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ABSTRACT
Running compute-intensive or blocking I/O operations in the
UI event thread of smartphone apps can severely degrade re-
sponsiveness. Despite the fact that Android supports writing
concurrent code via AsyncTask, we know little about how
developers use AsyncTask to improve responsiveness. To
understand how AsyncTask is used/underused/misused in
practice, we first conduct a formative study using a corpus of
top 104 most popular open-source Android apps comprising
1.34M SLOC. Our study shows that even though half of the
apps use AsyncTask, there are hundreds of places where they
missed opportunities to encapsulate long-running operations
in AsyncTask. Second, 46% of the usages are manually refac-
tored. However, the refactored code contains concurrency
bugs (such as data races) and performance bugs (concurrent
code still executes sequentially).

Inspired by these findings, we designed, developed, and
evaluated Asynchronizer, an automated refactoring tool
that enables developers to extract long-running operations
into AsyncTask. Asynchronizer uses a points-to static
analysis to determine the safety of the transformation. Our
empirical evaluation shows that Asynchronizer is (i) highly
applicable, (ii) accurate, (iii) safer than manual refactoring
(iv) it saves development effort, (v) its results have been
accepted by the open-source developers. This shows that
Asynchronizer is useful.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement;
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms: Refactoring

Keywords: Asynchrony, Android, AsyncTask

1. INTRODUCTION
For smartphone apps, responsiveness is critical. The apps

can easily be unresponsive because mobile devices have lim-
ited resources and have high latency (excessive network ac-
cesses). With the immediacy of touch-based UIs, even small
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hiccups in responsiveness are more obvious and jarring than
when using a mouse or keyboard. Some sluggishness might
motivate the user to uninstall the app, and possibly submit
negative comments in the app store.

Previous research [35,49] shows that many Android apps
suffer from poor responsiveness and one of the primary rea-
sons is that apps execute all workload in the UI event thread.
The UI event thread of an Android app processes UI events,
but long-running operations (i.e., CPU-bound or blocking
I/O operations) will “freeze” it, so that it cannot respond to
new user input or redraw. Android documentation [1] warns
that developers should not use long-running operations in
the UI event thread.

The primary way to avoid freezing the UI event thread is
to resort to concurrency, by extracting long-running opera-
tions into a background thread. While programmers can use
java.lang.Thread to fork concurrent asynchronous execu-
tion, it is cumbersome to communicate with the main thread.
Android framework provides a better alternative, AsyncTask,
which is a high-level concurrent construct. AsyncTask can
also interact with the UI thread by updating the UI via event
handlers. For example, the event handler onPostExecute

executes after the task is finished, and can update the UI
with the task results.

In this paper we first present a formative study to under-
stand how developers use AsyncTask. We analyzed a corpus
of top 104 most popular, open-source Android apps, com-
prising 1.34M SLOC, produced by 1139 developers. The
formative study answers the following questions:

RQ1: How is AsyncTask used? We found that 48% of
the studied projects use AsyncTask in 231 different places. In
46% of the uses, developers extracted long-running operations
into AsyncTask via manual refactoring. In the remaining
cases, they used AsyncTask from the first version.

RQ2: How is AsyncTask misused? We found two kinds
of misuses. First, in 4% of the invoked AsyncTask, the code
runs sequentially instead of concurrently: the code launches
an AsyncTask and immediately blocks to wait for the task’s
result. We found similar problems in our previous studies on
concurrent libraries in C# [38,39]. Second, we found that in
13 cases, code in AsyncTask accesses GUI widgets in a way
which is not thread-safe. This leads to data races on these
GUI widgets.

RQ3: Is AsyncTask underused? We found that 251
places in 51 projects execute long-running operations in UI
event thread. This also confirms the findings of a recent
study by Liu et al. [35] that shows that 21% of reported
responsiveness bugs in an Android corpus arise because de-
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velopers tend to forget encapsulating long-running operations
in AsyncTask.

Inspired by these findings, we designed, developed, and
evaluated Asynchronizer, an automated refactoring tool
that enables developers to use AsyncTask. To perform the
refactoring, the developers only need to select the code that
they want to run in background. Asynchronizer will auto-
matically create an instance of AsyncTask as an inner class,
generate event handlers in AsyncTask, and start the task.

However, manually applying this refactoring is non-trivial.
First, a developer needs to reason about fields, method argu-
ments, and return value for AsyncTask, and the statements
that can be moved into AsyncTask. This requires reason-
ing about control- and data-flow. Second, the developer
has to deal with several special cases. For example, this
or super are relative to the enclosing class where they are
used, whereas after extracting them into AsyncTask, they are
relative to the inner AsyncTask class. Third, the developer
needs to analyze the read-write effects on shared variables in
order to prevent introducing data races.

To solve these challenges, we decompose the refactoring
into two steps: code transformation and safety analysis.
The transformation part uses Eclipse’s refactoring engine to
rewrite the code. The safety analysis uses a static race detec-
tion approach, specialized to AsyncTask. We implemented it
as an extension of the IteRace [41] race detector.

This paper makes the following contributions:
1. Formative study: To the best of our knowledge, this
paper presents the first study on the usage, misusage, and
underusage of AsyncTask in Android apps.
2. Algorithms: We designed the analysis and transfor-
mation algorithms to address the challenges of refactoring
long-running operations into AsyncTask. The algorithms ac-
count for inversion of control by transforming sequential code
into callback-based asynchronous code, and reason about
non-interference of updates on shared variables.
3. Tool: We implemented the refactoring in a tool, Asyn-
chronizer, integrated with the Eclipse refactoring engine.
4. Tool Evaluation: To evaluate Asynchronizer’s use-
fulness, we used it to refactor 135 places in 19 open-source
Android projects. We evaluate Asynchronizer from five
angles. First, since 95% of the cases meet refactoring pre-
conditions, it means that the refactoring is highly applicable.
Second, in 99% of the cases, the changes applied by Asyn-
chronizer are similar with the changes applied manually
by open-source developers, thus our transformation is ac-
curate. Third, Asynchronizer changes 2394 LOC in 62
files in just a few seconds per refactoring. Fourth, using
Asynchronizer we discovered and reported 169 data races
in 10 apps. 5 replied and confirmed 62 races. This shows that
the automated refactoring is safer than manual refactoring.
Fifth, we also submitted patches for 58 refactorings in 6
apps. 4 replied and accepted 10 refactorings. This shows
that Asynchronizer is valuable.

The tool and experimental subjects are available at:
http://refactoring.info/tools/asynchronizer

2. BACKGROUND ON ANDROID

2.1 Android GUI Programming
Android GUIs are typically composed of several activities.

An activity represents a GUI screen. For example, the login
screen of an email client is an activity. An application GUI

1 public class MainActivity extends Activity {
2 public boolean onOptionsItemSelected(MenuItem item) {
3 ...
4 new Button(new OnClickListener() {
5 public void onClick(...) {
6 exportToSpreadsheet(gameIds);
7 }
8 });
9 }

10 private void exportToSpreadsheet(final List gameIds) {
11 ...
12 new AsyncTask<Void, Void, String>(){
13 protected void onPreExecute(String filename) { }
14 protected String doInBackground(Void... params) {
15 ...
16 for (Object gameId : gameIds) {
17 games.add(dbHelper.findGameById(gameId));
18 publishProgress((Void)null);
19 }
20 String filename = ...
21 return filename;
22 }
23 protected void onProgressUpdate(Void... values) {
24 progressDialog.incrementProgressBy(1);
25 }
26 protected void onPostExecute(String filename) {
27 progressDialog.dismiss();
28 }
29 protected void onCancelled (String filename) { }
30 }.execute((Void)null);
31 }
32 }

Figure 1: Real-world example of AsyncTask in Keep-
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Figure 2: Where is AsyncTask code executing?

transitions through a sequence of activities, each of which is
independent of the others. However, at any given time, only
one activity is active. Activities contain GUI widgets.

Similar to many other GUI frameworks such as Swing [7]
and SWT [9], Android uses an event-driven model. Events in
Android apps include lifecycle events (e.g., activity creation),
user actions (e.g., button click, menu selection), sensor inputs
(e.g., GPS, orientation change), etc. Developers define event
handlers to respond to these events. For example, onCreate
handler is invoked when an activity is created, while onClick

handler of a button is invoked when a button is clicked.
Android framework uses a single thread model to pro-

cess events [1]. When an application is launched, the system
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creates a main thread, i.e., the UI event thread, in which it
will run the application. This thread is in charge of dispatch-
ing UI events to appropriate widgets or lifecycle events to
activities. The main thread puts events into a single event
queue, dequeues events, and executes event handlers.

However, if the main thread executes CPU-intensive work
or blocking I/O calls such as network access or database
queries, this results in poor responsiveness. Once the main
thread is blocked, no events can be dispatched and pro-
cessed, so application will not be responsive to users’ actions.
To avoid unresponsiveness, developers should exploit con-
currency and extract long-running operations into another
thread.

2.2 AsyncTask in Android Framework
To ease the use of concurrency, Android framework pro-

vides AsyncTask class. AsyncTask is a high-level abstraction
for encapsulating concurrent work. AsyncTask also provides
event handlers such as onPostExecute that execute on the
main thread after the task has finished. Thus, the back-
ground task can communicate with the main thread via
these event handlers.

We illustrate a typical usage of AsyncTask using a real-
world app, KeepScore, that keeps scores for games that
require tallying points as one plays. Figure 1 shows an
AsyncTask that reads game scores from a database and ex-
ports them in a spreadsheet file. The methods that start
with “on” are event handlers. Figure 2 shows the flow of this
AsyncTask.

Line 4 sets up a listener for a button, and when the but-
ton is clicked, method exportToSpreadsheet is called. This
method creates an AsyncTask (line 12) and executes it concur-
rently with the main thread. The doInBackground method
(line 14) encapsulates the work that executes in the back-
ground. The task queries a database and adds the results
to a list, games (line 17). Finally, the result of the back-
ground computation is returned for main thread to use (i.e.,
filename at line 21).

While the task is executing, it can report its progress to
the main thread by invoking publishProgress and imple-
menting onProgressUpdate handler. In the example, the
task publishes its progress every time it finds a game (line
18), so the main thread can update a progress dialog (line
24). The main thread executes the onPostExecute handler
after doInBackground finishes. In this example, the han-
dler updates the GUI by dismissing the progress dialog (line
27). Notice that this handler takes the result of the task as
parameter (filename at line 26).

When it manages the lifecycle of an AsyncTask, the main
thread executes onPreExecute (line 13) before the doInBack-

ground. It also executes the onCancelled (line 29) when the
task is cancelled.

The three generic types of AsyncTask (line 12) represent
the parameter types of doInBackground, onProgressUpdate,
and the return type of doInBackground.

Notice that there are two ways that the main thread can
fetch the result of an AsyncTask. One, the result is available
in the onPostExecute. Second, the result can be explicitly
requested through the get method on the task. This method
has blocking semantics: if the result is available, it will return
immediately, otherwise it will block the main thread until
the result becomes available.

3. FORMATIVE STUDY OF ASYNCTASK USE
In this section we present our formative study to under-

stand how developers use, misuse, and underuse AsyncTask

in open-source Android apps.

3.1 Experimental Setup
Corpus of Android Apps. We selected our corpus of
Android apps from Github [6]. To find Android apps, we filter
Java repositories by searching if their README file contains
“Android app” keyword. We also manually confirmed that
these repositories are Android apps. We apply two more
filters. First, because we want to contact developers, we need
to avoid analyzing inactive projects. Thus, we only keep
repositories that contain at least one commit after June 2013.
Second, because we want to study the usage of AsyncTask in
mature, representative apps, we ignore apps that have less
than 500 SLOC. Also, we ignore all forked applications since
they are similar to the original repository. Finally, we use
the top 104 most popular projects as our corpus, comprising
1.34M SLOC, produced by 1139 developers.
Analysis. We want to study whether developers refactor
existing code into AsyncTask (i.e., they encapsulate exist-
ing statements into AsyncTask), or whether they introduce
AsyncTask on new code they write from scratch. Thus,
we study not the latest version of the code which contains
AsyncTask, but the first version of the code where developers
introduce this construct. To do this, we searched the commit
history of our corpus through GiTective API [5], identified
the commits that add import statements to AsyncTask, and
manually inspected the versions before and after such com-
mits. This helps us understand questions about correct and
incorrect usage.

To understand whether the corpus contains underusage of
AsyncTask, we want to identify long-running operations that
execute in the UI event thread and are potentially decreasing
the responsiveness of the application. These operations are
candidates to be encapsulated within AsyncTask.

Thus we first created a “black list” of long-running op-
erations that Android documentation [1] warns should be
avoided in the UI. We used Eclipse’s search engine to find
call sites to such operations. Using the call graph hierarchy,
we analyzed whether they appear directly or indirectly in
event handlers but not in AsyncTask or Thread.

To assure validity and reliability, we make all the data-set
and the results available online [2].

3.2 Results
Table 1 shows the results about usage and misusage in the

50 projects that use AsyncTask. The second row shows the
items we count, including the number of instances of Async-

Task (column 2), how many event handlers of AsyncTask

are implemented by developers (columns 3 to 6), number
of misuse which includes accessing GUI in doInBackground

(column 7) and wrong usage of get (column 8). The third row
counts these items in newly introduced AsyncTask (i.e., code
where developers use AsyncTask from scratch). The fourth
row counts these items in code that was manually refactored
by developers to use AsyncTask. The fifth row sums the
usage in newly introduced and refactored AsyncTask.

Using the data in Tab. 1, we answer three questions:

RQ1: How is AsyncTask used?
50 out of 104 projects use AsyncTask to embrace concurrency.
This shows AsyncTask is adopted in Android apps.
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Table 1: AsyncTask usage and misuage.
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125 123 44 7 6 6 0

Manually
Refactored

106 64 10 2 0 7 9

Total 231 187 54 9 6 13 9

54% (125 out of 231) of AsyncTask instances are newly
introduced when developers add new features. However,
there are 46% (106 out of 231) AsyncTask refactored. Here
we found two refactoring scenarios. First, in 94 cases, the
code was refactored directly into AsyncTask. Second, in 12
cases, the code is refactored from Java Thread into AsyncTask.
This is reasonable since AsyncTask provides event handlers
and is easier to use than Thread when the background thread
needs to communicate with the main thread.

Lastly, we notice that onPostExecute handler is the most
widely implemented by developers (81% (187 out of 231)).
However, for the other three handlers, the implementation
percentage is only 23%, 4% and 3%. A possible explanation is
that after a task is done, applications have to update UI and
report the result to users. onPostExecute handler provides
an easy way to update UI without explicitly knowing when
the task is finished, so it is implemented in most cases.

RQ2: How is AsyncTask misused?
We found that 13 AsyncTask (7 in manual refactoring) access
GUI in doInBackground. However, based on the Android
document, accessing GUI from outside main thread will lead
to races, because Android UI toolkit is not thread-safe.

Data races can also occur on the non-GUI objects after
developers transform sequential code to concurrent code.
Figure 3 shows a manual refactoring in ChatSecureAndroid

project. At line 3, onLoadFinished handler eventually calls
startGroupChat method, in which an AsyncTask is executed.
This task writes to field mRequestedChatId at line 17. How-
ever, this field is read at line 4, which can be executed
concurrently with line 17. Thus, there is a race on mRequest-

edChatId. Note that this data race is found by Asynchro-
nizer in our evaluation (see Sec. 6) rather than being found
manually in this formative study.

Also, nine manually refactored AsyncTasks are misused be-
cause developers invoke get method on the task immediately
after starting the task. As we mentioned in Sec. 2, invocation
of get blocks the current thread until the result is available.
Thus, such usage blocks the main thread immediately and
defies the purpose of using AsyncTask.

RQ3: Is AsyncTask underused?
We found that 51 out of 104 projects call long-running APIs
in UI event handlers at 251 places. In these 51 projects,
17 projects have already used AsyncTask. Still, we found
79 places where AsyncTask is underused. The remaining 34
projects never use AsyncTask.

1 class NewChatActivity extends SherlockFragmentActivity {
2 public void onLoadFinished(Loader loader, Cursor cursor){
3 resolveIntent();
4 if (mRequestedChatId >= 0) {
5 ...
6 }
7 }
8 private void resolveIntent() {
9 startGroupChat(path, host, listConns.get(0));

10 ...
11 }
12 private void startGroupChat(...) {
13 ...
14 new AsyncTask<String, Void, String>() {
15 protected String doInBackground(String... params){
16 ...
17 mRequestedChatId = session.getId();
18 }
19 }.execute(room, server);
20 }
21 }

Figure 3: In ChatSecureAndroid project, developers
introduce races in manual refactoring.

Based on our findings for RQ1, we conclude that AsyncTask
is widely adopted and developers manually refactor their
code to use AsyncTask in many cases. However, as RQ3
shows, AsyncTask is still underused. RQ2 shows that manual
refactoring may introduce bugs.

Based on the results for RQ1–RQ3, we conclude that there
is a need for safe refactoring tools to enable developers to
transform code towards AsyncTask (presented in Sec. 4), as
well as help developers check possible races that can occur
between the code running in AsyncTask and the code running
in the main thread (presented in Sec. 5).

4. TRANSFORMATIONS
This section describes the code transformation that enables

developers to move code from main thread into AsyncTask.
We implement the transformation in our tool, Asynchro-
nizer. We first explain the overall workflow of the tool, and
then illustrate the transformations.

4.1 Refactoring Workflow and Preconditions
We implement Asynchronizer as a plugin in the Eclipse

IDE [3]. To use Asynchronizer, the programmer selects
statements that she wants to encapsulate within AsyncTask,
and then chooses the Convert to AsyncTask option from
the refactoring menu. The programmer can also specify the
class and instance name that Asynchronizer will use to
generate AsyncTask. Asynchronizer moves the selected
statements into AsyncTask.doInBackground method. In ad-
dition, Asynchronizer also infers the subsequent statements
that can be moved to onPostExecute. Before applying the
changes, Asynchronizer gives the programmer the option
to preview them in a before-and-after pane. Then, Asyn-
chronizer transforms the code in place.

After the transformation, the programmer can invoke
Asynchronizer’s safety analysis component to check data
races due to the transformation. We will present the safety
analysis in Sec. 5. If Asynchronizer found data races, the
programmer still needs to confirm and fix them manually.
Only after this the refactored code is correct.

Figure 4(a) shows a code snippet from an Android app,
GR-Transit, that displays bus routes and schedules . The
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1 public class RouteselectActivity extends ListActivity {
2 ...
3 public void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 ...
6 ListView lv = getListView();
7 final String qry = ”select...”;
8 final String[] selectargs = {mStopid, datenow,
9 datenow};

10
11
12
13
14
15
16
17
18
19
20
21 Cursor mCsr = DatabaseHelper.ReadableDB()
22 .rawQuery(qry, selectargs);
23 startManagingCursor(mCsr);
24
25
26
27 lv.setOnTouchListener(mGestureListener);
28 if (mCsr.getCount() > 1)
29 tv.setText(R.string.route fling);
30 else if (mCsr.getCount() == 0)
31 tv.setText(R.string.stop unused);
32 lv.addFooterView(tv);
33 CursorAdapter adapter =
34 new CursorAdapter(this, mCsr);
35 setListAdapter(adapter);
36 }
37
38 }

(a) before

1 public class RouteselectActivity extends ListActivity {
2 ...
3 public void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 ...
6 ListView lv = getListView();
7 final String qry = ”select...”;
8 final String[] selectargs = {mStopid, datenow,
9 datenow};

10 ProcessRoutes prTask = new ProcessRoutes(lv);
11 prTask.execute(qry, selectargs);
12 }
13 class ProcessRoutes extends AsyncTask<Object, Void, Cursor>{
14 ListView lv;
15 ProcessRoutes(ListView lv) {
16 this.lv = lv;
17 }
18 protected Cursor doInBackground(Object... args) {
19 String qry = (String) args[0];
20 String[] selectargs = (String[]) args[1];
21 Cursor mCsr = DatabaseHelper.ReadableDB()
22 .rawQuery(qry, selectargs);
23 startManagingCursor(mCsr);
24 return mCsr;
25 }
26 protected void onPostExecute(Cursor mCsr) {
27 lv.setOnTouchListener(mGestureListener);
28 if (mCsr.getCount()>1)
29 tv.setText(R.string.route fling);
30 else if (mCsr.getCount() == 0)
31 tv.setText(R.string.stop unused);
32 lv.addFooterView(tv);
33 CursorAdapter adapter =
34 new CursorAdapter(RouteselectActivity.this, mCsr);
35 setListAdapter(adapter);
36 }
37 }
38 }

(b) after

Figure 4: Relevant code from GR-Transit app. Programmer selects lines 20 to 22 in (a), and Asynchronizer
performs all the transformations. The left-hand side shows the original code, whereas the right-hand side
shows the refactored code by Asynchronizer.

code snippet is used to show the bus routes that pass a
given bus stop. If the programmer applies our transforma-
tion to lines 21 to 23, Asynchronizer will transform the
code to Fig. 4(b). In a subsequent version of GR-Transit,
the programmers have done this transformation manually.
Their new code, modulo syntactic difference, is the same as
Asynchronizer’s output.

Asynchronizer checks the following three preconditions
before transforming, and reports failed preconditions:

(P1) The selected statements do not write to more than one
variable which is read in the statements after the selection.
Such a variable needs to be returned by doInBackground,
but Java methods can only return one single variable.

(P2) The selected statements should not contain return

statements. A return statement in the original code enforces
an exit point from the enclosing method. However, the same
return statement extracted into an AsyncTask can no longer
stop the execution of the original method. Similarly, the
break and continue statements are only allowed if they are
selected along with their enclosing loop.

(P3) The selection contains only entire statements. Selecting
an expression that is part of a statement is not allowed
because it would force the AsyncTask to immediately invoke
the blocking AsyncTask.get() to fetch the expression; this
defies the whole purpose of launching an AsyncTask.

4.2 Create the doInBackground Method
The first step of the transformation is to move the selected

statements into the doInBackground method. This is similar
to Extract Method refactoring. In this step, Asynchro-
nizer needs to determine the arguments and the return value
of doInBackground. The arguments are the local variables
which are used in the selection but declared before it. The
return value is the local variable which is defined in the
selection but used after it.

In Fig. 4(b), the doInBackground method takes two ar-
guments, qry and selectargs, and returns mCsr. However,
note that doInBackground has only one varargs parameter
(i.e., array of unknown length), and its type is specified by the
type argument (generic) of AsyncTask. If all local variables
are of the same type, Asynchronizer sets this type as the
first generic type argument for AsyncTask. If the passed-in
local variables are of different types, as it is the case for our
example, Asynchronizer uses java.lang.Object as the
generic type argument (Fig. 4(b) line 18), and dereferences
and type-casts the parameters (Fig. 4(b) lines 19 and 20). If
doInBackground has no arguments or return value, it uses
Void as parameter type or return type, and returns null.

4.3 Create onPostExecute Handler
The second step is to infer which code can be put into

onPostExecute handler. Because the Android framework in-
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vokes the onPostExecute after the method doInBackground

has finished, the analysis needs to determine that the state-
ments inside these two methods follow the same control-flow
as in the original program. Otherwise, the refactored pro-
gram will have a different semantics.

A naive implementation is to move all the statements after
the selected code into onPostExecute. However, this may
break the control flow of the main thread. A statement
cannot be moved if it is not dominated by the statements in
the selected code, or if it is a return statement. A statement
dominates [11] another if every path from the entry point to
the latter statement passes through the former statement.

Algorithm 1 infers the set of statements to be moved to
onPostExecute. The inputs of the algorithm include the se-
lected code that will be put into doInBackground (selected),
the list of statements syntactically after the selected code
(post), and the return variable of doInBackground (rv). The
output is the set of statements which can be moved to onPos-

tExecute (moved). unmoved contains the statements which
cannot be moved.

The algorithm first selects the prefix of post in which all
statements are dominated by selected and do not return

(lines 3 to 9). The remaining statements cannot be moved
so they are put into the unmoved variable (line 10). The
algorithm then constructs the final result as the prefix of
dominated for which all statements have no effect on any
statement in dominated (lines 11 to 18). This ensures no
data dependencies are broken. unmoved is updated with
any statements which are not in moved (line 19). Finally, if
unmoved contains statements that use the resulting value of
doInBackground, Asynchronizer adds a call to AsyncTask’s
get method before the first such use (lines 20 to 22).

In the example shown in Fig. 4(a), all the statements after
the selected code (lines 27 to 35) can be put into onPostEx-

ecute. However, suppose there was a statement at line 36
that returns mCsr. This statement would not be moved to
onPostExecute. Furthermore, Asynchronizer would add a
call to AsyncTask.get before the return statement because it
uses mCsr. In the current implementation, Asynchronizer
uses Eclipse JDT’s [4] variable bindings to approximate data
dependencies.

4.4 Create Class Declaration
In this step, Asynchronizer creates fields, constructor

and class declaration for AsyncTask. Fields are generated
by analyzing the statements in onPostExecute. Since on-

PostExecute only have one parameter which is the return
value of doInBackground, the tool converts all the other ar-
guments needed by onPostExecute into fields of AsyncTask.
For example, in Fig. 4(b), local variable lv is needed by
onPostExecute. Asynchronizer declares a field lv in the
AsyncTask (line 14) and adds a constructor to initialize this
field (line 15). After that, it creates an inner class declaration
using all the code elements which have been created above
(line 13). Finally, it generates two statements to create task
instance and call execute method, and replaces the selected
code by these two statements (lines 10 and 11).

4.5 Special Cases
Asynchronizer also analyzes code to properly transform

several special cases:
(S1) doInBackground and onPostExecute cannot be declared
to throw checked exceptions. Thus, if the selected state-

Algorithm 1 inferringPostStmts(selected, post, rv)

Input: selected← the selected code
post← all statements after the selected code
rv ← return variable of doInBackground

Output: moved← statements put into onPostExecute
1: dominated← []
2: unmoved← []
3: for all stmt in post do
4: if selected dominates stmt and not stmt contains return

then
5: dominated← dominated append stmt
6: else
7: break
8: end if
9: end for

10: unmoved← post− dominated
11: moved← []
12: for all stmt in dominated do
13: if not unmoved is data dependent on stmt then
14: moved← moved append stmt
15: else
16: break
17: end if
18: end for
19: unmoved← post−moved
20: if unmoved uses rv then
21: invoke get method before the first use of rv in unmoved
22: end if
23: return moved

ments throw exceptions (e.g., programmer selects FileOut-

putStream.write method which throws IOException), Asyn-
chronizer needs to generate try-catch block to handle the
exceptions. Asynchronizer first collects the exceptions
that are declared to be thrown by the selected code. If these
exceptions are caught in the original refactored method, it
copies the corresponding catch clauses into doInBackground

or onPostExecute to handle the exceptions. Otherwise, it
generates empty catch clause. In our experiment, all the
cases that throw exceptions have corresponding catch clauses
in the original code.
(S2) The original code may use this or super pointer (Fig. 4(a)
line 34). After moving it to an inner AsyncTask class, our
tool replaces the original pointer with outer class’ this or
super pointer (Fig. 4(b) line 34).

5. DATA RACE CHECK
Our formative study (Sec. 3) shows that developers do

introduce data races when they manually refactor sequential
code into AsyncTask concurrent code. These data races are
either accesses to GUI elements from the doInBackground,
or possibly concurrent accesses to other shared resources.
Data races are hard to find as they only manifest themselves
under certain thread schedules. To assist developers with
the refactoring, we propose a static race detection approach
specialized to the thread structure generated by AsyncTask.
We implement our approach as an extension of the IteRace
race detector [41].
IteRace is a static race detector for Java parallel loops

that achieves low rates of false warnings by taking advantage
of the extra semantic information provided by the use of high-
level concurrency constructs. It uses the known thread-safety
properties of concurrent collection classes, summarizes races
that occur in libraries at the level of the application, and
specializes for the thread structure of lambda-style parallel
loops.

While IteRace is only capable of analyzing parallel loops,
its approach of taking advantage of the implicit thread struc-
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ture of high-level concurrency constructs is also applicable
to AsyncTask. We thus extend IteRace to find races that
occur between doInBackground and other threads.

5.1 Data Races
Generally, a data race is a pair of accesses, one of which

is a write, to the same memory location, with no ordering
constraint between the two accesses. For AsyncTask, a data
race can occur between accesses in doInBackground and
accesses which may execute in parallel with the asynchronous
task. While the precise set of instructions that may execute
in parallel cannot be determined statically, we can find an
approximation of it.

Asynchronizer relies on the Andersen-style static pointer
analysis [13] provided by WALA [10]. Thus, our analysis
works over an abstract heap built along with a (k-bounded)
context-sensitive call graph. The underlying analysis is flow
insensitive, except for the limited sensitivity obtained from
the SSA form.

Our tool makes the following approximation for a race:
instruction iα in call graph node nα races with instruction iβ
in node nβ if both access the same field of the same abstract
object, at least one of the instructions is a write access, and
〈nα, iα〉 may happen in parallel with 〈nβ , iβ〉.

5.2 May Happen in Parallel
We now introduce an approximation of the happens-in-

parallel relation induced by the AsyncTask. For simplicity,
we present the algorithm from the perspective of analyzing
the races involving one AsyncTask at a time.

Let nb be the abstract call graph node for the analyzed
doInBackground method. Let nh be the event handler call
graph node which executed nb’s AsyncTask– note that, de-
pending on the choice of abstraction, there can be multiple
call graph nodes representing runtime invocations of doIn-

Background. Let Nh be the set of all the event handler call
graph nodes in the current application. For the example in
Fig. 3, nb is the invocation of the doInBackground method
on line 15, and nh is the execution of onLoadFinished (line
2) which led to nb.

Let ie be the instruction which executes the AsyncTask

containing nb. For our example in Fig. 3, ie is execute

method invocation at line 19. Let ne be the node executing
ie. Our choice of context sensitivity ensures its uniqueness.

Let G∗ be the so called supergraph [43] having as nodes
pairs 〈n, i〉, where n is an call graph node, and i is an in-
struction in n. Intra-procedural, i.e., control flow graph
(CFG), nodes and edges are lifted to the new graph, with
each node i becoming a pair 〈n, i〉 and each edge 〈i1, i2〉
becoming 〈〈n, i1〉, 〈n, i2〉〉. Call sites are linked to the lifted
CFG of the target call graph node. The call site instruction
is represented by two instructions in G∗, a call and a return.
The call instruction is linked to the entry of the lifted CFG
of the target CG node, while the return instruction is linked
from the exit. Finally, there is an intraprocedural edge,
call-to-return, which bypasses the interprocedural paths by
linking the call and the return instructions directly.

Let G∗
c9r be G∗ with all its call-to-return edges removed.

Figure 5 shows the supergraph without call-to-return edges
for the example in Fig. 3. Removing call-to-return edges
does not affect reachability but it does affect the dominator
relation used below. Call-to-return edges prevent instructions
in a called method dominate any instruction after the call.

onLoadFinished(…)
3: invoke resolveIntent()

resolveIntent()
10: startGroupChatId(…)

startGroupChat(…)
19: ….execute(…)

RACE!

doInBackground(…)
17: this.mRequestChatId = …

onLoadFinished(…)
4: this.mRequestChatId >= …

onLoadFinished(…)
3: return from resolveIntent()

…
4: ….get()

fork

join

x

Figure 5: Supergraph without call-to-return edges
(G∗

c9r) for the code snippet in Fig. 3. The nodes are
call graph node-instruction pairs. The arrows are
intra and inter procedural edges. The crossed-out
arrow is part of G∗ but not G∗

c9r. Dashed arrows
denote reachable relations.

We say that the instruction 〈nα, iα〉 may happen in par-
allel with instruction 〈nβ , iβ〉 if 〈nα, iα〉 is reachable from
the doInBackground node nb, and either 〈nβ , iβ〉 does not
dominate 〈ne, ie〉 on G∗

c9r, or, if nβ calls ne, iβ does not
dominate the call to ne on the nβ ’s CFG. E.g., in Fig. 5,
〈nα, iα〉 is the node for line 17 which is within the doInBack-

ground method. 〈nβ , iβ〉 is the node for line 4, which does
not dominate the forking node (line 19). Thus, the nodes for
lines 4 and 17 may happen in parallel.

Furthermore, as the two instructions read and write the
same field (mRequestChatId) of the same object (this), they
may race. Thus, our tool raises a warning.

5.3 Android Model
Android applications are event-based so exercising the code

depends on events triggered by the UI, sensors, network, etc.
In order to analyze the application statically, Asynchro-
nizer uses a synthetic model of several key Android classes.

Figure 6 shows the callgraph for the code snippet in Fig. 1.
Asynchronizer creates synthetic calls between the object
initializer (the bytecode <init> method called before the
constructor) of an activity or widget and its events han-
dlers. Thus, MainActivity’s initializer calls, among others,
its onOptionsSelected event handler. Similarly, Asynchro-
nizer puts a synthetic call between a listener’s initializer
node to its handlers, and between the an AsyncTask’s exe-

cute and its doInBackground. This is an over-approximation
of the application’s possible behavior because it may be pos-
sible that a particular event will not be triggered. As the
analysis is flow insensitive, it does not matter that the han-
dler method is invoked at the handler object initialization
point, not at the event trigger point.

Asynchronizer use the following strategy to select entry
point for the analysis: (1) if the refactored class itself is
an activity, it uses Activity.<init> as entry point; (2) if
the refactored class is a GUI widget class (i.e., a View), it
uses the object initializer of both the activities who use this
widget, and the widget class itself as entry point (i.e., the
analysis may run multiple times).
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MainActivity.<init>

MainActivity.onOptionsItemSelected(…)

OnClickListener.<init>

OnClickListener.onClick(…)

MainActivity.exportToSpreadsheet(…)

AsyncTask.execute()

AsyncTask.doInBackground(…)

...

...

Figure 6: Part of the callgraph for the code in Fig. 1.
Dashed arrows are synthetic call graph edges.

In terms of safety, our analysis is subject to the tradi-
tional limitations of static pointer analysis. Aside from the
synthetic calls described above, reflection and native code
are only handled up to what is provided by the underlying
pointer analysis engine, WALA [10]. In some cases, Android
apps use reflection to construct objects such as GUI wid-
gets. Our analysis does not analyze such objects. This could
be improved by looking into the configuration files used for
defining the UI [50]. Also, the analysis’ call graph contains
a single node for each event. Considering our may happen
in parallel definition, this may lead to false negatives for the
cases where an event is invoked repeatedly.

Regarding precision, as our race detection analysis is static,
it may report false races. The imprecision stems from various
types of imprecision in the underlying pointer analysis. This
is currently an unavoidable problem for scalable static race
detectors [17,37,41]. First, the pointer analysis may abstract
multiple runtime objects by a single abstract object, leading
to false warnings on fields of objects that are always distinct
at runtime. Second, the analysis is flow-insensitive leading to
warnings between accesses that are always ordered at runtime.
In particular, our current implementation does not consider
event handling order. This leads to some false warnings
in our evaluation. For example, the onCreate handler is
always handled before onStart. Thus, an AsyncTask started
in onStart could not happen in parallel with onCreate.

6. EVALUATION
To evaluate the usefulness of Asynchronizer we answer

the following evaluation questions:
EQ1. Applicability: How applicable is Asynchronizer?
EQ2. Accuracy: How accurate is Asynchronizer when
performing the code transformations?
EQ3. Effort: How much programmer effort is saved by
Asynchronizer?
EQ4. Safety: Is Asynchronizer safer than manual refac-
torings?
EQ5. Value: Do programmers find refactorings applied by
Asynchronizer useful?

6.1 Experimental Setup
We want to evaluate Asynchronizer on real open-source

code, but because we are not the original developers of the
code, it is hard to know on which code to apply the refactor-

ing. Thus, we use two sets of experiments. First, we let the
source code itself tell us which parts need to be refactored.
To do this, we run Asynchronizer on projects that were
manually refactored by the open-source developers, and com-
pare the outcomes. Second, we start from the responsiveness
issues detected by other researchers [49] and run Asynchro-
nizer on code that was not refactored yet and determine
whether the refactorings are useful for the original code de-
velopers. We use the first experiment to answer EQ1–EQ4,
and the second experiment to answer EQ5.
Replicating existing refactorings. From our formative
corpus of 104 projects, we filtered all projects which have
at least two manual refactorings from sequential code to
concurrent code via AsyncTask, thus resulting in a corpus
of 13 projects. The left-hand side of Tab. 2 shows the size
of each project in non-blank, non-comment source lines of
code1. For each project, we applied Asynchronizer to the
code version just before the version that contained manual
refactorings, and we only refactored the same code as the
manual refactorings did. Notice that manual refactorings
occur in several versions, so we checked out the version we
need every time we applied Asynchronizer. We applied
Asynchronizer to replicate all 77 manual refactorings in
these 13 projects.

We report several metrics for each project. To measure
the applicability, we count how many code fragments met
the refactoring preconditions and thus can be refactored.

To measure the accuracy of code transformations, we com-
pared the code transformed by Asynchronizer with manu-
ally changed code, and report the number of cases that have
differences in doInBackground or onPostExecute method.
Notice that here we are only interested to compare the code
changes (described in Sec. 4), but these changes may still
contain data races (we answer safety separately).

To measure the effort that a programmer would spend to
refactor the code manually, we report the number of lines and
files that are modified by the refactoring. These numbers are
a gross estimate of the programmer effort that is saved when
refactoring with Asynchronizer. Although we measure
effort indirectly, many changes and analysis are non-trivial.

To answer the safety question, we ran Asynchronizer to
analyze data races introduced by transformation. Notice that
the races which occur in libraries (e.g., JDK) are not reported
at that level, but Asynchronizer propagates the accesses
up the call graph to the places where the library is invoked
from the application [41]. We manually checked all the races
and categorize them into four categories: (fixed directly) the
races are fixed by developers during their manual refactoring;
(fixed later) the races are not fixed during manual refactoring,
but are fixed in a later version; (never fixed) the races are
not fixed even in the latest version; (false) the races are false
warnings.

The races that are fixed directly manifested immediately
after a developer first encapsulated code into AsyncTask.
Since in their commit the developers included both the refac-
toring and the race fixes, it implies that they are aware of the
existence of these races. For the races that are fixed later, we
also count how many days on average it took developers to
find and fix races, as reported by the time span between the
commit that introduces the race and the commit that fixes
the races. For the races that are still not fixed in the latest

1We used David Wheeler’s SLOCCount [8] to get size and
we only report size of Java code.
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Table 2: Results of applying Asynchronizer to 13 projects that have manual refactorings.

Project Name SLOC Applicability Accuracy Effort Safety

Passed Failed Diff. #
LOC
Mod.

Files
Mod. fi

x
ed

d
i-

re
ct

ly

fi
x
ed

la
te

r
n
ev

er
fi
x
ed

fa
ls

e

Total
Fix Time

(day)

LibrelioDev-Android 15120 4 2 1 212 5 0 16 0 15 31 54
Sonet 18294 14 0 0 708 4 0 0 12 20 32 –
SocializeSDK-Android 65032 3 1 0 191 4 0 0 0 2 2 –
ChatSecureAndroid 35220 3 0 0 187 3 5 0 7 7 19 –
GwindowWhatAndroid 8785 4 0 0 68 4 0 0 0 0 0 –
Irccloud-Android 21384 3 0 0 82 3 3 8 3 0 14 124
Cyclestreets-Android 13523 3 0 0 98 3 0 0 0 0 0 –
Owncloud-Android 17016 3 0 0 108 3 4 0 0 8 12 –
AndroidSettings 71226 5 0 0 117 4 0 0 0 0 0 –
AndroidCalendar 34090 4 0 0 113 4 0 0 0 0 0 –
MyExpenses 20914 2 0 0 34 2 0 0 0 0 0 –
Allplayers-Android 5693 21 0 0 361 18 3 12 0 5 20 1
GRTransit 3316 4 1 0 206 5 0 2 2 0 4 14

Total 329613 73 4 1 2394 62 15 38 24 57 134 193

version, we reported all of them to developers and suggested
how to fix them.
Applying new refactorings. The preferred way to test
for responsiveness is to run performance tests. However,
none of the Android apps that we found had performance
tests. Creating performance tests requires domain knowledge,
generating test inputs that are representative (e.g., relevant
database entries), etc. Thus, to measure the value of the
refactoring, we select six projects that have potential respon-
siveness issues (shown in Tab. 3). These issues are detected
in [49] but they have neither been reported, nor fixed.

Notice that these six projects are different from the 104
projects in our formative study. We manually identified the
latent long-running operations in main thread. For example,
we search for call sites to database APIs in main thread.
Then, we applied Asynchronizer on these operations and
generated patches from the refactoring. When Asynchro-
nizer raised a race warning, we checked and fixed the race.
We also included the fix in the refactoring patches. We
submitted these patches to developers. In total, we applied
Asynchronizer to 58 places (column Passed + Failed in
Tab. 3) in these projects. We grouped all changes and sub-
mitted six patches (one patch per project).

6.2 Results
Table 2 tabulates results of applying Asynchronizer to

13 projects that have manual refactorings.
Applicability: Columns 3 and 4 show the number of refac-
torings that pass or fail preconditions P1–P3. Among the
77 places where we applied the refactoring, 73 places satisfy
all the three preconditions. Thus, our refactoring is highly
applicable.

Of the four places that fail preconditions, 3 failed P1, 1
failed P2, 1 failed P3 (one case failed two preconditions). We
had to manually modify the code to satisfy the preconditions.
To satisfy precondition P1, we convert the local variables
into fields of the refactored class. For precondition P2, we
temporarily remove the return statements before refactoring
and put them back to the appropriate places after refactoring.
For precondition P3, we expanded the selected expression
into a full statement, and then supplied it as the input to
Asynchronizer.

After changing the input source code to pass preconditions,
we applied Asynchronizer to these four cases and included
them along with the other metrics shown in Tab. 2.
Accuracy: Column 5 shows the number of differences be-
tween manual and automated refactorings. The differences
do not include other changes made by developers (e.g., adding
new features). There is only one case in LibrelioDev-

Android project where the two outputs differ. In this case,
manual refactoring moves fewer statements into onPostEx-

ecute handler, but they don’t affect the semantics, which
means that the code behaves the same way in both cases.
Effort: In total, the refactoring modified 2394 lines of code
in 62 files (see LOC Mod. and Files Mod. columns in Tab. 2).
On average, each refactoring changes 31 lines of code. More
important, many of these changes are non-trivial: program-
mers need to infer fields, method parameters, and return
value, which statements can be moved into onPostExecute,
as well as deal with special cases. In contrast, when using
Asynchronizer, the programmer only has to initiate the
transformation. Asynchronizer takes less than 10 seconds
per refactoring.
Safety: Columns 8 to 12 show the 134 races that Asyn-
chronizer detected automatically and we checked manually.

Notice that 38 races are not fixed immediately in the
manual refactoring, but are fixed in a later version. The
strategies to fix these races include adding synchronizations,
moving the statements involved in races outside of AsyncTask,
changing shared variables into local variables, or removing the
shared variables. Interestingly, among these 38 races, 12 races
in Allplayers-Android project are fixed incorrectly the first
time: developers invoke get immediately after executing
the AsyncTask. They applied a second patch to fix them
correctly in a later version. In the four projects that fix races
in a later version, developers spent 193 days in total to apply
patches (Fix Time column). There are 57 false warnings.
The reasons for the false warnings were discussed in Sec. 5.3.

The remaining 24 races still exist in the latest version. We
reported all of them to developers. They fixed 3 races in
Irccloud-Android, and they confirmed 9 races in ChatSe-

cureAndroid and GRTransit. The developers of Sonet do
not think the 12 races lead to bugs. In this case, the pair
of racing accesses are in two event handlers which develop-
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Table 3: Results of applying Asynchronizer to 6
projects that have potential responsiveness issues.

Project Name SLOC Passed Failed Races Files
Mod.

Connectbot 33326 24 0 70 5
FBReaderJ 58718 10 0 8 5
K-9 Mail 78679 7 0 38 5
KeePassDroid 28588 1 2 0 2
Vudroid 2408 1 0 13 1
VLC 36852 13 0 16 8

Total 238571 56 2 145 26

ers confirmed can not happen in parallel (code examples
are on [2]). In practice, developers can avoid checking such
races by customizing synthetic call graphs based on their
domain knowledge about which event handlers may happen
in parallel.

Our result shows 62 (columns fixed later + never fixed)
out of 134 races are neither detected nor fixed when develop-
ers perform manual refactoring. Even when they are fixed in
a later version, the timespan is long. Thus, Asynchronizer
is safer than manual refactoring.
Value: Table 3 shows results where we used Asynchronizer
to refactor long-running operations from main thread into
AsyncTask. We used a corpus of 6 projects, where in total
we applied Asynchronizer to 58 places in 26 files. 56
cases satisfied the preconditions. Similar to the previous
experiment, for the two cases that failed the preconditions,
we manually modified the code to satisfy the preconditions.
We also check the races reported by Asynchronizer (column
5). Notice that the races we show in Tab. 3 do not include
false warnings (there are 72 false warnings in total).

We created patches which include the transformations and
fixes for races, and submitted the patches to the open-source
developers. At the time when this paper is written, the
developers from K-9 Mail and KeePassDroid have accepted
ten refactorings. The developers of Vudroid and VLC do
not think the operations encapsulated into AsyncTask sig-
nificantly affect UI responsiveness. For example, Vudroid
developers said “ZoomRoll class instance is a singleton for
application and hence your patch will change only the first
time load delay. I have never observed considerable time
delays on Activity start”. This shows the importance of hav-
ing domain knowledge, but also shows that our refactoring
approach can produce useful results accepted by developers.

7. RELATED WORK
Testing for mobile apps. Liu et al. [35] empirically study
performance bug patterns in Android apps, and conclude
that executing long-running operations in main thread is the
main culprit. They also propose an approach to detect such
operations statically. Yang et al. [49] test the responsiveness
of Android apps by adding a long delay after each heavy
API call. Choi et al. [18] use machine learning to learn a
model for smartphone apps and generate test inputs from
the model. Jensen et al. [29] propose a test generation
approach to find event sequences that reach a given target
line in smartphone apps. Concolic testing [12] and random
testing [28] is also applied to smartphone apps. However,
our work is complementary to testing: we enable developers

to use AsyncTask refactoring to eliminate the performance
issues that are detected in testing.
Safety analysis of event-driven applications. Using
static analysis, Sai et al. [50] formulate a solution based on
call graph reachability to detect GUI accesses from outside
the main thread, whereas Zheng et al. [51] target data races
due to asynchronous calls for Ajax applications. Recent work
on dynamic race detectors for event-driven applications [27,
36, 40, 42] proposed a causality model for JavaScript and
Android which they use to infer happens-before relationships
between events. Model-checking based techniques have also
been proposed for event-driven or GUI applications [14,24,46].
In future work, we propose to investigate how the above
techniques of modeling event relationships can be integrated
with Asynchronizer.
Empirical studies. Several researchers studied the usage
of libraries, software evolution, and refactoring [15, 16, 30–
32, 34, 38, 39]. Kavaler et al. [30] study how programmers
ask questions about Android APIs on StackOverflow. Kim
et al. [32] studied the benefits of refactoring in industrial
code bases. Bavota et al. [15] studied bugs introduced by
refactorings. Our previous work [34, 39] shows developers
tend to misuse concurrent APIs in Java and C#.
Refactoring for performance. Previously, we implemented
several refactorings that take advantage of multicore paral-
lelism to improve throughput [19–23, 25, 26, 33, 41, 47], and
other researchers took similar approaches [44,45,48]. How-
ever, our current paper focuses on refactoring to retrofit
concurrency into Android apps to improve responsiveness.

8. CONCLUSIONS
Developers introduce concurrency into programs via con-

current constructs. However, refactoring sequential code to
concurrent code is non-trivial, tedious, and error-prone.

We presented a formative study on Android’s AsyncTask.
Our study shows that developers use AsyncTask, both to
implement new features, and to refactor existing sequential
code. However, we found that manual refactoring introduces
performance bugs: by misplacing the AsyncTask.get their
“concurrent” code runs sequentially. Also we found data
races in manually refactored code. In some cases, it took
developers hundreds of days to find and fix these bugs.

We presented Asynchronizer, which automates refac-
toring sequential code to use AsyncTask. The refactoring is
composed of two steps: a code transformation that moves
user-selected code into AsyncTask, and a safety analysis that
checks data races. In our empirical evaluation we applied
Asynchronizer on 19 Android apps. We found that the tool
is widely applicable, it is accurate compared to manual code
transformations, it saves programmers’ effort, it is safer than
manual refactoring, and open-source developers accepted sev-
eral patches with refactorings created by Asynchronizer.
This shows that the Asynchronizer is useful.
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