e., a subset of available tests that the developer selected to execute, including the

total number of selected tests that the developer executed throughout the study and the total

execution time for all test sessions2. Finally, we show the percentage of selective sessions,

i.e., multiple-test sessions where the number of selected tests is smaller than the number

of available tests. In other words, the developer performed manual RTS in each such test

session by selecting to execute only a subset of the tests available in that session; we exclude

single-test sessions as they may not be “true” selective sessions - developer knows that not

all affected tests are selected.

The total test execution time with manual RTS is substantially lower than it would

have been without manual RTS. The sum of the “timemin” column in Table 2.1 shows that,

when manual RTS is performed, the total test execution time for all developers in our study

was 2,113 minutes. In contrast, had the developers always executed all available tests, we

estimate3 that it would have resulted in a total test execution time of 23,806 minutes. In

other words, had the developers not performed manual RTS, their test executions would

have taken about an order of magnitude more time.

We point out some interesting observations about single-test sessions. First, the projects

used in our study span many domains and vary in the number of available and selected tests,

but they all have some single-test sessions and some multiple-test sessions. Second, single-

test sessions include both debug and non-debug sessions. Non-debug single-test sessions

usually happen when introducing a new class/feature, because the developer focuses on the

new code. By default, in the rest of the paper, we exclude all single-test sessions from

our analyses and only mention them explicitly when some of the subsequent plots or other

numbers that we report include single-test sessions.

2The reported execution time is extracted from the timestamps recorded on developers’ computers. It is
likely that developers used machines with different configurations, but we do not have such information.

3Note that CodingTracker does/can not record the execution time for the unselected tests that were
not executed; we estimate the time from the averages of the sessions in which the tests were executed.
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1 // Inputs: Session info extracted from CodingTracker logs
2 List⟨TestSession⟩ sessions;
3 Map⟨TestSession, Set⟨Pair⟨ClassName, MethodName⟩⟩⟩ executed;
4

5 // Output: Available tests for each test session
6 Map⟨TestSession, Set⟨Pair⟨ClassName, MethodName⟩⟩⟩ available;
7

8 // Compute available tests for each test session
9 ComputeAvailable()

10 Set⟨Pair⟨ClassName, MethodName⟩⟩ A = {} // Current available tests
11 available = {}
12

13 foreach s: sessions
14 Set⟨Pair⟨ClassName, MethodName⟩⟩ e = executed(s)
15 if ∣e∣ > 1
16 A = A ∖ {(c,m) ∈ A ∣ ∃(c,m′) ∈ e}
17 A = A ∪ e
18 available(s) = A

Figure 2.1: Algorithm for computing a set of available test methods at each test session

Challenges

CodingTracker was initially designed to study how code evolves over time [120], and thus

it recorded only code changes and various file activities but not the entire state of the

developers’ projects. As a consequence, we could not easily extract the number of available

tests for each test session: while CodingTracker did record the information about tests that

are executed/selected, it had no explicit information about tests that were not executed.

Therefore, we developed an algorithm to estimate the number of available tests (reported

in Table 2.1). We designed our algorithm to be conservative and likely under-estimate the

number of available tests. In other words, developers likely performed even more manual

RTS than we report.

Figure 2.1 shows the algorithm. The input is a list of test sessions extracted from the

CodingTracker logs; each session is mapped to a set of executed tests, and each test is

represented as a pair of a test class and test method name. The output is a mapping from

test sessions to the set of available tests. Although we extract more information for each

test session, e.g., execution time, that information is not relevant for this algorithm.

The algorithm keeps track of the current set of available tests, A, initialized to the empty

set (line 10). For each test session, the algorithm adds to A the tests executed in that session
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(line 17); those tests are definitely available. The algorithm also attempts to find which tests

may have been removed and are not available any more. For each multiple-test session, the

algorithm removes from A all the tests whose class matches one of the tests executed in the

current session s (line 16). The assumption is that executing one test from some class c (in a

session that has more than one test) likely means that all tests from that class are executed

in the session. Thus, any test from the same class that was executed previously but not in

the current session was likely removed from the project. This assumption is supported by

the fact that Eclipse provides rather limited support for selection of multiple tests from the

same class as discussed in Section 2.1.2. For single-test sessions, the algorithm only adds

the executed test to A; the assumption is that the same tests remain available as in the

previous session, but the developer decided to run only one of the tests. Finally, A becomes

the available set of tests for the current session (line 18). Note that our algorithm does not

account for removed test classes, but these are very rare in our data set. For example, we

inspected in detail project P14, one of the largest projects, and no test class was deleted.

2.1.2 Investigating Manual RTS

In sum, the results showed that almost all developers in our study performed some manual

RTS. They did so regardless of the size of their test suites and projects, showing that manual

RTS is widely practiced. Next, we provide details of our findings regarding research questions

RQ1-RQ5.

RQ1: How often do developers perform manual RTS?

Developers performed manual RTS in 59.19±35.16% (mean ± SD) of the test sessions we

studied (column “Selective Sessions” in Table 2.1). Note that we first compute selective

session ratio for each developer, and then we took an unweighted arithmetic mean of those

ratios (rather than weighting by the number of test sessions), because we do not want

developers with the most test sessions to bias the results.

Across all 2,163 multiple-test sessions in our study, the average ratio of selected tests

(tests that the developer executed) to available tests (tests that could have been executed),
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Figure 2.2: Distribution of test selection ratio with and without single-test sessions

i.e., average test selection ratio, was only 35.07%. Note that this number is calculated from

all test sessions as if they were obtained from a single developer. We show the distribution

of test selection ratios for all test sessions for all the developers using violin plots [95] in

Figure 2.2. A violin plot is similar to a boxplot but additionally shows probability density of

the data at different values. The left part of Figure 2.2 shows the distribution of test selection

ratios when single-test sessions are included, while the right part shows the distribution when

single-test sessions are excluded. We show only one half of each violin plot; the missing

halves are symmetric. It can be observed from the violin plots that manual RTS happens

very frequently, and, most of the time, the test selection ratio is less than 20%.

We note here that our finding constitutes the first empirical evidence concerning manual

RTS in practice. More importantly, we think that this fact should result in a call-to-arms by

the automated RTS community, because poor manual RTS could be hampering developer

productivity and impacting negatively on software quality.

RQ2: Does manual RTS depend on size of test suites or amount of code

changes?

Developers performed manual RTS regardless of the size of their test suites. We draw this

conclusion because almost all developers in our study performed manual RTS, and they had
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a wide range of test-suite sizes. The average test-suite size in all 17 projects we studied

was 174.27 tests (column “Test [methods]” in Table 2.1); the minimum was 6 tests, and

the maximum was 1,663 tests. Considering that these projects are of small to medium size,

and because they exhibit manual RTS, we expect that developers of larger projects would

perform even more manual RTS.

We also consider the relationship between the size of recent code changes and the number

of tests that developers select in each test session. One may expect that developers run more

tests after large code changes. We correlate the test selection ratio with the code change

ratio for all test sessions. The code change ratio is calculated as the percentage of AST node

changes [120] since the previous test session over the total AST node changes during the

entire study for a particular project. To assess correlation, we measure the Spearman’s and

Pearson’s correlation coefficients4. The Spearman’s and Pearson’s coefficients are 0.28 (0.25

when single-test sessions are included) and 0.16 (0.16 when single-test sessions are included),

respectively. In all cases, the p-value was below 0.015, which confirms that some correlation

exists. However, the low values of coefficients imply a low correlation between the amount

of code changes immediately before a test session and the number of manually selected tests

in that session. This low correlation was a surprising finding as we had expected a higher

correlation between code changes and the number of selected tests.

RQ3: What are common scenarios for manual RTS?

The most common scenario in which developers performed manual RTS was while debugging

a single test that failed in the previous session. Recall that we refer to such test sessions as

debug test sessions. As seen in Table 2.1 (column “debug”), debug test sessions account for

2,258 out of the 5,757 total test sessions considered. One common pattern that we found in

the data was that, after one or more tests fail, developers usually start making code changes

to fix those failing tests and keep rerunning only those failing tests until they pass. After

all the failing tests pass, the developers then run most or all of the available tests to check

4Although the data is not normally distributed, and the relationship is not linear, we report the Pearson’s
coefficient for completeness.

5A low p-value indicates that Spearman’s or Pearson’s coefficient is unlikely 0.
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for regressions. Another pattern is when a developer fixes tests one after another, rerunning

only a single failing test until it passes. Therefore, even if the developers had a “perfect”

automated RTS tool to run after each change, such a tool could prove distracting when

running many debug test sessions in sequence. Specifically, even if some code changes affect

a larger number of tests, developers may prefer to temporarily run only the single test that

they are currently debugging. The existence of other reasons for RTS, besides efficiency

improvements, shows a need for a different class of tools and techniques that can meet these

actual developer needs; we discuss this further in Section 2.3.

It is also interesting to mention that the sequences of single-test sessions (i.e., single-test

sessions without other test sessions in between) were much longer than we expected. The

mean±SD of the length of single-test session sequences was 6.83±37.00. The longest single-

test session sequence contains 99 test sessions, which may indicate that developers avoid

running all tests when focusing on new features and debugging.

RQ4: How do developers commonly perform manual RTS?

We found that developers use a number of ad hoc ways for manual RTS. These include:

(1) commenting out tests that should not be run, (2) selecting individual nodes of hierarchy,

by which we refer to the way tests are hierarchically organized in a Java IDE, from test

methods to test classes to test packages to entire projects, and (3) creating test scripts,

which specify runs of several nodes of hierarchy.

Manual RTS by Commenting: One approach used by the developers was to comment

out unit tests they did not want to run. We observed that developers performed this type of

selection at different levels of granularity. Some developers commented out individual test

methods within a test class, while others commented out entire test classes from JUnit

annotations that specify test suites. In both cases, the time overhead incurred by the

developer in deciding which tests to run and in commenting out the tests, i.e., selection

time, is likely to be non-negligible. In other words, selection time is an estimate of the time

spent by developers to manually “analyze” and select which tests may be affected. Using the

available CodingTracker data, we estimate selection time to be the time elapsed from the last
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Figure 2.3: Relationship between time to execute unselected tests and selection time

code change that immediately preceded a test session and the start of the test session. We

exclude selection time values greater than 10 minutes, as developers may rerun tests after

taking a break from work. Our experiments with break times of 5 minutes and 20 minutes

did not significantly change any of the outcomes of our study. In Figure 2.3, we show the

correlation between selection time and (estimated) time to execute unselected tests (which

is the time saved by not executing unselected tests). While the overall time savings due to

manual RTS is significant, we found that in 31% of the cases (points above the identity line

in Figure 2.3) developers could have saved more time by simply running all the tests.

Manual RTS by Selecting Various Nodes of Hierarchy: Developers also perform test

selection by selecting a node of hierarchy in their IDE, e.g., they could select to run only a

single test or all the tests from a single class or package. This is a critical RTS limitation

in Eclipse—it restricts the developer to select to run only one node of hierarchy (in the

limit this node represents the entire project such that the entire test suite for that project

is run). In other words, the developer is not able to select to run an arbitrary set of tests

or test suites. Related but different, in several projects, by browsing through the changes

collected by CodingTracker, we noticed that developers were writing scripts (“.launch” files

in Eclipse) to group tests. Using a script has the same limitation as manually selecting a

node of hierarchy. These limitations of Eclipse are shared by several popular IDEs as shown

in Table 2.2 [98, 121, 151].
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RQ5: How good is IDE support for manual RTS?

IDEs provide varying levels of support for performing manual RTS. The IDEs we investigated

are: Eclipse6, IntelliJ IDEA7, NetBeans8, and Visual Studio 20109.

Support for Arbitrary Manual RTS: Recall from the answer to RQ4 that, in several

cases, the developers selected among tests by commenting out the tests within test classes

or commenting out test classes within test suites. This likely means that developers would

prefer to arbitrarily select tests within nodes of hierarchy. Also, our experience with running

the automated RTS tool (as discussed in Section 2.2) shows that all affected tests may not

reside in the same node of hierarchy. Thus, it is also important to be able to arbitrarily

select tests across these nodes.

Table 2.2 is a summary of available IDE support for selecting tests at different levels of

granularity within and across nodes of hierarchy. All the IDEs allow developers to select

to run a single test. Moreover, several IDEs offer support for arbitrary selection. IntelliJ

allows to arbitrarily select tests by marking (in the GUI) each test to be run subsequently.

This may be tedious for selecting among very many tests and is only available for arbitrarily

selecting test classes across test packages or test methods within the same class. Visual

Studio allows arbitrary selection by specifying regular expressions for test names which may

match across multiple nodes of hierarchy. However, not all developers are familiar with

regular expressions, and knowledge of all test names in the project is required to write

them effectively. Still, based on our study, having this type of support seems very valuable,

given that it is needed by the developers. More importantly, Eclipse lacks support for such

arbitrary test selection.

Support for RTS across multiple test sessions: We showed in the answer to RQ3 that the

most common pattern of manual RTS occurred during debug test sessions. It is likely that

the changes made between debug test sessions affect more tests than the test being fixed.

6Kepler Service Release 1, build id: 20130919-0819.
7Version 12.1.6, build id: IC-129.1359.
8Version 7.4, build id: 201310111528.
9We selected Visual Studio 2010 rather than the latest version because Visual Studio 2010 was the only

IDE that has ever supported automated RTS; interestingly enough, this automated RTS support has been
removed from the IDE in subsequent releases.
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RTS Capability Eclipse NetBeans IntelliJ VS 2010

Select single test + + + +
Run all available tests + + + +
Arbitrary selection in a node of hierarchy - - ± +
Arbitrary selection across nodes of hierarchy - - ± +
Rerun only previously failing tests + + + +
Select one from many failing tests - - + +
Arbitrary selection among failing tests - - + +

Table 2.2: RTS capabilities of popular IDEs

Indeed, we found this to be the case for project P14. It is possible that the developers do

not select other tests affected by the changes due to additional reasoning required to identify

such tests. Thus, their test selections during debug test sessions are likely to be unsafe and

may lead to extra debug steps at a latter stage. Although Visual Studio provides some level

of RTS automation, it has some shortcomings that we discuss in Section 2.3.

One observation from our comparison of IDEs is that they differ in their level of support

for the different patterns of manual RTS, but even if we combined the best RTS features

from all IDEs investigated, it would still not be sufficient for safe and precise RTS that

developers need.

2.2 Manual vs. Automated RTS

We next discuss the results of our comparison of manual and automated RTS, by which

we address question RQ6. We compare both approaches in terms of safety, precision, and

performance using one of the largest project from our study. As no industry-strength tool

for automated RTS was available, we used FaultTracer [158], a recently developed state-of-

the-research RTS prototype.

2.2.1 Methodology

We investigated in detail the data collected from one of our study participants, with the

goal of comparing manual and automated RTS. We chose P14 from Table 2.1 (for reasons
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described later in this section). First, we reconstructed the state of P14 at every test session.

Recall that CodingTracker does not capture the entire state of the project for any test

session. We had to perform a substantial amount of work to find a code revision that (likely)

matched the point where the developer used CodingTracker. We acknowledge the help of

the P14 developer who helped with this information, especially that the code moved from

an internal repository to an external repository. It took several email exchanges to identify

the potential revision on top of which we could replay the CodingTracker changes while still

being able to compile the project and execute the tests. Second, for each test session, we ran

FaultTracer [158] on the project and compared the tests selected by the tool with the tests

selected by the developer. Because FaultTracer is a research prototype, it did not support

projects (in the general sense of the term “software projects”) that are distributed across

multiple Eclipse projects (in the specific terminology of what Eclipse calls “projects”) even

in the same Eclipse workspace. We worked around this limitation by automatically merging

all Eclipse projects from P14 into one project that FaultTracer could analyze.

Upon replaying the CodingTracker logs and analyzing the data, we discovered that the

developer often ran multiple test sessions which had no code changes between them. The

developer had organized the tests in separate test suites and always selected to run these

test suites one at a time, thereby potentially running multiple test sessions in parallel.

To compare manual and automated RTS fairly and consistently, we accounted for the

occurrence of multiple test sessions without intervening changes. This is because FaultTracer

would only select to run tests after detecting code changes between consecutive revisions of

the software. Our solution was to merge consecutive test sessions which had no intervening

changes. Consider two consecutive test sessions, X and Y , with no intervening changes.

Suppose that the tests and their outcomes for X are [test1:OK, test4:OK], and for Y are

[test1:OK, test2:Failure, test3:OK]. Our merge would produce a union of the tests

in X and Y , and if a test happens to have different outcome, the merge would keep the

result from X ; however, because the test runs happened without intervening changes, it

is reasonable to expect that if some tests are rerun, their outcomes should be the same.

We checked that, in our entire study, the test runs are largely deterministic and found

a tiny percentage of non-deterministic tests (0.6%). The effect of non-deterministic tests
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on RTS is a worthwhile research topic on its own [112]. For the sessions X and Y shown

above, the merged session would contain the tests [test1:OK, test2:Failure, test3:OK,

test4:OK].

Having merged the manual test sessions as described above, the number of test sessions

for comparing manual and automated RTS we obtained was 683. We further limited our

comparison to the first 450 of these 683 test sessions, due to difficulties in automating the

setup of P14 to use FaultTracer to perform RTS between successive revisions. As we studied

a very large project, which evolved very quickly and had dependencies on environment and

many third-party libraries, we could not easily automate the setup across all 683 merged

test sessions. The 450 test sessions used constitute the largest consecutive sequence of test

sessions which had the same setup. (We discuss other challenges faced in Section 2.2.1.)

Across all 450 test sessions considered, P14 has, on average, 83,980 lines of code and 889.32

available tests.

FaultTracer

The inputs to FaultTracer are two program revisions (that include test suites)—old revision

P and new revision P ′—and the execution dependencies of tests at revision P (i.e., a mapping

from test to nodes of extended control-flow graph [158] covered by the test). Let A be the

set of tests in P . FaultTracer produces, as output, a set of tests Ssel ⊆ A that are affected

by the code changes between P and P ′. The unselected tests in A∖Ssel cannot change their

behavior. Note that one also has to run new tests that are added in P ′.

We chose FaultTracer because it represents the state-of-the-research in RTS and im-

plements a mostly safe RTS technique. Also, FaultTracer works at a fine-granularity level

(which improves its precision), because it tracks dependencies at the level of an extended

control-flow graph [158]. To identify code changes, FaultTracer implements an enhanced

change-impact analysis. In addition, FaultTracer targets projects written in Java, the same

programming language used in P14, so, there was a natural fit.

However, note that we chose FaultTracer from a very limited pool. To the best of our

knowledge, there exists no other publicly available tool that performs RTS at such fine gran-
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ularity level (e.g., statement, control-flow edge, basic block, etc.). Systems such as Google’s

TAP system [146, 149] and Microsoft’s Echelon system [92, 93, 144] are proprietary. More-

over, TAP implements a coarse-grained analysis technique based on dependencies between

modules, which would be overly imprecise for P14 that has only few modules and even the

largest project in the CodingTracker study consists of only a few modules. On the other

hand, Echelon only prioritizes tests but does not select tests for execution.

Project under Analysis

We chose P14 for the following major reasons. First, it was one of the projects with the

largest recorded data (in terms of the number of test sessions) of all 17. Hence there was

a higher chance of observing a greater variety of test selection patterns. This also means

that we had more data points over which to compare manual and automated RTS for the

same developer. Second, the developer worked on creating a large and industrially used

library, presenting the opportunity to study test selection in a realistic setting. Finally, with

the help of the original developer of the project, we were able to gain access to the exact

VCS commits of the project which matched the recorded data. At the time of this writing,

developers of other projects have either been unable to provide us access to their repositories,

or we are unable to reconstruct the revisions of their projects that matched the exact period

in the CodingTracker recording.

Challenges

Because CodingTracker did not capture entire project state, we had to reconstruct the P14’s

developer’s workspace to be able to build and run tests for our analysis. Using timestamps

from the CodingTracker logs, we looked for a commit in the developer’s VCS which satisfied

the following conditions: (1) the time of the commit matches the VCS commit timestamp

recorded in the CodingTracker logs and (2) the code compiles after checking it out of the

VCS and adding required dependencies. Finally, this checked-out revision was imported

into Eclipse [60] and used as a basis for replaying the CodingTracker logs. By replaying

the changes captured by CodingTracker on top of this initial state, we obtained the state
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Figure 2.4: The number of tests selected by manual and automated RTS for P14

of the entire project in every succeeding test session. Note that CodingTracker captures

changes to both the project under test and the testing code, and thus, the reconstructed

developer’s workspace contained all the tests available at any given test session. We assume

that the ability to replay the CodingTracker logs from the initial VCS commit till the end of

the logs without any error means that it was a likely valid starting point. Thus, the recon-

structed workspace is as close to the developer’s workspace as it existed while CodingTracker

monitored the developer’s programming activity.

To mitigate these challenges in future studies focusing on RTS, CodingTrackerwould need

to be modified to capture the complete initial state of the project as well as any dependencies

on external libraries.

2.2.2 Comparing Manual and Automated RTS

The number of selected tests: We plot, in Figure 2.4, the number of tests selected by

manual RTS against the number of tests selected by automated RTS (i.e., FaultTracer) for

each test session. A quick look may reveal that there is a substantial difference between

manual and automated RTS, which we further analyze.

Figure 2.5 shows the distribution, across test sessions, of the number of tests selected

by manual and automated RTS. We show the distribution for two cases: with (“w/”) and

without (“w/o”) single-test sessions. It can be seen that the median is much lower for the

automated tool in both cases. This implies that the developer is imprecise (i.e., selects
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Figure 2.5: Distribution of selected tests for P14 with and without single-test sessions

more than necessary). Further, if single-test sessions are included, we can observe that

the arithmetic mean (shown as a star) is lower for manual than automated RTS. However,

when single-test sessions are excluded, we can see the opposite. This indicates, as expected,

that developer focuses on very few tests while debugging and ignores the other affected

tests. Finally, when single-test sessions are excluded from the manually selected tests, we

found that many test sessions contain the number of tests equal to the median. Our closer

inspection shows this to be due to the lack of support for arbitrary selection in Eclipse,

which forced the developer to run all tests from one test class in a node of hierarchy.

Safety and precision: One major consideration in comparing manual and automated RTS

is the safety of these approaches relative to one another. In other words, if we assume that

the automated tool always selects all the tests affected by a code change, does the developer

always select a superset of these? If the answer is in the affirmative, then the developer is

practicing safe RTS. On the contrary, if the set of tests selected by the developer does not

include all the tests selected by the tool, it means that manual RTS is unsafe (or the tool is

imprecise). To compare safety between manual and automated RTS, for every test session,

we compare both the number of tests selected and the relationship between the sets of tests

selected using both approaches.

Figure 2.4 shows the relationship between the numbers of tests selected by both ap-

proaches. The Spearman’s and Pearson’s correlation coefficients are 0.18 (p-value below

0.01) and 0.00 (p-value is 0.98), respectively. These values indicate a rather low, almost
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Figure 2.6: Relationship of RTS with relative size of code changes for P14

non-existent, correlation.

We compared the relation between the sets of tests selected using manual and automated

RTS. In 74% of the test sessions, the developer missed to select at least one of the tests

selected by FaultTracer. Assuming that FaultTracer is safe, we consider these cases to be

unsafe. In the remaining 26% of the test sessions, the developer selected a superset of tests

selected by FaultTracer. Moreover, in 73% of the test sessions, the developer selected more

tests than FaultTracer. Assuming that FaultTracer is precise, we consider these cases to be

imprecise. Note that a developer can be both unsafe and imprecise in the same test session if

the developer selects some non-affected tests and does not select at least one of the affected

tests. Thus, the sum of the percentages reported here (74% + 73%) is greater than 100%.

Correlation with code changes: In Section 2.1.2, we found that for all projects in our

study there is low correlation between code change ratio and manual RTS. We revisit that

correlation in more detail for the P14 project. To further compare manual and automated

RTS, we evaluate whether either of these selection approaches correlates better with code

changes. Effectively, we re-check our intuition that the developer is more likely to select fewer

tests after smaller code changes. We measured the Pearson’s and Spearman’s correlation

coefficients for both manual and automated RTS. The values for Spearman’s coefficients

are 0.22 (p-value below 0.01) and 0.01 (p-value is 0.93) for manual and automated RTS,

respectively. The values for Pearson’s coefficients are 0.08 (p-value is 0.10) and -0.02 (p-

value is 0.77) for manual and automated RTS, respectively. While the correlation is low in
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all cases, the slightly higher values of correlation coefficients for manual RTS may indicate

that (compared to automated RTS) the developer indeed selects fewer tests after smaller

changes and more tests after larger changes, as it becomes harder to reason which tests are

affected by larger changes. The plot in Figure 2.6 visualizes the relationship, for each test

session, between code change ratio and the number of selected tests for both manual and

automated RTS. We can observe that manual RTS is less likely to select many tests for small

changes (e.g., fewer red dots than blue dots are close to the x-axis around the 600 mark). In

the end, the size of semantic effect of a change (as measured by the number of affected tests)

is not easy to predict from the size of the syntactic change (as measured by the number of

AST nodes changed).

Performance: We finally compare manual and automated RTS based on the time taken

to select the tests (i.e., A phase). Figure 2.7 shows the distribution of selection time

(first boxplot), as defined in Section 2.1.1, and analysis time (second boxplot) incurred

by FaultTracer. We can observe that the developer is faster than the automated RTS tool

in selecting which tests to run (the p-value for the Mann-Whitney U test is below 0.01).

For comparison, we also show the distribution of estimated execution time for tests that

are unselected by FaultTracer (third boxplot) and actual execution time for tests selected

by FaultTracer (fourth boxplot). We ran all our experiments on a 3.40 GHz Intel Xeon

E3-1240 V2 machine with 16GB of RAM, running Ubuntu Linux 12.04.4 LTS and Oracle

Java 64-Bit Server version 1.6.0 45.

One can observe that FaultTracer analysis (A) took substantial time. Although the

analysis time (130.94±13.77 seconds) is, on average, less than the time saved by not running

unselected tests (219.86±68.88 seconds), it is important to note that one may also want

to take into account time to collect necessary dependency information to enable change

impact analysis (C); if time taken for analysis plus overhead for collecting dependencies plus

running selected tests is longer than time taken for running all the tests, then test selection

provides no benefit. This raises the question whether a fine-grained technique, such as the

one implemented in FaultTracer [158], can be optimized to bring benefits to smaller projects.

We believe that research studies on automated RTS should provide more information about

their complexity (e.g., time to implement the technique) and efficiency (e.g., analysis time,
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Figure 2.7: Distribution for P14 of selection, analysis, and execution time

collection time, etc.). Previous research focused mostly on the number of selected tests

(i.e., safety and precision) rather than on end-to-end time, which is not sufficient for proper

comparison and discovering an RTS technique that works in practice.

2.3 Discussion

We briefly discuss test-selection granularity, our experience with an IDE-integrated auto-

mated RTS tool, and propose a potential improvement to automated RTS in IDEs.

Test Selection Granularity: Wementioned earlier that systems such as Google TAP [146,

149] and Microsoft Echelon [92, 93, 144] are successfully used for test selection/priori-

tization. However, these systems are used as part of the gated check-in [72] infrastruc-

ture (i.e., all affected regression tests are executed before a commit is accepted into

the repository). In other words, they are not used (and are not applicable) on devel-

opers’ machines where developers commonly work on few modules at a time (and run

tests locally). Even developers at either of these companies, let alone many developers

who do not develop code at the scale of Google or Microsoft, would benefit from an

improved fine-grained test selection. This provides motivation for research on finding

the best balance between analysis time, implementation complexity, and benefits ob-

tained from test selection. Improved fine-grained test selection would be more widely
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applicable and could be used in addition to coarse-grained test selection systems.

Experience with IDE-integrated automated RTS: We experimented with Visual Stu-

dio 2010, the only tool (to the best of our knowledge) that integrates automated RTS

with an IDE. We did this to see if such a tool would perform better than manual RTS

in terms of safety and precision. Specifically, the Test Impact Analysis (TIA) tool

in Visual Studio 2010 [145] was designed to help reduce testing effort by focusing on

tests that are likely affected by code changes made since the previous run of the tests.

We think this is an excellent step towards improved RTS in developer environments

and that similar tools should be developed for other IDEs. We successfully installed

TIA and ran it on several simple examples we wrote and on an actual open-source

project. However, we found a number of shortcomings with TIA. Most importantly,

the tool is unsafe: any change not related to a method body is ignored (e.g., field

values, annotations, etc.). Also, changes like adding a method, removing a method, or

overriding a method remain undetected [129]. Furthermore, TIA does not address any

of the issues commonly faced by selection techniques [37,44,55,67,89,91,138,154,156],

such as library updates, reflection, external resources, etc. Our opinion is that a safe

but imprecise tool would be more appreciated by developers.

Potential improvement of IDEs: Across all projects, we observed that developers com-

monly select tests during debugging. Thus, one common way by which an IDE might

help is to offer two separate modes of running tests, a regular mode (without selection)

and a test-selection mode. In the regular mode, the developer may choose to rerun,

after a series of code changes, one or more previously failing tests (while ignoring other

affected tests). Once the test passes, the developer may run in the test-selection mode

to check for regressions. Notice that the test-selection runs would be separated by a

series of regular runs. Consider two test-selection runs, A and B (Figure 2.8). In A,

some tests were selected to be run and failed. Developer then performs (regular) runs

a1, a2, ... an, until the previously failing test passes. The test selection run B is then

executed to ensure that there are no regressions due to code changes, since A. Note

that the analysis performed before running B should consider the difference since A
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Figure 2.8: Example of a pattern when developer alternates selection and regular runs

and not just the difference between an and B; otherwise, tests affected by the changes

between A and an would not be accounted for. As a simple optimization step, the

tool could exclude the tests affected between A and B that were already run after the

change that was affecting them.

2.4 Threats to Validity

External: Developers, Projects, and Tools: The results of our study may not gener-

alize to projects outside of the scope of our study. To mitigate this threat, we used

17 projects that cover various domains and 14 developers with different levels of pro-

gramming experience. Further, these projects vary significantly in size, number of

developers, and number of tests. Regarding the comparison of manual and automated

RTS, we used the largest project for which we could reconstruct the entire state for

many test sessions.

We used FaultTracer, a research prototype, to perform automated RTS. Other tools [37,

44, 55, 67, 89, 91, 138, 154, 156] that implement different RTS techniques could have led

to different results. We chose FaultTracer because it implements a mostly safe and

precise RTS technique (with respect to the analyzed changes in P14). To the best of

our knowledge, no other publicly available tool for RTS exists (except the proprietary

tools that work at coarse-granularity level, which would not be applicable to any of

the projects used in our study). Our experience with Visual Studio demonstrated that

the implemented approach is unsafe, thus inappropriate for our study.

Finally, the patterns of test selection could differ in other languages. We leave the
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investigation of how manual RTS is performed in other languages for future work.

Internal: Implementation Correctness: We extracted data relevant to manual RTS

from the study participants’ recordings. To extract the data, we wrote analyzers on

top of the infrastructure that was used in prior research studies on refactorings [118,

120, 150]. Further, new analyzers were tested and reviewed by at least two authors of

our ASE 2014 paper [78].

Construct: IDEs and Metrics: Because CodingTracker is implemented as an Eclipse

plugin, all developers in our study used Eclipse IDE. Therefore, our study results

may not hold for other IDEs. However, because Eclipse is the most popular IDE for

Java [99], our results hold for a significant portion of Java developers. We leave the

replication of our study using other popular IDEs (both for Java and other languages)

for future work.

2.5 Summary

This chapter motivated the need for an automated RTS technique. The analysis of logs

obtained in real time from a diverse group of developers showed that almost all developers

practice manual RTS, but they select tests in mostly ad hoc ways. As a result, manual RTS

is unsafe and imprecise: developers select too few tests and thus miss to run some tests

whose behavior differs due to code changes, or developers select too many tests and thus

waste time. A large number of developers would benefit from an efficient automated RTS

technique.

34



CHAPTER 3

Regression Test Selection with Dynamic File

Dependencies

This chapter presents the Ekstazi technique that was developed with the aim to enable

safe and efficient regression test selection between two code revisions . The lack of a practical

RTS technique (after three decades of research) and our study of manual RTS (presented

in Chapter 2) were the main motivation points for the work presented here. This chapter

is organized as follows. Section 3.1 introduces the key terms and illustrates several RTS

techniques. Section 3.2 describes our RTS technique that tracks dynamic file dependencies.

Section 3.3 presents our extensive evaluation. Section 3.4 describes several common patterns

to integrate our tool in projects that could benefit from RTS. Section 3.5 discusses surprising

results and handling of various tests. Section 3.6 presents threats to validity.

3.1 Example

We use a synthetic example to introduce the key terms and illustrate several RTS techniques

and their trade-offs. Figure 3.1 shows sample code that represents an old revision of a project:

two test classes—TestM and TestP1—contain four test methods—t1, t2, t3, and t4—for two

classes under test—C and D.

Executing the tests on this revision can obtain a dependency matrix that relates each test

entity to a set of dependent elements. We refer to the granularity of test entities as selection

granularity—this is the level at which tests are tracked and selected (as test methods or test

classes), and we refer to the granularity of dependent elements as coverage granularity—this

is the level at which changes are determined. The dependent elements can be of various

1Test classes more commonly match the classes (rather than methods) under test, but this example allows
to succinctly present our main points.
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class TestM {
void t1() { assert new C().m() == 1; }
void t2() { assert new D().m() == 1; }

}

class TestP {
void t3() { assert new C().p() == 0; }
void t4() { assert new D().p() == 4; }

}

class C {
int m() { /∗ no method calls ∗/ }
int p() { /∗ no method calls ∗/ }

}

class D extends C {
@Override
int p() { /∗ no method calls ∗/ }

}

Figure 3.1: Example test code (left) and code under test (right)

t1: C#C, C#m
t2: D#D, C#C, C#m
t3: C#C, C#p
t4: D#D, C#C, D#p

(a) method-method

t1: TestM, C
t2: TestM, D, C
t3: TestP, C
t4: TestP, D, C

(b) method-class

TestM: TestM, C, D
TestP: TestP, C, D

(c) class-class

Figure 3.2: Dependency matrices collected for code in Figure 3.1

granularity; for our example, we use methods and classes (but even finer elements can be

used, e.g., basic blocks in Microsoft’s Echelon [92, 93, 144], or coarser elements can be used,

e.g., projects in Google’s TAP [65, 146, 149]).

A traditional RTS technique, e.g., FaultTracer [158], using methods for both the se-

lection granularity and the coverage granularity would obtain the dependency matrix as in

Figure 3.2a, where one dependent element is denoted as ClassName#MethodName. Note

that we list the dependent elements for each test entity/row but do not show all the de-

pendent elements as columns, because the matrices are fairly sparse. Ekstazi always uses

classes (more generally, it uses files) for the coverage granularity and can use either methods

or classes for the selection granularity. Using methods or classes obtains the dependency

matrices as in Figure 3.2b or Figure 3.2c, respectively. (In principle, one could use methods

for the coverage granularity and classes for the selection granularity, but this was not done

traditionally, and we do not consider it.)

In Ekstazi, whenever a test entity depends on D, it also depends on C (in general, on all

superclasses of D). Each test entity also depends on its test class, e.g., t1 depends on TestM.

Finally, this simple example does not show the test code or the code under test accessing

any files, but Ekstazi also tracks files.

Assume that a new code revision changes only the body of the method D.p and thus
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only the class D. FaultTracer would select to run only one test, t4. In contrast, Ekstazi at

the method granularity would select two tests, t2 and t4, because they both depend on the

changed class D. Moreover, Ekstazi at the class granularity would select both test classes,

TestM and TestP, and thus all four test methods, because both test classes depend on the

changed class D.

At a glance, it seems that Ekstazi cannot be better than the traditional techniques,

because Ekstazi never selects fewer tests. However, our goal is to optimize the end-to-end

time for RTS. Although Ekstazi selects some more tests and thus has a longer execution

phase, its use of much coarser dependencies shortens both the analysis and collection. As a

result, Ekstazi has a much lower end-to-end time.

Safely using methods as the coverage granularity is expensive. An RTS technique that

just intersects methods that are in the set of dependencies with the changes, as we discussed

in our simplified description, is unsafe, i.e., it could miss to select some test that is affected

by the changes. For example, the new revision could add a method m in class D (that overrides

C.m); a naive intersection would not select any test, but the outcome of t2 could change: the

execution of this test on the old revision does depend on (the absence of) D.m, although the

test could not execute that (non-existent) method [89, 129]. For another example, the new

revision could change some field accessed from the existing method C.m; again, it would be

necessary to reason about the change to determine which tests should be selected [129,158].

As a consequence, an RTS technique that uses methods as the coverage granularity could

be safer by collecting more dependencies than just covered methods (hence making the

collection expensive and later selecting more tests, making the execution more expensive),

and, more critically, it also needs sophisticated, expensive comparison of the old and new

revisions to reason about the changes (hence making the analysis phase expensive). In

contrast, an RTS technique that uses classes as the coverage granularity can be safer by

simply collecting all accessed classes (hence speeding up the collection), and more critically,

it can use a rather fast check of the new revision that does not even require the old revision let

alone extensively comparing it with the new revision (hence speeding up the analysis phase).

However, when tests depend not only on the code under test but also on external files [50,117],

collecting only the classes is not safe, and hence Ekstazi uses files as dependencies.

37



System
Build

Dependency
Matrix

Test
Outcomes

JVM

All
Run CUT & TestsTestingFramework

& A Phase C Phase
(E Phase)

(a) Tight integration

System
Build

Test
Outcomes

Dependency
Matrix

JVM

A Phase

JVM

CUT & Tests
TestingFramework

(E Phase)

JVM

Some
Run TestingFramework

(E Phase)
CUT & Tests

Excludes

C Phase

(b) Loose integration

Figure 3.3: Integration of an RTS technique in a typical build with a testing framework

3.2 Technique and Implementation

A typical RTS technique has three phases: the analysis (A) phase selects what tests to run

in the current revision, the execution (E) phase runs the selected tests, and the collection

(C) phase collects dependencies from the current revision to enable the analysis for the next

revision. Ekstazi collects dependencies at the level of files. For each test entity, Ekstazi

saves (in the corresponding row of the dependency matrix) the names and checksums of the

files that the entity accesses during execution.

In the rest of the section, we first describe the RTS phases in more detail. We then

briefly discuss safety, describe the format in which Ekstazi saves the dependencies in the

C phase and uses it in the A phase, and describe an optimization that is important to make

Ekstazi practical. We finally describe Ekstazi integration with a testing framework.
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3.2.1 Analysis (A) Phase

The analysis phase in Ekstazi is quite simple (and thus fast). For each test entity, Ekstazi

checks if the checksums of all accessed files are still the same (in the new revision) as they

were (in the old revision). If so, the test entity is not selected to be run; otherwise, if

any checksum differs, the test entity is selected to be run. Note that an executable file can

remain the same even when its source file changes (e.g., renaming a local variable); dually, the

executable file can change even when its source file remains the same (e.g., due to a change

in compilation options). Comparing the checksums requires no sophisticated comparisons

of the old and new revisions (which prior RTS research techniques usually perform on the

source), and in fact, it does not even need to analyze the old revision (much like a build

system can incrementally compile code just by knowing which source files changed). The

only check is if the files remained the same.

Ekstazi naturally handles newly added test entities: if the dependency matrix has no

information for some entity, then the entity is selected to be run. Initially, on the very first

run of Ekstazi, there is no dependency matrix, and hence, it has no information for any

entity, so all entities are selected to be run. Ekstazi also naturally handles deleted test

entities because Ekstazi does not discover what entities to run, but it only filters what

existing non-affected entities not to run among all the entities that are discovered by a

testing framework or a build system (which does not discover deleted entities).

3.2.2 Execution (E) Phase

Although one can initiate test execution directly from a testing framework, large projects

typically initiate test execution from a build system that invokes the testing framework.

Popular build systems (e.g., Ant or Maven) allow the user to specify an includes list of all

test classes to execute (often specified as regular expressions in build configuration files such

as build.xml or pom.xml) and configuration options to guide the test execution.

Figure 3.3 shows two approaches to integrate an RTS technique in a typical Java project.

Ekstazi can work with testing frameworks in both approaches. When tightly integrating

the A and E phases (Figure 3.3a), the build system finds all test classes and invokes a testing
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framework on these classes as if all test entities will run; Ekstazi then checks for each entity

if it should be actually run or not.

Loosely integrating the A and E phases (Figure 3.3b) can improve performance in some

cases. It first determines what test entities not to run. This avoids the unnecessary overhead

(e.g., loading classes or spawning a new JVM when the build spawns a JVM for each test

entity) of preparing to run an entity and finding it should not run. The A phase makes

an excludes list of test classes that should not run, and the build system ignores them

before executing the tests. Without re-implementing the discovery of all tests, the A phase

cannot make a list of all test classes to run (an includes list) because it could miss new

tests (for which it has no rows in the dependency matrix). Ekstazi makes an excludes list

from previously collected dependencies and excludes test classes rather than test methods

because most build systems support an excludes list of classes. In case of the method

selection granularity, the tests methods that are not affected are excluded at the beginning

of the E phase.

Figure 3.3 also shows two approaches to integrate the E and C phases. First, the depen-

dencies for the test entities that were not selected cannot change: these entities are not run

and their corresponding rows in the dependency matrix do not change. But the test entities

that were selected need to be run to determine if they still pass or fail, and thus to inform

the user who initiated the test session. Because the dependencies for these entities change,

the simplest way to update their rows in the dependency matrix is with one pass that both

determines the test outcome and updates the rows. However, collecting dependencies has

an overhead [152]. Therefore, some settings may prefer to use two passes : one pass without

collecting dependencies, just to determine the test outcome and inform the user, and another

pass to also collect the dependencies. The second pass can be started in parallel with the

first pass or can be performed sequentially later.

3.2.3 Collection (C) Phase

The collection phase creates the dependency matrix for the executed test entities. Ekstazi

monitors the execution of the tests and the code under test to collect the set of files accessed
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during execution of each entity, computes the checksum for these files, and saves them in

(the corresponding rows of) the dependency matrix. Ekstazi currently collects all files that

are either read or written, but it could be even more precise by distinguishing writes that

do not create a dependency [86]. Moreover, Ekstazi tracks even files that were attempted

to be accessed but did not exist; if those files are added later, the behavior can change.

In principle, we could collect file dependencies by adapting a tool such as Fabricate [70]

or Memoize [115]: these tools can monitor any OS process to collect its file dependencies,

and thus they could be used to monitor a JVM that runs tests. However, these tools would

be rather imprecise for at least two reasons. First, they would not collect dependencies per

entity when multiple entities run in one JVM. Second, they would not collect dependencies

at the level of .class files archived in .jar files. Moreover, these tools are not portable from

one OS to another, and also cannot be easily integrated in a testing framework such as JUnit

or a build system such as Maven.

We implemented the C phase in Ekstazi as a pure Java library that is called from a

testing framework and addresses both reasons of imprecision mentioned above. To collect

dependencies per test entity, Ekstazi needs to be informed when an entity starts and ends.

Ekstazi offers API methods startCollectingDependencies(String name), which clears all

previously collected dependencies, and finishCollectingDependencies(String name), which

saves all the collected dependencies to an appropriate row in the dependency matrix.

When using method selection granularity, due to common designs of testing frameworks,

additional steps are needed to properly collect dependencies. Namely, many testing frame-

works invoke a constructor of a test class only once, and then invoke setUp method(s) before

each test method is invoked. Therefore, Ekstazi appends dependencies collected during

constructor invocation and setUp methods(s) to the dependencies collected during the exe-

cution of each test method.

To precisely collect accessed files, Ekstazi dynamically instruments the bytecode and

monitors the execution to collect both explicitly accessed files (through the java.io pack-

age) and implicitly accessed files (i.e., the .class files that contain the executed bytecode).

Ekstazi collects explicitly accessed files by monitoring all standard Java library methods

that may open a file (e.g., FileInputStream). In contrast, files that contain bytecode for
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Java classes are not explicitly accessed during execution; instead, a class loader accesses a

classfile when needed. If Ekstazi monitored only class loading, and two test entities access

the same class, Ekstazi would collect the dependency on that class only for the test entities

that accesses the class first, which would be unsafe. Our instrumentation collects a set of

objects of the type java.lang.Class that a test depends on; Ekstazi then finds for each

class where it was loaded from. If a class is not loaded from disk but dynamically created

during execution, then it need not be tracked as a dependency, because it cannot change

unless the code that generates it changes.

Instrumented Code Points: More precisely, Ekstazi instruments the following code

points: (1) start of a constructor, (2) start of a static initializer, (3) start of a static method,

(4) access to a static field, (5) use of a class literal, (6) reflection invocations, and (7) invoca-

tion through invokeinterface (bytecode instruction). Ekstazi needs no special instrumen-

tation for the test class: it gets captured as a dependency when its constructor is invoked.

Ekstazi also does not instrument the start of instance methods: if a method of class C is

invoked, then an object of class C is already constructed, which captured the dependency

on C. An alternative to instrumentation is to use debug interface, however recent work on

tracing [105] showed that such an approach does not scale.

3.2.4 Safety

Ekstazi technique is safe for any code change and any change to the file system. The

safety of Ekstazi intuitively follows from the proved safety of RTS based on class depen-

dencies [142] and partial builds based on file dependencies [50]. We leave it as a future work

to formally prove that Ekstazi is safe in above mentioned cases. Note that Ekstazi is un-

safe if tests execute unmanaged code or access network. In other words, Ekstazi does not

collect dependencies outside of a JVM process. Ekstazi with method selection granularity

is also unsafe when there are enforced test-order dependencies [39, 87, 159]. Regarding non-

deterministic tests (e.g., thread scheduling), Ekstazi collects dependencies for a single run

and guarantees that the test will be selected if any of its dependencies changes. However, if

a dependency changes for another run that was not observed, the test will not be selected.
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This is the common approach in RTS [138] because collecting dependencies for all runs (e.g.,

using software model checking) would be costly. Also, prior studies [61] showed that changes

in the test outcome are rare. After all, developers in practice, run each test only once.

3.2.5 Dependency Format

Ekstazi saves dependencies in a simple format similar to the dependency format of build

tools such as Fabricate [70]. For each test entity (be it a test method or a test class), Ekstazi

saves the dependencies (i.e., one row from the dependency matrix) in a separate file2 whose

name corresponds to the entity name. For example in Figure 3.2b, Ekstazi creates four

files TestM.t1, TestM.t2, TestP.t3, and TestP.t4. Saving dependencies from all test entities

together in one file would save space and could save time for smaller projects, but it would

increase time for large projects that often run several test entities in parallel (e.g., spawn

multiple JVMs for sets of test classes) so using one file would require costly synchronization

on that file. In the future, we plan to explore other ways to persist the dependency matrix,

e.g., in a database.

The file, which stores the dependencies, includes the names and checksums of the files that

the test entity accesses during execution. These files are the executable files (e.g., standalone

.class files or .class files packed in .jar files) or external resources (e.g., configuration

files). The checksum effectively hashes the content of the files. For example, consider that

some test class TestP for a test t4 is in a jar file called t.jar, the code for classes C and

D are in a jar file called c.jar, and the test also depends on a file called config.xml. If

the (hexcode) checksums for those four files are, say, 1a2b, 0864, dead, and beef, then the

file with dependencies for t4 would have content t.jar!TestP.class 1a2b, c.jar!C.class

0864, c.jar!D.class dead, config.xml beef. These checksums allow Ekstazi to check

changes with no explicit access to the old code revision.

2Note that a file that stores dependencies should not be confused with “dependent files”, which are the
dependencies themselves.
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3.2.6 Smart Checksums

Ekstazi’s use of file checksums offers several advantages, most notably (1) the old revision

need not be available for the A phase, and (2) hashing to compute checksums is fast. On top

of collecting the executable files (.class) from the archives (.jar) rather than collecting the

entire archives, Ekstazi can compute the smart checksum for the .class files. Computing

the checksum from the bytecodes already ignores some changes in the source code (e.g., i++

and i+=1 could be compiled the same way). The baseline approach computes the checksum

from the entire content of a .class file, including all the bytecodes.

However, two somewhat different executable files may still have the same semantics in

most contexts. For example, adding an empty line in a .java file would change the debug info

in the corresponding .class file, but almost all test executions would still be the same (unless

they explicitly observe the debug info, e.g., through exceptions that check line numbers).

Ekstazi can ignore certain file parts, such as compile-time annotations and other debug

info, when computing the checksum. The trade-off is that the smart checksum makes the A

and C phases slower (rather than quickly applying a checksum on the entire file, Ekstazi

needs to parse parts of the file and run the checksum on a part of the file), but it makes

the E phase faster (as Ekstazi selects fewer tests because some dependent files match even

after they change).

3.2.7 Integrating Ekstazi with JUnit

We implemented the Ekstazi technique in a robust tool for Java and JUnit. We integrated

Ekstazi with JUnit because it is a widely used framework for executing unit tests in Java.

Regarding the implementation, Ekstazi has to change (dynamically) a part of the JUnit core

itself to allow skipping a test method that should not be run. While JUnit provides listeners

that can monitor start and end of tests, currently the listeners cannot change the control-

flow of tests. Ekstazi supports both JUnit 3 and JUnit 4, each with some limitation. For

JUnit 3, Ekstazi supports only methods (not classes) as selection granularity. For JUnit 4,

if a project uses a custom runner, Ekstazi supports only classes (not methods); otherwise,

if no custom runner is used, Ekstazi supports both classes and methods. Project developers
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could hook their custom runner to Ekstazi by adding proper calls at the start and end of

each test entity, and allowing Ekstazi to determine if a test should be run (Section 3.4).

It is important to note that when Ekstazi does not support some case, it simply offers no

test selection and runs all the tests, as RetestAll.

3.3 Evaluation

This section describes an experimental evaluation of Ekstazi. We (1) describe the projects

used in the evaluation, (2) describe the experimental setup, (3) report the RTS results in

terms of both the number of selected test entities and the end-to-end time, (4) measure ben-

efits of the smart checksum, (5) evaluate the importance of selection granularity, (6) evaluate

the importance of coverage granularity by comparing Ekstazi with FaultTracer [158], and

(7) describe a case study of Ekstazi integration with a popular open-source project.

We ran all the experiments on a 4-core 1.6 GHz Intel i7 CPU with 4GB of RAM, running

Ubuntu Linux 12.04 LTS. We used three versions of Oracle Java 64-Bit Server: 1.6.0 45,

1.7.0 45, and 1.8.0 05. Different versions were necessary as several projects require specific

older or newer Java version. For each project, we used the latest version of Java that

successfully compiled and executed all tests.

3.3.1 Projects

Table 3.1 lists the projects used in the evaluation; all 32 projects are open source. The

set of projects was created by three undergraduate students who were not familiar with

our study. We suggested starting places that may contain open-source projects: Apache

Projects [1], GitHub [4], and GoogleCode [5]. We also asked that each project satisfies

several requirements: (1) has the latest available revision (obtained at the time of the first

download) build without errors (using one of three Java versions mentioned above), (2) has

at least 100 JUnit tests, (3) uses Ant or Maven to build code and execute tests, and (4) uses

SVN or Git version-control systems. The first two requirements were necessary to consider

compilable, non-trivial projects, but the last two requirements were set to simplify our
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automation of the experiments.

Note that Ekstazi itself does not require any integration with VCS, but our experiments

do require to automate checking out of various project revisions. To support both Ant and

Maven across many project revisions, we do not modify the .xml configuration files but

replace the appropriate junit.jar (in the lib for Ant-based projects or in the Maven .m2

download repo) with our ekstazi.jar. Note that this is not how one would use Ekstazi

in practice but it is only done for the sake of the experiments; we described in Section 3.4

how users can integrate Ekstazi with their projects. From about 100 projects initially

considered from the three source-code repositories, two-thirds were excluded because they

did not build (e.g., due to syntax errors or missing dependencies), used a different build

systems (e.g., Gradle), or had too few tests. The students confirmed that they were able to

execute JUnit tests in all selected projects.

Table 3.1 tabulates for each project its name, revision (that was the latest available

revision of the project at the time of our first download), the number of revisions that could

build (out of 20 revisions before the specified revision), and the total number of lines of code

(as reported by SLOCCount [143]). Table 3.2 tabulates the number of JUnit test methods

and classes (averaged across all buildable revisions), and the average (avg) and total (∑)

time to execute the entire test suite across all buildable revisions. The remaining columns

are discussed in the following sections. Table 3.3 describes symbols used for column titles in

several other tables.

The row labeled ∑ at the bottom of tables 3.1 and 3.2 shows the cumulative numbers

across all projects. In sum, we performed our evaluation on 615 revisions of 32 projects

totaling 4,937,189 LOC and 773,565 test methods. To the best of our knowledge, this is the

largest dataset used in any RTS study.

We visually separate projects with short running and long running test suites. While no

strict rule defines the boundary between the two, we classified the projects whose test suites

execute in less than one minute as short running. The following sections mostly present

results for all projects together, but in several cases we contrast the results for projects with

short- and long-running test suites.
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Project Repository Location Revisions LOC

SHA Buildable

sh
o
rt

ru
n
n
in
g

Cucumber [52] 5df09f85 20 19,939

JodaTimeM [104] f17223a4 20 82,996

Retrofit [130] 810bb53e 20 7,389

CommonsValidatorM [35] 1610469 20 12,171

BVal [15] 1598345 20 17,202

CommonsJXPathM [31] 1564371 13 24,518

GraphHopper [81] 0e0e311c 20 33,254

EmpireDB [27] 1562914 20 43,980

River [34] 1520131 19 297,565

Functor [28] 1541713 20 21,688

JFreeChart [102] 3070 20 140,575

CommonsColl4 [18] 1567759 20 52,040

CommonsLang3 [22] 1568639 20 63,425

CommonsConfig [19] 1571738 16 55,187

PdfBox [33] 1582785 20 109,951

GSCollections [84] 6270110e 20 920,208

lo
n
g
ru
n
n
in
g

ClosureCompiler [80] 65401150 20 211,951

CommonsNet [24] 1584216 19 25,698

CommonsDBCP [20] 1573792 16 18,759

Log4jM [32] 1567108 19 30,287

JGitM [103] bf33a6ee 20 124,436

CommonsIO [21] 1603493 20 25,981

IvyM [30] 1558740 18 72,179

Jenkins (light) [100] c826a014 20 112,511

CommonsMath [23] 1573523 20 186,796

AntM [14] 1570454 20 131,864

ContinuumM [25] 1534878 20 91,113

GuavaM [85] af2232f5 16 257,198

Camel (core) [17] f6114d52 20 604,301

Jetty [101] 0f70f288 20 282,041

Hadoop (core) [29] f3043f97 20 787,327

ZooKeeperM [36] 1605517 19 72,659

∑ - - - 615 4,937,189

Table 3.1: Statistics for projects used in the evaluation of Ekstazi
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Project Test [avg] Time [sec] Test Selection [%]

classes methods avg ∑ e% tAEC tAE
sh
o
rt

ru
n
n
in
g

Cucumber 49 296 8 169 12 99 76

JodaTimeM 124 4,039 10 214 21 107 75

Retrofit 15 162 10 217 16 104 90

CommonsValidatorM 61 416 11 230 6 88 78

BVal 21 231 13 267 13 138 97

CommonsJXPathM 33 386 15 205 20 94 81

GraphHopper 80 677 15 303 16 85 59

EmpireDB 23 113 27 546 18 112 99

River 14 83 17 335 6 35 18

Functor 164 1,134 21 439 13 112 90

JFreeChart 359 2,205 30 618 5 80 64

CommonsColl4 145 13,684 32 644 9 66 55

CommonsLang3 121 2,492 36 728 11 60 53

CommonsConfig 141 2,266 39 633 20 72 58

PdfBox 94 892 40 813 12 80 63

GSCollections 1,106 64,614 51 1,036 29 107 90

lo
n
g
ru
n
n
in
g

ClosureCompiler 233 8,864 71 1,429 17 62 50

CommonsNet 37 215 68 1,300 10 21 21

CommonsDBCP 27 480 76 1,229 21 46 39

Log4jM 38 440 79 1,508 6 62 43

JGitM 229 2,223 83 1,663 22 65 50

CommonsIO 84 976 98 1,969 12 30 24

IvyM 121 1,005 170 3,077 38 53 44

Jenkins (light) 86 3,314 171 3,428 7 74 71

CommonsMath 461 5,859 249 4,996 6 77 16

AntM 234 1,667 380 7,613 13 24 21

ContinuumM 68 361 453 9,064 10 32 26

GuavaM 348 641,534 469 7,518 13 45 17

Camel (core) 2,015 4,975 1,296 25,938 5 9 7

Jetty 504 4,879 1,363 27,275 26 57 49

Hadoop (core) 317 2,551 1,415 28,316 7 38 22

ZooKeeperM 127 532 2,565 48,737 20 43 37

∑ 7,479 773,565 9,400 182,475 - - -

avg(all) 14 68 53

avg(for short running) ∣ avg(for long running) 14∣15 90∣46 72∣34

Table 3.2: Test selection results using Ekstazi
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c% Percentage of test classes selected

e% Percentage of test entities selected

m% Percentage of test methods selected

tAEC Time for AEC normalized by time for RetestAll

tAE Time for AE normalized by time for RetestAll

Table 3.3: Legend for symbols used in tables

3.3.2 Experimental Setup

We briefly describe our experimental setup. The goal is to evaluate how Ekstazi performs

if RTS is run for each committed project revision. In general, developers may run RTS

even between commits (see Chapter 2), but there is no such dataset for the selected projects

that would allow executing tests the same way that developers executed them in between

commits. For each project, our experimental script checks out the revision that is 20 revisions

before the revision specified in Table 3.1. If any revision cannot build, it is ignored from the

experiment. If it can build, the script executes the tests in three scenarios: (1) RetestAll

executes all tests (without Ekstazi integration), (2) AEC executes the tests with Ekstazi

while collecting dependencies in all three phases (as a developer would use the tool), and

(3) AE executes the tests with Ekstazi but without collecting dependencies, i.e., only the

first two phases (for experiments and comparison with prior work). The script then repeats

these steps for all revisions until reaching the latest available revision listed in Table 3.1.

In each step, the script measures the number of executed tests (all tests for JUnit or

selected tests for Ekstazi) and the testing time (the execution of all tests for JUnit, the end-

to-end time for all AEC phases of Ekstazi, or just the times for the AE phases of Ekstazi).

The script measures the time to execute the build command that the developers use to execute

the tests (e.g., ant junit-tests or mvn test). Finding the appropriate command took a bit

of effort because different projects use different build target names, or the entire test suites

for the largest projects run too long to perform our experiments on multiple revisions in

reasonable time. We sometimes limited the tests to a part of the entire project (e.g., the

core tests for Hadoop in RetestAll take almost 8 hours across 20 revisions, and the full test
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Figure 3.4: Number of available and selected tests (a,c) and end-to-end time (b,d)

suite takes over 17 hours for just one revision). We did not modify anything in the build

configuration for running the tests, e.g., whether it uses multiple cores or spawns JVMs. By

measuring the time for the build command, we evaluate the speed up that the developers

would have observed had they used Ekstazi. Note that the speed up that Ekstazi provides

over RetestAll is even bigger for the testing itself than for the build command, because the

build command has some fixed cost before initiating the testing. But the developer observes

50



the build command, and hence, we do not measure just the testing time.

Ekstazi has two main options: selection granularity can be class or method, and smart

checksum can be on or off. The default configuration uses the class selection granularity

with smart checksum. As discussed earlier, due to idiosyncrasies of JUnit 3, Ekstazi does

not run the class selection granularity for all projects; those that use the method selection

granularity have the superscript M in tables 3.1 and 3.2.

3.3.3 Main RTS Results

The testing time is the key metric to compare RetestAll, Ekstazi AEC, and Ekstazi AE

runs; as an additional metric, we use the number of executed tests. Figure 3.4 visualizes these

metrics for two of the projects, GraphHopper and CommonsLang3. Plots for other projects look

similar; the two shown projects include several revisions that are interesting to highlight.

For each of the 20 revisions, we plot the total number of test methods (close to 700 in

GraphHopper and 2,500 in CommonsLang3), the number of test methods Ekstazi selects at

the method level (blue line), the number of test methods Ekstazi selects at the class level

(yellow line), the time for RetestAll (orange line), the time for all AEC phases of Ekstazi

at the method level (purple line), and the time for only AE phases at the method level

(green line). For example, revision −12 for CommonsLang3 has about 400 and 1,200 test

methods selected at the method and class level, respectively. We compute the selection

ratio for each revision, in this case ∼400/2500 and ∼1200/2500, and then average the ratios

over all revisions by computing their arithmetic mean; for CommonsLang3, the average ratio

is about 8% of methods and 11% of classes (Table 3.5). Likewise for times, we compute the

ratio of the Ekstazi time over the RetestAll time for each revision and then average these

ratios. In many revisions, Ekstazi is faster than RetestAll, but in some cases, it is slower,

e.g., revisions −1, −8, and −14 for GraphHopper. In all starting revisions, −20, we expect

the Ekstazi AEC to be slower than RetestAll, as Ekstazi runs all the tests and collects

dependencies. We also expect Ekstazi AE runs to be faster than Ekstazi AEC runs, but

there are some cases where the background processes flip that, e.g., revisions −5 and −6 for

GraphHopper. The background noise also makes the time for RetestAll to fluctuate, but over
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a large number of revisions we expect the noise to cancel out and allow a fair comparison of

times for RetestAll, Ekstazi AEC, and Ekstazi AE . The noise has smaller effect on long

running test suites.

For each revision, we compute for both the AEC and AE runs: (1) the ratio of selected

tests over all available tests and (2) the ratio of testing time over the time for RetestAll. We

next compute the average (arithmetic mean) values for ratios over all revisions. The last

three columns in Table 3.2 show the average selection per project; “e%” shows the ratio of

test entities (methods or classes) selected, and the times for AEC and AE are normalized

to the JUnit run without Ekstazi (i.e., RetestAll). For example, for Cucumber, Ekstazi

selects on average 12% of test entities, but the time that Ekstazi takes is 99% of RetestAll

(or 76% if the C phase is ignored), so it provides almost no benefit. In fact, for some other

projects with short-running test suites, Ekstazi is slower than RetestAll; we highlight such

cases, e.g., for JodaTime in Table 3.2.

Overall, the selection ratio of test entities varies between 5% and 38%, the time for AEC

varies between 9% and 138 % (slowdown), and the time for AE varies between 7% and

99%. On average, across all the projects, the AEC time is 68%, and the AE time is 53%.

More importantly, all slowdowns are for projects with short-running test suites. Considering

only the projects with long-running test suites, Ekstazi reduces the AEC time to 46% of

RetestAll, and reduces the AE time to 34%. In sum, Ekstazi appears useful for projects

whose test suites take over a minute: Ekstazi on average roughly halves their testing time.

3.3.4 Smart Checksums

Recall that smart checksum performs a more expensive comparison of .class files to reduce

the number of selected test entities (Section 3.2.6). Table 3.4 shows a comparison of Ekstazi

runs with smart checksum being off and on, for a diverse subset of projects. While smart

checksum improves both the number of selected entities and the end-to-end testing time (on

average and in most cases), there are several cases where the results are the same, or the

reduction in the testing time is even slightly lower, e.g., both times for Jenkins or the AE

time for CommonsMath. This happens if projects have no revision (in the last 20 revisions)
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Project All Smart

m% tAEC tAE m% tAEC tAE

Camel (core) 5 9 7 5 9 7

CommonsDBCP 40 60 47 23 43 37

CommonsIO 21 42 32 14 30 24

CommonsMath 6 85 16 6 75 17

CommonsNet 11 28 28 9 26 22

CommonsValidator 7 93 79 6 88 78

Ivy 47 63 52 38 53 44

Jenkins (light) 14 72 69 7 74 71

JFreeChart 6 87 70 5 84 67

avg(all) 17 60 45 13 54 41

Table 3.4: Ekstazi without and with smart checksum

that modifies only debug info; using smart checksum then leads to a slowdown as it never

selects fewer tests but increases the cost of checking and collecting dependencies. We also

manually inspected the results for several projects and found that smart checksum can be

further improved: some .class files differ only in the order of annotations on methods, but

Java specification does not attach semantics to this order, so such changes can be safely

ignored. In sum, smart checksum reduces the overall testing time.

3.3.5 Selection Granularity

Ekstazi provides two levels of selection granularity: methods (which selects fewer tests for

the E phase but makes the A and C phases slower) and classes (which makes the A and

C phases faster but selects more tests for the E phase). Table 3.5 shows a comparison of

Ekstazi runs for these two levels, on several randomly selected projects. Because Ekstazi

does not support method selection granularity for projects that use a custom JUnit runner,

we do not compare for such projects. Also, we do not compare for Guava; it has a huge

number of test methods, and with method selection granularity, our default format for

saving dependencies (Section 3.2.5) would create a huge number of files that may exceed

limits set by the file system. The class selection granularity improves both AEC and AE
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Project Method Class

m% tAEC tAE c% tAEC tAE

BVal 16 138 94 13 138 97

ClosureCompiler 20 96 53 17 62 50

CommonsColl4 7 81 60 9 66 55

CommonsConfig 19 76 57 20 72 58

CommonsDBCP 23 43 37 21 46 39

CommonsIO 14 30 24 12 30 24

CommonsLang3 8 63 51 11 60 53

CommonsMath 6 75 17 6 77 16

CommonsNet 9 26 22 10 21 21

Cucumber 13 105 78 12 99 76

EmpireDB 13 117 100 18 112 99

Functor 15 111 100 13 112 90

GraphHopper 19 84 54 16 85 59

GSCollections 16 198 101 29 107 90

JFreeChart 5 84 67 5 80 64

PdfBox 8 85 70 12 80 63

Retrofit 19 113 93 16 104 90

River 6 34 17 6 35 18

avg(all) 13 87 61 14 77 59

Table 3.5: Ekstazi with method and class selection granularity

times on average and in most cases, especially for GSCollections. In some cases where the

class selection granularity is not faster, it is only slightly slower. In sum, the class selection

granularity reduces the overall testing time compared to the method selection granularity,

and the class selection granularity should be the default value.

3.3.6 Coverage Granularity

The results so far show that a coarser level of capturing dependencies is not necessarily

worse: although it selects more tests, it can lower the overall time; in fact, the class selection

granularity does have a lower overall time than the method selection granularity. We next

evaluate a similar question for coverage granularity.

We compare Ekstazi, which uses the file coverage granularity, with FaultTracer [158],

which tracks dependencies on the edges of an extended control-flow graph (ECFG). To the
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Project FaultTracer Ekstazi

m% tAEC m% tAEC

CommonsConfig 8 223 19 76

CommonsJXPath 14 294 20 94

CommonsLang3 1 183 8 63

CommonsNet 2 57 9 26

CommonsValidator 1 255 6 88

JodaTime 3 663 21 107

avg(all) 5 279 14 76

Table 3.6: Test selection with FaultTracer and Ekstazi

best of our knowledge, FaultTracer was the only available tool for RTS. FaultTracer collects

the set of ECFG edges covered during the execution of each test method. For comparison

purposes, we also use Ekstazi with the method selection granularity. FaultTracer imple-

ments a sophisticated change-impact analysis using the Eclipse [60] infrastructure to parse

and traverse Java sources of two revisions. Although robust, FaultTracer has several lim-

itations: (1) it requires that the project be an Eclipse project, (2) the project has to have

only a single module, (3) it does not track dependencies on external files, (4) it requires that

both source revisions be available, (5) it does not track reflection calls, (6) it does not select

newly added tests, (7) it does not detect any changes in the test code, and (8) it cannot

ignore changes in annotations that Ekstazi ignores via smart checksum [6]. Due to these

limitations, we had to discard most of the projects from the comparison, e.g., 15 projects

had multiple modules, and for CommonsIO, FaultTracer was unable to instrument the code.

Table 3.6 shows a comparison of FaultTracer and Ekstazi, with the values, as earlier,

first normalized to the savings compared to RetestAll for one revision, and then averaged

across revisions. The Ekstazi results are the same as in Table 3.2 and repeated for eas-

ier comparison. The results show that Ekstazi has a much lower end-to-end time than

FaultTracer, even though Ekstazi does select more tests to run. Moreover, the results

show that FaultTracer is even slower than RetestAll.

To gain confidence in the implementation, we compared the sets of tests selected by

Ekstazi and FaultTracer. Our check confirmed that the Ekstazi results were correct.
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Project Link at https://github.com/

Apache Camel apache/camel

Apache Commons Math apache/commons-math

Apache CXF apache/cxf

Camel File Loadbalancer garethahealy/camel-file-loadbalancer

JBoss Fuse Examples garethahealy/jboss-fuse-examples

Jon Plugins garethahealy/jon-plugins

Zed hekonsek/zed

Table 3.7: Current Ekstazi users

In most cases, Ekstazi selected a superset of tests selected by FaultTracer. (Note that

FaultTracer could have incorrectly selected a smaller number of tests than Ekstazi because

FaultTracer is unsafe for some code changes. However, we have not encountered those cases

in our experiments, most likely because we could run FaultTracer only with small projects

due to issues described above.) In a few cases, Ekstazi (correctly) selected fewer tests than

FaultTracer for two reasons. First, Ekstazi can select fewer tests due to smart checksum

(Section 3.2.6). Second, Ekstazi ignores changes in source code that are not visible at the

bytecode level, e.g., local variable rename (Section 3.2.1).

3.3.7 Apache CXF Case Study

Several (Apache) projects (Table 3.7) integrated Ekstazi into their main repositories. Note

that Ekstazi was integrated in these projects after we selected the projects for the evalua-

tion, as explained in Section 3.3.2. We evaluated how Ekstazi performed on one of these

projects (Apache CXF) over 80 selected recent revisions, after Ekstazi was included in the

project. Figure 3.5 shows how Ekstazi compares with RetestAll in terms of the end-to-end

time. The plot shows that Ekstazi brought substantial savings to Apache CXF.
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Figure 3.5: End-to-end mvn test time for Apache CXF

3.4 Usage

We describe in this section how users can integrate Ekstazi with projects that use Maven or

Ant. We also describe programmatic invocation of Ekstazi that could be used to integrate

Ekstazi with other testing frameworks (e.g., TestNG). Finally, we describe several options

to tune behavior of Ekstazi. Ekstazi is currently distributed as a binary [62].

3.4.1 Integration with Maven

Ekstazi distribution includes a Maven plugin [62], available from Maven central. Only a

single step is required to integrate Ekstazi with the existing build configuration files (i.e.,

pom.xml): include Ekstazi in the list of plugins. The plugin should be included in the same

list of plugins as Maven Surefire plugin.

<plugin>
<groupId>org . e k s t a z i</groupId>
<arti factId>ek s ta z i −maven−plug in</arti factId>
<version>${ e k s t a z i . v e r s i o n}</version>

</plugin>

where ${ekstazi.version} denotes the version of Ekstazi.

One can also setup a Maven profile to enable test runs with Ekstazi only when explicitly

requested, e.g., mvn test -Pekstazi. Developers may use Ekstazi on their machines but still
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prefer to run all the tests on gated check-in. Using a Maven profile is a common approach

for integrating third-party tools, e.g., code coverage tools, into a project.

<prof i le>
<id>e k s t a z i</ id>
<activation><property><name>e k s t a z i</name></property></activation>
<build>

<plugins>
<plugin>

<groupId>org . e k s t a z i</groupId>
<arti factId>ek s ta z i −maven−plug in</arti factId>
<version>${ e k s t a z i . v e r s i o n}</version>
<executions>

<execution>
<id>e k s t a z i</ id>
<goals><goal>s e l e c t</goal></goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</prof i le>

3.4.2 Integration with Ant

The Ekstazi distribution also includes an Ant task [62] that can be easily integrated with

the existing build definitions (i.e., build.xml). The Ekstazi Ant task follows the common

integration approach; the following three steps are required:

(1) add namespace definitions to the project element:

<project . . . xm ln s : e k s t a z i=” a n t l i b : o r g . e k s t a z i . ant ”>

(2) add the Ekstazi task definition:

<taskdef u r i=” a n t l i b : o r g . e k s t a z i . ant ” r e sour c e=”org / e k s t a z i /ant/ an t l i b . xml”>
<classpath path=”org . e k s t a z i . core −${ e k s t a z i . v e r s i o n } . j a r ”/>
<classpath path=”org . e k s t a z i . ant −${ e k s t a z i . v e r s i o n } . j a r ”/>

</taskdef>

(3) wrap the existing JUnit target elements with Ekstazi select:

<ekstazi : se lect><junit f o r k=” true ” . . .> . . . </ junit></ ekstazi : se lect>

3.4.3 Programmatic Invocation

Programmatic invocation provides an extension point to integrate Ekstazi with other test-

ing frameworks (e.g., TestNG). Ekstazi offers three API calls to check if any dependency
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is modified, to start collecting dependencies, and to finish collecting dependencies:

org . e k s t a z i . Ekstaz i . i n s t ( ) . c h e ck I fA f f e c t ed ( ”name” )

org . e k s t a z i . Ekstaz i . i n s t ( ) . s ta r tCo l l e c t ingDependenc i e s ( ”name” )

org . e k s t a z i . Ekstaz i . i n s t ( ) . f i n i s hCo l l e c t i n gDependenc i e s ( ”name” )

where “name” is used as an id to refer to the collected dependencies for a segment of

code (e.g., a fully qualified test class name). These primitives can be invoked from any JVM

code. For example, to integrate Ekstazi with JUnit, we implement a listener that invokes

startCollectingDependencies before JUnit executes the first test method in a class and

invokes finishCollectingDependencies after JUnit executes the last test method in a class.

3.4.4 Options

Ekstazi provides several options to customize its behavior: (1) forceall (boolean) can be

used to force the execution of all tests (even if they are not affected by recent changes) and

recollect dependencies, (2) forcefailing (boolean) can be used to force the execution of

the tests that failed in the previous run (even if they are not affected by recent changes),

(3) skipme (boolean) can be set to true to have all tests run without Ekstazi, (4) root.dir

(File) can be used to specify a directory where the dependencies for each test entity are

stored, (5) dependencies.append (boolean) can be set to true to indicate that newly col-

lected dependencies should be appended to the existing dependencies for the same test

entity, (6) hash.algorithm ({Adler,CRC32,MD5}) can be used to specify the algorithm to be

used to compute the checksums of collected dependencies, and (7) hash.without.debuginfo

(boolean) can be set to false to indicate that debug Java information should be included

when computing the checksum. The Ekstazi options can be specified in .ekstazirc file

(saved either in home directory or the current working directory), which is loaded when

Ekstazi is started.
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3.5 Discussion

In this section we briefly discuss our results and the implications of using Ekstazi with

various tests.

Coarser Dependencies Can Be Faster: We argue that the cost of FaultTracer is due

to its approach and not just due to its implementation being a research tool. The cost

of FaultTracer stems from collecting fine-grained dependencies, which affects both the

A and C phases. In particular, the A phase needs to parse both old and new revisions

and compare them. While Orso et al. [124] show how some of that cost can be lowered

by filtering classes that did not change, their results show that the overhead of parsing

and comparison still ranges from a few seconds up to 4min [124]. Moreover, collecting

fine-grained dependencies is also costly. For example, we had to stop FaultTracer

from collecting ECFG dependencies of CommonsMath after one hour; it is interesting

to note that CommonsMath also has the most expensive C phase for Ekstazi (∼8X for

the initial run when there is no prior dependency information). Last but not least, in

terms of adoption, FaultTracer and similar approaches are also more challenging than

Ekstazi because they require access to the old revision through some integration with

version-control systems. In contrast, Ekstazi only needs the checksums of dependent

files from the old revision.

Sparse Collection: Although Ekstazi collects dependencies at each revision by default,

one can envision collecting dependencies at every n-th revision. Note that this approach

is safe as long as the analysis phase checks the changes between the current revision

and the latest revision for which dependencies were collected. This approach avoids

the cost of frequent collection but leads to less precise selection [49, 63].

Duplicate Tests: In a few cases, we observed that Ekstazi did not run some tests during

the first run, which initially seemed like a bug in Ekstazi. However, inspecting these

cases showed that some test classes were (inefficiently) included multiple times in the

same test suite by the original developers. When JUnit (without Ekstazi) runs these

classes, they are indeed executed multiple times. But when Ekstazi runs these test
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suites, after it executes a test for the first time, it saves the test’s dependencies, so

when the test is encountered again for the same test suite, all its dependencies are

the same, and the test is ignored. Effectively, the developers of these projects could

speed up their test suites by rewriting the build configurations or the test suites to not

run the same tests multiple times. More precisely, if the same test method name is

encountered consecutively multiple times, Ekstazi does not ignore the non-first runs

but instead unions the dependencies for those invocations, to support parameterized

unit tests [148].

Parameterized Tests: Recent versions of JUnit support parameterized unit tests [148]. A

parameterized test defines a set of input data and invokes a test method with each

input from the set; each input may contain multiple values. This approach is used in

data-driven scenarios where only the test input changes, but the test method remains

the same. Currently, Ekstazi considers a parameterized unit test as a single test and

unions the dependencies collected when executing the test method with each element

from the input data set. In the future, we could explore tracking individual invocations

of parameterized tests.

Flaky Tests: Tests can have non-deterministic executions for multiple reasons such as

multi-threaded code, asynchronous calls, time dependencies, etc. If a test passes and

fails for the same code revision, it is often called a “flaky test” [112]. Even if a test

has the same outcome, it can have different dependencies in different runs. Ekstazi

collects dependencies for a single run and guarantees that the test will be selected if

any of its dependencies from that run changes. However, if a dependency changes for

another run that was not observed, the test will not be selected. Considering only one

run is the common approach in RTS [138] because collecting dependencies for all runs

(e.g., using software model checking) would be costly.

Dependent Tests: Some test suite have (order) dependencies among tests [39,87,159], e.g.,

if a test t1 executes before test t2, then t2 passes, but otherwise it fails. Ekstazi does

not detect such dependencies among the tests. This ignoring of dependencies could
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lead to test failures if Ekstazi selects a test (e.g., t2) that depends on an unselected

test (e.g., t1). In case when developers intentionally create dependencies (e.g., for

performance reasons), RTS would have to be dependency-aware.

Parallel Execution vs. RTS: It may be (incorrectly) assumed that RTS is not needed in

the presence of parallel execution. However, even companies with an abundance of

resources cannot keep up with running all tests for every revision [65, 146, 149]. Ad-

ditionally, parallel test execution is orthogonal to RTS. Namely, RTS can significantly

speed up test execution even if the tests are run in parallel. For example, tests for

four projects used in our evaluation (ClosureCompiler, Hadoop, Jenkins, and JGit)

execute by default on all available cores; in our case, tests were running on four cores.

Still, we can observe a substantial speedup in testing time when Ekstazi is integrated

even in these projects. Moreover, RTS itself can be parallelized. In loose integration

(Section 3.2.2), we can run A of all tests in parallel and then run EC of all tests in

parallel. In tight integration, we can run AEC of all tests in parallel.

Unpredictable Time: One criticism that we heard about RTS is that the time to execute

the test suite is not known by the developer in advance and is highly dependent on

the changes made since the previous test session. If the A and E phases are together,

Ekstazi indeed cannot easily estimate the execution time (or the number of tests),

because it checks the dependencies for a test entity just before that entity starts the

execution. On the other hand, if the A and E phases are separate, Ekstazi can

estimate the execution time as soon as the A phase is done, based on the time for each

test entity recorded during the previous runs.

3.6 Threats to Validity

In this section we describe several threats to the validity of our evaluation of Ekstazi.

External: The set of projects that we used in the evaluation may not be representative.

To mitigate this threat, we performed our experiments on a large number of projects
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that vary in size of code and tests, number of developers, number of revisions, and

application domain. The set of evaluated projects is by far the largest set of projects

used in any RTS study.

We performed experiments on 20 revisions per project; the results could differ if we

selected more revisions or different segments from the software history. We consid-

ered only 20 revisions to limit the machine time needed for experiments. Further, we

consider each segment right before the latest available revision (at the time when we

started the experiments on the project).

The reported results for each project were obtained on a single machine. The results

may differ based on the configuration (e.g., available memory). We also tried a small

subset of experiments on another machine and observed similar results in terms of

speed up, although the absolute times differed due to machine configurations. Because

our goal is to compare real time, we did not want to merge experimental results from

different machines.

Internal: Ekstazi implementation may contain bugs that may impact our conclusions. To

increase the confidence in our implementation, we reviewed the code, tested it on a

number of (small) examples, and manually inspected several results for both small and

large projects.

Construct: Although many RTS techniques have been proposed in the past, we compared

Ekstazi only with FaultTracer. To the best of our knowledge, FaultTracer was the

only other available RTS tool. Our focus in comparison is not only on the number of

selected tests but primarily on the end-to-end time taken for testing. We believe that

the time that the developer observes, from initiating the test-suite execution for the

new code revision until all the test outcomes become available, is the most relevant

metric for RTS.
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3.7 Summary

This chapter introduced a novel, efficient RTS technique, called Ekstazi, that is being

adopted in practice. Ekstazi substantially speeds up regression testing (by reasoning about

two project revisions). Ekstazi’s use of coarse-grain dependencies, coupled with a few

optimizations, provides a “sweet-spot” between AC phases and E phase, which results in the

lowest end-to-end time.
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CHAPTER 4

Regression Test Selection for Distributed Software

Histories

This chapter presents the contributions of the Ekstazi approach that was developed with

the aim to improve efficiency of any RTS technique for software that uses distributed version

control systems. This chapter is organized as follows. Section 4.1 presents our running

example that illustrates three options for our approach. Section 4.2 formalizes our RTS

options for distributed software histories. Section 4.3 presents the correctness proofs of the

options. Section 4.4 presents our evaluation and discusses the implications of the results.

4.1 Example

We motivate RTS for distributed software histories through an example session using Git, a

popular distributed version control system (DVCS).

Distributed software histories: Figure 4.1a visualizes a software history obtained by

performing the sequence of Git commands from Figure 4.1c. First, we initialize the software

history1, add two files and make a commit n1 with these files (lines 1-4). Figure 4.1b

shows the abstract representation of the committed files C and T; file C (“Code”) defines

three methods m, p, and q that are checked by four tests t1, t2, t3, and t4 defined in file

T (“Test”). Second, we create a new branch b1 (line 5), and make and commit changes to

methods m (lines 6–7) and p (lines 8–9). Third, we create another branch b2 (lines 10–11)

and perform a similar sequence of commands as on the first branch (lines 12–15). Finally,

we switch to the master branch (line 16) and perform a similar sequence of commands

(lines 17–20). Although the sequence of commands is similar for each branch, we assume

non-conflicting changes on different branches.

1git init creates the initial node not shown in Figure 4.1a.
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(a) Example software history

Code
Methods in C

m p q

T
e
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s
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T t1 {m();} ✓ ✗ ✗

t2 {p();} ✗ ✓ ✗

t3 {q();} ✗ ✗ ✓

t4 {m();p();} ✓ ✓ ✗

(b) Methods and tests in C and T

1 git init // initialize the repository
2 git add C // add C to the repository
3 git add T // add T to the repository
4 git commit -m ‘C and T’ // commit n1

5 git checkout -b b1 // create branch b1
6 δ1(m) // modify method m in branch b1
7 git commit -am ‘Modified m’ // commit n2

8 δ2(p) // modify method p in branch b1
9 git commit -am ‘Modified p’ // commit n3

10 git checkout master // go to master branch
11 git checkout -b b2 // create branch b2
12 δ3(m) // modify method m in branch b2
13 git commit -am ‘Modified m’ // commit n4

14 δ4(p) // modify method p in branch b2
15 git commit -am ‘Modified p’ // commit n5

16 git checkout master // go to master branch
17 δ5(p) // modify method p in master branch
18 git commit -am ‘Modified p’ // commit n6

19 δ6(q) // modify method q in master branch
20 git commit -am ‘Modified q’ // commit n7

(c) Sequence of commands that creates
the history on the left

Figure 4.1: Example of a distributed software history

Figure 4.1b further shows which test executes which method; we assume that we have

available such a dependency matrix for every revision in the software history. When a

method changes, the tests that executed that method are called modification-traversing

tests. We focus on modifications at a method level for simplicity of presentation; one can

track dependencies of other program elements as well [157]. In fact, our implementation

tracks dependencies on files, as presented in Chapter 3.

Traditional test selection: Traditional test selection takes as input an old and new

revision (together with their test suites), and a dependency matrix for the old revision, and

returns a set of tests from the new revision such that each test in the set either is new

or traverses at least one of the changes made between the old and the new revision. We

have illustrated RTS between two code revisions in Section 3.1, and we formally define it

in Section 4.2. Tests that traverse a change can be found from the dependency matrix by

taking all the tests that have a checkmark (’✓’) for any changed method (corresponding to

the appropriate column in Figure 4.1b).

In our running example, all tests are new at n1, thus all tests are selected. Figure 4.1a
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indicates above each node the set of selected tests. At revision n2, after modifying method

m, test selection would take as input n1 and n2, and would return all tests that traverse

the changed method. Based on our dependency matrix (Figure 4.1b), we can identify that

tests t1 and t4 should be selected. Following the same reasoning, we can obtain a set of

selected tests for each revision in the graph. For simplicity of exposition, we assume that

the dependency matrix remains the same for all the revisions. However, the matrix may

change if a modification of any method leads to modification in the call graph. In case of a

change, the matrix would be recomputed; however, note that for each test that is not selected

(because it does not execute any changed method), the row in the dependency matrix would

not change.

Test selection for distributed software histories: Test selection for distributed soft-

ware histories has not been studied previously, to the best of our knowledge. We illustrate

what the traditional test selection would select when a software history (Figure 4.1a) is ex-

tended by executing some of the commands available in DVCSs. Specifically, we show that

a naive application of the traditional test selection leads to safe but imprecise results (i.e.,

selects too much), or requires several runs of traditional test-selection techniques, which in-

troduces additional overhead and therefore reduces the benefits of test selection. We consider

four commands: merge, rebase, cherry-pick, and revert.

n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6

{t2,t4}

n7

{t3}

n8

{t1,t2,t4}

δ1(m)

δ5(p)

δ3(m)

δ2(p)

δ4(p)

δ6(q)

Figure 4.2: Extension of a software history (Figure 4.1) with git merge b1 b2

Command: Merge. The merge command joins two or more development branches

together. A merge without conflicts and any additional edits is called auto-merge and is

the most common case in practice. Auto-merge has a property that the changes between

the merge point and its parents are a subset of the changes between the parents and the
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lowest common ancestors [40, 59] of the parents; we exploit this property in our technique

and discuss it further in Section 4.2. If we execute git merge b1 b2 after the sequence shown

in Figure 4.1c, while we are still on the master branch, we will merge branches b1 and b2

into a new revision n8 on the master branch; this revision n8 will have three parents: n3,

n5, and n7. Figure 4.2 visualizes the software history after the example merge command.

The question is what tests to select to run at revision n8.

We propose three options (and Section 4.4 summarizes how to automatically choose

between these options). First, we can use traditional test selection between the new revision

(n8) and its immediate dominator (n1) [11]. In our example, the changes between these

two revisions modify all the methods, so test selection would select all four tests. The

advantage of this option is that it runs traditional test selection only once, but there can

be many changes, and therefore many tests are selected. Second, we can run the traditional

test selection between the new revision and each of its parents and take the intersection of

the selected tests. In our example, we would run the traditional test selection between the

following pairs: (n3, n8), (n5, n8), (n7, n8); the results for each pair would be: {t1,t2,t3,t4},

{t1,t2,t3,t4}, and {t1,t2,t4}, respectively. The intersection of these sets gives the final

result: {t1,t2,t4}. The intuition is that the tests not in the intersection ({t3}) need not

be run because their result for the new revision (n8) can be copied from at least one parent

(from n7 in this case). Although the second option selects fewer tests, it requires running

traditional test selection three times, which can lead to substantial overhead. Third, we can

collect tests that were modification-traversing on at least two branches (from the branching

revision at n1 to the parents that get merged). In our example, we would select {t1,t2,t4}.

As opposed to the two previous options, this third option requires zero runs of the traditional

test-selection techniques. However, this option is only safe for auto merge and requires that

the test selection results be stored for previous revisions.

Command: Rebase. Rebase is an alternative way to integrate changes from one branch

into another. If we execute git rebase b1 after the sequence shown in Figure 4.1c, we will

rewind changes done on master branch (δ5 and δ6), replay changes from branch b1 onto

master (δ1 and δ2), and replay the changes frommaster (δ5 and δ6). Figure 4.3 visualizes the

software history after the example command is executed. Note that the resulting revision (n9)
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n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6 n7 n8 n9

{t2,t4}

δ1(m)

δ1(m)

δ3(m)

δ2(p)

δ4(p)

δ2(p) δ5(p) δ6(q)

Figure 4.3: Extension of a software history (Figure 4.1) with git rebase b1

is the same as if a merge command was executed on master branch (git merge master b1).

The question is the same as for the merge command, what should be selected at n9.

We propose three options, which are equivalent to the options for the merge command of

two branches. First, we can use traditional test selection between the immediate dominator

of the new revision and the latest revision on the branch being rebased (n1), and the new

revision (n9). In our example, the changes between these two revisions modify all the

methods, so test selection would select all four tests. Second, we can use traditional test

selection between the new revision (n9) and the latest revisions on branches to/from which

we are rebasing (n3 and n9) and take the intersection of the selected tests. In our example,

we would run the traditional test selection between the following pairs: (n3, n9), (n7, n9);

the results for each pair would be: {t2,t3,t4} and {t1,t2,t4}, respectively. The intersection

of these sets gives the final result: {t2,t4}. Note that we use revisions n3 and n7 that are

available before rebase rewrites the software history on the master branch. Third, we can

collect tests that were modification-traversing on both branches that are used in rebase. As

for the second option, we use the software history before it gets overridden. In our example,

we would select {t2,t4}. As for the merge command, the third option works only if there

are no conflicts during rebase.

Command: Cherry-pick. Cherry-pick copies the changes introduced by some existing

commit, typically from one branch to another branch. If we execute git cherry-pick n2

after the sequence shown in Figure 4.1c, we will apply changes (δ1) made between revisions

n1 and n2 on top of revision n7 in master branch; the master branch will be extended with

a new revision n8. Figure 4.4 visualizes the software history after the command mentioned
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n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6

{t2,t4}

n7

{t3}

n8

{t4}

δ1(m)

δ5(p)

δ3(m)

δ2(p)

δ4(p)

δ6(q) δ1(m)

Figure 4.4: Extension of a software history (Figure 4.1) with git cherry-pick n2

above. The question is the same as for the merge command, what should be selected at n8.

Naively applying the traditional test selection on revisions n7 and n8 would select the same

tests as at revision n2, i.e., {t1,t4}. However, test t1 does not need to be selected at n8,

as this test is not affected by changes on the master branch (on which the cherry-picked

commit is applied). Therefore, the outcome of t1 at n8 will be the same as at n2.

n1

{t1,t2,t3,t4}

n2

{t1,t4}

n3

{t2,t4}

n4

{t1,t4}

n5

{t2,t4}

n6

{t2,t4}

n7

{t3}

n8

{}

δ1(m)

δ5(p)

δ3(m)

δ2(p)

δ4(p)

δ6(q) -δ5(p)

Figure 4.5: Extension of a software history (Figure 4.1) with git revert n6

Command: Revert. This command reverts some existing commits. If we execute

git revert n6 after the sequence shown in Figure 4.1c, we will revert changes made between

revisions n1 and n6. Figure 4.5 visualizes the software history after the example command

is executed. To visualize a change that is reverting a prior change, we use the − sign and the

same symbol as for the change being reverted. The master branch will be extended with a

new revision n8. Naively applying traditional test-selection techniques between revisions n7

and n8 would select the same set of tests as at revision n6. Instead, if we consider the revert

command being executed and changes being made, we can reuse the results of a test from

revision n1 as long as the test is not modification-traversing for any other change after the

revision being reverted (n6). In our example, we can see that the result of all tests obtained
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at n1 can be reused at n8, and therefore no test has to be selected.

To conclude, naively applying traditional test selection may lead to imprecise results

and/or spend too much time on analysis. We believe that our technique, which reasons

about the history and commands being executed, leads to a good balance between reduction

(in terms of the number of tests being executed) and time spent on analysis.

4.2 Test Selection Technique

4.2.1 Modeling Distributed Software Histories

We model a distributed software history as a directed acyclic graph G = ⟨N,E⟩ with a

unique root n0 ∈ N corresponding to the initial revision. Each node n ∈ N corresponds to

a revision, and each edge corresponds to the parent-child relation among revisions. Each

node is created by applying one of the DVCS commands to a set of parent nodes; we

assume the command is known. (While the command that creates a node is definitely

known at the point of creation, it is not usually kept in the DVCS and cannot always be

uniquely determined from the history.) The functions pred(n) = {n′ ∈ N ∣ ⟨n′, n⟩ ∈ E}

and succ(n) = {n′ ∈ N ∣ ⟨n,n′⟩ ∈ E} denote the set of parents and children of revision n,

respectively. We write n ⪯ n′ if there exists a directed path from n to n′ or the two nodes

are the same. We write n ⪯∗ n′ to denote the set of all nodes between revisions n and n′:

n ⪯∗ n′ = {n′′ ∣ n ⪯ n′′ and n′′ ⪯ n′}. Similarly, we write n ⪯e n′ to denote the set of all

edges between revisions n and n′: n ⪯e n′ = {⟨n′′, n′′′⟩ ∈ E ∣ n′′, n′′′ ∈ n ⪯∗ n′}. The function

sdom(n) = {n′ ∣ n0 ⪯e n′ ∪n′ ⪯e n = n0 ⪯e n and n ≠ n′} denotes the set of nodes that strictly

dominate n. For n ≠ n0, the function imd(n) denotes the unique immediate dominator [11] of

n, i.e., imd(n) = n′ such that n′ ∈ sdom(n) and ∄n′′ ∈ sdom(n) such that n′ ∈ sdom(n′′). The

function dom(n,n′) denotes the lowest common dominator of n and n′, i.e., for a revision

n′′ such that pred(n′′) ⊇ {n,n′}, dom(n,n′) = imd(n′′). The function lca(n,n′) denotes

the lowest common ancestors [40, 53, 59] (also known as “merge-bases” or “best common

ancestors” in Git terminology [73, 96]) for two revisions, i.e., lca(n,n′) = {n′′ ∣ n′′ ⪯ n and

n′′ ⪯ n′ and ∄n′′′ ≠ n′′ such that n′′′ ⪯ n and n′′′ ⪯ n′ and n′′ ⪯ n′′′}. (We illustrate the
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difference between lca and dom in Section 4.3.) The following property holds for all nodes:

dom(n,n′) ⪯ lca(n,n′) (4.1)

4.2.2 Test Selection for Two Revisions

We formalize test selection following earlier work in the area [136, 157] and also model

changes and modification-traversing tests used later in our technique. This section focuses

on test selection between two software revisions. The next sections present our technique

for distributed software histories.

Let G be a distributed software history. For a revision n, let A(n) denote the set of tests

available at the revision n. Let n and n′ be two revisions such that n ⪯ n′. A test selection

technique takes as input the revisions n and n′ and returns a subset Ssel(n,n′) of A(n′).

Note that new tests, i.e, A(n′) ∖A(n) are always in Ssel(n,n′). A test-selection technique is

safe [135] if every test in A(n′)∖Ssel(n,n′) has the same outcome when run on the revisions

n and n′.

A trivially safe test-selection technique returns A(n′). However, we are interested in

selection techniques that select as small a subset as possible. One way to obtain a minimal

set is to run each test in A(n′) on the two revisions and keep those that have different

outcomes. However, the purpose of the test selection technique is to be more efficient than

running all tests. A compromise between minimality and efficiency is provided by the notion

of modification-traversing tests [136], which syntactically over-approximate the set of tests

that may have a different outcome.

Let ∂(n,n′) be the set of static code changes between revisions n and n′ (which need

not be parent-child revisions). Various techniques compute these changes at various levels

of granularity (e.g., basic blocks, statements, methods, or other program elements). By

extension, we denote the set of changes on all edges from n to n′ as

∂⋆(n,n′) = ⋃
⟨n′′,n′′′⟩ ∈n⪯en′

∂(n′′, n′′′)
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We use the following property:

∂(n,n′) ⊆ ∂⋆(n,n′) (4.2)

It is not an equality because some changes can be reverted on a path from n to n′, e.g.,

consider a graph with three (consecutive) revisions n1, n2, and n3, where all the changes

between n1 and n2 are reverted between n2 and n3: the code at n3 is exactly the same as

the code at n1, and therefore ∂(n1, n3) = {}.

A test is called modification-traversing if its execution on n executes any code element

that is modified in n′. For example, in Chapter 3, we introduced a technique where a test is

modification-traversing if it depends on at least one file that is modified between n and n′.

(Note that “modified” includes all the cases where the existing elements from n are changed

or removed in n′ or where new elements are added in n′.) We define a predicate ς(t, ∂) that

holds if the test t is modification-traversing for any change in the given set of changes ∂.

The predicate can be computed by tracking code paths during a test run and intersecting

covered program elements with a syntactic difference between the two revisions. We define

a function mt(T, ∂) = {t ∈ T ∣ ς(t, ∂)} that returns every test from the set of tests T that is

modification-traversing for any change in the set of changes ∂. Two properties that we will

need later are that mt distributes over changes:

mt(T, ∂1 ∪ ∂2) = mt(T, ∂1) ∪mt(T, ∂2) (4.3)

and thus mt is monotonic with respect to the set of changes:

∂ ⊆ ∂′ implies mt(T, ∂) ⊆ mt(T, ∂′) (4.4)

Traditional test selection selects all modification-traversing tests from the old revision that

remain in the new revision and the new tests from the new revision:

tts(n,n′) = mt(A(n) ∩A(n′), ∂(n,n′)) ∪ (A(n′) ∖A(n)) (4.5)
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As pred(n′) is often a singleton {n}, we also write tts({n}, n′) = tts(n,n′).

4.2.3 Test Selection for Distributed Software Histories

Our technique for test selection takes as inputs (1) the software history G = ⟨N,E⟩ optionally

annotated with tests selected at each revision, (2) a specific revision h ∈ N that represents

the latest revision (which is usually called HEAD in DVCS), and (3) optionally the DVCS

command used to create the revision h. It produces as output a set of selected tests Ssel(h)

at the given software revision. (We assume that the output of our technique is intersected

with the set of available tests at HEAD.) We define our technique and prove (in Section 4.3)

that it guarantees safe test selection.

Command: Commit: The h revision has one parent, and the changes between the parent

and h can be arbitrary, with no special knowledge of how they were created. The set of

selected tests can be computed by applying the traditional test selection between the h

revision and its parent:

Scommit(h) = tts(pred(h), h) (4.6)

Command: Merge: Merge joins two or more revisions and extends the history with a

new revision that becomes h. We propose two general options to compute the set of selected

tests at h: the first is fast but possibly imprecise, and the second is slower but more precise.

Option 1: This option performs the traditional test selection between the immediate

dominator of h and h itself:

S
1
merge(h) = tts(imd(h), h) (4.7)

This option is fast: it computes only one traditional test selection, even if the merge has many

parents. However, the number of modifications between the two revisions being compared

can be large, leading to many tests being selected unnecessarily. Our empirical evalua-

tion in Section 4.4 shows that this option indeed selects too many tests, discouraging the

straightforward use of this option.
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Option 2: This option performs one traditional test selection between each parent of the

merged revision and the merged revision h itself, and then intersects the resulting sets:

S
k
merge(h) = ⋂

n∈pred(h)

tts(n,h) (4.8)

This option can be more precise, selecting substantially fewer tests. However, it has to run

k traditional RTS analyses for k parents. Note that we could go to the extreme and, for

a given software history with nodes N (whose number is ∣N ∣), define S
∣N ∣
merge that performs

one traditional RTS analysis between each revision in the software history and the merge

revision, and then takes their intersection: S
∣N ∣
merge(h) = ∩n∈N tts(n,h). This would be the

most precise option for the given history and the given traditional RTS, but it would require

∣N ∣ traditional RTS analyses.

Theorem 1. S1
merge(h) and Sk

merge(h) are safe for every merge revision h.

We prove this Theorem in Section 4.3.

Note that S1
merge(h) and Sk

merge(h) are incomparable in terms of precision; in general

one or the other could be smaller, but in practice Sk
merge(h) is almost always much better

(Section 4.4). A contrived example (Figure 4.6) where S1
merge(h) is smaller is this: starting

from a node n1, branch into n2 (that changes some method m to m′) and n3 (that changes

the same m to m′′), and then merge n2 and n3 into n4 such that m in n4 is the same as m

in n1 (note that such a merge requires manually resolving the conflict of different changes in

m′ and m′′); we have ∂(n1, n4) = {} while ∂(n2, n4) ∩ ∂(n3, n4) = {m}, and thus Sk
merge(n4)

would select all tests that depend on m, whereas S1
merge(n4) would not select any test.

n1

{t}

n2

{t}

n3

{t}

n4

S
1
merge={},S

k
merge={t}

δ1(m)

δ2(m)

Figure 4.6: Sk
merge may select more tests than S1

merge; n1 = n4 and δ1(m) ≠ δ2(m)
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Command: Automerge: A common special case of merge is auto merge, where revisions

are merged automatically without any manual changes to resolve conflicts. (Using the ex-

isting DVCS commands can quickly check if a merge is an auto merge.) Empirically (see

Table 4.1), auto merge is very common: on average over 90% of revisions with more than

one parent are auto merges.

The key property of auto merge is that the merged code revision has a union of all

code changes from all branches but has only those changes (i.e., no other manual changes).

Formally, given k parents p1, p2, . . . pk that get merged into a new revision h, the changes

from each parent p to the merged revision h reflect the changes on all the branches for

different parents:

∂(p,h) = ⋃
p′∈pred(h),p′≠p

⋃
l∈lca(p,p′)

∂(l, p′) (4.9)

The formula uses lca because of the way Git auto merges branches [73, 96].

For auto merge, we give a test-selection technique, S0
merge, that is based entirely on the

software history up to the parents being merged and does not require running any traditional

test selection between pairs of code revisions at the point of merge (although it assumes that

test selection was performed on the revisions up to the parents of the merge). The set of

selected tests consists of the (1) existing tests (from the lowest common dominator of two

(different) parents of h) affected by changes on at least two different branches being merged

(because the interplay of the changes from various branches can flip the test outcome):

Saff (h) = ⋃
p,p′∈pred(h),p≠p′,d=dom(p,p′)

( ⋃
n∈d⪯∗p∖{d}

Ssel(n)) ∩ ( ⋃
n∈d⪯∗p′∖{d}

Ssel(n)) (4.10)

and (2) new tests available at the merge point but not available on all branches:

Snew(h) = A(h) ∖ ⋂
p′′∈pred(h)

A(p′′) (4.11)

Finally, S0
merge(h) = Saff (h) ∪ Snew(h). The advantage of this option is that it runs zero

traditional test selections. One disadvantage is that it could select more tests than Sk
merge.
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Another disadvantage is that it requires storing tests selected at each revision.

Theorem 2. S0
merge(h) is safe for every auto merge revision h.

Intuitively, S0
merge is safe because a test that is affected on only one branch need not be

rerun at the merge point: it has the same result at that point as on that one branch. The

proof is in Section 4.3.

Command: Rebase: Rebase replays the changes from one branch into another and then

reapplies the local changes; the latest reapplied local change becomes h. We denote the

latest revisions on the branch from/to which we rebase as n
from

rebase and nto
rebase, respectively.

We propose two options to compute the set of selected tests at h. These options are based

on the observation that the merge and rebase commands are used to achieve the same goal

(but produce different shapes of the resulting software history). Note that all the rebase

options, introduced below, perform as we had done a merge first, compute the set of selected

tests, and then perform rebase that changes the shape of the software history. Specifically,

we denote hmerge (≡ h) to be the result of a merge command on two branches that are used

in the rebase command. The partial evaluation of S1
merge and Sk

merge, when the number of

branches is equal to two, results in the following options:

S
1
rebase(h) = tts(imd(hmerge), hmerge) (4.12)

S
2
rebase(h) = tts(n

to
rebase, hmerge) ∩ tts(n

from

rebase, hmerge) (4.13)

Similarly, we can define an option for a special case when rebase is auto rebase:

S
0
rebase(hmerge) = ( ⋃

n∈d⪯∗nfrom

rebase
∖{d}

Ssel(n) ∩ ⋃
n∈d⪯∗nto

rebase
∖{d}

Ssel(n))

∪ (A(hmerge) ∖ ⋂
p∈{nfrom

rebase
,nto

rebase
}

A(p)) (4.14)

Command: Cherry-pick: Cherry-pick reapplies the changes that were performed be-

tween a commit ncp and one of its parents n′cp ∈ pred(ncp) (the parent can be implicit for
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non-merge ncp), and extends the software history (on the branch where the command is ap-

plied) with a new revision h. We propose two options to determine the set of selected tests

at h. The first option uses the general selection for a commit (the traditional test selection

between the current node and its parent): S1
cherry(h) = tts(pred(h), h).

The second option, called S0
cherry, does not require running traditional test selection, but

is safe only for auto cherry-pick. This option selects all tests that satisfy one of the following

four conditions: (1) tests selected between n′cp and ncp, and also selected between the point

p at which cherry-pick is applied ({p} = pred(h)) and d = dom(p,n′cp); (2) tests selected

between n′cp and ncp, and also selected before n′cp up to d; (3) new tests at ncp; and (4) new

tests between d and p.

S
0
cherry(h) = (Ssel(n

′
cp, ncp) ∩ ((∪n∈d⪯∗p∖{d}Ssel(n)) ∪ (∪n∈d⪯∗n′cp∖{d}Ssel(n))))

∪ (A(ncp) ∖A(n
′
cp)) ∪ (A(p) ∖A(d)) (4.15)

The intuition for (1) is that the combination of changes that affected tests on both branches,

from d to p and from d to n′cp, may lead to different test outcomes. The intuition for (2) is

that changes before ncp may not exist in the branch on which the cherry-pick is applied and

so the outcome of these tests may change. If neither (1) nor (2) holds, the test result can be

copied from ncp. The formula for cherry pick is similar to that for auto merge but applies

to only one commit being cherry picked rather than to an entire branch being merged.

Command: Revert: Revert computes inverse changes of some existing commit nre and

extends the software history by applying those inverse changes to create a new revision that

becomes h. (Reverting a merge creates additional issues that we do not handle specially:

one can always run the traditional test selection.) Similar to cherry-pick, we propose two

options to determine the set of selected tests. The first option is a naive application of the

traditional test selection between h and its parent, i.e., S1
revert(h) = tts(pred(h), h).

The second option, called S0
revert, does not run traditional test selection, but is safe only

for auto revert. It selects all tests that satisfy one of the following four conditions: (1) tests

selected between nre and its parent ({p′} = pred(nre)), and also selected before the point to

which the revert is applied ({p} = pred(h)) up to the dominator of p and p′ (d = dom(p, p′));
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(2) tests selected between nre and its parent p′, and also selected before the point that is

being reverted (p′) up to d; (3) tests that were deleted at the point being reverted (such that

in the inverse change tests are added); and (4) new tests between d and p:

S
0
revert(h) = (Ssel(p

′, nre) ∩ ((∪n∈d⪯∗p∖{d}Ssel(n)) ∪ (∪n∈d⪯∗p′∖{d}Ssel(n))))

∪ (A(p′) ∖A(nre)) ∪ (A(p) ∖A(d)) (4.16)

Intuitively, revert is an inverse of cherry-pick and safe for the same reasons: the unselected

tests would have the same outcome at the h revision as at the revision prior to nre.

4.3 Proofs of Theorems

Proof. (Theorem 1) S1
merge(h) is safe whenever a safe traditional test selection is used. This

traditional test selection is safe for any pair of revisions and thus is safe for imd(h) and h

that are compared in formula 4.12.

Sk
merge(h) is likewise safe because tts(n,h) is safe for all nodes n and thus safe for all

parents of h. Taking the intersection of selected tests is safe because any test t that is not

in the intersection has the same result in revision h as it has for at least one of the parents

of that commit, namely the parent(s) whose tts(n,h) does not contain t. ∎

Proof. (Theorem 2) To prove that S0
merge(h) is safe, we will establish that Sk

merge(h) ⊆

S0
merge(h) for any auto merge h.

Let A = A(h). We first prove a lemma for the case with no new tests.

Lemma 1. Sk
merge(h) ⊆ S

0
merge(h) for any auto merge h if A = A(imd(h)).

Proof. Consider first the simplest case when a merge has only two parents p and p′ that

have one lowest common ancestor l. (In general, lowest common ancestor is not unique.)

Then formula 4.13 for Sk
merge becomes mt(A, ∂(p,h)) ∩ mt(A, ∂(p′, h)). Due to the auto

merge property 4.9, this can be rewritten as mt(A, ∂(l, p′)) ∩mt(A, ∂(l, p)). From formula

4.2 we have that ∂(l, p) ⊆ ∂⋆(l, p) (dually for p′), and from formula 4.1 we further have

∂⋆(l, p) ⊆ ∂⋆(d, p) (dually for p′), where d = dom(p, p′). Due to the mtmonotonicity (property
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4.4), the latest intersection is a subset of mt(A, ∂⋆(d, p′)) ∩mt(A, ∂⋆(d, p)), where ∂⋆(d, p) =

⋃n′∈d⪯∗p∖{d}⋃n∈pred(n′) ∂(n,n′) (and dually for p′). Due to the mt distributivity (property 4.3)

(and for cases with one parent, w.l.o.g.), the intersection is (∪n∈d⪯∗p∖{d}mt(A, ∂(pred(n), n))∩

(∪n∈d⪯∗p′∖{d}mt(A, ∂(pred(n), n)), which is exactly the formula for S0
merge (Section 4.2.3) when

there are no new tests, in which case Ssel(n) = mt(A, ∂(pred(n), n)).

Now consider the case where k parents have many lowest common ancestors. We have

the following:

S
k
merge(n) = ⋂

p∈pred(n)

tts(p,n) (by 4.13)

= ⋂
p∈pred(n)

mt(A, ∂(p,n)) (no new tests)

= ⋂
p∈pred(n)

mt(A, ⋃
p′∈pred(n),p′≠p

⋃
l∈lca(p,p′)

∂(l, p′)) (by 4.9)

⊆ ⋂
p∈pred(n)

mt(A, ⋃
p′∈pred(n),p′≠p,d=dom(p,p′)

∂(d, p′)) (by 4.1 and 4.4)

= ⋂
p∈pred(n)

⋃
p′∈pred(n),p′≠p,d=dom(p,p′)

mt(A, ∂(d, p′)) (by 4.3)

= ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

mt(A, ∂(d, p)) ∩mt(A, ∂(d, p′)) (distribute ∩ over ∪)

⊆ ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

mt(A, ∂⋆(d, p)) ∩mt(A, ∂⋆(d, p′)) (by 4.4)

= ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

mt(A,∪n∈d⪯∗p∖{d}∂(pred(n), n)) ∩mt(A,∪n∈d⪯∗p′∖{d}∂(pred(n), n))

(by def.)

= ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

(∪n∈d⪯∗p∖{d}mt(A, ∂(pred(n), n))) ∩ (∪n∈d⪯∗p′∖{d}mt(A, ∂(pred(n), n)))

(by 4.3)

= ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

(∪n∈d⪯∗p∖{d}Ssel(n)) ∩ (∪n∈d⪯∗p′∖{d}Ssel(n)) (no new tests)

= Saff (h) (by 4.14)

∎

Continuing with the proof for the main theorem, consider now the general case when

new tests can be added. We have the following:
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S
k
merge(n) = ⋂

p∈pred(n)

tts(p,n) (by 4.13)

= ⋂
p∈pred(n)

mt(A, ∂(p,n)) ∪ (A ∖A(p)) (by 4.5)

= ⋃
s∈2pred(n)

⋂
p∈s

mt(A, ∂(p,n)) ∩ ⋂
p′∈pred(n)∖s

A ∖A(p′) (distribute ∪ over ∩)

= L1 ∪ ⋃
s∈2pred(n),s≠pred(n)

⋂
p∈s

mt(A, ∂(p,n)) ∩ ⋂
p′∈pred(n)∖s

A ∖A(p′)

(extract one term, L1 = (⋂p∈pred(n)mt(A, ∂(p,n))))

⊆ L1 ∪ ⋃
s∈2pred(n),s≠pred(n)

⋂
p′∈pred(n)∖s

A ∖A(p′) (subset intersection)

= L1 ∪ ⋃
s′∈2pred(n),s′≠{}

⋂
p∈s′

A ∖A(p) (rename complement)

⊆ L1 ∪ ⋃
p∈pred(n)

A ∖A(p) (subset intersection)

= L1 ∪ (A ∖ ⋂
p∈pred(n)

A(p)) (De Morgan’s law)

⊆ ⋃
p,p′∈pred(n),p≠p′,d=dom(p,p′)

(∪n∈d⪯∗p∖{d}Ssel(n)) ∩ (∪n∈d⪯∗p′∖{d}Ssel(n))

⋃(A ∖ ⋂
p∈pred(n)

A(p)) (by Lemma 1)

= S0merge(n) (by 4.14 and 4.11)

∎

Theorem 3. S0
merge(h) would be unsafe if using the lowest common ancestors instead of the

lowest common dominator:

S
0−unsafe
merge (h) = ⋃

p,p′∈pred(h),p≠p′
⋃

l,l′∈lca(p,p′)

( ⋃
n∈l⪯∗p∖{l}

Ssel(n)) ∩ ( ⋃
n∈l′⪯∗p′∖{l′}

Ssel(n))

⋃(A(h) ∖ ⋂
p′′∈pred(h)

A(p′′)) (4.17)

Note that p and p′ must differ, while l and l′ may be the same.

Proof. The formula could seemingly be safe because Git performs auto merge based on lca

(property 4.9). However, Figure 4.7 shows an example version history where this selection

would be unsafe. Suppose that the revision n1 has a test t that depends on a method m.
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This method is changed between revisions n1 and n3, and between revisions n1 and n4. So

the test t would be selected at n3 and n4. But this method is not changed between revisions

n1 and n2. At the merge points n5 and n6, t would not be selected because it was selected on

only one branch each, n3 and n4, respectively, rather than on both branches. So far this is

safe. However, when merging n5 and n6, t would not be selected, because lca(n5, n6) = {n2},

and the test was not selected within the subgraph n2, n5, and n6. However, this test t should

be selected because m was modified on two different paths that reach n7, and thus these

different changes could interplay in such a way that t fails in n7 even if it passes in both n5

and n6.

n1 n2

{}

n3

{t}

n4

{t}

n5

{}

n6

{}

n7

{}

δ1(p)

δ2(m)

δ3(m)

Figure 4.7: Example history to show that using lca (n2) rather than dom (n1) is not safe

∎

To avoid being unsafe, our actual S0
merge(h) uses the lowest common dominator rather

than the lowest common ancestors.

4.4 Evaluation

We performed several experiments to evaluate the effectiveness of our technique. First,

we demonstrate the importance of having a test-selection technique for distributed software

histories by analyzing software histories of large open-source projects and reporting statistics

about these histories. Second, we evaluate the effectiveness of our test-selection technique

by comparing the number of tests selected using S1
merge, S

k
merge, and S0

merge on a number

of software histories (both real and systematically generated), i.e., we consider how much
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Activator a3bc65e 1.2 14 1499 446 10 29 32.35 93.93 95.73

TimesSquare d528622 0.31 22 145 50 1 1 35.86 65.71 96.00

Astyanax ba58831 2.0 59 725 134 3 14 20.82 23.04 94.02

Bootstrap c75f8a5 3.2 474 6893 1573 21 557 31.20 25.75 83.21

Cucumber 5416686 1.2 145 2495 413 21 148 23.32 15.92 77.48

Dagger b135011 0.68 32 531 219 1 1 41.61 83.41 100.00

Dropwizard a01bfd7 1.9 96 1855 238 4 9 13.53 16.23 95.37

EGit 701685b 9.5 70 3574 733 1502 30 63.37 28.32 98.22

Essentials 59b501b 27.0 75 3984 565 69 137 19.35 11.59 95.22

Git 0ecd94d 17.2 1140 35120 7785 10511 1973 57.71 42.62 83.22

GraphHopper e2805e4 7.2 13 1265 59 3 59 9.56 3.64 55.93

Jenkins 1c0077d 42.6 400 16950 1038 213 327 9.30 4.83 85.93

Jersey f5a82fa 14.6 28 1320 326 249 12 44.46 35.14 99.07

Jetty 180d9a5 15.5 22 7438 1024 45 999 27.80 6.98 78.62

JGit 7995d87 9.0 83 2801 615 774 24 50.44 33.35 97.48

JUnit 9917b9f 3.2 78 1617 250 47 129 26.34 21.33 83.20

LinuxKernel e62063d 484.5 11133 400479 27472 151569 – – 30.12 –

LinuxKVM b796a09 406.2 8542 273639 17483 107768 – – 8.92 –

OkHttp 5538ed2 1.1 26 513 212 1 0 41.52 80.16 100.00

TripPlanner 5e7afa5 83.1 60 5168 333 54 131 10.02 5.47 85.88

OrionClient ffec158 11.9 51 6628 902 218 40 17.50 10.31 93.68

Picasso 29e3461 1.3 33 470 174 11 2 39.78 62.26 98.85

Retrofit 5bd3c1e 0.62 61 631 216 4 2 35.18 58.54 99.07

RxJava ae073dd 1.7 39 1212 267 3 39 25.49 49.74 89.51

Min - 0.31 13 145 50 1 0 9.30 3.64 55.93

Max - 484.5 11133 400479 27472 151569 1973 63.37 93.93 100.00

Median - 5.20 60.50 2175.00 373.00 19.49 34.50 31.77 27.03 94.62

Ari. mean - 47.77 945.66 32373.00 2605.29 11379.25 211.95 31.76 34.05 90.25

Geo. mean - 5.69 79.04 2275.60 415.71 45.60 21.11 18.91 20.49 51.93

Std. Dev. - 121.71 2717.26 93955.04 6343.27 36281.83 447.38 14.19 26.56 10.30

† We use a heuristic to determine the number of authors and rebases

Table 4.1: Statistics for several projects that use Git

test selection would have saved had it been run on the revisions in the history. Third, we

compare S1
cherry and S0

cherry on a number of real cherry-pick commits.

We do not evaluate the proposed technique for rebase and revert commands because

software histories do not keep track of the commands that created each revision. In partic-

ular, we cannot identify precisely whether a revision in the history was created by actually

running a special command (such as rebase or revert) or by developers manually editing the

code and using a general commit command. In actual practice [144, 146], the developers
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Project Test [methods] Time [sec]

min max min max

Cucumber (core) 156 308 10 14

GraphHopper (core) 626 692 14 20

JGit 2231 2232 106 116

Retrofit 181 184 10 10

Table 4.2: Statistics for projects used in the evaluation of S1
merge, S

k
merge, and S0

merge

S
el
ec
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d
te
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s
[%
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Figure 4.8: Percentage of selected tests for real merges using various options

would use our technique when they create a new software revision and the command being

executed is known. Further, note that the proposed technique for rebase command is based

on the technique for merge command, so the test selection for these commands should on

average have similar savings.

Real software histories are highly non-linear: We collected statistics for software

histories of several open-source projects that use Git. To check whether software histories
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are non-linear across many project types, we chose projects from different domains (e.g.,

Cucumber is a tool for running acceptance tests, JGit is a pure Java implementation of the

Git version-control system, etc.), implemented in different languages, of various sizes, having

different number of unit tests and developers. Table 4.1 shows the collected statistics for 24

projects. The key column is (M+R+CR)/C that shows the ratio of the number of merges,

rebases2, cherry-picks, and reverts over the total number of commits for the entire software

history. The ratio can be as high as 63.37% and is 31.76% on average. Stated differently,

we may be able to improve test selection for about a third of the commits in an average

DVCS history. Additionally, we collected a similar ratio only for the master branch, because

most development processes run tests for all commits on that branch but not necessarily on

other branches (e.g., see the Google process for testing commits [146]). While this ratio

included only merges (and not rebases, cherry-picks, or reverts), its average is even higher

for the master branch than for the entire repository (34.05% vs. 31.76%), which increases

the importance of test selection for distributed software histories. Finally, to confirm that

the ratio of merges is independent of the DVCS, we collected statistics on three projects

that use Mercurial—OpenJDK, Mercurial, and NetBeans—and the average ratio of merges

was 20%, which is slightly lower than the average number for Git but still significant.

Implementation: We implemented a tool in Java to perform test selection proposed in

Section 4.2. The tool is independent of the DVCS being used and scales to large projects.

Because any test-selection technique for distributed histories requires a traditional test se-

lection between two revisions (tts) for linear histories, and because there is no other available

tool for the traditional test selection that scales to the large projects used in our study, we

used the Ekstazi tool described in Chapter 3 as tts. Note that our technique for distributed

histories is orthogonal to the RTS technique used to select tests between two code revisions.

Real merges: Our first set of experiments evaluates our technique on the actual software

histories. We used software histories of four large open-source projects (downloaded from

GitHub): Cucumber, GraphHopper, JGit, and Retrofit. We selected these projects as their

2Note that we approximate the number of rebases by counting commits with different author and com-
mitter field.
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setup was not too complex3, and they differ in size, number of authors, number of commits,

and number of merges. Our experimental setup was the following. For each project, we

identify the last merge commit in the current software history and then run our test-selection

tool on all the merge commits whose immediate dominator was in the 50 commits before

the last merge commit.

At every merge commit, we run all three options—S1
merge, S

k
merge, and S0

merge—and com-

pare the number of tests they select. Testing literature [43, 69, 138, 154, 157] commonly

measures the speedup of test selection as the ratio of the number of selected tests over the

number of available tests (Ssel/A). In addition, Table 4.2 reports the min and max number

of available tests across the considered merge commits, and the min and max total time to

execute these tests. All tests in these projects are unit tests and take a similar amount of

time to execute, so computing the ratio of the numbers of tests is a decent approximation of

the ratio of test execution times. We do not measure the real end-to-end time because our

implementation of S0
merge is a prototype that uses a rather unoptimized implementation of

Git operations.

Figure 4.8 plots the results for these four projects. In most cases, Sk
merge and S0

merge

achieve substantial saving compared to S1
merge. (Calculated differently, the average speedup

of S0
merge over S

1
merge was 10.89× and Sk

merge over S
0
merge was 2.78×.) Although S0

merge achieved

lower saving than Sk
merge in a few cases (that we discuss below in more detail), it is important

to recall that Sk
merge requires k runs of traditional test selection, while S0

merge requires 0 runs.

We inspected in more detail the cases where Sk
merge/S

0
merge was low. For GraphHopper

(revisions 2, 10, and 11), two branches have a large number of exactly the same commits

(in particular, one branch has 11 commits and another has 10 of those 11 commits, which

were created with some cherry-picking); when these branches were merged, the differences

between the merged revision and parents were rather small, resulting in a few tests being

selected by Sk
merge, although the changes between the parents and the dominator were rather

big, resulting in many tests being selected by S0
merge. For JGit (revision 10) and Cucumber

(revision 14), some new tests were added on one branch before merging it with another;

3We have to build and run tests over a large number of commits, and dependencies in many real projects
make running tests from older commits rather non-trivial.
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Figure 4.9: History statistics of projects used for generated software histories

S0
merge is currently rather conservative in selecting (all) new tests, but new tests are not

added frequently in practice.

Based on this inspection, we propose the following heuristic for choosing the best option

for test selection at a merge revision:

Smerge(h) = if (automerge & selection done at every commit)

if (many new tests) Skmerge(h) else S
0
merge(h)

else if (short branches) S1merge(h) else S
k
merge(h)

Systematically generated merges: Our second set of experiments systematically com-

pares the merge selection options on a set of graphs generated to represent potential software

histories. Specifically, for a given number of nodes k, we generate all the graphs where nodes
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merge/S

0
merge (speedup) for various numbers of commits in each branch

have the out degree (branching) of at most two, each branch contains between 1 and k/2−2

nodes, all the branches have the same number of nodes, and there are no linear segments on

the master branch (except the last few nodes that remained after generating the branches).

In other words, the generated graphs are diamonds of different length. For example for k = 7,

we have the following two graphs: ⋅<∶>⋅<∶>⋅ and ⋅<∶ ∶>⋅−⋅. The total number of merges for the

given number of nodes k is ⌊(k − 1)/3⌋ + ⌊(k − 1)/5⌋ + . . . + ⌊(k − 1)/(k − 1)⌋.

In addition to generating history graphs, we need to assign code and tests to each node

of the graph. As random code or tests could produce too unrealistic data, we use the

following approach: (1) we took the latest 50 revisions of four large open-source projects

with linear software histories: JFreeChart (SVN: 3021), GSCollections (Git: 28070efd), Ivy

(SVN: 1550956), and Functor (SVN: 1439120) (Figure 4.9 shows the number of available and

selected tests for all projects), (2) we assigned a revision from the linear history to a node

of the graph by preserving the relative ordering of revisions such that a linear extension of

the generated graph (partial order) matches the given linear history (total order). Using the

above formula to calculate the number of merges for generated graph, for 50 revisions, there

are 68 merges (in 24 graphs); as we have four projects, the total number of merges is 272.

After the software histories are fully generated, we perform test selection on each of the

graphs for each of the projects and collect the number of tests selected by all three options

at each merge commit. As for the experiments on real software histories, we calculate the

speedup as the ratio of the number of tests. Figure 4.10 shows the average speedup (across
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all four projects) for various number of nodes per branch. As expected, with more commits

per branch, the speedup decreases, because the sets of changes on each branch become bigger

and thus their intersection (as computed by our S0
merge option) becomes larger. However,

the speedup remains high for quite long branches. In fact, this speedup is likely an under-

approximation of what can be achieved in real software projects because the assignment of

changes across branches may not be representative of actual software histories: many related

changes may be sprinkled across branches, which leads to a smaller speedup. Also, linear

software histories are known to include more changes per commit [12]. We can see from

the comparison of absolute values of the speedups in Figure 4.10 and Figure 4.8 that real

software histories have an even higher speedup than our generated histories.

Real cherry-picks: We also compared S1
cherry and S0

cherry on 7 cherry-picks identified in

the Retrofit project. No other revision from the other three projects in our experiments

used a cherry-pick command. For 6 cases, S0
cherry selected 7 tests more than S1

cherry, but all

these tests were new. As mentioned earlier, our current technique is rather conservative in

selecting new tests; in future, we plan to improve our technique by considering dependency

matrices across branches. In the remaining case, S0
cherry selected 43% fewer tests (42 vs. 73

tests) than S1
cherry.

4.5 Summary

The results show that non-linear revisions are frequent in real software repositories, and

that various options we introduced can provide different trade-offs for test selection (e.g.,

S1
merge, S

k
merge, and S0

merge each have their advantages and disadvantages). Carefully designed

combinations of these selection techniques (such as Smerge on page 87 that combines S1
merge,

Sk
merge, and S0

merge) can provide a substantial speedup for test selection in particular and

regression testing in general.
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CHAPTER 5

Related Work

This chapter presents an overview of the work related to the contributions of this dissertation.

There has been a lot of work on regression testing in general, as surveyed in two reviews [43,

157], and on regression test selection (RTS) in particular, as further surveyed in two more

reviews [68, 69]. Those papers review 30+ years of history of research on RTS, but other

papers also point out that RTS remains an important research topic for the future [123]. This

chapter is organized as follows. Section 5.1 discusses work related to our study of manual

RTS. Sections 5.2, 5.3, and 5.4 discuss work that directly inspired our Ekstazi technique

between two code revisions, including: recent advances in build systems, RTS based on class

dependencies, and RTS for external resources. Section 5.5 presents prior work on collecting

code coverage. Section 5.6 describes several regression testing techniques that use different

levels of selection granularity and coverage granularity. Section 5.7 presents other related

work on regression testing between two project revisions. Section 5.8 discusses prior work

on studying and analyzing distributed software histories.

5.1 Manual Regression Test Selection

The closest work to our study of manual RTS are studies of testing practices, studies of

usage profiles, and studies of logs recorded in real time.

Our study is different in scope, emphasis, and methodology from the work of Greiler et

al. [83], who recently conducted a study of testing practices among developers. We did not

limit our scope to a specific class of software, while they focus on testing component-based

software. Their emphasis is on answering important questions about the testing practices

that are (not) adopted by organizations and discovering reasons why these practices are
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not adopted. On the other hand, we focus on how developers perform RTS. Finally, their

approach utilizes interviews and surveys, but we analyzed data collected from developers in

real time.

Regarding the empirical study of RTS techniques, the closest work to ours is the use of

field study data by Orso et al. [122]. They collected usage profile data from users of deployed

software for tuning their Gamma approach for RTS and impact analysis. We study data

collected from developers to gain insight on improving manual RTS. The data was previously

used for analyzing whether VCS commit data is imprecise and incomplete when studying

software evolution [120], for comparing manual and automated refactorings [118], and for

mining fine-grained code change patterns [119]. Although our work is based on previously

used data, this is the first use of the data for studying how developers perform testing.

5.2 Build Systems and Memoization

Our Ekstazi regression test selection, based on file dependencies, is related to build systems,

in particular to incremental builds and memoization that also utilize file dependencies.

Memoize [115] is used to speed up builds. Memoize is a Python-based system that, given

a command, uses strace on Linux to monitor all files opened (and the mode in which they

are opened, e.g., read/write) while that command executes. Memoize saves all file paths and

file checksums, and ignores subsequent runs of the same command if no checksum changed.

Fabricate [70] is an improved version of Memoize that also runs on Windows and supports

parallel builds. Other build systems, such as Vesta [9] and SCons [8], capture dependencies

on files that are attempted to be accessed, even if they do not exist; this is important

because the behavior of the build scripts can change when these files are added later. For

automatic memoization of Python code, Guo and Engler proposed IncPy [86] that memoizes

calls to functions (and static methods). IncPy supports functions that access files, i.e., it

stores the file checksums and re-executes a function if any of its inputs or files changes. Our

insight is to view RTS as memoization: if none of the dependent files for some test changed,

then the test need not be run. By capturing file dependencies for each test entity, Ekstazi

provides scalable and efficient RTS that integrates well with testing frameworks. As discussed
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throughout the dissertation, Ekstazi differs from build systems and memoization in several

aspects: capturing dependencies for each test entity even when all entities are executed in

the same JVM, supporting test entity granularities, smart checksum, and capturing files

inside archives.

5.3 Class-based Test Selection

Ekstazi is related to work on class firewall, work that collects class dependencies, and work

that proves safety of RTS and incremental builds.

Hsia et al. [97] were the first to propose RTS based on class firewall [108], i.e., the statically

computed set of classes that may be affected by a change. Orso et al. [124] present an RTS

technique that combines class firewall and dangerous edges [138]. Their approach works in

two phases: it first finds relations between classes and interfaces to identify a subgraph of

the Java Interclass Graph that may be affected by the changes, and then selects tests via an

edge-level RTS on the identified subgraph. The Ekstazi approach differs in that it collects

all dependencies dynamically, which is more precise than computing them statically.

Skoglund and Runeson first performed a large case study on class firewall [141] and

then [142] proposed an improved technique that removes the class firewall and uses a change-

based RTS technique that selects only tests that execute modified classes. They give a

paper-and-pencil proof that their improved technique is safe under certain assumptions.

More recently, Christakis et al. [50] give a machine-verifiable proof that memoization of

partial builds is safe when capturing dependencies on all files, under the relaxed assumption

that code behaves deterministically (e.g., there is no network access). Compared to prior

work, Ekstazi captures all files (including classes), handles addition and changes of test

classes, applies smart checksum, supports reflection, and has both class and method selection

granularities. Moreover, we integrated Ekstazi with JUnit and evaluated it on a much larger

set of projects, using the end-to-end testing time. Finally, Ekstazi includes an approach to

improve RTS techniques for software that uses DVCS.
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5.4 External Resources

Ekstazi is also related to prior work on RTS for database programs and work on RTS in

the presence of configuration changes.

Haraty et al. [88] and Daou [54] proposed RTS techniques for database programs that

work in two phases: they first identify code changes and database component changes using

the firewall technique, and then select the tests that traverse these changes. They addition-

ally reduce the selected tests further using two algorithms: one based on control flow and

the other based on the firewall technique applied on the inter-procedural level. Willmor and

Embury [154] proposed two RTS techniques for database programs, one that captures inter-

action between a database and the application, and the other based solely on the database

state. Kim et al. [106] proposed RTS for ontology-driven systems; the technique creates

representations of the old and new ontology and selects tests that are affected by changes.

Nanda et al. [117] proposed RTS for applications with configuration files and databases.

Compared to prior work, we explored several ways to integrate RTS with the existing test-

ing frameworks, and Ekstazi captures all files. At the moment Ekstazi offers no special

support for dependencies other than files (e.g., databases and web services). In other words,

Ekstazi treats an entire database as one file: if any record in the database changes, then

every test that accesses anything in the database will be selected to be rerun.

5.5 Code Instrumentation

Collecting dependencies in RTS (C phase) is similar to collecting structural code coverage.

In particular, prior work on optimizing code coverage collection is closely related.

Jazz [116] is an approach to reduce the runtime overhead when collecting code coverage;

Jazz dynamically adds and removes instructions that collect coverage information. San-

telices and Harrold [140] presented DUA-Forensics, a fast approach to compute approximate

definition-use associations from branch coverage. Kumar et al. [107] presented analyses

to reduce the number of instrumentation points and the cost of code that saves coverage

information. Unlike existing code coverage techniques, Ekstazi collects file dependencies/-
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coverage. To reduce the runtime overhead, Ekstazi instruments a small number of carefully

selected points (Section 3.2.3). In the future, like Jazz, we plan to consider dynamically re-

moving instrumentation code. It is unclear if this optimization will provide any benefit

when multiple test entities are executed in the same process (i.e., in the same Java Virtual

Machine), as code has to be instrumented at the beginning of each test entity.

5.6 Granularity Levels

Prior work proposed or evaluated various selection and coverage granularities for several

regression testing techniques, including RTS.

Rothermel et al. [133, 134] showed significant impact of test suite granularity, i.e., size

of tests in a test suite, on the cost and benefits of several regression testing techniques,

including RTS. In our experiments, we do not control for the size of test methods, but we

use the test classes that are manually written by the developers of the projects. However,

we evaluated Ekstazi with method and class selection granularity (which may correspond

to various test suite granularities). Our results show that, although finer granularity may

select fewer tests, the coarser granularity provides bigger reduction in end-to-end time.

Bible at al. [41], Elbaum et al. [64], and Di Nardo et al. [56] compared different coverage

granularity levels (e.g., statement vs. function) for regression testing techniques. While some

results were independent of the levels, the general conclusion is “coarser granularity coverage

criteria are more likely to scale to very large systems and should be favoured unless significant

benefits can be demonstrated for finer levels” [56]. Ekstazi uses a coarse granularity, i.e.,

files, for coverage granularity, and the experiments show better results than for FaultTracer

based on a finer granularity.

Echelon from Microsoft [144] performs test prioritization [157] rather than RTS. It

tracks fine-grained dependencies based on basic blocks and accurately computes changes

between code revisions by analyzing compiled binaries. Many research RTS techniques [157]

also compute fine-grained dependencies like Echelon, but in contrast to Echelon, compare

source code of the revisions. Because Echelon is not publicly available, our evaluation used

FaultTracer [158], a state-of-the-research RTS tool.
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Ren et al. [129] described the Chianti approach for change-impact analysis. Chianti

collects method dependencies for each test and analyzes differences at the source code level.

Chianti reports the tests that are affected by changes and determines for each test the changes

that affect the behavior. We show that fine-grained coverage granularity can be expensive,

and propose Ekstazi, a novel RTS technique, which tracks dependencies on coarse-grained

dependencies – files.

5.7 Other Work on RTS for Two Revisions

Other work related to Ekstazi includes work on a framework for comparing RTS techniques,

RTS techniques that collect dependencies statically, RTS for other project domains, test suite

evolution, and RTS prediction models.

Rothermel and Harrold [137] proposed four metrics for comparing RTS techniques: ef-

ficiency, precision, safety, and generality (i.e., applicability of an RTS technique to a broad

set of projects). Unlike their work, which defines efficiency in terms of RTS analysis time,

we define efficiency in terms of end-to-end time, which is the time observed by develop-

ers. We demonstrate Ekstazi’s generality by evaluating it with a large number of projects.

Zheng et al. [160] proposed a fully static RTS technique that does not collect dependen-

cies but rather constructs a call graph (for each test) and intersects the graph with the

changes. Ekstazi collects dependencies dynamically, and measures the end-to-end time.

Xu and Rountev [155] developed a regression test selection technique for AspectJ programs.

Although their approach is more precise than Ekstazi, they use fine-grained coverage gran-

ularity and therefore inherit the high cost of other fine-grained techniques. Pinto et al. [126]

and Marinescu et al. [114] studied test-suite evolution and other execution metrics over sev-

eral project revisions. While we did not use those same projects (e.g., Marinescu et al.’s

projects are in C), we used 615 revisions of 32 projects. Several prediction models [90, 132]

were proposed to estimate if RTS would be cheaper than RetestAll. Most models assume

that the C phase is run separately and would need to be adjusted when RTS is integrated

and the end-to-end time matters. We focus Ekstazi on the end-to-end time.
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5.8 Distributed Version Control Systems

Others [12, 42, 45, 125, 131] analyzed distributed software histories to study commits, de-

scribed pitfalls of mining distributed histories (e.g., DVCS commands are not recorded),

and suggested improvements to DVCS. No prior work related to (regression) testing or ver-

ification analyzed or reasoned about distributed software histories. We proposed the first

RTS approach that improves precision of any RTS technique for projects with distributed

software histories. Our approach for distributed histories is compatible with all traditional

RTS techniques for linear histories as we abstract them in the core mt and tts functions

(Section 4.2.2). We use traditional RTS when a revision is created by a commit command,

and we reason about software history, modification-traversing tests, and commands being

executed when a revision is created by other DVCS commands (merge, rebase, cherry-pick,

and revert). Our results show that our proposed approach improves precision more than an

order of magnitude.
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CHAPTER 6

Conclusions and Future Work

Regression testing is important for checking that software changes do not break previously

working functionality. However, regression testing is costly as it runs many tests for many

revisions. Although RTS is a promising approach to speed up regression testing, and was

proposed over three decades ago, no RTS technique has been widely adopted in practice, due

to efficiency and safety issues. The contributions of this dissertation address these problems.

First, we studied logs recorded in real time from a diverse group of developers to under-

stand the impact of the lack of practical RTS techniques. The study shows that almost all

developers perform manual RTS, and they select tests in mostly ad hoc ways (potentially

missing bugs or wasting time). Second, we proposed Ekstazi RTS technique, which takes a

radically different view from prior RTS techniques: keeping track on coarse-grained depen-

dencies can lead to faster end-to-end time than keeping track on fine-grained dependencies.

Ekstazi tracks dependencies on files, guarantees safety in more cases than prior techniques,

and provides a substantial reduction in regression testing time. Ekstazi balances the time

for the analysis and collection phases, rather than focusing solely on reducing the number of

selected tests for the execution phase. Third, we proposed a novel approach that improves

precision of any RTS technique for projects with distributed software histories. Unlike any

prior RTS technique, the approach takes into account version histories arising out of dis-

tributed development, and includes several options that trade off the number of RTS analysis

runs and the number of selected tests (which reflects in the execution and collection time).

We now present our plans for possible future work that can build upon our current

contributions and results as described in chapters 2, 3, and 4:

Public Release of Experimental Data: We intend to release our dataset and scripts,

which are used in our experiments, to allow researchers to reproduce our results.
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We have already released some additional information related to our experiments at

http://www.ekstazi.org/research.html.

Regression Test Selection using File and Method Dependencies: Changes between

two project revisions commonly update only method bodies. A test selection technique

that uses method coverage granularity would be safe for these revisions. However, such

technique would be unsafe for any other revision (e.g., annotation or field updates, or

even method additions or deletions). We plan to combine file coverage granularity and

method coverage granularity.

Restructuring Test Classes: Several test methods, for the same code under test, are

commonly grouped in a single test class. Therefore, it is likely that these test methods

have similar dependencies. Indeed, based on our evaluation (Section 3.3.5), using test

class granularity leads to better results than using test method granularity, i.e., the

overhead for class granularity is smaller, and the number of selected tests is not signif-

icantly larger. In the future, we would like to group all test methods that have similar

dependencies, even if they reside in different test classes/packages. Also, we would like

to split test classes, where several test methods have greatly different dependencies.

Safety of Ekstazi Instrumentation: To collect classes covered by each test method/-

class, Ekstazi instruments several places in code (e.g., constructors, static blocks,

access to static fields, etc.). We would like to produce a machine-verifiable proof that

our instrumentation guarantees safe test selection.

Various Testing Frameworks and JVM-based Languages: JUnit is the most widely

used testing framework (for Java), however, it is not the only testing framework avail-

able. We plan to support other testing frameworks for Java (e.g., TestNG [147] and ran-

domizedtesting [128]) by inserting Ekstazi hooks at appropriate places (Section 3.2.3).

One of the challenges is to identify places where the hooks should be inserted. Note

that we have to collect dependencies during the construction of a test entity and during

the execution of the test entity.
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Other Programming Languages: At the moment, to the best of our knowledge, there

is no (publicly available) tool, which collects dynamic dependencies, for RTS for any

language. We intend to explore if our technique (based on the file dependencies) is

applicable to other languages (e.g., Python). Our initial goal is to build a language-

agnostic technique on top of Fabricate [70], which monitors all opened files during

the execution of a process. In addition, we plan to integrate the language-agnostic

technique with Ekstazi to improve RTS precision whenever a project uses Java.

Test Prioritization based on File Level Dependencies: Test prioritization is another

commonly studied regression testing technique. The goal of test prioritization is to

order tests such that if there are bugs in the code under tests, the tests that would fail

due to these bugs are executed earlier in the order. Prior work showed that several

heuristics can achieve better results than random ordering, e.g., ordering base on the

number of times that a test failed in the history or ordering based on the number of

statements that a test covers. We intend to explore test ordering based on the number

of files that a test covers; files covered by each test can be obtained by Ekstazi.

Further Analysis of Ekstazi Results: The experiments that we conducted to evaluate

Ekstazi resulted in a large body of data which led to some interesting observations.

While we reported the results that are common for RTS studies (e.g., the percentage

of selected tests), there are many other results that can be extracted from the collected

data. These additional results can help us understand the benefits and limitations of

our technique. Specifically, we plan to explore: (1) if long running tests are likely to

be selected more often than short running tests and (2) what are similarities in the set

of dependencies among test entities.

Impact of Ekstazi on Software Development: We hypothesize that the use of Ek-

stazi could impact software development, e.g., developers may start making smaller

changes or making their code more modular with the goal to minimize regression test-

ing time. We plan to explore software histories of projects that integrated Ekstazi

and compare software development before and after the integration. Also, we plan to

99



investigate if the developers’ changes could have been done in a different order that

would have achieved additional savings in terms of test execution time.

Considering that several open-source projects adopted Ekstazi, we hope that we can

enter a new era of software development where projects embrace RTS to speed up their

testing. While the Ekstazi techniques are likely to be improved upon, the use of RTS can

help developers to improve the quality of their software. We expect to see new, interesting

results that improve both theory and practice of regression test selection.
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