
NonDex: A Tool for Detecting and Debugging
Wrong Assumptions on Java API Specifications

Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov
Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{gyori, blambet2, awshi2, legunse2, marinov}@illinois.edu

ABSTRACT
We present NonDex, a tool for detecting and debugging
wrong assumptions on Java APIs. Some APIs have underde-
termined specifications to allow implementations to achieve
different goals, e.g., to optimize performance. When clients
of such APIs assume stronger-than-specified guarantees, the
resulting client code can fail. For example, HashSet’s iter-
ation order is underdetermined, and code assuming some
implementation-specific iteration order can fail. NonDex
helps to proactively detect and debug such wrong assump-
tions. NonDex performs detection by randomly exploring
different behaviors of underdetermined APIs during test ex-
ecution. When a test fails during exploration, NonDex
searches for the invocation instance of the API that caused
the failure. NonDex is open source, well-integrated with
Maven, and also runs from the command line. During our
experiments with the NonDex Maven plugin, we detected
21 new bugs in eight Java projects from GitHub, and, using
the debugging feature of NonDex, we identified the un-
derlying wrong assumptions for these 21 new bugs and 54
previously detected bugs. We opened 13 pull requests; de-
velopers already accepted 12, and one project changed the
continuous-integration configuration to run NonDex on ev-
ery push. The demo video is at: https://youtu.be/h3a9ONkC59c.

CCS Concepts
•Software defect analysis → Software testing and de-
bugging;

Keywords
NonDex, flaky tests, underdetermined API

1. INTRODUCTION
Some commonly used Java APIs have underdetermined

specifications. Following Liskov [9], we say that a specifi-
cation is underdetermined if it allows multiple implemen-
tations to return different results for the same input, even

if each implementation is itself deterministic and always re-
turns the same result for the same input. We refer to an API
with such a specification as an underdetermined API. An
example underdetermined API is the iterator() method in
java.util.HashSet, whose Javadoc specification states, “The
elements are returned in no particular order” [4]. Similarly,
libraries for generating JSON typically do not guarantee any
order for elements in a JSON document [7]. Having such
underdetermined specifications is good because it gives im-
plementers of the underdetermined APIs the flexibility to
optimize various implementations of the API for different
goals, e.g., they may optimize performance in different ways.
However, it is important to precisely state underdetermined
specifications in the API documentation to express all ex-
pected behaviors of all API’s implementations.

Unfortunately, even when underdetermined APIs have pre-
cise documentation, developers do make wrong assumptions
about the underdetermined APIs. While such APIs could
allow even non-deterministic implementations, each typical
implementation is deterministic, i.e., two runs of the same
implementation (on the same platform) give the same result
for the same input. For example, two runs of a program
that iterates over a HashSet may return the elements in the
same order. However, such deterministic implementations
can mislead the developers of API clients, who may assume
that all API implementations are guaranteed to behave in
the same deterministic manner. For HashSet, while one Java
version could provide a deterministic iteration order, differ-
ent Java versions provide different iteration orders (e.g., the
order in Java 7 differs from the order in Java 8). If clients
of an underdetermined API assume stronger-than-specified
guarantees, the resulting code can fail when the API im-
plementation changes, albeit the specification remains the
same. A well-known example of such wrong assumptions is
that many projects with JUnit tests relied on a particular
order in which tests are executed; when these projects up-
graded from Java 6 to Java 7, many tests failed because the
order changed from Java 6 to Java 7 [8], albeit the specifi-
cation of the order did not change.

The state-of-the-practice in detecting the negative effects
of wrong assumptions on underdetermined APIs is rather
reactive. Most developers discover such assumptions only af-
ter failures happen (e.g., after platforms are changed). Un-
expected behaviors can also manifest as so called “flaky”
tests [10], which can pass or fail seemingly without any
changes to the code. A flaky test that assumes a certain
behavior, which is not guaranteed by the API specification,
can fail when the API implementation changes. The devel-

https://youtu.be/h3a9ONkC59c

opers of several projects followed a reactive practice in the
past by fixing their own code as a result of test failures due
to wrong assumptions [3, 6, 8, 11,12,17].

We propose NonDex, a tool to proactively detect wrong
assumptions on underdetermined APIs by randomly explor-
ing different allowed behaviors during test execution. For
HashSet, for example, with its underdetermined iteration or-
der, NonDex randomly explores different iteration orders,
which can proactively detect failures of tests that iterate
over HashSet, either directly in the test code itself or in the
code under test. Once a test fails during exploration, that
failure demonstrates that the code makes some wrong as-
sumption. NonDex also helps in debugging by pinpointing
the location where the assumption is being made; the debug-
ging feature searches for the dynamic invocation of the API
whose exploration causes the failure. NonDex can be run
as a stand-alone command-line tool and can thus be run on
any Java-based project, regardless of the build system used.
We additionally provide a NonDex Maven plugin that al-
lows easy integration with projects that use the Maven build
system. Developers can run NonDex, e.g., during contin-
uous integration, to check for wrong assumptions on Java
APIs. It is often more cost-effective to proactively detect
bugs right when they are introduced rather than reactively,
after they manifest.

This paper makes several contributions to the tool design
and implementation. We recently published the research
idea of NonDex [16] and evaluated it using a prototype im-
plementation which modified the OpenJDK JVM and was
not easily portable. The current NonDex tool improves four
aspects: (1) the tool is pure Java and is widely portable due
to a novel instrumentation mechanism, (2) the Maven plu-
gin is new and allowed us to scale our experiments, (3) the
debugging feature is also new, and (4) NonDex is now open
source on GitHub and is under active development [15].
While experimenting with the new implementation of Non-
Dex, we detected 21 new bugs in eight Maven-based Java
projects from GitHub. Using the new debugging feature,
we identified the underlying wrong assumptions for these 21
new bugs and 54 previously detected bugs. We opened 13
pull requests, and developers already accepted 12. Further,
the Checkstyle project, in which we found 5 bugs, integrated
NonDex into their continuous-integration configuration to
run on every push [2]. While trying out NonDex at Google,
we learned that Google had previously implemented a simi-
lar exploration in March 20151, confirming that the problem
addressed by NonDex is important in practice.

2. USAGE
We describe how to use NonDex as a Maven plugin [13]

or from command line.

2.1 Integration with Maven
NonDex is most easily integrated in the testing process

via the Maven plugin, available from the Maven Central
repository [14]. To use NonDex, developers only need to
add NonDex as a plugin entry to their build file (pom.xml).

1The Google implementation predates our earlier publica-
tion [16], but their implementation handles only one API,
has only one mode, does not integrate with Maven, and is
not open source, while NonDex handles 41 APIs, has two
modes, integrates with Maven, and is open source.

The NonDex Maven plugin provides three goals: non-

dex:nondex runs all tests while exploring different random
behaviors of 41 underdetermined APIs from the standard
Java library and reports failing tests; nondex:debug reruns
test(s) that failed during exploration to locate the invoca-
tion(s) of an underdetermined API that made the wrong
assumption; and nondex:clean deletes the .nondex directo-
ries where NonDex stores auxiliary files during exploration
and debugging. The NonDex Maven plugin also takes sev-
eral optional arguments (with sensible defaults): nondexSeed

is the main seed to use for randomization; nondexRuns is the
number of runs to perform, each with a different starting
seed computed from the main seed; and nondexMode is one
of two exploration modes, ONE and FULL, where ONE has more
determinism than FULL as described in our prior work [16].

2.2 Command-Line Invocation
NonDex can be run from command line. First, the in-

strumentation engine should be run once to (i) modify the
code for underdetermined APIs by adding the random ex-
ploration code and (ii) package the modified code as a JAR
file, say, nondex-rt.jar. Next, the user can run NonDex
on any Java application by adding to the bootclasspath (not
the regular classpath) the generated nondex-rt.jar and the
nondex-common.jar which contains code for configuring Non-
Dex and logging its output. The two JAR files are added
to the bootclasspath because nondex-rt.jar modifies the be-
havior of several classes in the standard library, and those
classes must be loaded from the instrumented JAR. The fol-
lowing example commands will run a class Main using Non-
Dex to randomly explore different allowed behaviors of the
underdetermined APIs:

done once to generate the instrumented JAR file
$ java -jar nondex -instrumentation.jar nondex -rt.jar
running some Main application with NonDex
$ java -Xbootclasspath/p:\

nondex -rt.jar:nondex -common.jar Main

From command line, the user can optionally provide a
random seed and a mode (by default FULL) for NonDex.

3. TECHNIQUE AND IMPLEMENTATION
NonDex has two user-facing phases: (i) detection finds

tests that pass without NonDex but fail when NonDex
explores different allowed behaviors—such failures indicate
wrong assumption(s) made on underdetermined APIs; and
(ii) debugging searches through detected failures to find the
underdetermined APIs on which wrong assumptions were
made and to identify the invocation(s) making such assump-
tions. Currently, NonDex exploration handles 41 underde-
termined APIs that we manually identified from the follow-
ing packages java.lang, java.util, java.io, and java.text;
we used 30 of these underdetermined APIs in our earlier
paper [16, Table I]2.

Internally, NonDex consists of four components: (1) the
instrumentation engine modifies the API classes in the stan-
dard library to add code for random exploration, (2) the
runner executes the program on the instrumented library,
(3) the detector reruns the program a specified number of
times to randomly explore different behaviors, and (4) the

2The publicly released NonDex does not handle the native
hashCode, because it did not expose any bugs during our
experiments and would unnecessarily complicate the tool.

rt.jar nondex-rt.jar
Instrumentation

Engine

Runner

Detector

Debugger
Tests and SUT

Test
Reports

Debug
Reports

Figure 1: High-level architecture of the key NonDex components; see Section 3 for the description

debugger identifies the API invocation(s) where a wrong as-
sumption was made. Figure 1 shows an architectural over-
view of the NonDex components, and the following subsec-
tions describe each component.

3.1 Instrumentation Engine
The goal of the instrumentation engine is to modify stan-

dard Java library classes to allow random exploration. The
challenge is to develop instrumentation that can automati-
cally handle a large number of Java versions. For our original
prototype [16], we manually modified the Java sources of the
relevant files, compiled them, and used them in place of the
original files. However, this solution was brittle, because the
tool would often not work unless the exact same Java ver-
sion (e.g., 1.8.0-b132) was used for the run as the version
for which we manually modified the sources. The reason
the tool did not work was that some internal parts of the
modified files changed between Java versions, even when the
signatures of the public APIs we modified did not change.
Hence, we developed our current, instrumentation-based so-
lution that is much more robust, and we have tested it on
14 different versions of OpenJDK and Oracle’s JDK imple-
mentations of Java 8, on Linux, OS X, and Windows.

The instrumentation engine takes as input the rt.jar file
containing the classfiles of the standard Java library that
will be used when running the tests. The instrumentation
engine selects from rt.jar the classfiles corresponding to
the APIs that should be modified to add random explo-
ration. For APIs that should be modified and return an
array, our instrumentation simply adds a custom NonDex
helper method to explore different orders of the returned
array (effectively randomly permuting the array before re-
turning it). This modification is robust as long as the type
signature of the API does not change. The instrumentation
is much more involved for the (Concurrent)HashMap classes,
because their iterators are lazy, implemented as private data
structures that change even within the same Java major ver-
sion, e.g., the HashMap iterator was implemented using a class
called Entry until OpenJDK version 1.8.0-b108 [5] and us-
ing a class called Node since then; we developed customized
instrumenters that can generate appropriate modified code
based on whether rt.jar uses Entry or Node. This modifica-
tion would need to change in the future if the standard Java
library implements HashMap using a third approach. We used
ASM [1] to implement all classfile manipulation.

Performing instrumentation from scratch on every run is
unnecessary, so we reuse each previously instrumented class
in subsequent runs, as long as the instrumented class from
rt.jar did not change. (The original class does not change
until/unless the user switches to another version of Java.)
To decide when to reuse the instrumented classes, NonDex
stores for each instrumented class the checksum of the class-
file from the rt.jar that was instrumented.

3.2 Runner
The runner is a thin layer of code that enables random

execution for APIs instrumented by NonDex. On every
invocation of an instrumented API, the runner randomly
chooses one behavior from the behaviors appropriate for that
API. NonDex currently supports two kinds of behaviors:
(1) permutation for APIs where order is underdetermined,
and (2) extensions for APIs where only lower bounds on ar-
ray size(s) are specified. The runner takes as inputs (i) a
random seed, which completely determines the choice of be-
haviors, (ii) the mode of exploration—ONE or FULL (the two
modes differ in the kind of wrong assumptions they can de-
tect, as described in detail in our prior work [16]3), and
(iii) optionally the range of choices to be randomized (which
is used by debugging).

3.3 Detector
The detector first runs all tests once without randomiza-

tion and then calls the NonDex runner a number of times,
with different random seeds, to rerun all the tests. The de-
tector reports tests that pass without NonDex randomiza-
tion but fail with NonDex randomization; such tests likely4

make wrong assumptions on underdetermined APIs. The
detector first runs the tests without NonDex because tests
that fail on their own are due to some other causes and
should not be reported as failures due to wrong assump-
tions. After the first run, the detector invokes the instru-
mentation engine to create the instrumented APIs before it
starts running tests with NonDex.

3We originally evaluated four different modes, but the pub-
licly released NonDex offers only two modes, ONE and FULL,
because they are the easiest to understand and correspond
to the two extremes of non-determinism.
4The tests may be flaky [10] due to other reasons and fail
irrespective of NonDex.

The detector stores information about failing tests in a
.nondex directory which also contains information about each
execution, without and with NonDex, as well as the configu-
ration used for test executions, the seed needed to reproduce
the failure and the number of invocations of the runner’s
choice generator; this number helps the debugging phase to
search for the invocation(s) that caused the failure(s).

3.4 Debugger
When a test fails with NonDex, the test may invoke sev-

eral underdetermined APIs, e.g., it may iterate over several
HashSet objects. Many of these invocations are correct, mak-
ing no wrong assumptions, so manually locating the invoca-
tion(s) that caused the detected failure can be tedious. The
debugging phase automatically identifies such invocation(s).

To locate such invocation(s), NonDex uses a binary search
that keeps track of a range of API invocations and selectively
enables exploration for half of them. Even for disabled in-
vocations, our search advances the random-number genera-
tor, i.e., NonDex still calls the random-number generator
to shuffle the order of elements, but NonDex returns the
original, not the shuffled, order. (Without this control, the
search could get different behaviors for the same random
seed, making it harder to reproduce the failure.) Debug-
ging continues until a single invocation is identified, or the
remaining range cannot be further halved. If a single invoca-
tion cannot be identified from running just one test method,
NonDex re-starts debugging for the entire test class, and
if again a single invocation cannot be identified, NonDex
re-starts debugging for the entire test suite. Debugging is
repeated for each failing test reported by the detector.

The debugging phase reports to the user an API that
causes the detected failure together with the call stack of
the API’s invocation which further helps in localizing the
context in which the wrong assumption was made. In our
prior work [16], we performed all debugging manually; after
implementing automated debugging, we found that we had
made an error in manually identifying the root cause of one
failure, which shows that the automated debugging helps to
more reliably identify the root causes.

4. EXPERIMENTS
Our initial NonDex prototype [16] detected dozens of

tests in open-source code with wrong assumptions on under-
determined APIs. We experimented with our new NonDex
tool by adding it to pom.xml for several open-source projects,
running nondex:nondex (which detected 21 new bugs), and
running nondex:debug (for the 21 new bugs and 54 old bugs).

4.1 Detecting Failures
To test the NonDex tool in general and the NonDex

Maven plugin in particular, we integrated NonDex in the
pom.xml files of several Maven-based projects from GitHub.
Our goal was to test whether NonDex works with these
projects “out-of-the-box” and not necessarily to detect any
bugs. We found that integrating NonDex into these projects
was indeed easy, and that by just adding a few lines to
pom.xml, we could run NonDex on all these projects. Non-
Dex worked well with projects that use different testing
frameworks (e.g., JUnit 4, JUnit 3, and TestNG) and even
various test runners (e.g., parameterized tests). Along the
way, we also detected 21 new failing tests in eight projects
(eight in alibaba/fastjason, five in checkstyle/checkstyle,

three in nutzam/nutz, and one in each of alibaba/druid, buk-
kit/bukkit, jankotek/mapdb, pedrovgs.algorithms/algorithms,
and perwendel/spark).

4.2 Debugging Failures
We further applied the automated NonDex debugging on

these 21 newly detected and 54 previously detected failing
tests to determine the root cause of each failure. The number
of underdetermined API invocations that NonDex random-
ized per failure ranged from 5 to 9,710. The results showed
that our simple binary-search debugging works extremely
well for these cases—for 74 out of 75 failures, NonDex min-
imized the cause down to only one invocation; the remaining
failure is for a test written in JUnit 3 for which the Surefire
Maven plugin (used by NonDex to run tests) cannot easily
run single test methods. We also counted the number of
wrong assumptions on various APIs supported by NonDex;
the invocations causing the failures were getDeclaredFields

(41 cases), HashMap iteration (32 cases), and getGenericEx-

ceptionTypes (1 case). Because binary search is simple, we
were surprised that it sufficed to identify only one invoca-
tion in all but one of the cases we tried. In the future, we
plan to explore more sophisticated search strategies, such as
delta debugging [18], and automated fixing.

4.3 Case Studies and Adoption
We opened 13 pull requests (PRs) for failures detected

by NonDex, reporting the issue and providing a fix, in four
open-source projects: five in alibaba/fastjson, five in check-

style/checkstyle, two in scribejava/scribejava, and one in
square/retrofit. We did not open PRs for all bugs that
NonDex detected because we are not experts in the projects
and could not easily provide a fix for each bug. All PRs we
opened were accepted by developers except one PR in al-

ibaba/fastjson. One of the developers of Checkstyle was
quite pleased with the PRs we opened, asked us about the
tool we used to detect the issues, and recommended that
we integrate NonDex in their continuous integration; we
indeed integrated NonDex in both pom.xml and .travis.yml

for Checkstyle [2]. Furthermore, we are piloting the use of
NonDex in a software testing course to educate students
about wrong assumptions on underdetermined APIs. Stu-
dents are using NonDex to find issues both in their own
code and in open-source projects they are familiar with.
Overall, we found NonDex to be robust enough for use both
in real-world projects and in teaching.

5. CONCLUSIONS
We presented the design and implementation of the Non-

Dex tool we developed to help in detecting and debugging
wrong assumptions on underdetermined APIs in Java. Non-
Dex is open source, integrates well with Maven, and can be
also run from the command line. Using NonDex, we de-
tected and debugged several failures in open-source projects.

6. ACKNOWLEDGMENTS
We thank Lamyaa Eloussi, Zach Gleason, Farah Hariri,

John Micco, Timothy Tunnell, and Tifany Yung for pro-
viding feedback and suggesting improvements to the Non-
Dex tool. This research was partially supported by the NSF
Grant Nos. CCF-1409423, CCF-1421503, and CCF-1439957.
We also gratefully acknowledge the Google Faculty Award.

7. REFERENCES
[1] ASM: A code manipulation tool to implement

adaptable systems. In Adaptable and extensible
component systems, Grenoble, France, Nov. 2002.

[2] Checkstyle pull request integrating NonDex.
https://github.com/checkstyle/checkstyle/pull/3393.

[3] Fix internal data ordering. https://github.com/
geosolutions-it/geoserver-manager/commit/5447c06.

[4] HashSet Javadoc. https://docs.oracle.com/javase/8/
docs/api/java/util/HashSet.html.

[5] Improvements to HashMap/LinkedHashMap use of
bins/buckets and trees (red/black), Sept. 2013. http://
hg.openjdk.java.net/jdk8/jdk8/jdk/rev/d62c911aebbb.

[6] JUnit 4.11 - What’s new? Test execution order.
http://randomallsorts.blogspot.com/2012/12/
junit-411-whats-new-test-execution-order.html.

[7] JSON. http://www.json.org/.

[8] JUnit and Java 7. http://intellijava.blogspot.com/
2012/05/junit-and-java-7.html.

[9] B. Liskov and J. Guttag. Program Development in
Java: Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley, 2000.

[10] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An
empirical analysis of flaky tests. In FSE, 2014.

[11] Maintaining the order of JUnit3 tests with JDK 1.7.
http://www.coderanch.com/t/600985/Testing/
Maintaining-order-JUnit-tests-JDK.

[12] all and sundry: JUnit test method ordering.
http://www.java-allandsundry.com/2013/01/
junit-test-method-ordering.html.

[13] Maven. https://maven.apache.org/.

[14] Maven Central. https://repo1.maven.org/maven2/
edu/illinois/nondex-maven-plugin/.

[15] NonDex Source Code.
https://github.com/TestingResearchIllinois/NonDex.

[16] A. Shi, A. Gyori, O. Legunsen, and D. Marinov.
Detecting assumptions on deterministic
implementations of non-deterministic specifications. In
ICST, 2016.

[17] Must Use LinkedHashMap and LinkedList...
https://github.com/EsotericSoftware/yamlbeans/
commit/1517822.

[18] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. TSE, 28(2), 2002.

https://github.com/checkstyle/checkstyle/pull/3393
https://github.com/geosolutions-it/geoserver-manager/commit/5447c06
https://github.com/geosolutions-it/geoserver-manager/commit/5447c06
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html
http://hg.openjdk.java.net/jdk8/jdk8/jdk/rev/d62c911aebbb
http://hg.openjdk.java.net/jdk8/jdk8/jdk/rev/d62c911aebbb
http://randomallsorts.blogspot.com/2012/12/junit-411-whats-new-test-execution-order.html
http://randomallsorts.blogspot.com/2012/12/junit-411-whats-new-test-execution-order.html
http://www.json.org/
http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://intellijava.blogspot.com/2012/05/junit-and-java-7.html
http://www.coderanch.com/t/600985/Testing/Maintaining-order-JUnit-tests-JDK
http://www.coderanch.com/t/600985/Testing/Maintaining-order-JUnit-tests-JDK
http://www.java-allandsundry.com/2013/01/junit-test-method-ordering.html
http://www.java-allandsundry.com/2013/01/junit-test-method-ordering.html
https://maven.apache.org/
https://repo1.maven.org/maven2/edu/illinois/nondex-maven-plugin/
https://repo1.maven.org/maven2/edu/illinois/nondex-maven-plugin/
https://github.com/TestingResearchIllinois/NonDex
https://github.com/EsotericSoftware/yamlbeans/commit/1517822
https://github.com/EsotericSoftware/yamlbeans/commit/1517822

	Introduction
	Usage
	Integration with Maven
	Command-Line Invocation

	Technique and Implementation
	Instrumentation Engine
	Runner
	Detector
	Debugger

	Experiments
	Detecting Failures
	Debugging Failures
	Case Studies and Adoption

	Conclusions
	Acknowledgments
	References

