
Exploring Underdetermined Specifications
using Java PathFinder

Alex Gyori1, Ben Lambeth1, Sarfraz Khurshid2, and Darko Marinov1

1Department of Computer Science, University of Illinois at Urbana-Champaign
2Department of Electrical and Computer Engineering, The University of Texas at Austin

{gyori,blambet2,marinov}@illinois.edu, khurshid@utexas.edu

ABSTRACT
Some Java libraries have underdetermined specifications that
allow more than one correct output for the same input, e.g.,
an output array may have its elements in any order. While
such specifications have a number of advantages (e.g., a
library can change while still satisfying the specification),
the non-determinism inherent in underdetermined specifi-
cations can lead to failures in client code that erroneously
assumes behaviors based on the library implementation in-
stead of only the specification. Our recent work introduced
the NonDex approach for detecting such erroneous assump-
tions by checking client code against models of library meth-
ods, which encode all behaviors allowed by the specifications.

We present NonDex for JPF, which includes JPF models
for 11 methods from the Java standard library (i.e., all meth-
ods that JPF supports from the current methods in Non-
Dex). We use these models to systematically explore state
spaces of 46 tests from student homework submissions. Our
experiments show several interesting results, which provide
new insights into the complexity of exploring the behaviors
of code that uses underdetermined APIs and the structure of
state spaces that arise in the exploration, and provide basis
for future work on better detecting faults in tests that invoke
underdetermined APIs as well as developing tool support for
writing and maintaining more robust test suites.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

Keywords: Underdetermined specifications, NonDex, sys-
tematic exploration, Java PathFinder

1. INTRODUCTION
Specifications, which state key properties of expected pro-

gram behaviors, play a useful role in the development and
maintenance of reliable software systems. Most specifica-
tions are written only informally, e.g., as Javadoc comments
in the standard Java library. Many specifications are deter-
ministic, i.e., they permit only one output for some given

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

input. However, some specifications are underdetermined,
i.e., they permit a number of different outputs for the same
input, allowing different implementation-level behaviors.

Underdetermined specifications offer one key advantage:
they allow developers flexibility when modifying their imple-
mentations. Such modifications should not break the client
code that uses an implementation as a library, provided that
the client code relies only on the library specification and not
on the details of the library implementation. However, the
non-determinism inherent in underdetermined specifications
can result in software bugs when the client code erroneously
assumes the implementation to continue to have some de-
terministic behavior even though it implements an under-
determined specification. Such erroneous assumptions are
surprisingly common, e.g., we found 60 bugs in open-source
projects and 110 bugs in student homework submissions as
reported in our ICST 2016 paper [14] which introduced the
NonDex approach for finding erroneous assumptions on un-
derdetermined specifications.

The key idea of NonDex is to check the client code against
not just one behavior of the library but against a num-
ber of different behaviors—all of which are valid with re-
spect to the underdetermined specification that the library
implements—thereby finding subtle bugs in the client code.
These bugs are triggered by particular non-deterministic
choices in library and can be hard to find otherwise. Some of
these bugs may manifest when changing the platform (e.g.,
a student’s homework submission can always pass on their
Mac laptop but fail on the Linux grading environment),
while some may not manifest for any current implementation
of the library but could cause failure for some future imple-
mentations. These problems are important to developers.
For example, we found out that Google1 has a tool similar
to NonDex (but it handles only one method, the HashMap

iterator), and developers of open-source projects are willing
to accept fixes for these bugs, e.g., we opened 13 pull re-
quests of which 12 were accepted and only 1 rejected [1]. The
developer of Checkstyle even integrated our NonDex tool
into the project’s continuous-integration setup (both into
the pom.xml build configuration file and into the .travis.yml

configuration file for running on the Travis CI) [2].
To provide NonDex functionality, we proceed in three

steps: (1) find a number of methods with underdetermined
specifications, (2) build models that encode all behaviors
of the specification, and (3) run these models in an appro-
priate execution environment to explore multiple behaviors.
For example, the method getDeclaredFields from the class

1Private communication with John Micco.

java.lang.Class returns the fields in an unspecified order,
and we can build a model that encodes all k! permutations
of k fields. (Section 3 shows this example model.)

Java PathFinder (JPF) is a popular execution environ-
ment to explore different behaviors of Java models. JPF is
a sophisticated Java virtual machine (JVM), written itself
in Java, that provides out-of-the-box systematic exploration
with advanced features such as state comparison. However,
JPF suffers from the problem that it cannot run all Java
code, in particular code that uses native methods that are
implemented in C/C++ for a regular JVM and need to be
re-implemented in Java for JPF. For this reason, our ini-
tial experiments [14] used both a NonDex prototype that
explores models in a regular JVM and can work with all
Java code but does not provide systematic exploration and
a simple NonDex implementation in JPF that supported
only one method (the HashMap iterator). Since then we have
built a more robust tool for a regular JVM [6,11].

This paper presents our extended work on NonDex for
JPF. We develop JPF models for 10 new methods (i.e.,
all methods that JPF supports from the current methods
in NonDex for a regular JVM), and we use these mod-
els to systematically explore state spaces of 46 tests from
student homework submissions. (JPF cannot easily handle
the open-source projects in which we found bugs because
many of them use I/O operations, advanced reflection, or
other methods not supported by JPF.) Inspired by prior
work that studied properties of state-space graphs arising in
explicit-state model checking [5,12], we study the properties
of state-space graphs from NonDex explorations.

Our analysis shows several interesting results. First, the
state-space graphs even for simple sequential code can be-
come large when considering underdetermined specifications.
Second, when a test fails due to one of the underdetermined
specifications we consider, the probability that a randomly
selected execution leads to a test failure (rather than to a test
success) is high, at least 50%. Third, JPF state matching
finds a non-trivial amount of non-deterministic choices due
to underdetermined specifications are local and do not cre-
ate globally non-deterministic states. Fourth, the number of
critical choice points that determine the test outcome (fail-
ure or success) is relatively small, indicating the key points
to focus on during debugging. Fifth, certain orderings are
more likely to lead to test failures, and in the future we plan
to evaluate specialized heuristics to prioritize orderings.

2. MOTIVATING EXAMPLE
Fig. 1 shows some test simplified from a student home-

work in a Software Engineering class taught at the Univer-
sity of Illinois. The students were asked to write code for
a Book class and tests for their code. The method testGet-

StringRepresentation1 aims to test that the Book object pro-
duces a correct string representation: the test checks that
the round-trip from the string representation of a Book to
a Book object and back to its string representation yields
the same String result used to construct the Book object.
The homework was designed several years ago by a teaching
assistant with no knowledge of this research.

The problem with this test is it assumes the order of the
fields in the JSON representation of the Book object to be the
same every time, either {author="Die...", title="Cos..."}

or {title="Cos...", author="Die..."}. This assumption is
wrong; it is not supported by the JSON specification: the

1 public class BookTest {
2 private String toJSON(String s)
3 throws JSONException {
4 JSONObject obj = new JSONObject ();
5 String [] info = s.split(",");
6 obj.put("author", info [0]. trim());
7 obj.put("title", info [1]. trim());
8 return obj.toString ();
9 }

10 @Test
11 public void testGetStringRepresentation1 ()
12 throws JSONException {
13 Book book =
14 new Book(toJSON("Diego et al., Costization"));
15 assertEquals(
16 toJSON("Diego et al., Costization"),
17 book.getStringRepresentation ());
18 }
19 }

Figure 1: Example test that fails due to a underde-
termined specification

S 0 10
1

2
0

5
1 3

0

return

e1
1

Exception

1

e2

0

Exception

Figure 2: State-space graph for the example test

author and title could appear in any order in the resulting
string. In fact, the data structures used to implement the
underlying JSONObject do not guarantee the order assumed
by this test. Specifically, a HashMap is used to store a map-
ping between field names and their values, and the code in
JSONObject (not shown here) iterates the HashMap to produce
the String representation. The specification of the HashMap

explicitly states: “This class makes no guarantees as to the
order of the map; in particular, it does not guarantee that
the order will remain constant over time.” [7]. Code making
such wrong assumptions, unsupported by the specification,
is brittle because whenever the library changes, the assump-
tions may stop holding, and the code can break [8, 9].

Our NonDex technique finds assumptions on certain APIs
by exploring different behaviors permitted by the specifica-
tion. If exploring these different behaviors triggers a failure,
it indicates that the code makes some wrong assumption
on the API. In the example in Fig. 1, NonDex would ex-
plore different orders of iteration for the underlying HashMap

of each JSONObject. Note that it is necessary to explore an
execution where the two iteration orders for the two JSONOb-

ject objects differ, i.e., {author="Die...", title="Cos..."}

and {title="Cos...", author="Die..."}. We manually cre-
ate models for APIs based on their specifications, and we
use JPF to explore these models for all allowed behaviors to
find wrong assumptions.

Fig. 2 shows the entire state-space graph resulting from
the JPF’s exploration of different behaviors of APIs with
underdetermined specifications. In the execution of the test
testGetStringRepresentation1, the program executes three
underdetermined APIs, corresponding to the three choice
points. Two of these are in the translation of the JSONObject

1 // in jpf -core/src/classes/java/lang/Class.java
2 ... class Class ... {
3 ...
4 public native Field[] getDeclaredFields () throw ...;
5 }
6 // in jpf -core/src/peers .../ JPF_java_lang_Class .java
7 ... class JPF_java_lang_Class extends NativePeer {
8 ...
9 @MJI

10 public int
11 getDeclaredFields_____3Ljava_lang_reflect_Field_2
12 (MJIEnv env , int objRef) {
13 ...
14 for (i=0; i<nStatic; i++) {
15 FieldInfo fi = ci.getStaticField(i);
16 ...
17 }
18 for (i=0; i<nInstance; i++) {
19 FieldInfo fi = ci.getDeclaredInstanceField(i);
20 ...
21 }
22 }
23 }

Figure 3: Original Class#getDeclaredFields in JPF

to String in the method toJSON (called twice from the test),
and one is in the body of the method getStringRepresenta-

tion (not shown here). Each of these choice points is over
a collection with two elements (corresponding to the fields
author and title), hence it has two possible orders.

Even this simple graph illustrates some interesting prop-
erties. For example, the non-deterministic choice point in
state 0 is rather local, and both of its orders lead to the same
state 1. The reason is that the first call to toJSON can pro-
duce two different string objects, but both of them produce
the same Book object. Effectively, this choice point does not
matter for the failure. What does matter is the relationship
between the second and third choice points: if they choose
the same order, the test passes, but if they choose different
orders, the test fails. The probability that a randomly se-
lected execution finds this failure is exactly 50%. Moreover,
a simple strategy that always switches between choosing the
natural order (the first outgoing edge, marked 0) and its op-
posite (the last outgoing edge, in this case, marked 1) would
definitely find the failure in this example, but this is not
always the case. We discuss in Section 4 the results from
more examples.

3. TECHNIQUE AND IMPLEMENTATION
The overall NonDex technique is rather simple: we first

manually find methods in the standard Java library with un-
derdetermined specifications, then manually build models of
these methods, and finally use an appropriate execution en-
vironment to explore various behaviors of these models. We
next describe how we implemented NonDex models in JPF.
One implementation of the HashMap iterator was already pre-
sented before [14]. Thus, we illustrate here the implemen-
tation of another method, and also mention one change we
made in the former implementation of the HashMap iterator.
The key goal of our implementation of NonDex in JPF is
to enable systematic exploration of all possible behaviors of
methods with underdetermined specifications.

To illustrate our encoding of models in JPF, consider the
getDeclaredFields method from the class java.lang.Class.
This method returns an array of the type Field[] which
represents all the fields declared by the class (but excludes
inherited fields). The Javadoc for this method states: “The

1 // modified Class.java
2 ... class Class ... {
3 ...
4 public Field[] getDeclaredFields () throw ... {
5 return NonDex.shuffle(getDeclaredFieldsO ());
6 }
7 public native Field[] getDeclaredFieldsO () ...;
8 }
9 // modified JPF_java_lang_Class .java

10 ... class JPF_java_lang_Class extends NativePeer {
11 ...
12 @MJI
13 public int
14 getDeclaredFieldsO_____3Ljava_lang_reflect_Field_2
15 (MJIEnv env , int objRef) {
16 /* body the same as was in getDeclaredFields */
17 }
18 }

Figure 4: Modified Class#getDeclaredFields

1 import gov.nasa.jpf.vm.Verify;
2 class NonDex {
3 public static <T> T[] shuffle(T[] objs) {
4 return shuffle(Arrays.asList(objs)).toArray(objs);
5 }
6 public static <T> List <T> shuffle(List <T> objs) {
7 int permutation =
8 Verify.getInt(0, factorial(objs.size()) - 1);
9 return nthPermutation(permutation , objs);

10 }
11 public static <T> List <T> shuffleOld(List <T> objs){
12 int k = objs.size();
13 for (int i = 0; i < k - 1; i++) {
14 Collections.swap(objs , i, Verify.getInt(i, k-1));
15 }
16 return objs;
17 }
18 ...
19 }

Figure 5: NonDex methods for shuffling

elements in the returned array are not sorted and are not in
any particular order.” [3].

A typical implementation of this method is deterministic
and returns the fields in some particular order. For example,
in JPF, this method is implemented as a native peer with the
relevant parts shown in Fig. 3. The Class implementation
declares only that the method getDeclaredFields is native,
and the actual implementation in JPF_java_lang_Class.java

returns the array that has static fields before instance fields.
Interestingly, the same JPF_java_lang_Class.java uses a dif-
ferent order in the method getFields which returns an array
which represents all the public fields in the class and includes
inherited fields—that method returns instance fields before
static fields and has a comment “the spec says there is no
guaranteed order so we keep it simple” [4].

To support NonDex, we modify getDeclaredFields such
that JPF can explore all possible orders of the fields. We
modified the implementation directly at the JPF level as
shown in Fig. 4: (1) renamed the original getDeclaredFields
peer to getDeclaredFieldsO and kept its body and (2) added
the method getDeclaredFields to first obtain the original ar-
ray of fields and then shuffle it using our NonDex method
shuffle (described in the next paragraph). Note that we ef-
fectively modified the behavior of an existing native method
to add shuffling, which is easy to do in JPF because the
native methods are themselves implemented in Java.

We next describe how we implemented the NonDex#shuffle

methods. Fig. 5 shows the key parts of our implementation.
The shuffle method for arrays is the one invoked from get-

DeclaredFields, but many other methods require shuffling
a list, so our key logic is in the shuffle method for lists.
Its implementation is straightforward: given a list objs, it
computes the total number of permutations of this list (k!,
where k is the length of the list) and then selects one particu-
lar permutation to explore in each invocation, using the JPF
library method Verify#getInt. (Note that both bounds in
getInt are inclusive, hence subtracting one from the number
of permutations.) The method nthPermutation computes the
n-th permutation of a given list in the lexicographic order,
using a traditional algorithm [13]. Note that several meth-
ods in the NonDex library modify their given arguments
in place, but we ensure that they are called only when the
arguments are copies that can be modified without affecting
Java semantics. (While our goal is to explore all possible
orders using NonDex, we do not want to generate some im-
possible order.) For example, the Javadoc for several Class
methods explicitly states: “The caller of this method is free
to modify the returned array; it will have no effect on the
arrays returned to other callers.”

Fig. 5 also shows an old shuffle method that we used in our
first NonDex paper [14]. This method also enumerates all k!
permutations of the input objs list of length k, but it creates
a different state-space graph that does not precisely capture
the non-determinism inherent in these permutations. This
method uses the Knuth shuffle [10] for random permutations
but applies it to systematically explore all possible permuta-
tions. For each position i, it chooses some position between
i and k − 1 to swap with i.

To illustrate the difference between the methods shuffle

and shuffleOld, consider a list with 4 elements. The current
shuffle creates a single choice point with 4! = 24 outgoing
edges, i.e., the state-space graph has 25 nodes (1 choice point
and 24 successor states). In contrast, the old shuffle would
create one choice point with 4 outgoing edges of which each
leads to a choice point with 3 outgoing edges of which each
leads to a choice point with 2 outgoing edges, creating a fac-
torial tree. This also gives 24 choices, but the state-space
graph now has 40 edges and 41 nodes, i.e., 16 more edges
and 16 more nodes than our current non-deterministic choice
tree. These additional edges and nodes do not capture the
non-determinism but are just the consequence of how permu-
tations are computed. For this reason, all our experiments
use the current shuffle implementation, not only for the new
methods that we added but also for the HashMap iterator.

4. EVALUATION
We next present the results of our experiments on 46

student-written tests; we know from our previous work that
(1) JPF can run these tests, at least for some executions,
and (2) the tests contain wrong assumptions on APIs [14].
In the past, we ran these tests in JPF with only one under-
determined method and to find only one error state, thus
we stopped the exploration on the first failure. In the cur-
rent evaluation, our key goal is to analyze the state-space
graphs, thus we run JPF with search.multiple_errors=true,
and we also run with all 11 models of methods with under-
determined specifications (HashMap iterator and 10 methods
similar to getDeclaredFields).

Table 1 shows the statistics about the state-space graphs.
We obtained the full graphs for 46 failing tests. We pre-
viously had five additional tests [14]. During the explo-
ration of two tests, JPF ran out of memory (the default

Table 1: Statistics of tests exploration
ID #Nodes #Edges #Fail Pf [%] #Merges #Crit
T1 7 7 2 50.00 0 2
T2 7 7 2 50.00 0 2
T3 208 283 64 75.00 29 32
T4 16 19 4 50.00 1 4
T5 7 7 2 50.00 0 2
T6 23 26 8 62.50 1 4
T7 5 4 1 50.00 0 1
T8 941099 950699 875520 98.96 386 9216
T9 53 71 36 72.22 4 6
T10 8 9 2 50.00 1 2
T11 8 9 2 50.00 1 2
T12 8130 8192 4032 98.44 0 64
T13 8 9 2 50.00 1 2
T14 35 42 12 75.00 5 4
T15 140 164 56 87.50 18 8
T16 150279 169994 65280 99.61 1797 256
T17 1124 1348 448 87.50 158 64
T18 10468 13252 3840 93.75 864 256
T19 8 8 2 50.00 0 2
T20 155 194 56 87.50 17 8
T21 224 332 56 87.50 22 8
T22 4 3 1 50.00 0 1
T23 6 5 2 75.00 0 1
T24 8825 9711 3968 96.88 700 128
T25 4 3 1 50.00 0 1
T26 885 1175 296 99.22 47 16
T27 17221 18311 8064 98.44 964 128
T28 7 7 2 50.00 0 2
T29 8 8 2 50.00 0 2
T30 8 8 2 50.00 0 2
T31 2645 3365 960 93.75 222 64
T32 9 8 3 87.50 0 1
T33 11 10 4 87.50 0 1
T34 15 15 6 75.00 0 2
T35 8 9 2 50.00 1 2
T36 6438913 12747262 65280 99.61 2113793 256
T37 5 4 1 50.00 0 1
T38 32 53 3 75.00 10 1
T39 24 37 3 75.00 6 1
T40 6 6 1 50.00 1 1
T41 5 4 1 50.00 0 1
T42 11 12 2 50.00 1 2
T43 1056 1106 552 95.83 28 24
T44 9 9 2 50.00 0 2
T45 20 23 6 87.50 3 2
T46 160 331 56 88.89 41 8

1GB) after finding 450,463 and 1,321,584 errors, respec-
tively. Two tests were affected by a real bug in JPF, namely
the JPF native peers in JPF_java_lang_StringBuilder.java

and JPF_java_lang_StringBuffer.java do not work with the
latest Java versions. The fifth test was mistakenly reported
as failing in the past, because the code under test throws
some exceptions that are caught, printed, and “swallowed”;
the code does have some bugs but not of the kind that Non-
Dex should find.
State-Space Graph Size: We tabulate the graph size
(number of nodes and edges) as a measure of the uses of un-
derdetermined APIs. We find that many tests have rather
simple graphs, similar to the example from Section 2. How-
ever, a few tests have large graphs, with the largest (T36)
having 6,438,913 nodes and 12,747,262 edges. Note that
all the code is single-threaded, so the choice points are due
only to the methods with underdetermined specifications.
The largest choice point that we allow to be exhaustively
explored is for collections with six elements, i.e., 720 outgo-
ing transitions. For larger collections, we explore only one
order, as provided by the underlying implementation.
Failure Probability: We also show the number of failing
nodes and the failure probability. The latter is computed
under the assumption that each (local) choice for each choice
point is equally likely, e.g., if a choice point has 6 outgoing

edges, each has 1/6 probability to be chosen. The overall
failure rate is computed over a reverse topological sort of
the graph: each failing node has the failure probability of
1.0, each passing node has the failure probability of 0.0, and
an inner node with n children has the failure probability
(p1 + . . . + pn)/n, where p1, . . . , pn are failure probabilities
of the successor nodes. The failure probability of the start
node in the graph gives the overall failure probability for the
graph. We can see that it can be as high as 99.61%, and is
at least 50% in all cases; it means that a random selection of
choices has a good chance to find any of these bugs (which
confirms why our results with NonDex on JVM are already
quite good [14]).
Irrelevant Non-determinism: We further measure how
much of the non-determinism becomes irrelevant as the ex-
ecution leads to the same state irrespective of the choices
made at some choice point. Specifically, we count the num-
ber of “merge” nodes that have in-degree greater than one.
(These are only the internal nodes and do not include the
final, pass or fail, nodes.) While some tests have no merge
nodes, other have quite a few, even up to almost one third of
all nodes (T36 and T38). These merge nodes post-dominate
some choice points that can be safely ignored when debug-
ging the cause of failures due to underdetermined specifica-
tions in these cases.
Critical States: Collecting the entire state space enables
us to determine the number of critical states, i.e., states
with choice points from which at least one choice leads to
paths that end either only in failure(s) or only in pass(es),
while other choices lead to paths with different outcomes.
In other words, these are the points where the exploration
diverges, and so these are the key points for the developer
to focus on when debugging failures that NonDex detects.
We find that the number of critical states is relatively small
compared to all states, the highest ratio being 32/208 for
T3. Many cases have just one or two critical states. When
JPF can analyze some code, our NonDex tool in JPF can
greatly complement our NonDex tool in JVM: we envision
a system where the tool in JVM is run first (because it can
check all Java code and runs much faster for one execution)
for some random choices, and if it detects a failure, then
JPF is used to explore the neighborhood around this failure
to determine which choice points are critical.
Choice Prioritization: Random exploration has a good
chance to find the failure (e.g., with 50% failure probabil-
ity for each path, trying just 7 independent paths gives over
1−(1/2)7 > 99% probability to find the failure), but we eval-
uate whether some prioritization heuristics could increase
that chance. One seemingly good heuristic could be to first
explore for each choice point the order that is opposite (O)
of the natural (N) order, e.g., if some collection naturally
returns foo, bar, baz, we could first explore baz, bar, foo.
The intuition is that most tests pass for the natural order,
and the opposite may create a completely unexpected situ-
ation. However, this heuristic finds failures in only 9 out of
46 tests. The reason is that many cases require two choices
to be related for the failure (e.g., our running example re-
quires two choices to differ). Additional heuristics are then
to explore orders that alternate O and N , i.e., ONONON...
or NONONO.... All three heuristics can find failures in 37
out of 46 cases, which is greater than 9 but still not perfect.
In the future, we hope to identify heuristics that are even
more likely to produce failures in most if not all cases.

5. CONCLUSIONS
In this paper we leveraged JPF to build on our previous

work on NonDex, which introduced an approach for de-
tecting erroneous assumptions client code makes about the
libraries that have underdetermined specifications. We cre-
ated models for 11 methods from the Java standard library
(i.e., all methods that JPF supports from the current Non-
Dex methods), and employed JPF to systematically explore
state spaces of 46 tests from student homework submissions
running with these models. Our experiments show several
interesting results, which further our understanding of the
complexity of checking code that invokes underdetermined
specifications. We also provide hints for how future work
can more efficiently detect tests that are brittle with respect
to library changes that conform to specifications.

Acknowledgments
We thank Owolabi Legunsen and August Shi for engaging
discussions about NonDex. This work was partially sup-
ported by NSF Grant Nos. CCF-1319688, CCF-1409423,
CCF-1421503, and CCF-1438982.

6. REFERENCES
[1] Ben Lambeth’s GitHub. https://github.com/azy2.

[2] Checkstyle Pull Request.
https://github.com/checkstyle/checkstyle/pull/3393.

[3] Class#getDeclaredFields Javadoc.
https://docs.oracle.com/javase/8/docs/api/java/lang/
Class.html#getDeclaredFields--.

[4] Class#getFields in Java PathFinder.
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core/file/
0069194b1048/src/peers/gov/nasa/jpf/vm/JPF java
lang Class.java#l580.

[5] M. B. Dwyer, S. Person, and S. Elbaum. Controlling
factors in evaluating path-sensitive error detection
techniques. In FSE, pages 92–104, 2006.

[6] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and
D. Marinov. NonDex: A tool for detecting and
debugging wrong assumptions on Java API
specifications. In FSE Demo 2016 to appear.

[7] HashSet Javadoc. https://docs.oracle.com/javase/8/
docs/api/java/util/HashSet.html.

[8] C. Huo and J. Clause. Improving oracle quality by
detecting brittle assertions and unused inputs in tests.
In FSE, pages 621–631, 2014.

[9] JUnit 4.11 - What’s new? Test execution order.
http://randomallsorts.blogspot.com/2012/12/
junit-411-whats-new-test-execution-order.html.

[10] D. Knuth. Seminumerical algorithms, the art of
computer programming, vol. 2 1997.

[11] NonDex Source Code.
https://github.com/TestingResearchIllinois/NonDex.

[12] R. Pelánek. Properties of state spaces and their
applications. STTT, 10(5):443–454, 2008.

[13] R. Sedgewick. Permutation generation methods. ACM
CSUR, 9(2):137–164, 1977.

[14] A. Shi, A. Gyori, O. Legunsen, and D. Marinov.
Detecting assumptions on deterministic
implementations of non-deterministic specifications. In
ICST, pages 80–90, 2016.

