
Efficient Incrementalized Runtime Checking of
Linear Measures on Lists

Alex Gyori∗, Pranav Garg†, Edgar Pek‡, P. Madhusudan∗
∗University of Illinois at Urbana-Champaign

†Amazon1

‡Adobe Systems Inc.1

Email: gyori@illinois.edu, prangarg@amazon.com, pek@adobe.com, madhu@illinois.edu

Abstract—We present mechanisms to specify and efficiently
check, at runtime, assertions that express structural properties
and aggregate measures of dynamically manipulated linked-
list data structures. Checking assertions involving the structure,
disjointness, and aggregation measures on lists and list segments
typically requires linear or quadratic time in the size of the heap.
Our main contribution is an incrementalization instrumentation
that tracks properties of data structures dynamically as the
program executes and leads to orders of magnitude speedup in
assertion checking in many scenarios. Our incrementalization
incurs a constant overhead on updates to list structures but
enables checking assertions in constant time, independent of
the size of the heap. We define a general class of functions
on lists, called linear measures, which are amenable to our
incrementalization technique. We demonstrate the effectiveness
of our technique by showing orders of magnitude speedup in
two scenarios: one scenario stemming from assertions at the
level of APIs of list-manipulating libraries and the other scenario
stemming from providing dynamic detection of security attacks
caused by malicious rootkits.

I. Introduction

Writing and checking assertions is one of the most used
techniques for detecting errors and providing information
about fault locations [10], [13], [21], [32]; assertions are used
widely in production code [11], [12], [18], [21] (e.g., a study
showed that there are more than a quarter million assertions in
the Microsoft Office suite [21]). The Eiffel system pioneered
the systematic usage of assertions for method contracts and
led to wider adoption in mainstream programming languages.
The JML notation [1], the Spec# language [7], and the Code
Contracts system [6] are examples of specification languages
that were influenced by Eiffel [28]; Code Contracts were used
for writing specifications and testing code within Microsoft.
Assertions are simple to write and popular as programmers use
them for testing; they are the most available form of specifi-
cation and are leveraged for more sophisticated analyses, such
as for unit testing [32], [37], [39], test-input generation [4],
[9], [15], [26], [36], and regression testing [29], [33].

Assertions express the expectation of properties believed to
be an invariant of the program at the respective program point,
and can be written by a programmer or automatically mined
from test data [17]. Checking such assertions at runtime, either
during testing or in deployed production code, benefits several

1This work is independent of the author’s work at his affiliated institution
and was done while the author was a student at the University of Illinois.

applications. One application is tracking likely invariants to
use them in downstream regression testing and verification
techniques [17], [31]. Another application is to mine likely in-
variants from normal runs of the program, and checking them
at runtime in production code to find security breaches [16].
An example of such an application is a technique that detects
malicious kernel-level rootkits by generating invariants during
a training period and monitoring for their violations [5]. The
invariants in this domain typically involve properties over data-
structures (such as the linked lists in the kernel that store sets
of processes for process accounting and scheduling).

Assertions are useful in testing during the software devel-
opment process [40], where assertions express preconditions
or invariants about the developers’ own code or an external
library. The assertion violations help detect, debug, and fix
errors early. Mainstream programming languages lack standard
assertion logics for the structure of the heap, and programmers
often write such assertions by writing procedures that check
properties. For instance, in Java, programmers write so-called
RepOk methods for checking representation class invariants
during testing [25]. These dynamic checks require traversing
the entire data-structure (lists, in our case), and therefore
they can be expensive to evaluate. Our goal is to provide
incrementalizable ways of evaluating disjointness of lists and
certain functions on lists, which can lead to significant speed
up in checking properties of lists at runtime.

In this paper, we study the problem of expressing and
efficiently checking assertions on lists and list-segments while
they get dynamically manipulated by an imperative program
making destructive updates to the heap. The assertions we
support express properties of lists and list-segments, including
their disjointness, and linear measures on them. Linear mea-
sures are a class of functions that map lists and list-segments
to a domain that satisfies certain linearity, compositionality,
and incrementalizability properties, and include a variety of
functions like the lengths of lists or list-segments, the multiset
of keys they contain, the set of locations that define them,
etc. Our assertion logic supports atomic predicates that check
for structural properties involving whether two pointers form
a list-segment (lseg(y, z)), disjointness properties checking
whether the locations defining two list segments are disjoint
(like Disjointlseg((x, z), (y, z))), and properties of linear
measures of lists and list-segments.

The main contribution of this paper is a procedure that
continually and incrementally tracks properties of the heap
(with a small overhead for each update of the heap) such
that assertions like the one above can be checked quickly,
in constant time, without traversing the heap. The key idea
is to maintain summaries of large regions of the heap and
incrementally maintain the summaries with each update to
the heap. We show that structural properties of lists and list-
segments as well as any linear measure on them can be
effectively and incrementally maintained with low overhead
using summaries involving very few regions.

We evaluate our technique using two experiments. The first
one consists of small programs having API methods from the
GLib library [20], which model library calls that maintain lists,
and client code, which uses these libraries and contains very
intensive assertion checking. We perform experiments that
stress-test these programs on lists of varying size, and show
that the incrementalized checking of assertions is significantly
more efficient, and incurs a constant overhead. The second
experiment involves an application of runtime checking to
detect malicious rootkits by dynamically checking the integrity
of data structures in the kernel. In this application, we wish
to track whether the contents of two data-structures are the
same by tracking the sum of their hashes for each list, which
is a linear measure. We show that incrementalized checking of
assertions using region summaries causes negligible overhead
while checks on the concrete lists incur significant overhead.

II. Motivating Example

In this section we present a motivating example in the
form of an assertion and illustrate general concepts relevant
to the type of assertions our technique supports. Consider the
following assertion:
lseg(x,nil) ∧ lseg(y,z) ∧ Disjointlseg((x,nil), (y,z))

∧ length((x,nil)) > length((y,z))

The above assertion expresses that the program variable x
points to a list (more precisely, a nil-terminated list segment)
and y to z forms a list-segment; the list x and list-segment
(y, z) are disjoint, and the length of the list x is greater than
the length of the (y, z) segment. One such heap satisfying
these properties is illustrated in Figure 1. The simplest runtime
check on the heap for the above property would take at
least linear time on the length of the lists involved. When
the sizes of the data structures get large (several thousand
nodes), linear-time algorithms cause nontrivial overhead, and
hence the runtime checking of such data structures does
not scale, whether checks are written by the programmer or
automatically generated from specifications.
Linear Measures: Our assertion logic is parameterized by a
class of functions that map list-segments into a domain D; we
identify general conditions (linear measures) under which our
technique can incrementally evaluate the functions.

A linear measure is a function f that maps list-segments
to a domain D, where D has an operator ⊕ that forms a
monoid, i.e., is associative and there is an identity element.

Fig. 1: Pertinent locations are depicted as solid nodes, the
regions R are depicted using dashed edges. Linear measures
of the regions in R are as shown in the bottom-right box.

Furthermore, we require the linearity property, i.e., for any
two “consecutive” list-segments ls1 and ls2, f (ls1 · ls2) =

f (ls1) ⊕ f (ls2), so that the function on a list-segment can
be computed from its value on any partition of the list-
segment into two disjoint list-segments. In addition, we require
the existence of two computable functions that will help
incrementalize computation—one that computes the measure
for single-element lists, and the second, contracting function,
that computes, given a list-segment ls, the measure of the suffix
of ls, obtained by removing the first element, solely from the
measure of the list segment ls and the element removed. We
show that a variety of interesting measures, including lengths
of list-segments, the keys they contain, the heap locations that
define them, the sum of hashes of the elements of the list, etc.,
can all be expressed as linear measures.
Region Summaries: The information that we continually
track is a set of regions R, information on how these regions
are connected, and summaries that capture for every region
its linear measure. Figure 1 depicts a concrete heap forming
several list segments and the corresponding regions overlaid.
The regions of the heap of interest are list-segments that
connect pertinent nodes; pertinent nodes are depicted using
solid nodes and regions are depicted using dashed arrows. The
pertinent nodes include (a) the locations pointed to directly by
the program’s pointer variables, and (b) the first locations at
which list-segments merge (the node pointed to by z would be
pertinent even if z would not point to it because it is the first
location where two lists merge). Given these pertinent nodes,
we track the precise reachability relations between them: for
each pertinent node p, we track the next pertinent node q that
is reachable when following the next-pointer from p (shown
by the dashed arrows). These list-segments define regions in
R, and for each of the regions, we track explicitly their linear
measure. Note that the number of pertinent nodes is a constant
if the number of program pointer variables pointing to list
nodes is a constant, and hence so is the number of regions
and the number of linear measures that are tracked.

When the program executes and modifies the heap, most of
the summarized regions are unaffected, and all the program’s
actions are around the locations pointed to by the program

variables. For any operation, we can incrementally update the
regions as well as the linear measures on the regions.

A key property of the regions we track is that the disjoint-
ness of any two list-segments can be computed just from the
information stored in the region summary. This allows us to
check disjointness of list-segments efficiently. Furthermore, by
the linearity property of linear measures, we can also compute
the linear measure for any list segment (by aggregating the
linear measures of all list-segment regions comprising it using
⊕). Consequently, the atomic predicates in any assertion can
be efficiently computed from the regions we track.

Note that our technique gives fast assertion checking by
evaluating the assertion using the region summaries we main-
tain, but introduces an overhead for each operation on list
nodes to update the region summaries. Consequently, our
technique would be most beneficial mainly when the sizes
of the lists are large and the number of changes to the list is
small between assertion checks.

One typical scenario consists of a framework where one has
library code that implements low-level manipulation of lists,
and client code calling such libraries to implement a higher-
level functionality. Both the library code and the client code
could contain programmer-written assertions about the lists in
the heap. In such a setting, our scheme would maintain the
region summaries of all list nodes globally, and assertions in
the client code and library code are transformed to checks
using these region summaries. All manipulations of the lists
within the library methods are instrumented to incrementally
maintain region summaries. Note that the client code (which
does not manipulate lists directly) is left uninstrumented
(hence causing no overhead).

III. LinearMeasures

We define linear measures as the class of functions from list
segments to an arbitrary countable domain D. We will view
linear predicates as linear measures that map to the Boolean
domain B, and treat them uniformly.

We now define list-segments, independent of the heaps
they occur in. We fix a set of locations Loc with a special
location nil ∈ Loc. We also fix a data-domain Data. A list-
segment is a finite sequence of locations (l0l1 . . . ln, key), where
all locations except the last must be non-nil, and a function
key : {l0 . . . ln−1} → Data associating locations to the data they
hold. For any list-segment ls = (l0l1 . . . ln, key), we refer to l0
as the head (head(ls)) and to l1 . . . ln as the tail (tail(ls)) of the
list-segment.

Two list-segments (l0l1 . . . lm, key) and (l′0l′1 . . . l
′
n, key′) are

disjoint if {l0, . . . , lm−1} ∩ {l′0, . . . , l
′
n−1} = ∅. Given two disjoint

list-segments ls1 = (l0l1 . . . lm, key1) and ls2 = (l′0l′1 . . . l
′
n, key2)

where lm = l′0, we define their concatenation to be ls1 ·

ls2 = (l0 . . . lml′1 . . . l
′
n, key) where key is the union of the two

functions key1 and key2.
A linear measure is a function from list-segments into a

domain D. Let LS denote the set of all list-segments with
keys mapped to the data-domain Data.

Definition 1 (Linear Measures). A linear measure on list-
segments over a data-domain Data is a function f : LS −→ D,
where D is an arbitrary (countable or finite) domain, and D
is equipped with a computable function ⊕ : D × D→ D and

Assoc:⊕ is associative: for every d1, d2, d3 ∈ D, (d1 ⊕ d2) ⊕
d3 = d1 ⊕ (d2 ⊕ d3).

Id: There is an element d0 of D such that it is the identity
with respect to ⊕ (i.e., d ⊕ d0 = d0 ⊕ d = d, for every
d ∈ D). Furthermore, for every empty list segment
ls = (l0, key), f (ls) = d0.

Lin: If ls1, ls2 ∈ LS and ls1·ls2 is defined, then f (ls1·ls2) =

f (ls1) ⊕ f (ls2).
Sing: Let singleton be the function that maps every sin-

gleton list-segment ls = (l0l1, key) to f (ls). Then
singleton is computable.

Con: contract : D × Loc × Data → D is a contrac-
tion function such that for any list-segment ls =

(l0l1 . . . ln, key) with n ≥ 1,
if ls′ = (l1 . . . ln, key ↓ {l1, . . . , ln−1}) is the suffix
of ls obtained by removing the first element, then
f (ls′) = contract(f (ls), l0, key(l0)) �

The first two conditions above require the co-domain
(D, d0,⊕) be a monoid. The third condition is the linearity
condition that requires that f applied to a list-segment evalu-
ates to the sum (by ⊕) of its applications to the list segments
that constitute it.

The Singleton (Sing) condition requires that the measure
be computable for singleton lists. Along with the third con-
dition, it follows that the measure is computable for any list-
segment (by using the value on each singleton list-segment
composing it and using ⊕ to combine them). The contraction
property (Con) says that the measure on the suffix of a list-
segment starting from the second node can be computed from
the measure of the whole list-segment and the first node and
the key stored in it. Note that this computation is independent
of the list-segment suffix— we require that we are able to
compute the measure on the extended list only from the
measure on the list-segment and the first location and the key
stored in it. The computability of the measure on singleton
list-segments, the computability of ⊕, and the computable
contraction function will play a crucial role in the incremental
computation we build.

We use (D, d0,⊕, singleton, contract) to denote the domain
of the linear measure. We will next present several examples
of linear measures.

Example 1 (Multiset of keys). Consider the function Keys that
returns the multiset of keys stored in a list-segment ls. This
function is a linear measure: we can define ⊕ as multiset union
∪, d0 = ∅, satisfying the associativity and identity conditions.
Furthermore, clearly the linearity property above is satisfied.
Every singleton list ls = (l1l2, key), Singleton(ls) = Keys(ls) =

{l1.key} is computable. For any list-segment ls and k ∈ Z,
we can define contract(S , u, k) = S \ {k} and this computes
the measure on the suffix of the list-segment whose measure
is S . Note that defining f to be the set of keys (as opposed

xs ∈ SVar cs ∈ Scalar Constant
xp ∈ PVar
op ∈ Scalar Operation pred ∈ Scalar Predicate

eS ::= xS | cS | eS opS eS | xP → key
eP ::= xP | nil | xP → next | mallocP()
eb ::= eS == eS | eP == eP | eS relop eS | eb ∧ eb | ¬eb

P ::= xS := eS | xP := eP | xP → key := eS | free(xP)
| xP → next := xP | skip

| if eb then P else P fi
| while eb do P done | P; P | ε

Fig. 2: Programming Language Syntax

to multiset) stored in a list-segment will not form a linear
measure, as an appropriate contract function does not exist.

Example 2 (Heaplet). Consider the function Heaplet that
returns the set of addresses (locations) that form the list-
segment. This function is also a linear measure: we can define
⊕ as union ∪ and d0 = ∅. For any singleton list ls = (l1l2, key),
Singleton(ls) = Heaplet(ls) = {l1} is computable. Further,
clearly the linearity property is satisfied, and for any location
u, and k ∈ Data, we can define contract(H, u, k) = H \ {u}.

Example 3 (Length). Consider the linear measure Length :
LS → N that maps list-segments to the length of the segment.
This function is a linear measure and we can define D = N, ⊕
as +, with d0 = 0, and define contract(l, u, k) = l−1. For any
singleton list ls = (l1l2, key), Singleton(ls) = Length(ls) = 1 is
computable.

Example 4 (Counting). Let P be a predicate on keys. Consider
the linear measure CountP that maps list-segments to the num-
ber of keys stored in the segment that satisfy P. This function
satisfies the linearity property and we can define D = N, ⊕
as +, with d0 = 0, and define contract(l, u, k) = l−1 if P(k)
holds and l otherwise. For any singleton list ls = (l1l2, key),
Singleton(ls) = CountP(ls), which is 1 if P(l1.key) holds, and
0 otherwise, and is computable.

For instance, in an explicit information flow setting, we may
be tracking tainted data, and taintedness can be a property of
the key. The above then counts the number of tainted nodes in
list-segments, and using this count, we can determine whether
the list-segment has any tainted nodes. Note that keeping track
of just whether list-segments are tainted or not will not be
linear, as there is then no well-defined contract function.

IV. Programs and Assertion Logic

In this section we briefly describe our C-like programming
language syntax, semantics, and the assertion language.

A. Programming Language Syntax and Semantics

Figure 2 presents the syntax of our programming language.
The programming language has scalar expressions, consisting
of scalar variables, scalar constants, binary scalar operations,
such as +, -, *, and pointer dereferencing for scalar fields;

pointer expressions consist of pointer variables, a special con-
stant nil, and pointer dereference. Boolean expressions con-
sist of standard relational operators over scalars, equality check
over scalar and pointer expressions, conjunction, and negation.
Programs are sequential compositions of scalar and pointer
assignments to variables and pointer fields, if-then-else,
while, skip, free, and malloc; programs have list-typed
pointers, having a next pointer and a scalar key. We assume
the program is type-safe, in the sense that scalar variables do
not point to locations nor pointer variables to scalars.

The semantics for our language is the usual semantics—
configurations consist of stores (a scalar store and a pointer
store), a heap, and a map that tracks the set of freed locations.
The semantics is undefined if the program dereferences nil
or accesses unallocated locations.

Figure 3 shows the semantic of our programming language.
SS is the scalar store, mapping scalar variables to values of
type S. SP is the pointer store, mapping pointer variables to
memory locations. H is the heap mapping a location and label
to another Location or a value of type S; a location has a key
and a next pointer and they are mapped to S and Loc values
respectively. F represents the set of locations that are freed.

The Lookup rules formalize look-up of variables and pointer
dereferences in their corresponding stores and heap respec-
tively. Note that nil pointer dereferences are undefined, as are
dereferences of freed memory locations. Expressions evaluate
to either locations, for pointer expressions, or scalar values for
scalar expressions. Evaluating scalar operations just evaluates
the left and right operands and applies the semantic of the
operation to the results. Boolean expressions evaluate to a
boolean value in the standard way and we skip the rules for
them, for brevity. Assignment rules formalize assignments and
are fairly standard; programs cannot dereference either nil or
freed locations. A call to malloc produces a fresh location
distinct from any previous call to malloc. Without loss of
generality, for a freshly allocated node, the next field and the
key field are by default initialized to nil and 0 respectively;
this is just to simplify the presentation and not in any way a
limitation of our technique. A call to free proceeds only if
the location is not already freed and it updates the F map. The
semantics for skip, if then else, while and sequential
composition is standard and presented in Figure 3.

B. The Assertion Logic

The assertion logic, depicted in Figure 4, is param-
eterized by a linear measure linm, given by a tuple
(D, d0,⊕, singleton, contract), and our formalism allows track-
ing assertions written in this logic incrementally over a com-
putation that reads and destructively updates the concrete heap.
The domain for the scalars can include standard domains like
integers, strings, etc., as well as the domain D for the linear
measures. The functions op are arbitrary functions on the
scalar domain, and includes operations such as ⊕ on D.

We require the user to provide the semantics of the linear
measure by providing side-effect-free programs that compute

SS : S Var −→ S SP : PVar −→ Loc H : Loc × {key, next} −→ Loc ∪ S
F : Loc −→ bool cS ∈ S

PLookup
SP(xP) = loc

〈xP,SS ,SP,H ,F 〉 loc
SLookup

SS (xS) = cS

〈xS,SS ,SP,H ,F 〉 cS

NextLookup
〈xP,SS ,SP,H ,F 〉 loc′ loc′ , nil ¬F (loc′) H(loc′, next) = loc

〈xP → next,SS ,SP,H ,F 〉 loc

KeyLookup
〈xP,SS ,SP,H ,F 〉 loc loc , nil ¬F (loc) H(loc, key) = cS

〈xP → key,SS ,SP,H ,F 〉 cS

AsgnS
〈eS,SS ,SP,H ,F 〉 cS

〈xS := eS;,SS ,SP,H ,F 〉 〈ε,SS [xS 7→ cS],SP,H ,F 〉

ExprS
〈eS,SS ,SP,H〉 t 〈e′S,SS ,SP,H〉 t′

〈eS opS e
′
S,SS ,SP,H〉 t ~opS � t′

ExprB
~eb�B(SS ,SP,H) b

〈eb,SS ,SP,H〉 b

AsgnP
〈eP,SS ,SP,H ,F 〉 loc

〈xP := eP,SS ,SP,H ,F 〉 〈ε,SS ,SP[xP 7→ loc],H ,F 〉

AsgnNext
〈xP,SS ,SP,H ,F 〉 loc loc , nil ¬F (loc) 〈yP,SS ,SP,H〉 loc′

〈xP → next := yP;,SS ,SP,H ,F 〉 〈ε,SS ,SP,H[(loc, next) 7→ loc′],F 〉

AsgnKey
〈xP,SS ,SP,H ,F 〉 loc loc , nil ¬F (loc) 〈eS,SS ,SP,H ,F 〉 cS

〈xP → key := eS;,SS ,SP,H ,F 〉 〈ε,SS ,SP,H[(loc, key) 7→ cS]〉

Malloc
freshP(Dom(F)) = loc

〈xP := mallocP();,SS ,SP,H ,F 〉 〈ε,SS ,SP[xP 7→ loc],H[(loc, next) 7→ nil, (loc, key) 7→ 0],F [loc 7→ f alse]〉

Free
〈xp,SS ,SP,H ,F 〉 loc ¬F (loc)

〈freeP(xp);,SS ,SP,H ,F 〉 〈ε,SS ,SP,H ,F [loc 7→ true]〉

Skip
〈skip;,SS ,SP,H ,F 〉 〈ε,SS ,SP,H ,F 〉

ITEt
〈eb,SS ,SP,H ,F 〉 true

〈if eb then P1 else P2 fi,SS ,SP,H ,F 〉 〈P1,SS ,SP,H ,F 〉

ITEf
〈eb,SS ,SP,H ,F 〉 false

〈if eb then P1 else P2 fi,SS ,SP,H ,F 〉 〈P2,SS ,SP,H ,F 〉

Seq
〈P1,SS ,SP,H〉 〈ε,S

′
S ,S

′
P,H

′〉

〈P1; P2,SS ,SP,H〉 〈P2,S′S ,S
′
P,H

′〉

While
〈while eb do Pw done,SS ,SP,H ,F 〉 〈if eb then Pw; while eb do Pw done else ε fi,SS ,SP,H ,F 〉

Fig. 3: Programming Language Semantics

the measure for singleton lists, that compute ⊕ of any two
measures, and that compute the contraction function.

Apart from checking properties of scalar variables, the
assertion logic allows expressing properties of the heap, in
particular lseg(x, y) that asserts that x points to a list segment
ending with y and Disjointlseg((x, y), (u, v)) that asserts that
the list-segment from x to y and the list-segment from u to
v are disjoint (the sets of memory locations that form them
are disjoint). The corresponding properties for lists can also
be asserted as we treat a list as a list segment that ends with

nil. The assertion logic allows terms of the form linm(l1, l2)
that denote the linear measure of the list-segment from l1 to l2
(provided that it is a list-segment) and allows combining these
measures using functions and predicates on D.

The semantics of assertions on program configurations is
the natural one, and when linear-measures are used on pairs
of locations that do not form a list-segment, they evaluate to
⊥, a value denoting undefinedness; predicates that use ⊥ under
an even number of negations will evaluate to false (and those
under an odd number of negations will evaluate to true).

Loc Terms: lt ::= xp | nil

Scalar Terms: st ::= c | xs | op(st) | linm(lt, lt)
Assertions: ϕ ::= true | pred(st) | xp 7−→ lt | lseg(lt, lt)

| Disjointlseg((lt, lt), (lt, lt))
| ϕ ∧ ϕ | ¬ϕ

Fig. 4: Syntax of the assertion logic parameterized by a linear
measure linm

When evaluating assertions in our incrementalized
framework we will use region summaries; the atomic
assertions lseg(l1, l2), the disjointness assertion
Disjointlseg((l1, l2), (l2, l4)), and the terms that compute
linear measures linm(l1, l2) will all be evaluated using the
region summaries. We incrementally update regions as
the heap is manipulated by the program. The rest of the
assertion will be evaluated directly on the concrete program
configuration as they can be quickly evaluated.

V. IncrementallyMaintaining Region Summaries

In this section we define region summaries, explain how we
leverage them to perform fast assertion checking, and define
the operations we perform in order to maintain precise region
summaries as the program executes.

A. Region Summaries

The regions of the heap we track are list-segments that lie
between a particular subset of pertinent locations of the heap.
These locations are defined as:

Definition 2 (Pertinent Locations). A memory location loc is
pertinent if it is reachable from a pointer variable and at least
one of the two conditions below holds:
(i) loc is pointed to directly by a pointer variable
(ii) loc is the first location where two or more lists merge.

We fix a heap H , where H : Loc × {key, next} → Loc ∪ S
giving the partial map for the next-pointer field and the key-
field for locations (where S is the domain for scalar variables).
In a configuration, let NR denote the set of pertinent locations,
including nil.

Definition 3 (Region Summary). A region summary in a
configuration of the program is a tuple (NR,R,LM) whereNR

is the set of pertinent locations in the current configuration,
R ⊆ NR × NR and contains a pair of locations (l1, l2) iff l2 is
the first pertinent node reachable from l1 following the next-
pointer, and LM : R → D is the linear measure of the list
segments in R.

Note that a region summary maintains linear measures
only over the atomic regions of the heap that are flanked by
pertinent locations.

An example of a region overlaid on the heap is shown
in Figure 1, with the length of list-segments serving as the
linear measure. The pertinent nodes (depicted as solid ovals
in Figure 1), are the nodes 0x0D00, 0xB088, 0x0D48, and nil.

B. Maintaining Region Summaries
Figure 5 shows the rules for maintaining accurate region

summaries as the program executes. The concrete store and
heap (including freed locations) is maintained in the structure
E and ~st�(E) E′ denotes the concrete semantics for the
statement st transforming E to E′. The region summary is
maintained using NR, R and LM, and SF is the subset of
pertinent nodes NR that are in F .

Intuitively, when the program makes a change involving the
store on a pointer variable or a destructive update of the heap,
the only regions that change are those that are adjacent to the
location where the change is being made. For example, when
we execute the statement x := y (rule AsgnP1), if x is pointing
to a location loc’, then loc’ may become not pertinent in the
new heap; this is the case if there is no other pointer variable
pointing to it and it is not a merge node. If the location is not
pertinent, the function smoothen, shown in Figure 6, takes the
region leading up to loc (there can be at most one since it’s
not a pertinent node) and concatenates it with the succeeding
region (which can also be at most one), and then computes
the aggregate linear measure of the two regions for the new
larger region using the ⊕ operator of the linear measure.

When executing a statement of the form x := y→ next (rule
AsgnP2), location y.next may not be a pertinent location in the
current heap, but is pertinent in the new heap, and we must add
this as a new pertinent location (using the function insertLoc,
shown in Figure 6). This splits the region succeeding y into
two regions, and the linear measures on these regions must be
computed (using singleton and contract functions) using the
linear measure of the older region.

One important aspect is that we use the concrete heap to
update the regions. For example, if we execute x := x→ next,
we can determine whether the region we were tracking from
x has become empty by checking if the new value of x was
already pertinent; if so, then the region will collapse.

The following lemma captures formally the local aspect
of our updates, in that it shows that a region does not need
updating unless it is the immediate successor region to a region
that was changed in the concrete heap.

Lemma 1. A region is not updated unless it is a changed
region, i.e., one of the two pertinent nodes is changed, or it is
the immediate successor region to a changed region.

Proof. Consider a pertinent node loc in the current configu-
ration, and assume that there is a change to the configuration
that does not affect any of nodes in the regions preceding
loc nor one of the pertinent locations preceding loc. Now
we argue that loc will continue to be pertinent. First, if a
pointer variable points to loc, then it would continue to do
so, and hence loc would be pertinent. Otherwise, loc must be
a merged node that is reachable from two program pointer
variables. In the new heap, loc will continue to be a merged
node, and the only reason it may not be pertinent is that it is
no longer reachable from two pointer variables. We will show
that all pertinent nodes preceding loc will contribute at least
one program variable that reaches loc through it. Consider

E : SS × SP ×H × F NR : LocR R ⊆ NR × NR LM : R → D SF ⊆ NR

AsgnP1

~xP := eP�(E) E′ ~eP�(E) = loc loc ∈ NR

~xP�(E) = loc′ smoothen(loc′,E′,NR,R,LM,SF) = N ′R,R
′,LM′,SF ′

{E,NR,R,LM,SF } xP := eP {E′,N ′R,R
′,LM′,SF ′}

AsgnP2

~xP := yP → next�(E) E′ ~yP → next�(E) = loc loc < NR ~yP�(E) = loc′

~xP�(E) = loc′′ insertLoc(loc′, loc,E,NR,R,LM) = N ′′R ,R
′′,LM′′

smoothen(loc′′,E′,N ′′R ,R
′′,LM′′,SF) = N ′R,R

′,LM′,SF ′

{E,NR,R,LM,SF } xP := yP → next {E′,N ′R,R
′,LM′,SF ′}

AsgnNext

~xP → next := yP�(E) = E′ ~xP�(E) = loc ~yP�(E) = loc′

update(loc, loc′,NR,R,LM) = N ′′R ,R
′′,LM′′

smoothen(R(loc),E′,N ′′R ,R
′′,LM′′) = N ′R,R

′,LM′,SF ′

{E,NR,R,LM,SF } xP → next := yP {E′,N ′R,R
′,LM′,SF ′}

AsgnKey

~xP → key := eS�(E) = E′ ~xP�(E) = loc
~eS�(E) = k Tupdate(loc, k,NR,R,LM) = LM′

{E,NR,R,LM,SF } xP → key := eS {E′,NR,R,LM
′,SF }

Free

~freeP(xP)�(E) = E′ ~xP�(E) = loc
per f ormFree(loc,NR,R,LM,SF) = N ′′R ,R

′′,LM′′,SF ′′

smoothen(loc,E′,N ′′R ,R
′′,LM′′,SF ′′) = N ′R,R

′,LM′,SF ′

{E,NR,R,LM,SF } freeP(xp) {E′,N ′R,R
′,LM′,SF }

Mal
~xP := mallocP()�(E) = E′ ~xP�(E′) = loc

{E,NR,R,LM,SF } xp := mallocP() {E′,NR ∪ {loc},R ∪ {loc, nil},LM[(loc, nil) 7→ Singleton(loc)],SF }

Fig. 5: Dynamic Update Rules for Region Summaries. Additional referenced functions are defined in Figure 6.

a pertinent node loc′ preceding loc in the old heap. If loc′

had a pointer variable pointing to it, then this pointer variable
reaches loc. If not, then loc′ must be a merged node and hence
had at least two program variables that reached it in the old
heap. In the new heap, at least one program variable will
survive and reach loc′, which in turn will reach loc. Hence
loc will continue to be a pertinent merged node in the new
heap. For a region defined from l1 to l2, if no region preceding
l1 and l2 are changed, it follows that both nodes will remain
pertinent and the region defined by them is unaffected. �

Consequently, the smoothen function, when it repairs the
summaries with respect to a location that has seen some
change, may need to also repair the next pertinent location
in the old region summary, but not any other location.

The above also means that the structural changes to regions
we track can be achieved using a constant overhead to the
operation performed— however, updating the linear measures,
etc., involve calling functions such as singleton, contract, and
⊕ of the linear measure a constant number of times, and this
may incur more overhead.

We can now state our main theorem:

Theorem 1 (Soundness and Completeness). After any exe-
cution of a program, an assertion ϕ evaluates to true in the
domain of Region Summaries iff it evaluates to true in the
concrete configuration.

Our framework described above works for tracking any class
of list-segments with a set of program variable pointers P
pointing into it; the number of regions we track is linear
in the size of P. In programs that have a constant number
of pointers, the regions and their updates incur a constant
overhead. However, we can also handle settings with an
unbounded P, such as arrays of pointers or lists of pointers to
lists, but in this case the number of regions will grow with P.

VI. Evaluation

In this section we demonstrate the benefits of using region
summaries to check assertions on list-manipulating programs.
Our evaluation aims to provide an insight into how applicable
our technique is and assess how much more efficient it is
to check assertions using region summaries in comparison
with checking assertions on the concrete heap. We design
our evaluation around two types of programs: first, a set of
benchmarks, small programs, for stress-testing that perform
intensive assertion checking, and second, a larger application
that uses assertions to automatically detect malware rootkits
at runtime.

A. Assertion Checking in the Small

Our benchmarks consists of (a) library programs that manip-
ulate singly-linked lists, obtained from the C GLib library [20],
such as programs for the concatenation of two lists, insertion
into and deletion from a list, reversal of a list, etc., and (b)

Tupdate(loc, k,NR,R,LM,SF)
LM

′ := LM[(loc, loc′) 7→ t] where(loc, loc′) ∈ R;
t := S ingleton(loc) ⊕ contract(LM(loc, loc′), loc, k);
return LM′

insertLoc(loc, suc,SS ,SP,H ,F ,NR,R,LM)
N ′R := NR ∪ {suc};
oldS uc := loc′where(loc, loc′) ∈ R;
R′ := R \ {(loc, loc′)|(loc, loc′) ∈ R}

∪ {(loc, suc), (suc, oldS uc)};
LM

′ := LM|R′ ∪ {(loc, suc) 7→ S ingleton(loc, suc),
(suc, oldS uc) 7→

contract(LM(loc, oldS uc), loc,H(loc, key))};
return N ′R,R

′,LM′

per f ormFree(loc,NR,R,LM,SF)
SF

′ := SF \ {loc};
R′ := R \ {(loc, loc′)|(loc, loc′) ∈ R}
LM

′ := LM|R′ ;
return NR,R

′,LM′,SF ′

smoothen(loc,SS ,SP,H ,F ,NR,R,LM,SF)
N ′R,R

′,LM′,SF ′ :=
smoothen(loc,SS ,SP,H ,F ,NR,R,LM,SF);

suc := loc′where(loc, loc′) ∈ R;
return smoothen(suc,SS ,SP,H ,F ,N

′
R,R

′,LM′,SF ′);

smoothen(loc,SS ,SP,H ,F ,NR,R,LM,SF)
pt := {xp|SP(xp) = loc};
predecessors := {pred|H(pred, next) = loc};
i f loc = nil ∨ pt , ∅ ∨ |predecessors| > 1 then

// the location is pertinent
return NR,R,LM,SF

else
N ′R := NR \ {loc}; SF

′ = SF \ {loc};
R′ := R ∪ {(loc′, loc′′)|(loc′, loc) ∈ R ∧ (loc, loc′′) ∈ R}

\ {(loc′, loc)|(loc′, loc) ∈ R} \ {(loc, loc′′)|(loc, loc′′) ∈ R};
LM

′ := LM|R′ ∪ {(loc′, loc′′) 7→ LM(loc′, loc)
⊕ LM(loc, loc′′)|(loc′, loc) ∈ R ∧ (loc, loc′′) ∈ R};

return N ′R,R
′,LM′,SF ′

update(loc, loc′,NR,R,LM)
R′ := R \ {(loc, suc)|(loc, suc) ∈ R} ∪ {(loc, loc′)};
LM

′ := LM|R′ ∪ {(loc, loc′) 7→ S ingleton(loc)} in
return NR,R

′,LM′

Fig. 6: Additional Update Functions

small programs that use linked lists as a library, such as stack
and queue implementations, LRU-cache implementations, etc.
Our LRU implementation is based on the Least Recently
Used page replacement algorithm, used for memory page
management, described in Bovet et al. [8]. The first column
of Table I lists the names of the benchmark programs we
use in our evaluation; the names are self-descriptive. The list
programs are fairly concise, ranging in size from 15 lines to
50 lines of code. Our programs that use lists as a library
are moderately concise, with up to 200 lines of code. The
programs vary in complexity, some executing in constant time,
e.g., prepend, while others in linear time.

Node* insert before(Node* slist, Node* sibling, int data)
requires lseg(slist, nil) ∧ lseg(sibling, nil)

∧ Disjointlseg((slist, sibling), (sibling, nil))
invariant lseg(slist, nil) ∧ lseg(slist, iter)

∧ lseg(iter, sibling) ∧ lseg(sibling, nil)
∧ Disjointlseg((slist, iter) , (iter, sibling))

ensures lseg(return, nil)

Fig. 7: The contract and assertions for insert before

We annotated GLib subjects with assertions for precon-
ditions, postconditions, and loop invariants as we would in
a typical verification task. Figure 7 shows an example of
annotations for a program that inserts a new node with key
data after the node sibling. iter is the pointer used to
iterate over the list and it is the last node before sibling when
the loop stops. Our assertions check structural correctness
using the lseg (for list segments) recursive predicate and
Disjointlseg for disjointness between list segments.

Note that the assertions in the GLib programs occur very
often, within the loops/recursive calls. Consequently, the as-
sertions are checked a large number of times, linear in the
length of the lists manipulated. Some of the clients, such as
the queue implementations do not have loop invariants, having
only preconditions or postconditions, and hence the assertions
occur less frequently in those subjects.

We performed all our experiments on an Intel Core i7 with
32 GB of RAM. We vary the workload in our programs
by increasing the input list sizes (list sizes range from 10
to 16384 nodes). We report the total running time for each
experiment, obtained over 100 repeating runs to account for
noise in measurement, for the increasing list sizes.

We present the results of our evaluation in Table I. The
various columns denote the length of the list input to the
program. The first column lists the names of the programs we
used, and the second column indicates the number of assertion
checks that the program performs for a list of length n. Each
3-column group shows, for lists of varying sizes ranging from
10 to 16384, the total time for running the programs. We
report the total time to run the programs with no assertion
checks (None), with assertions in the program by runtime
checking on the concrete state (Conc) and runtime checking
using region summaries (Reg).

The runtime checking of the assertions on the concrete heap
(Conc) grows with the size of the list, and takes typically linear
to quadratic time to check the property. This is reasonable
and acceptable for smaller lists (say a few hundred), but gets
prohibitively expensive for larger lists, timing out on larger
lists. We emphasize that even with a manual encoding by the
programmer, the check will typically take this time— checking
properties of lists should, after all, take longer when the lists
are longer.

However, the overhead incurred by checking assertions is
much smaller when using region summaries. The total time
taken per runtime assertion aided by the region summaries
is almost constant, varying very little with the length of the
input! In lists ranging to 16K, this shows 20x to 3000x speedup

⇒ List Length 10 2048 4096 16384
⇓ Program #Asrt None Conc Reg None Conc Reg None Conc Reg None Conc Reg

Library
append O(n) 0 6 7 4 2109s 113 7 t.o. 2215 25 t.o. 8852
concat O(n) 0 6 6 3 2120s 1108 7 t.o. 2230 26 t.o. 8862

copy O(n) 0 6 3 31 2427s 626 62 t.o. 1255 250 t.o. 4980
find O(n) 0 1 1 0 2s 1 0 10s 1 0 164s 1
free O(n) 0 1 1 33 859 209 68 3s 421 274 68s 1691

insert O(n) 0 4 6 4 312s 1068 7 t.o. 2133 28 t.o. 8716
last O(n) 0 6 6 3 2108s 1098 7 t.o. 2208 26 t.o. 8778

reverse O(n) 0 2 3 3 313s 523 7 t.o. 1056 29 t.o. 4256
remove-link O(n) 0 4 4 3 915s 978 7 t.o. 1959 26 t.o. 7833

remove-all O(n) 0 4 5 4 915s 1011 8 t.o. 1966 28 t.o. 7856
position O(n) 0 5 5 3 2114s 840 7 t.o. 1699 25 t.o. 6893
nth-data O(n) 0 3 2 3 2100s 559 6 t.o. 1165 25 t.o. 4566

nth O(n) 0 3 2 3 2154s 562 6 t.o. 1122 25 t.o. 4627
length O(n) 0 4 3 0 2115s 553 0 t.o. 1108 0 t.o. 4507

insert-at-pos O(n) 0 0 4 2 1072s 701 4 t.o. 1394 13 t.o. 5593
index O(n) 0 4 1 0 3s 1 0 13s 2 0 222 1

prepend O(1) 0 1 0 0 4 0 0 9 0 0 31 0
create O(n) 0 0 1 25 860 259 54 3s 520 219 68s 2085
swap O(1) 0 0 1 0 4 0 0 7 0 0 31 1

Client
split O(n) 0 2 2 4 233s 276 7 t.o. 554 26 t.o. 2312

merge O(n) 0 7 6 3 2716s 1062 6 t.o. 2102 25 t.o. 8278
reverse-sublist O(n) 0 1 1 0 495s 217 0 t.o. 443 0 t.o. 1789

lasso-check O(1) 0 0 0 3 8 11 7 7 22 29 60 84
insert-sorted O(n) 0 0 1 0 893 0 0 3s 0 0 55s 1

queue O(1) 0 0 0 2 138s 52 3 t.o. 110 11 t.o. 629
stack-queue O(1) 0 0 0 1 13s 17 2 533 42 5 843s 356

LRU O(n) 0 1 2 2 54s 18 4 225s 34 19 t.o. 133

TABLE I: Running time using no assertion None, concrete assertion checks Conc, and region summaries Reg. Times are
shown in ms except where s is noted denoting seconds. Timeout (t.o.): 60 min for checking all assertions

in checking the assertions, in comparison with checking them
on the concrete heap. Consequently, runtime checking using
region summaries scales with acceptable overheads even for
our largest input sizes.

Intuitively, the number of regions stays small (constant), and
hence checking an assertion on the regions can be done very
efficiently. However, the region summaries do require updating
as the program executes, but this is a constant overhead for
each heap manipulation. When the number of assertions is
high and the length of the lists is large, the maintenance cost
of the heaplet is not significant, and we incur essentially a
constant cost for checking an assertion, independent of the
length of the list.

This set of experiments shows that the use of region sum-
maries can make runtime checking of data-structure properties
much faster, when the assertions are checked often and the
sizes of the data structure grow. We believe that using these in
settings where assertions abound, such as in class invariants,
where invariants are checked every time the data structure
is accessed, can benefit greatly from our approach. However,
when assertions are sparse, the cost of maintaining the regions
may get expensive, and it may be more prudent to check the
assertion on the concrete heap. An automatic hybrid approach
that exercises these choices to instrument large programs is an
interesting future direction.

B. An Application to Detecting Malicious Rootkits
We now evaluate the assertion checking based on region-

summary for detecting malicious rootkits at runtime.

fork exit
None Conc Reg None Conc Reg

1024 0.09 7.15 0.12 2.68 10.85 2.75
4096 0.27 134.65 0.38 61.86 242.12 64.75

16385 0.99 2191.98 1.44 1075.54 4451.27 1096.54

TABLE II: Average running times (in ms) for cross-checking
linear measures of allproc and pighashtbl for various list sizes
(column 1), and three types of runs: (1) no assertions, (2)
concrete checks, and (3) region-summary checks.

Rootkits are programs used to control some aspects of an
operating system’s behavior, and usually occur in a malicious
context aiming to hide a process’ existence. Typically they are
used to maintain root access after successful exploitation of an
OS kernel or other programs that provide root privileges [24].

We consider an example of a rootkit that can hide the pres-
ence of a particular process from the end user and demonstrate
how our technique can be used to detect a class of rootkits
with very little overhead. In particular, this type of rootkit
relies on a direct manipulation of kernel’s underlying data
structures: Direct Kernel Object Manipulation (DKOM) [22],
and hence can be detected by checking these data-structures
at runtime. We propose a technique that relies on protecting
kernel objects by slightly modifying them so that all accesses
to these data structures are performed through APIs (similar
to [35]). Given this, we can instrument the APIs with runtime
monitoring to detect kernel manipulation that violates kernel
security invariants.

We illustrate the FreeBSD handling of process data struc-
tures 1. FreeBSD [19] stores all running processes in two data
structures. The first, allproc, stores all processes in a single
linked-list used by functions requiring fast traversal of all the
processes (such as ps). The second, pighashtbl is a contiguous
array of list entries; it enables access based on the process id
(PID) without linear search through the whole list.

We consider a rootkit that could hide its presence by
removing the malicious process from the list of all processes
while still being accessible through the PID. We implement
a runtime check for this property by computing the sum of
hashes of the PIDs stored in these lists, which is a linear
measure. Given this linear measure, we can check at runtime
whether the sum of the hashes of the processes in the two data-
structures allproc and pighashtbl are the same, at appropriate
times, e.g., right after a fork or exit call is executed. Table II
shows the results for checking these assertions on the concrete
and by using region summaries. This shows that while checks
on the concrete cause significant overhead, the incrementalized
check causes negligible overhead.

VII. RelatedWork

Runtime assertion checking has been successfully used
in software engineering and programming language design
(e.g., [13]). Debugging using assertions expressed as Boolean
formulas is a routine software development practice [21].
However, there are relatively few approaches that can be
used for checking properties of programs manipulating struc-
turally complex data. A common technique of specification
for that class of programs are representation invariants (i.e.,
RepOk [25]). Implementing representation invariants can be
hard to get right; also it imposes a significant burden on the
developer [9], [27]. Jump et al. [23] introduce dynamic shape
analysis and check structural properties of the heap. Crane
and Dingel [14] present a declarative language for specifying
object models using the Alloy language, and perform runtime
checks to ensure that certain user specified locations conform
to an object model. However, runtime checking of these
properties incurs large overheads.

Some recent approaches (e.g., [3], [30]) propose using
runtime checking for assertions written in separation logic.
Separation logic has been successfully used as a specification
language in deductive verification of programs manipulating
complex data structures, making it an attractive choice for
runtime assertion checking. However, as noted by Nguyen
et al. [30], runtime checks of separation logic assertions
can be challenging due to implicit footprint and existential
quantification. The main focus of the work described by
Nguyen et al. [30] is alleviating potentially exponential blow-
up of sets of locations that need to be considered when splitting
the heap in two parts when checking separation. They use a
marking technique to limit the set of footprints that needs to be
explored when evaluating the formula. Their approach works
well when checking only preconditions and postconditions

1Other operating systems use similar structures for process manipulation.

of data structures at the boundary between statically verified
and unverified code; however, performing multiple assertion
checks often incurs prohibitively large overheads. In contrast,
we focus on checking a logic for lists with linear measures,
which are suitable for runtime assertion checking, and develop
a technique that allows checking properties in near constant
time using region summaries. Our technique works well both
in cases where assertions are at the boundary and also when
they are intensively checked throughout the program.

Agten et al. [3] devised another technique for run-time
checks of separation logic assertions. This approach combines
deductive verification with run-time checks of the unverified
parts of the code to provide stronger run-time guarantees for
the verified parts. A key difference to our approach is that
the assertions are meant to be checked sparsely (only when
crossing the verified-unverified boundary), while our approach
excels even when assertions are checked frequently.

A technique proposed by Shankar and Bodik [34] reduces
the run-time overhead through incremental assertion checking.
The technique devises automatic memoization; it reuses the
results of checks on unchanged parts of data structures, while
recomputing on the concrete heap on parts that reach the
change. In contrast, we show how to only locally update the
regions without recomputing concretely on unchanged regions.

Vechev et al. [38] present Phalanx, a tool that uses paral-
lelism to speed up assertion checking. PHALANX evaluates
the assertions in a different thread, on a snapshot of the entire
state of the program at the assertion. Similarly, Aftandilian
et al. [2] introduce asynchronous assertions, which can be
checked during debugging. Our work shares the goal of
speeding up assertion checking, but we use summaries to
perform the assertion checks in constant time, and the above
techniques are orthogonal to our work.

VIII. Conclusions

Our main contribution is a technique for fast runtime
checking of assertions over linked lists; we have shown that
efficiently maintaining region summaries at runtime is feasible
and helps in efficient runtime assertion checking, often close
to constant time per assertion. We have demonstrated how
to apply region summaries to check properties of interest
for security. We envision that the idea of region summaries
can help in other contexts where assertions are complex and
expensive to check. Assertion checking of heap-properties
of programs is under-utilized, and we foresee making steps
towards good and intuitive assertion languages and designing
procedures to quickly check complex properties at runtime
could foster the use of more complex assertions.
Acknowledgments: We thank Owolabi Legunsen, Muham-
mad Suleman Mahmood, Darko Marinov, August Shi, and the
anonymous reviewers for feedback on earlier drafts of this
manuscript. This research was partially supported by the NSF
Grant Nos. CCF-1138994, CCF-1421503, CCF-1527395, and
CNS-1646305.

References
[1] JML: A notation for detailed design. In Behavioral Specifications of

Businesses and Systems, pages 175–188. 1999.
[2] E. E. Aftandilian, S. Z. Guyer, M. Vechev, and E. Yahav. Asynchronous

assertions. In OOPSLA ’11, pages 275–288, 2011.
[3] P. Agten, B. Jacobs, and F. Piessens. Sound modular verification of C

code executing in an unverified context. In POPL’15, pages 581–594,
2015.

[4] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid,
M. Lowry, C. Pasareanu, G. Roşu, K. Sen, W. Visser, and R. Washington.
Combining test case generation and runtime verification. Theoretical
Computer Science, pages 209–234, 2005.

[5] A. Baliga, V. Ganapathy, and L. Iftode. Detecting kernel-level rootkits
using data structure invariants. IEEE Transactions on Dependable and
Secure Computing, pages 670–684, 2011.

[6] M. Barnett, M. Fahndrich, and F. Logozzo. Embedded contract lan-
guages. In ACM SAC - OOPS, pages 2103–2110, 2010.

[7] M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming
system: An overview. In CASSIS’04, pages 49–69, 2005.

[8] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[9] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on java predicates. In ISSTA’02, pages 123–133, 2002.

[10] M. Carrillo-Castellon, J. Garcia-Molina, E. Pimentel, and I. Repiso.
Design by contract in smalltalk. 1996.

[11] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray. Assert
use in github projects. ICSE ’15, pages 755–766, 2015.

[12] P. Chalin. Logical foundations of program assertions: What do practi-
tioners want? SEFM ’05, pages 383–393, 2005.

[13] L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime
assertion checking in software development. SIGSOFT Softw. Eng.
Notes, pages 25–37, 2006.

[14] M. L. Crane and J. Dingel. Runtime conformance checking of objects
using Alloy. In Electronic Notes in Theoretical Computer Science, pages
2–21, 2003.

[15] B. Elkarablieh, Y. Zayour, and S. Khurshid. Efficiently generating
structurally complex inputs with thousands of objects. In ECOOP’07,
pages 248–272, 2007.

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code.
SOSP ’01, pages 57–72, 2001.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, pages 99–123, 2001.

[18] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer.
Contracts in practice. In FM’14, pages 230–246. 2014.

[19] https://github.com/freebsd/freebsd/blob/master/sys/sys/proc.h, 2015.
[20] https://developer.gnome.org/glib/, 2015.
[21] C. A. R. Hoare. Assertions: A personal perspective. IEEE Ann. Hist.

Comput., pages 14–25, 2003.
[22] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel.

Addison-Wesley Professional, 2005.
[23] M. Jump and K. S. McKinley. Dynamic shape analysis via degree

metrics. In ISMM ’09, pages 119–128, 2009.
[24] J. Kong. Designing BSD Rootkits. No Starch Press, 2007.
[25] B. Liskov and J. Guttag. Program Development in Java: Abstraction,

Specification, and Object-Oriented Design. 1st edition, 2000.
[26] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE’07, pages

416–426, 2007.
[27] M. Z. Malik, A. Pervaiz, E. Uzuncaova, and S. Khurshid. Deryaft: A

tool for generating representation invariants of structurally complex data.
In ICSE ’08, pages 859–862, 2008.

[28] B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., 1992.
[29] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley

& Sons, 2004.
[30] H. H. Nguyen, V. Kuncak, and W.-N. Chin. Runtime checking for

separation logic. In VMCAI’08, pages 203–217, 2008.
[31] F. Pastore, L. Mariani, A. E. Hyvärinen, G. Fedyukovich, N. Sharygina,

S. Sehestedt, and A. Muhammad. Verification-aided regression testing.
In ISSTA’14, pages 37–48. ACM, 2014.

[32] D. S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, pages 19–31, 1995.

[33] D. Schuler and A. Zeller. Checked coverage: an indicator for oracle
quality. Software Testing, Verification and Reliability, pages 531–551,
2013.

[34] A. Shankar and R. Bodı́k. Ditto: Automatic incrementalization of data
structure invariant checks (in Java). In PLDI ’07, pages 310–319, 2007.

[35] A. Srivastava and J. Giffin. Efficient protection of kernel data structures
via object partitioning. ACSAC ’12, pages 429–438, 2012.

[36] N. Tillmann and J. de Halleux. Pex - white box test generation for .net.
In Proc. of Tests and Proofs 2008, pages 134–153, 2008.

[37] N. Tillmann and W. Schulte. Parameterized unit tests. In ESEC/FSE’13,
pages 253–262, 2005.

[38] M. Vechev, E. Yahav, and G. Yorsh. Phalanx: Parallel checking of
expressive heap assertions. In ISMM ’10, pages 41–50, 2010.

[39] J. Voas and L. Kassab. Using assertions to make untestable software
more testable. Software Quality Professional, pages 1–16, 1999.

[40] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test
suite effectiveness. In FSE’15, pages 214–224, 2015.

https://github.com/freebsd/freebsd/blob/master/sys/sys/proc.h
https://developer.gnome.org/glib/

