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Abstract. Bounded-exhaustive testing is an automated testing method-
ology that checks the code under test for all inputs within given bounds:
first the user describes a set of test inputs and provides test oracles
that check test outputs; then the tool generates all the inputs, executes
them on the code under test, and checks the outputs; and finally the
user inspects failing tests to submit bug reports. The costs of bounded-
exhaustive testing include machine time for test generation and execution
(which translates into human time waiting for these results) and human
time for inspection of results. This paper proposes three techniques that
reduce these costs. Sparse Test Generation skips some tests to reduce the
time to the first failing test. Structural Test Merging generates a smaller
number of larger test inputs (rather than a larger number of smaller test
inputs) to reduce test generation and execution time. Oracle-based Test
Clustering groups failing tests to reduce the inspection time. Results
obtained from the bounded-exhaustive testing of the Eclipse refactor-
ing engine show that these three techniques can substantially reduce the
costs while mostly preserving fault-detection capability.

1 Introduction

Testing is an important but expensive part of software development, estimated
to take more than half of the total development cost [1]. One approach to re-
ducing the cost is to automate testing. Bounded-exhaustive testing is an au-
tomated approach that checks the code under test for all inputs within given
bounds [2, 3, 4, 5, 6]. The rationale is that many faults can be revealed within
small bounds [7, 8], and exhaustively testing within the bounds ensures that
no “corner case” is missed. Bounded-exhaustive testing has been used in both
academia and industry to test several real-world applications, with some recent
examples including testing of refactoring engines [5] and a web-traversal code [6].

Bounded-exhaustive testing consists of three activities. First, the user de-
scribes a set of test inputs and provides test oracles that check test outputs.
Second, the tool generates all the inputs, executes them on the code under test,
and checks the outputs using the oracles. Third, the user inspects failing tests
to submit bug reports or debug the code; typically, bounded-exhaustive testing
produces a large number of failures for each fault found. Two key costs in this



context are machine time for test generation and execution (which also translates
into human time for waiting for these results [9,10]) and human time for inspec-
tion of failures. Previous experience shows that bounded-exhaustive testing can
discover important faults [3, 4, 5, 11] but also can have high costs.

This paper proposes, and evaluates on a case study, three novel techniques
that reduce these costs of bounded-exhaustive testing. The three techniques
address various costs and can be used individually or synergistically.

Sparse Test Generation (STG): We present a new technique that reduces the
time to first failure (abbreviated TTFF ), i.e., the time that the user has to wait
after starting a tool for bounded-exhaustive testing until the tool finds a failing
test. Note that in this context there is usually a large number of failing tests (say,
hundreds or even thousands) or no failing test (if the code under test reveals no
fault for any generated test). TTFF measures only the time to the first failure
(not all failures). It is an important practical metric that captures the user idle
time. Previous research shows, in a related context of regression testing, that
reducing the time to failure can significantly help in development [9, 10]. STG
works by making two passes through test generation. The first, sparse, pass skips
some tests in an attempt to reduce TTFF. While this pass is related to test suite
minimization/reduction/prioritization [12, 13, 14, 15, 16, 17], the main challenge
is to skip tests while they are being generated and not to select some tests only
after all have been generated. The second, exhaustive, pass generates all the tests
to ensure exhaustive checking within the given bound. Effectively, STG trades
off (substantially) decreasing TTFF for (slightly) increasing the total time.

Structural Test Merging (STM): We present a new technique that reduces
the total time for test generation and execution. In bounded-exhaustive testing,
users typically describe a test set with a large number of small tests, while we ad-
vocate considering test sets with a smaller number of larger tests. Our technique
is inspired by the work on test granularity [18,19] which studied the cost-benefit
trade-offs in using a larger number of smaller tests versus a smaller number of
larger tests. That work mostly considered manually written tests for regression
testing, while we focus on automatically generated tests. Moreover, that work
considered cases where larger tests can be automatically built from smaller tests
by simply appending (e.g., if each test is a sequence of commands, a longer
test sequence can be obtained by simply appending a number of shorter test
sequences), while we consider cases where it is harder to build larger tests from
smaller tests (e.g., simply appending two test input programs together while
testing a compiler or a refactoring engine would likely result in a compilation
error as these programs have program entities with the same name; moreover,
renaming would reduce the opportunity of speeding up test execution). Instead
of simply appending tests, our technique merges them based on their structure,
hence the name STM.

Oracle-based Test Clustering (OTC): We present a new technique that re-
duces the human time for inspection of failing tests. Bounded-exhaustive testing
can produce a large number of failing tests, and a tester/developer has to map
these failures to distinct faults to submit bug reports or debug the code under



test. Our technique builds on the ideas from test clustering [20,21,22,23,24,25]
where the goal is to split (failing) tests into groups such that all tests in the
same group are likely due to the same underlying fault. Previous work mostly
considered manually written tests or actual programs runs, and clustering was
based on execution profiles obtained from monitoring test execution. In contrast,
we consider automatically generated test inputs, and our technique exploits in-
formation from oracles. Typically, an oracle only states if some test passed or
failed, i.e., the output from an oracle is a boolean. However, in some domains
oracles also state how the result is incorrect, i.e., the output from an oracle is
an error message. OTC splits tests based on oracle messages, and our results
suggest that it is beneficial to build such oracles whenever possible. The key to
our technique is abstracting messages and not comparing them directly.
Case Study: We implemented our three new techniques in the ASTGen frame-
work for bounded-exhaustive testing of refactoring engines [5]. We chose ASTGen
for three reasons: it had enabled finding actual faults in real large software (we
had found a few dozens of new faults in the refactoring engines of Eclipse and
NetBeans, two popular IDEs for Java [5]); we were familiar with the framework;
and we personally experienced the costs of using ASTGen. We evaluated the
techniques on testing 6 refactorings with 9 generators (explained later in the
text). The results show that (1) STG can reduce TTFF almost 10x (an order
of magnitude) when there is a failure, while increasing the total test generation
and execution time only 10% when there is no failure; (2) STM can reduce the
total time 2x-6x (in one instance from over 6 hours to 70 minutes) and even
more (but with some reduction of the fault-detection capability); and (3) OTC
can reduce the number of tests to be inspected by clustering hundreds of failing
tests into a few groups (up to 11) such that almost all tests within the group
are due to the same fault. In summary, the results show that the new techniques
can substantially reduce both the machine time and the human time without
reducing the fault-detection capability.

2 Example

To illustrate how our techniques reduce the costs of bounded-exhaustive testing,
we discuss testing of the PullUpMethod refactoring in the Eclipse refactoring
engine using the ASTGen framework. We first describe what PullUpMethod is.
We then describe how to use ASTGen for bounded-exhaustive testing of this
refactoring. We finally discuss how our new techniques improve on ASTGen.

Each refactoring is a program transformation that changes the program code
but not its external behavior [26]. Programmers undertake refactorings to im-
prove design of their programs. For example, PullUpMethod is a refactoring that
moves a method from some class into one of its superclasses (usually because the
same method is useful for other subclasses of that superclass). Figure 1 shows
a simple application of the PullUpMethod refactoring. Note that moving the
method also requires properly updating the references within the method body,
i.e., replacing super.f with this.f.



// Before refactoring
class A {

int f;
}
class B extends A {

void m() {
super.f = 0;

}
}

// After refactoring
class A {

int f;
void m() {
this.f = 0;

}
}

class B extends A {
}

// Before refactoring
class A {

}
class B extends A {

int f;

void m() {
this.f = 0;

}
}

// Refactoring engine
// warning:

// Cannot pull up:
// method ‘m’

// without pulling up:
// field ‘f’

Fig. 1: Example applications of the PullUpMethod refactoring

Refactoring engines are development tools that automate applications of
refactorings. They are an important part of modern IDEs such as Eclipse [27].
To apply PullUpMethod, the developer instructs the engine which method to
move to which superclass in the input program. The engine first checks whether
the move is permitted (e.g., PullUpMethod should not move a method to a su-
perclass if the superclass already has a method with the same signature). If it is,
the engine appropriately transforms the program. The output is either a trans-
formed program or a set of warning messages that indicate why the move would
not be permitted, as illustrated in Figure 1.

Testing the implementation of PullUpMethod requires generating a num-
ber of input programs, invoking the refactoring engine on them, and checking
whether it gives the appropriate output (either a correctly transformed program
or an expected set of warning messages). Testers can have good intuition about
which input programs could reveal a fault. For instance, PullUpMethod may
have faults if the subclass and superclass have some additional relationship, e.g.,
being an inner or a local class or being related through a third class. Also, there
may be faults for some expressions and statements that include field and method
references from the body of the method being pulled up or to the method being
pulled up. However, it is time-consuming and error-prone to manually generate
a large number of such input programs.

We previously developed the ASTGen framework for bounded-exhaustive
testing of refactoring engines [5]. ASTGen allows the tester to write generators
that can automatically produce a (large) number of (small) input programs for
testing refactorings. ASTGen generates all these inputs, executes the refactoring
engine on them, runs several oracles to validate the outputs, and reports failures.

For instance, to test PullUpMethod, we can use a generator that produces
programs with three classes in various relationships. For this specific case, AST-
Gen generates 1,152 input programs, of which 160 result in failing oracles. A
detailed inspection of these failures shows that they reveal 2 distinct faults.
While finding these faults is clearly positive, there are costs. Test generation
and execution (including oracles) take about 27 minutes (on a typical desktop),
and the time to find the first failure is about 9 minutes. Also, identifying the 2
distinct faults among 160 failing tests is labor-intensive and tedious.

This paper proposes three techniques that reduce these costs. STG addresses
the time to first failure (TTFF) by first sampling some inputs rather than ex-
haustively generating all inputs from the beginning. For our specific example,



TTFF is on average reduced almost an order to magnitude, from about 9 minutes
to 1 minute. STM addresses the total time for test generation and execution.
Instead of testing PullUpMethod for 1,152 (small) programs that exercise vari-
ous features in isolation, STM builds larger programs that combine some of the
features, e.g., combine several expressions or statements that include field and
method references to/from the method being pulled up. The tester can choose
how many features to combine. In this example, the least aggressive combina-
tion reduces the total time from 27 minutes to about 4 minutes, and the most
aggressive combination reduces the total time further to under 1 minute. OTC
addresses the cost of failure inspection. It clusters the failing tests into groups
that are likely to be due to the same fault, and thus the tester can inspect only
one or a few tests from these “equivalence classes”. Our clustering is based on
oracle messages and can consider more or fewer details of the messages. The
basic clustering splits 160 failing tests into 127 clusters, but our best clustering
splits them into just 3 clusters that reliably find the 2 faults. In contrast, random
sampling could miss faults, e.g., one of our experiments shows that it finds on
average 1.77 out of 2 faults in this case.

3 Background: ASTGen

We now describe in more detail two parts of the ASTGen framework that are rele-
vant to present the three techniques introduced in this paper. ASTGen allows the
testers to write generators—pieces of code that implement a specific interface—
which ASTGen runs to automatically generate input programs. ASTGen then
applies refactorings on these inputs and runs the oracles on the outputs.
Generators: Each generator is a piece of Java code that produces elements of
Java abstract syntax trees (ASTs), which can be pretty-printed as Java source.
Conceptually, generators are close to grammar-based generation [28, 29], but
ASTGen uses Java code rather than a grammar formalism as explained else-
where [5]. ASTGen provides (1) a large library of basic generators, (2) several
mechanisms to compose and link simpler generators into more complex genera-
tors, and (3) customization of generators using Java code. Some of the generators
that ASTGen provides include:

Field Declaration Generator produces many different field declarations that
vary in terms of type (int, byte, boolean, array or non array, etc.), visibility
(private, public, etc.), and name of the declared field.

Field Reference Expression Generator is linked to the Field Declaration
Generator and produces different expressions that reference the declared
field in various ways, including field accesses and operations (this.f, new

A().f, super.f, f++, !f, etc.).
Single Class Field Reference Generator is composed on top of the Method

Declaration Generator and produces classes with one field (obtained from
the Field Declaration Generator) and one method that references the field
in various ways.



Fig. 2: Triple Class Method Child Generator structure and a generated test input

Dual Class Relationship Generator is composed upon generators that pro-
duce classes (e.g., Single Class Field Reference Generator) and produces two
classes with various relationships between them (inheritance, inner class,
local class, etc.).

While the main purpose of generators is to actually produce the test inputs,
they also encode the space of all inputs to be produced. Consider this scenario:

Inputs: Programs with three classes A, B, and C.
– B extends C; B has a method m and a method mPrime that invokes m.
– C and A each have a field f that may be referenced by m.

Test: Pull up method m from class B to class C.

The user can generate all these inputs by writing a generator that composes
and links several library generators. Figure 2 shows the overall structure of a
generator, called Triple Class Method Child Generator, that encodes this input
space. The figure also shows a sample test input produced by this generator and
how the input sub-parts match the sub-generators responsible for producing
them. By iterating through all the variations of the sub-generators, the Triple
Class Method Child Generator produces 1,152 test inputs.
Oracles: While generators are the core of ASTGen and help testers to produce a
large number of input programs for testing refactorings, it would be impractical
that the testers check the result of each refactoring application. Oracles automate
checking of the results so that the testers only have to inspect a smaller number
of tests that fail the oracles (and likely detect faults). ASTGen provides two
generic oracles and allows the users to write refactoring-specific oracles:

Compilation Failure Oracle flags tests where the refactored program has a
compilation error: if the input program compiles, then the output program
should also compile.

Erroneous Warning Oracle flags tests where the refactoring engine raised a
warning about a refactoring application, but ignoring that warning results
in a refactored program with no compilation errors (or custom failures).



Custom Oracles are specific to the refactoring being applied. For example, a
custom oracle for RenameMethod checks that renaming a method, say m to
p, and then renaming back, p to m, results in the same program.

The output of traditional oracles are only booleans (pass or fail), but the AST-
Gen oracles can provide additional information about the failure, e.g., messages
from the compiler or warnings from the refactoring engine.

4 Sparse Test Generation (STG)

Generators can encode and produce all the test inputs within defined bounds.
Bounded-exhaustive testing checks the code under test for all these inputs. This
usually consumes a large amount of machine time since the number of inputs gen-
erated is fairly large. For example, ASTGen generators can generate thousands
of test inputs, and it can take hours of machine time to execute the refactorings
on all those inputs. Additionally, this time translates into human time required
by the developer to wait for the execution of the tests to complete.

Note that as soon as a tool reports a failure, the developer can start inspecting
it to file a bug report or to debug the fault that caused the failure. In theory,
the time the tool takes for generation and testing after the first failure is not
important since the developer does not have to idle. For this reason, we consider
the Time to First Failure (TTFF) as the key metric in interactive bounded-
exhaustive testing. If no generated test input results in a failure, the developer
has to wait for the entire generation and testing process to complete.

STG is our technique that aims to reduce the TTFF. STG has two phases:
Sparse Generation is motivated by our observation that failing test inputs are
often located closely together in the sequence of inputs produced by a generator,
and thus, to find a failure, it is often not necessary to exhaustively generate
all the inputs but only one input from a closely located group. Therefore, this
phase makes “jumps” through the generation sequence. The jump length is not
constant (since the failing tests may be in a stride that a constant jump would
miss) but each jump is (uniformly) random within some length limit. The key is
to determine an appropriate limit: a lower limit increases the overhead of STG
compared to the basic, dense bounded-exhaustive testing, while a higher limit
decreases the chance that Sparse Generation finds a failure (and thus increases
the TTFF). We use the limit of 20 as it provides a good trade-off: the expected
jump is of length (1+20)/2, which increases the total time by less than 10%
when there is no failure. If Sparse Generation finds a failing test, it usually does
so quickly; the results from Section 7 show that STG reduces the TTFF by an
order of magnitude in most cases compared to the dense generation. However,
STG is a heuristic and, in general, could keep missing failures until the very end
while dense generation would have found those failures at the very beginning.
Exhaustive Generation follows Sparse Generation and does basic bounded-
exhaustive testing (1) to ensure that a failing test input will be found if one
exists and (2) to find all the failing tests that Sparse Generation missed (which
can help in clustering failures or debugging [20, 23, 25]).



Fig. 3: Unmerged test inputs

5 Structural Test Merging (STM)

TTFF is an important metric in bounded-exhaustive testing. Another important
metric is the total time for test generation and execution. This time can be very
long when generators produce a large number of inputs, which is the case for
typical top-level ASTGen generators. For example, consider the number of inputs
for the Triple Class Method Child Generator shown in Figure 2. Each of its sub-
generators has a small number of variations—G2 has 2 (inner, outer); G3 has 3
(inner, method inner, outer); G4, G5, and G6 have 1; G7 has 2 (public, private);
G8 has 6 (f, new A().f, A.this.f, etc.); G9 has 4 (public, private, same/different
signature); and G10 has 4 (m(), new B().m(), this.m(), B.this.m())—but the
top-level generator produces 2×3×1×1×1×2×6×4×4 = 1152 combinations.

STM reduces the number of test inputs while still aiming to preserve their ex-
haustiveness: instead of producing a large number of small input programs, STM
produces a smaller number of larger input programs by merging appropriate pro-
gram elements. For example, the Triple Class Method Child Generator produces
the three inputs shown in Figure 3. The only difference between the three are
the highlighted statements, generated by the Field Reference sub-generator (G8).
Figure 4 shows an input that contains all these three statements. This single,
merged input encodes the same input space as the three unmerged inputs. This
structural merging transformation is the crux of our STM technique.

STM exploits the compositional structure of the sub-generators to produce
merged test inputs. Figure 4 shows an alternative structure for the Triple Class
Method Child Generator: a new Field Reference Merging Single Class Generator
(G8M) merges together all the program elements produced by the original Field
Reference Generator (G8). While figures 2 and 4 show a generator before and
after a single application of the structural merging transformation, it is possible
to apply the transformation multiple times within the hierarchical structure of a
generator. Each application leads to a multiplicative reduction in the number of
generated inputs. For example, the original Method Reference Generator (G10)
can also be modified to a generator G10M that merges together all the different
method invocation statements. Together, G8M and G10M produce inputs that
merge both field references and method references. We refer to the number of



Fig. 4: Merged generator structure and a generated merged test input

transformation applications as merging level : for the Triple Class Method Child
Generator, merging level M1 has only G8M, and merging level M2 has both
G8M and G10M. The unmerged generator produces 1,152 inputs, and levels M1
and M2 reduce the number of inputs to 192 and 48, respectively.

While STM achieves significant time savings, it is important to note its two
potential drawbacks. One potential drawback is that larger inputs, through the
interference of program elements, can mask some test failures [18,19]. Consider,
for example, merging together all the different field references (as in Figure 4).
There may be a failure triggered by one of the field reference statements which
gets masked by the presence of the other field reference statements. However, this
interference can also go the other way: larger inputs may trigger new failures that
smaller inputs do not trigger. The other drawback is the effect of larger inputs on
debugging. STM produces fewer larger inputs rather than more smaller inputs,
but (failing) smaller inputs typically make it easier to perform fault localization.
We could take two approaches to address this. One approach is to reduce inputs
by applying Delta Debugging [30] on the larger failing input to try to isolate
the part of the input that triggers the failure. Another approach, enabled by the
fact that larger inputs are produced by merging generators, is to regenerate the
small inputs that represent the larger failing input.

6 Oracle-based Test Clustering (OTC)

The experience with bounded-exhaustive testing in academia and industry shows
that it can find faults in real code [4,3,5,11] but also produces a large number of
failures. Identifying a few faults out of many failures is a challenging task. OTC
is a new technique that helps in this task by splitting failing tests into groups
such that all tests in the same group are likely due to the same fault.

OTC exploits information from oracles. Recall that ASTGen oracles pro-
vide messages about the failures, e.g., if a refactored program does not compile,
ASTGen reports the compilation error provided by the compiler. We use these



messages to cluster the failing tests by grouping together those tests that have
exactly the same messages. (A test can produce multiple messages, which our
experiments compare as lists, not bags or sets.) However, directly using concrete
messages provided by the compiler can result in a large number of small clus-
ters, e.g., two compilation errors may differ only in line or column numbers, say,
“3:8:field f not visible” and “2:6:field f not visible”. Instead, we use abstract mes-
sages that ignore some details such as line and column numbers. One can further
consider ignoring exact messages and clustering based on which oracle failed, not
how it failed. The trade-off is that creating too many clusters increases inspec-
tion effort, while creating too few clusters increases the chance to miss a fault.
Our evaluation compares four clustering options: Concrete Message, Abstract
Message, Oracle Name, and Random Selection (a base case with no clustering).

7 Case Study

We evaluated our three new techniques in the ASTGen framework for bounded-
exhaustive testing of refactorings engines. We tested 6 refactorings using 9 gen-
erators listed in Figure 5. For each generator and several merging levels, we tabu-
late the number of inputs generated, various times and APFD metric (described
below), the number of failing inputs, and the number of distinct faults. We pre-
viously tested these refactorings with these generators and found a number of
faults [5]. The goal of this study was to evaluate whether the new techniques
reduce the testing costs, but due to OTC, we also found a new fault in the
PushDownMethod refactoring, previously missed [5] due to random sampling.
We ran all experiments in Eclipse 3.3.2 on a dual core 3.4GHz machine.
Sparse Test Generation (STG): Figure 5 shows the time results for ASTGen
with and without STG. The ‘Dense’ subcolumns show the total time and time to
first failure (TTFF) for bounded-exhaustive testing without STG. If no failure
exists, TTFF shows ‘n/a’. The ‘Sparse’ column shows average values for TTFF
if a failure exists (roughly the top half of the table) and the total time if no
failure exists (the bottom half of the table). These times are averaged over 20
random seeds, with the jump limit of 20, as discussed in Section 4. The main
questions about STG are how it affects TTFF and the total time.

STG reduces TTFF in all cases where the dense TTFF was significant (a
minute or more): the speedup ranges from 9.00x to 10.58x, with an average of
an order of magnitude. In a few cases with very small dense TTFF, STG had
a slowdown of at most 1 sec. Recall the two phases of STG; the reduction in
TTFF implies that the sparse phase found a failure before the exhaustive phase.

STG increases the total time, as expected. With the jump limit of 20, the
overhead of the additional sparse phase is expected to be slightly under 10% of
the total time for dense generation. Our experiments confirm that this is indeed
the case: the slowdown ranges from -6.48% to -9.60%. In summary, STG achieves
a 10x speedup in TTFF for only a 10% slowdown in the total time.

We further evaluated STG using the Average Percentage Fault Detected
(APFD) metric introduced by Rothermel et al. [12] to compare techniques for



Refactoring Generator ML Inputs
Dense

Sparse
APFD [%]

Failures Faults
Time TTFF Dense Sparse

M0 7416 133:32 7:33 0:47 74.98 98.16 1074 2
PushDown- DualClass- M1 1236 22:43 0:01 0:02 99.23 88.62 179 1
Field FieldReference M2 12 0:21 0:00 0:01 95.83 74.17 4 1

M3 3 0:13 0:00 0:00 83.33 63.33 1 1
M0 23760 427:09 73:34 7:14 58.03 97.59 486 3

DualClass- M1 3960 71:50 12:03 1:11 69.82 97.77 354 3
FieldReference M2 72 1:19 0:13 0:03 74.31 80.56 31 2

Encapsulate- M3 18 0:26 0:06 0:03 58.33 73.15 8 2
Field M0 8576 155:15 0:22 0:03 75.37 97.61 836 4

SingleClass- M1 2144 39:04 0:21 0:03 66.86 97.59 242 4
FieldReference M2 1072 19:35 0:09 0:02 84.25 93.04 144 3

M3 268 4:55 0:02 0:02 72.70 88.11 62 3
M4 16 0:17 0:00 0:01 96.88 84.06 1 1
M0 960 22:19 11:28 1:05 43.91 93.59 180 3

PushDown- DualClass- M1 192 4:07 2:07 0:14 41.75 91.89 38 3
Method MethodParent M2 48 0:45 0:28 0:21 40.63 87.85 2 1

M0 1152 27:02 9:09 1:01 13.19 95.77 160 2
TripleClass- M1 192 3:57 1:25 0:09 48.18 95.36 96 2

PullUp- MethodChild M2 48 0:47 0:17 0:02 56.25 89.58 24 2
Method M0 576 13:22 n/a 14:14 n/a n/a 0 0

DualClass- M1 96 1:49 n/a 1:55 n/a n/a 0 0
MethodChild M2 24 0:21 n/a 0:22 n/a n/a 0 0

M0 23760 629:01 n/a 689:17 n/a n/a 0 0
DualClass- M1 3960 107:26 n/a 117:48 n/a n/a 0 0
FieldReference M2 72 1:56 n/a 2:04 n/a n/a 0 0

Rename- M3 18 0:34 n/a 0:34 n/a n/a 0 0
Field M0 8576 229:00 n/a 250:59 n/a n/a 0 0

SingleClass- M1 2144 57:28 n/a 62:56 n/a n/a 0 0
FieldReference M2 1072 28:44 n/a 31:28 n/a n/a 0 0

M3 268 7:15 n/a 7:57 n/a n/a 0 0
M0 9540 173:32 n/a 190:11 n/a n/a 0 0

Rename- SingleClass- M1 4900 89:26 n/a 98:05 n/a n/a 0 0
Method MethodReference M2 140 2:37 n/a 2:50 n/a n/a 0 0

M3 80 1:31 n/a 1:37 n/a n/a 0 0

Fig. 5: Sparse Test Generation and Structural Test Merging Results
Legend: ML = Merging Level, TTFF = Time to First Failure, All times in minutes:seconds

test prioritization and extended by Walcott et al. [16] for test selection. APFD
measures the number of faults detected in terms of the number of tests executed,
whereas TTFF is based on the first failure (not all faults) and actual time (not
number of tests) as TTFF aims to capture the waiting time for testers in inter-
active bounded-exhaustive testing, similar to recent extensions of APFD [10].
APFD ranges between 0 and 100%, with higher values being better. Figure 5
shows APFD, with ‘Sparse’ averaged over 20 random seeds. The results show
that STG improves APFD in all cases where the dense TTFF was significant.
Structural Test Merging (STM): Figure 5 shows the results for STM for
several merging levels of each of the generators. The merging level number (e.g.,
3 in M3) represents the number of structural merging transformations applied
to the unmerged generator (labeled M0) to obtain the corresponding merged
generator, as discussed in Section 5. The main questions about STM are how it
affects times (total and TTFF) and the number of failures/faults detected.

Each merging level reduced both the total time and TTFF compared to its
previous level and thus to M0. On average, level M1 achieved 5x speedup, and
level M2 achieved 130x speedup compared to M0 for the total time. The merged



Refactoring Generator ML
Random Oracle Abstract Concrete
FD NC FD NC FD NC FD NC

PushDownField DualClassFieldReference

M0 1.99 1 2 2 2 5 2 68
M1 1 1 1 1 1 3 1 59
M2 1 1 1 1 1 2 1 4
M3 1 1 1 1 1 1 1 1

EncapsulateField

DualClassFieldReference

M0 2.24 1 2.24 2 3 4 3 51
M1 2.05 1 2.31 2 3 4 3 112
M2 1.73 1 2 2 2 4 2 8
M3 1.75 1 2 2 2 3 2 3

SingleClassFieldReference

M0 2.84 1 3.11 2 4 4 4 71
M1 2.48 1 2.46 2 4 4 4 73
M2 2.26 1 2.26 1 3 4 3 58
M3 2.30 1 2.30 1 3 5 3 24
M4 1 1 1 1 1 1 1 1

PullUpMethod TripleClassMethodChild
M0 1.77 1 1.77 1 2 3 2 127
M1 1.56 1 1.56 1 2 2 2 84
M2 1.62 1 1.62 1 2 2 2 24

PushDownMethod DualClassMethodParent
M0 2.19 1 3 2 3 11 3 20
M1 2.56 1 2.54 2 3 10 3 16
M2 1 1 1 1 1 1 1 2

Fig. 6: Oracle-based Test Clustering Results
Legend: ML = Merging Level, FD = Faults Detected, NC = Number of Clusters

generators also substantially reduced the TTFF: on average, level M1 achieved
80x speedup, and level M2 generators achieved 150x speedup compared to M0.

Merging did not expose any new faults, but aggressive merging did mask
some faults. In particular, level M1 masks only one fault (in PushDownField),
but levels M2 and higher mask a much larger number of faults. However, even the
highest level of merging finds at least one fault (when there is a fault at M0).
Additionally, if one considers TTFF as the most important metric, masking
faults at the higher merging levels is not detrimental but actually beneficial:
the user can start the exploration from a high level, quickly find failures, and
start inspecting them, while the tool continues the exploration at a lower level. In
summary, STM can substantially improve total time and TTFF while somewhat
reducing the fault-detection capability of bounded-exhaustive testing.
Oracle-based Test Clustering (OTC): Figure 6 shows the results for the
four clustering options discussed in Section 6. For each option, we present the
number of clusters formed and distinct faults detected by inspecting a number
of randomly selected tests from each cluster. The results are averaged over 1000
random seeds. For this experiment, we needed to choose a sampling strategy [20],
which determines how many tests to select and from which clusters. The basic
strategy, one-per-cluster, selects one test for each cluster; we used this strategy
for Abstract Message and Concrete Message. For Random Selection and Oracle
Name, which have fewer clusters, we used a strategy that selects more tests per
cluster, specifically selects at least as many tests as Abstract Message selects
(i.e., the number of clusters that Abstract Message has) and at most 1% of all
failing tests. The main questions about OTC are how it affects the number of
failures that need to be inspected and the number of faults detected.

To measure the number of faults detected by a set of selected tests, we
had to map failing tests to the fault(s) they detect and also had to determine



which faults are distinct. We performed two steps. First, a researcher (the second
paper author) manually inspected all tests from each cluster (based on Abstract
Message) with less than 30 tests and inspected at least 10 tests from each cluster
with more than 30 tests. Since all inspected tests from each cluster detected the
same fault(s), we extrapolated that all tests in a cluster can detect the same
fault(s). We also patched 6 of these faults in Eclipse and confirmed their results
from the first step. Second, we asked a researcher (unaware of the details of this
study but with a multi-year experience with Eclipse refactorings) to label the
faults collected in the first step as potential duplicates of each other or non-faults.
This resulted in 12 distinct faults that we used in our experiments.

Abstract Message substantially reduces the number of tests to be inspected to
find all the faults, e.g., PullUpMethod for M0 has 160 failing tests, but Abstract
Message splits them into 3 clusters, and selecting any 3 tests, one from each
cluster, always reveals all 2 faults. The results show that Abstract Message finds
all faults that Concrete Message finds but requires inspection of much fewer
tests, up to over an order of magnitude for lower merging levels. Also, Abstract
Message finds more faults than Random Selection and Oracle Name while the
same number or even fewer tests are inspected. In summary, Abstract Message
was the most effective OTC option among the four we compared.

8 Related Work

There is a large body of work on automated testing. Our focus is on bounded-
exhaustive testing [2, 3, 4, 5, 6, 11] that tests the code for all inputs within given
bounds. Previous work considered how to describe a set of inputs (using declar-
ative [2, 4] or imperative [5] approaches) and how to efficiently generate them.
Bounded-exhaustive testing has been successfully used to reveal faults in several
real applications [3,4,5,11], but it has costs in machine time for test generation
and execution and human time for inspection of failures. This paper presents
three new techniques that reduce the costs of such testing.

STG is related to work on test selection/reduction/prioritization [12, 13, 14,
15, 16, 17, 31, 32] whose goal is to reduce the testing cost or to find faults faster
by selecting a subset of tests from a test suite and/or ordering these tests. The
previous techniques mostly consider regression testing where a test suite exists
a priori, and the simplest techniques can randomly select or order these tests.
In contrast, STG selects tests while they are being generated, and generation
proceeds in a particular order, so arbitrary random sampling is not possible.
Finally, STG does not compromise the fault-finding ability [32].

STM is related to work on test granularity [18, 19] which studied the cost-
benefit trade-offs in testing with a larger number of smaller tests versus a smaller
number of larger tests. The key difference is that previous work considered tests
that can be easily appended while we consider tests that need to be merged. Note
that appending tests only saves setup and teardown costs [19], while merging
can also reduce test execution cost (e.g., merging 1,152 input programs into 192
input programs requires only 192 applications of the PullUpMethod refactoring).



However, the results are similar in both contexts: larger tests reduce the testing
time, but too large tests may miss faults.

OTC is related to work on test clustering/filtering/indexing [20, 21, 22, 23,
24,25]. Previous work performed clustering based on execution profiles, obtained
from monitoring test execution. The main novelty of our technique is to exploit
information-rich oracles, rather than execution profiles, to cluster failing tests.
Our goal is to cluster failing tests to help in identifying the underlying faults.
Dickinson et al. [20] present an empirical study that evaluates somewhat differ-
ent techniques whose goal is to find failures among executions by using cluster
analysis of execution profiles. Effectively, those techniques use cluster analysis
as approximate oracles. Their results show that cluster filtering of executions
can find failures more effectively than random sampling, and that clustering of
executions can distinguish failing executions from passing ones.

9 Conclusions

Bounded-exhaustive testing checks the code for all inputs within given bounds. It
can find faults but at potentially high costs, including machine time to generate
and run tests, and human time to wait for the test results and to inspect failures.
We presented three techniques that reduce these costs: Sparse Test Generation
skips some tests to reduce the time to first failure by an order of magnitude;
Structural Test Merging generates larger tests to reduce test generation and ex-
ecution time by order(s) of magnitude; and Oracle-based Test Clustering groups
failing tests to reduce the inspection time by order(s) of magnitude.
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