An Empirical Analysis of Flaky Tests

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, Darko Marinov
Department of Computer Science, University of lllinois at Urbana-Champaign
.. Urbana, IL 61801, USA
{gluo2, hariri2, eloussi2, marinov}@illinois.edu

ABSTRACT

Regression testing is a crucial part of software development.
It checks that software changes do not break existing func-
tionality. An important assumption of regression testing is
that test outcomes are deterministic: an unmodified test is
expected to either always pass or always fail for the same
code under test. Unfortunately, in practice, some tests—
often called flaky tests—have non-deterministic outcomes.
Such tests undermine the regression testing as they make it
difficult to rely on test results.

We present the first extensive study of flaky tests. We
study in detail a total of 201 commits that likely fix flaky
tests in 51 open-source projects. We classify the most com-
mon root causes of flaky tests, identify approaches that could
manifest flaky behavior, and describe common strategies
that developers use to fix flaky tests. We believe that our
insights and implications can help guide future research on
the important topic of (avoiding) flaky tests.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Measurement, Reliability

Keywords: Empirical study, flaky tests, non-determinism

1. INTRODUCTION

Regression testing is a crucial part of software develop-
ment. Developers use regression test suites to check that
software changes do not break existing functionality. The
result of running a regression test suite is a set of test out-
comes for the tests in the suite. The outcomes are important
for developers to take actions. If all the tests pass, devel-
opers typically do not inspect the test runs further. If any
test fails, developers reason about the cause of failure to
understand whether the recent changes introduced a fault
in the code under test (CUT) or whether the test code it-
self needs to be changed [9]. The key assumption behind
this process is that a test failure indicates that the recent
changes introduced a problem in the CUT or the test code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2635920

643

Unfortunately, test outcomes are not reliable for tests that
can intermittently pass or fail even for the same code version.
Following practitioners [12,13,20,32,34], we call such tests
flaky': their outcome is non-deterministic with respect to a
given software version. Flaky tests create several problems
during regression testing. First, test failures caused by flaky
tests can be hard to reproduce due to their non-determinism.
Second, flaky tests waste time when they fail even unaffected
by the recent changes: the developer can spend substantial
time debugging only to find out that the failure is not due to
the recent changes but due to a flaky test [20]. Third, flaky
tests may also hide real bugs: if a flaky test fails frequently,
developers tend to ignore its failures and, thus, could miss
real bugs.

Flaky tests are not only problematic but also relatively
common in large codebases. Many practitioners and re-
searchers have pointed out that flaky tests can be a big and
frequent problem in general [7,12,13,21,26,29,32,34,37], but
the only specific numbers we could obtain? are that the TAP
system at Google had 1.6M test failures on average each day
in the past 15 months, and 73K out of 1.6M (4.56%) test
failures were caused by flaky tests.

The current approaches to combat flaky tests are rather
unsatisfactory. The most common approach is to run a flaky
test multiple times, and if it passes in any run, declare it
passing, even if it fails in several other runs. For example, at
Google, a failing test is rerun 10 times against the same code
version on which it previously failed, and if it passes in any
of those 10 reruns, it is labeled as a flaky test [15,27]. Several
open-source testing frameworks also have annotations (e.g.,
Android has @FlakyTest [2], Jenkins has @RandomFail [17],
and Spring has @Repeat [31]) to label flaky tests that require
a few reruns upon failure.

Another approach would be to remove flaky tests from
the test suite, or to mentally ignore their results most of the
time (in the limit, ignoring the failure every time is equiva-
lent to removing the test). In JUnit, the @Ignore annotation
is used to exclude a test from the test suite to be run. How-
ever, developers are reluctant to use this approach, because
flaky tests may still provide some coverage and could help
find regression bugs. Although the current approaches used
to deal with flaky tests may alleviate their impact, they are
more “workarounds” rather than solutions. They do not ad-
dress the root causes of flaky tests and can potentially waste
a lot of machine resources (with test reruns) or reduce the
effectiveness of the test suite (with flaky test exclusion).

'«Flaky” (sometimes spelled “flakey”) means “unreliable”.
?Personal communication with John Micco.

Table 1: Summary of findings and implications

Findings about flaky test causes

Implications

F.1 The top three categories of flaky tests are AsyNnc WAIT, CONCUR-
RENCY, and TEST ORDER DEPENDENCY.

I.1 Techniques for detecting and fixing flaky tests should focus on
these three categories.

F.2 Most flaky tests (78%) are flaky the first time they are written.

I.2 Techniques that extensively check tests when they are first added
can detect most flaky tests.

Findings about flaky test manifestation

Implications

F.3 Almost all flaky tests (96%) are independent of the platform
(i.e., could fail on different operating systems or hardware) even if
they depend on the environment (e.g., the content of the file system).

1.3 Techniques for manifesting flaky tests can check platform depen-
dence lower in priority than checking environment dependence (e.g.
event ordering or time), especially when resources are limited.

F.4 About third of AsyNc WAIT flaky tests (34%) use a simple method
call with time delays to enforce orderings.

I.4 Many AsyNc WAIT flaky tests can be simply manifested by chang-
ing time delays of order-enforcing methods.

F.5 Most Async WAIT flaky tests (85%) do not wait for external
resources and involve only one ordering.

I.5 Most AsyNc WAIT flaky tests can be detected by adding one time
delay in a certain part of the code without the need of controlling
the external environment.

F.6 Almost all CONCURRENCY flaky tests contain only two threads or
their failures can be simplified to only two threads, and 97% of their
failures are due to concurrent accesses only on memory objects.

1.6 Existing techniques of increasing context switch probability, such
as [10], could in principle manifest most CONCURRENCY flaky tests.

F.7 Many TEST ORDER DEPENDENCY flaky tests (47%) are caused by
dependency on external resources.

1.7 Not all TEST ORDER DEPENDENCY flaky tests can be detected by
recording and comparing internal memory object states. Many tests
require modeling external environment or explicit reruns with differ-
ent orders [37].

Findings about flaky test fixes

Implications

F.8 Many AsyNC WAIT flaky tests (54%) are fixed using waitFor.
which often completely removes the flakiness rather than just reduc-
ing its chance.

1.8 For developers: Explicitly express the dependencies between
chunks of code by inserting waitFor to synchronize the code.

For researchers: Comparing the order of events between correct
runs and failing runs, techniques could automatically insert order-
enforcing methods such as waitFor to fix the code.

F.9 Various CONCURRENCY flaky tests are fixed in different ways: 31%
are fixed by adding locks, 25% are fixed by making code deterministic,
and 9% are fixed by changing conditions. Our results are consistent
with a study on concurrency bugs [24].

I.9 There is no one common strategy that can be used to fix all
CONCURRENCY flaky tests. Developers need to carefully investigate
the root causes of flakiness to fix such tests.

F.10 Most TEST ORDER DEPENDENCY flaky tests (74%) are fixed by
cleaning the shared state between test runs.

I.10 For developers: Identify the shared state and maintain it
clean before and after test runs.

For researchers: Automated techniques can help by recording the
program state before the test starts execution and comparing it with
the state after the test finishes. Automatically generating code in
setUp/tearDown methods to restore shared program state, such as
static fields [7], could fix many TEST ORDER DEPENDENCY flaky tests.

F.11 Fixing flaky tests in other categories varies from case to case.

I.11 There is no silver bullet for fixing arbitrary types of flaky tests.
The general principle is to carefully use API methods with non-
deterministic output or external dependency (e.g., time or network).

F.12 Some fixes to flaky tests (24%) modify the CUT, and most of
these cases (94%) fix a bug in the CUT.

I.12 Flaky tests should not simply be removed or disabled because
they can help uncover bugs in the CUT.

Despite the pervasiveness of flaky tests in practice, they
have not drawn much attention from the research commu-
nity. The few recent efforts focus on only one category of
flaky tests due to test-order dependency [7,29,37]. In this
paper, we present the first extensive study of flaky tests. We
analyze in detail 201 commits that likely fix flaky tests from
51 open-source projects from the Apache Software Founda-
tion. For each flaky test, we inspect the commit log message,
the corresponding bug report (if any), and the corresponding
patch to determine the root cause of the non-deterministic
outcome and the way it was fixed. We also examine how the
flakiness was introduced in the test suite and how it could
be manifested.

We focus our study on the following questions that we be-
lieve could provide insights for practitioners and researchers:

(1) What are the common causes of flakiness? By
studying the root causes of flaky tests, we reveal the most
prominent categories of flaky tests for developers and re-
searchers to focus on. Our study of how flakiness is intro-
duced also suggests the best stage to identify flaky tests.

(2) How to manifest flaky test failures? By studying
the possible ways to manifest flaky test failures, we suggest
how automated techniques could detect unknown flaky tests.

(3) What are the common fixing strategies for
flaky tests? By studying how developers fix flaky tests in
practice, we provide insights for both developers about some
principled ways for avoiding certain kinds of flaky tests and

644

for researchers about the potential techniques that could au-
tomatically fix flaky tests.

Table 1 shows the summary of our findings and implica-
tions. The remaining sections discuss these in more detail.

2. METHODOLOGY

Our goal is to provide actionable information about avoid-
ing, detecting, and fixing flaky tests. To that end, we focus
on identifying and analyzing version-control commits that
likely fiz flaky tests. One can view each flaky test as a bug
in the test code whereas it can produce a non-deterministic
rather than deterministic outcome. Most empirical studies
of bugs start from bug reports [8,14,22,24,28]. However, we
start from commit logs, because we are mostly interested in
flaky tests that are fized. Starting from commits gives us a
larger dataset than we would get starting from bug-report
databases [5]. First, some fixes are made without ever be-
ing reported in bug-report databases. Second, some reports
from bug-report databases are open and not fixed. In brief,
every fixed flaky test is reflected in the version-control sys-
tem but may not be reflected in its bug-report database.

To identify commits that likely fix flaky tests, we choose
to search through the central SVN repository of the Apache
Software Foundation [3]. This repository hosts a diverse set
of over 150 top-level projects, written in various program-
ming languages, having varying sizes, and being actively de-
veloped for varying amount of time (from months to years)

Table 2: Summary of commit info and flaky test categories

“intermit” “flak” Total Burlé;oi:{aép“(;rts HBase ActiveMQ Hadoop Derby P?(:jhe(i;s
All commits 859 270 1,129 615 134 86 90 118 701
Commits about flaky tests 708 147 855 545 132 83 83 102 455
LDFFT commits 399 87 486 298 72 68 56 49 241
Inspected commits 167 34 201 124 23 20 29 12 117
AsyNC WAIT 62 12 74 43 10 11 7 3 42
CONCURRENCY 26 6 32 19 2 3 3 1 23
TEST ORDER DEPENDENCY 14 5 19 16 3 0 10 2 4
RESOURCE LEAK 9 2 11 8 2 2 0 1 6
NETWORK 10 0 10 6 1 1 2 0 6
TIME 5 0 5 2 0 1 1 0 3
10 4 0 4 3 0 0 1 1 2
RANDOMNESS 2 2 4 4 1 0 3 0 0
FLOATING POINT OPERATIONS 2 1 3 2 0 0 1 1 1
UNORDERED COLLECTIONS 1 0 1 1 0 0 0 0 1
Hard to classify 34 6 40 21 4 2 2 3 29

by a large open-source community.

We first extract the complete commit history of all projects
from the Apache Software Foundation. To identify commit
messages that may indicate a fix of a flaky test, we search
for the keywords “intermit” and “flak”. One could search for
more keywords, but these two already find enough commits
for several months of inspection. More precisely, the search
yielded 1,129 commit messages. Table 2 shows the distri-
bution of these between the two keywords. After collecting
these commit messages, our study proceeds in two phases.

Filtering Phase. The first phase in studying these 1,129
commits is to identify those that are likely about fixing flaky
tests. We manually inspect each commit, and if needed, the
bug report(s) associated with this commit. To increase con-
fidence in our inspection, two of the paper authors separately
inspect each commit and then merge their results. The up-
per part of Table 2 shows the summary of this initial labeling
phase. (We discuss the lower part of Table 2 in Section 3.)

Our goal is to determine for each commit whether: (1) it is
likely about (reporting or fixing) a flaky test (labeled ‘Com-
mits about flaky tests’ in Table 2), and (2) it attempts to fix
a distinct flaky test (labeled ‘LDFFT commits’ in Table 2).
We find 855 commits that are likely about flaky tests; the
other 274 commits match “intermit” or “flak” but are either
about the CUT not about the test code or just incidental
matches (e.g., a username that contains “flak”). Of these 855
commits, 486 are likely distinct fixed flaky tests (LDFFT
commits); the other 369 commits either report that certain
tests are flaky but do not provide fixes for those tests, or are
duplicates (e.g., multiple attempts to fix the same flaky test
or multiple copies of commits from one development branch
to another). For duplicates, we keep only the latest commit
about the distinct flaky test, because we want to study the
most recent change related to the flaky test (e.g., the most
effective fix is usually the latest fix).

Comparing the results across the two keywords, we find
that “intermit” is used more often than “flak” to indicate a
flaky test. The numbers of commits for “intermit” are larger
than the corresponding numbers for “flak” both in absolute
terms (399 vs. 87) and in relative terms (46% vs. 32%).

Comparing the column for all commits and the column
for the commits that have a bug report, we can see that a
large fraction of fixes for flaky tests have no bug report. For
example, 188 LDFFT commits have no bug reports, while
298 such commits have bug reports. Hence, we could have
missed a large number of commits related to flaky tests if
our methodology relied solely on bug reports.

645

The key result of this phase is a set of 486 LDFF'T com-
mits. Table 2 shows the number of these LDFFT commits
across various projects. At least 51 projects out of the 153
projects in Apache likely have at least one flaky test. For
each project, we tabulate the programming language(s) that
it uses, the number of LDFFT commits, the number of com-
mits that have at least one associated bug report, and the
total number of lines of code in the project (computed by
the “cloc” script). We can see that flaky tests occur in a di-
verse set of projects, using various languages, ranging over
various sizes, and implementing code for various domains.

Analysis Phase. We study in more depth a subset of
the 486 LDFFT commits, selected as follows. First we sort
the projects according to their number of LDFFT commits
and split them into two groups: small (less than 6 LDFFT
commits) and large (greater than or equal to 6 LDFFT com-
mits). Table 2 shows a line separating these two groups.
Then we select to inspect all the commits from the small
group and sample one third of the commits from each project
from the large group. We are thus covering all the projects
from the Apache Software Foundation where we identified
some LDFFT commits, and our results are not overly bi-
ased toward the projects with the largest number of LDFFT
commits. This sampling gives us a total of 201 out of 486
LDFFT commits to inspect.

For each of these 201 LDFFT commits, we first have one
of the authors examine the commit in detail. Our goal is
to answer the following set of questions: (1) Is the commit
indeed fixing a flaky test? (2) What is the root cause of the
flakiness for the test? (3) How can the flakiness be man-
ifested? (4) How is the test fixed? The answers are then
inspected and confirmed by another author. The following
sections discuss these answers.

3. CAUSES OF FLAKINESS

We first analyze the root causes of test flakiness and clas-
sify them into 10 categories. We then study when flakiness
is introduced in tests.

3.1 Categories of Flakiness Root Causes

We analyze in detail 201 LDFFT commits to classify the
root causes of the flakiness likely fixed by these commits.
We precisely classify the root causes for 161 commits, while
the remaining 40 commits are hard to classify for various
reasons as described later.

We split the root causes of flakiness into 10 categories.
Some of these categories have been previously described by

Table 3: Many projects contain flaky tests

S

=E ¥3
A3 Mna
Project Language = o 2 LOC
HBase Java 72 61 3199326
ActiveMQ C++/Java/Scala 68 17 323638
Hadoop Java 56 56 1348117
Derby Java 49 42 719324
Harmony C/C++/Java 30 27 1155268
Lucene Java 27 12 384730
Tomcat Java 16 0 316092
ServiceMix Java 15 12 156316
ZooKeeper Java 14 14 119139
Qpid C++/Java 14 8 359968
CXF Java 11 3 441783
Web Services C++/Java 9 1 859462
Tuscany Java 7 1 181669
Flume Java 7 6 60640
Maven Java 7 0 23000
OpenJPA Java 7 4 484054
Oozie Java 6 6 149315
Aries Java 6 4 125563
Continuum Java 5 0 130765
Subversion C/Python 4 0 562555
Tapestry Java 4 0 233382
Mesos CH++ 4 0 219485
Flex Java 4 1 2909635
HttpComponents Java 3 0 52001
Accumulo Java/Python 3 1 309216
Kafka Scala 3 2 139736
Hive Java 3 3 715967
Ambari Java 2 2 115725
Jena Java 2 0 349531
APR C 2 0 64279
Jackrabbit Java 2 2 295961
Sling Java 2 2 226613
OpenEJB Java 2 1 534262
Mahout Java 2 1 121312
Avro Java 2 2 131384
NPanday C# 1 0 41947
Cassandra Java 1 1 130244
UIMA Java 1 1 218881
Roller Java 1 0 75560
Portals Java 1 0 228907
ODE Java 1 1 114807
Buildr Ruby 1 0 31062
Pig Java 1 1 378181
Camel Scala 1 0 580015
Archiva Java 1 1 107994
XMLBeans Java 1 0 211425
SpamAssassin C 1 0 65026
Shindig Java 1 0 151743
MINA Java 1 0 417571
Karaf Java 1 1 360403
Commons Java 1 1 21343
Total Multiple 486 298 20654322

practitioners [13,33] and others we have identified by study-
ing a number of similar flaky tests. The lower part of Table 2
shows the summary of our analysis. The first column lists
the 10 categories, and the last row shows the 40 commits
that are hard to classify. The remaining columns tabulate
the distribution of these categories over various types of com-
mits and various projects. We highlight the number of flaky
tests for the top four projects, and the last column sums up
the numbers for the remaining 47 projects.

We next discuss in more detail the top three categories
that represent 77% of the 161 studied commits. We finally
briefly summarize the other seven categories.

3.1.1 AsynNc WAIT

74 out of 161 (45%) commits are from the ASYNC WAIT
category. We classify a commit into the ASYNC WAIT cat-
egory when the test execution makes an asynchronous call
and does not properly wait for the result of the call to be-

646

come available before using it. For example, a test (or the
CUT) can spawn a separate service, e.g., a remote server or
another thread, and there is no proper synchronization to
wait for that service to be available before proceeding with
the execution. Based on whether the result becomes avail-
able before (or after) it is used, the test can non-deterministi-
cally pass (or fail).

While our focus is on understanding flaky tests, we point
out that lack of synchronization can also lead to bugs in the
CUT even if it does not manifest in flaky tests. In fact, bugs
caused by asynchronous wait fall in a subcategory of concur-
rency bugs that Lu et al. [24] call “order violation” because
the desired order of actions between multiple threads is not
enforced. We classify ASYNC WAIT as a separate category
of root causes from CONCURRENCY because it represents a
large percentage of flaky tests with some common charac-
teristics that are not shared among all tests that are flaky
due to CONCURRENCY.

We next describe an example AsyNc WAIT flaky test.
This snippet is from the HBase project:

1 @Test

2 public void testRsReportsWrongServerName() throws Exception {
3 MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster();

4 MiniHBaseClusterRegionServer firstServer =

5 (MiniHBaseClusterRegionServer)cluster.getRegionServer(0);
6 HServerInfo hsi = firstServer.getServerInfo();

7 firstServer.setHServerInfo(...);

8

9

// Sleep while the region server pings back

10 Thread.sleep(2000);

11 assertTrue(firstServer.isOnline());

12 assertEquals(2,cluster.getLiveRegionServerThreads().size());
13 . // similarly for secondServer

The test uses a cluster to start a server firstServer and
then uses Thread.sleep(2000) to wait for it to ping back. If
the server does not respond in a timely manner, e.g., because
of thread scheduling or network delay, the test will fail. (The
test has similar code for secondServer.) Basically the test
intermittently fails based on how fast the server responds.

So far we have described the root cause of this flaky test,
but as a preview of our overall analysis, we describe how
we found this commit and how the developers fixed the
flakiness. This commit matches the keyword “flak” as its
commit message reads “HBASE-2684 TestMasterWrongRS
flaky in trunk”, which refers to the bug report ID HBASE-
2684 [4]. The test was added in revision® 948632 and was
flaky ever since. The developers fixed this test in revision
952837 by making two changes. First, they replaced each
Thread.sleep(2000) statement (for firstServer and second-
Server) with a call to cluster.waitOnRegionServer(0) that
waits until the server responds back and then removes its
corresponding thread. Second, to ensure that the test does
not run indefinitely in case that the server cannot start
for some reason, the developers added (timeout=180000) to
the @Test annotation, which fails the test after 180 seconds.
These changes completely removed the flakiness of this test:
the developers removed the assumption that the server will
respond within two seconds and explicitly expressed the con-
dition to wait for before resuming the execution. Table 5
further categorizes how many fixes completely removed flaki-
ness and how many just decrease the probability of flakiness.

3All the revision numbers refer to the Apache Software
Foundation SVN repository [3].

3.1.2 CONCURRENCY

32 out of 161 (20%) commits are from the CONCURRENCY
category. We classify a commit in this category when the
test non-determinism is due to different threads interacting
in a non-desirable manner (but not due to asynchronous calls
from the AsyNC WAIT category), e.g., due to data races,
atomicity violations, or deadlocks.

The source of non-determinism can be either in the CUT
or in the test code itself. 10 out of 32 (30%) cases are due
to non-determinism in the CUT and manifest by the in-
termittent failure of a corresponding test. Note that non-
determinism in the test (or code) execution may or may not
be a bug: the code could indeed have several correct differ-
ent behaviors. However, if the test incorrectly accepts only
a subset of these as passing behaviors, then the test has
non-deterministic outcome and is definitely flaky.

We next describe an example CONCURRENCY flaky test,
where the cause is non-determinism in the CUT. This snip-
pet is from the Hive project:

if (conf != newConf) {
for (Map.Entry<String, String> entry :
if ((entry.getKey() .matches("hcat.*")) &&
(newConf.get (entry.getKey()) == null)) {

1

2 conf) {
3

4

5 newConf.set (entry.getKey(), entry.getValue());
6

7

8

9

}
}

conf = newConf;

}

The code iterates over a map shared by multiple threads;
if the threads modify the map concurrently, a Concurrent-
ModificationException is thrown [23]. This code led to flaky
failures in several tests. The developers fixed this by enclos-
ing the lines 3 to 6 in a synchronized block, making them
execute atomically. We classify this case in the atomicity
violation subcategory of the CONCURRENCY category.

Our study finds the main subcategories of CONCURRENCY
flaky tests to match the common bugs from concurrent pro-
gramming [24]: data races (9 out of 32), atomicity violations
(10 out of 32), and deadlocks (2 out of 32). But we also
identify a new prominent subcategory that we call “bug in
condition” (6 out of 32)*. We classify a commit in this sub-
category when some multithreaded code has a condition that
inaccurately guards what threads can execute the guarded
code. The problem is when this condition is too tight or
too permissive. An example is in the project Lucene with
bug report LUCENE-1950. The test is flaky because a code
portion should be executed only by the thread named main,
but the condition does not guard for that, so when another
thread executes the code, the test fails. The fix was to
strengthen the condition to check if the thread name is main.

3.1.3 TErST ORDER DEPENDENCY

19 out of 161 (12%) commits are from the TEST ORDER
DEPENDENCY category. We classify a commit into this cat-
egory when the test outcome depends on the order in which
the tests are run. In principle, all tests in a test suite should
be properly isolated and independent of one another; then,
the order in which the tests are run should not affect their
outcomes. In practice, however, it is not the case.

This problem arises when the tests depend on a shared
state that is not properly setup or cleaned. The shared state
can be either in the main memory (e.g., the static fields in

45 out of 32 cases are hard to classify in any subcategory.

647

Java) or some external resource (e.g., files or databases). Ei-
ther a test expects to find the state as it was initialized but
meanwhile another test changed that state (i.e., running one
“polluter” test before another test fails the latter test), or a
test expects the state to be set by the execution of another
test that was not run (i.e., not running one “setup” test be-
fore another test fails the latter test). Hence, dependencies
among tests result in unpredictable behavior when the test
order changes. For example, the update from Java 6 to Java
7 changed the order in which JUnit finds the tests in a test
class (due to the change in the reflection library) [19].

We next describe an example TEST ORDER DEPENDENCY
flaky test. This snippet is from the Hadoop project:

1 @BeforeClass
2 public static void beforeClass() throws Exception {

3 Dbench = new TestDFSIO(Q);

4 ...

5 cluster = new MiniDFSCluster.Builder(...).build()

6 FileSystem fs = cluster.getFileSystem();

7 bench.createControlFile(fs, ...);

8

9 /* Check write here, as it is required for other tests */
10 testWrite();
11}

The snippet is from a test class where one test (testWrite)
writes to a file via fs preparing data to be read by several
other tests. The developers incorrectly assumed that test-
write would always run first, but JUnit does not guarantee
any particular test ordering. If JUnit runs some read test
before testWrite, the test fails. The developers fixed this
by removing the original testWrite test and adding a call to
testWrite in the @BeforeClass as shown in line 10.

3.1.4 Other Root Causes

We briefly discuss the other seven categories of root causes
of flakiness. Due to space limitation, we do not give a de-
tailed example for each category. The relative ratio of flaky
tests in these categories can be computed from Table 2.
Resource Leak. A resource leak occurs whenever the ap-
plication does not properly manage (acquire or release) one
or more of its resources, e.g., memory allocations or database
connections, leading to intermittent test failures.
Network. Tests whose execution depends on network can
be flaky because the network is a resource that is hard to
control. In such cases, the test failure does not necessarily
mean that the CUT itself is buggy, but rather the developer
does not account for network uncertainties. From the results
of our inspection, we distinguish two subcategories of flaky
tests whose root cause is the network. The first subcategory
is due to remote connection failures (60%), and the second
subcategory is due to local bad socket management (40%).
Time. Relying on the system time introduces non-deter-
ministic failures, e.g., a test may fail when the midnight
changes in the UTC time zone. Some tests also fail due to
the precision by which time is reported as it can vary from
one platform to another. We discuss platform-dependent
tests later (Sec. 4), and while they are not frequent, it is easy
for developers to overlook the differences among platforms.
I0. I/O operations (in addition to those for networks) may
also cause flakiness. One example we encountered was in the
project Archiva where the code would open a file and read
from it but not close it until the fileReader gets garbage col-
lected. So, a test that would try to open the same file would
either pass or fail depending on whether the fileReader was
already garbage collected or not.

Randomness. The use of random numbers can also make
some tests flaky. In the cases that we analyzed, tests are
flaky because they use a random number generator without
accounting for all the possible values that may be generated.
For example, one test fails only when a one-byte random
number that is generated is exactly 0.

Floating Point Operations. Dealing with floating point
operations is known to lead to tricky non-deterministic cases,

especially in the high-performance computing community [6].

Even simple operations like calculating the average of an ar-
ray require thorough coding to avoid overflows, underflows,
problems with non-associative addition, etc. Such problems
can also be the root cause of flaky tests.

Unordered Collections. In general, when iterating over
unordered collections (e.g., sets), the code should not assume
that the elements are returned in a particular order. If it
does assume, the test outcome can become non-deterministic
as different executions may have a different order.

Other Cases. We did not classify the root causes for 40
commits; of those, 7 do not fix a (non-deterministic) flaky
test but rather fix some deterministic bug, and 6 do not ac-
tually fix a flaky test. The other 27 are hard to understand.
We inspected each commit for several hours, reading the
commit message and associated bug reports if any, reason-
ing about the patched code, and occasionally even trying to
compile and run the tests. However, certain commits turned
out to be hard to understand even after several hours. If the
test or code change proven to be too complex, and there is
not much information in the commit message or bug report
to help us understand the root cause of flakiness, we mark it
as unknown. We exclude all 40 cases from our further study.

See Finding F.1 and Implication I.1 in Table 1.

3.2 Flaky Test Introduction

We also study when the tests became flaky. From the
161 tests we categorized, 126 are flaky from the first time
they were written, 23 became flaky at a later revision, and
12 others are hard to determine (mostly because tests were
removed or relocated to other files). We analyze in more
detail the 23 cases in which the tests became flaky later and
identify two main causes.

The first reason is the addition of new tests that violate
the isolation between tests. For example, consider a test ¢;
that requires a shared variable to be zero but relies on the
initialization phase to set that value rather than explicitly
setting the value before beginning the execution. A newly
added test t2 sets the value of that shared variable to 1,
without cleaning the state afterwards. If t2 is run before ¢,
the latter would fail.

The second reason for introducing flakiness after a test
is first written is due to test code changes such patching
a bug, changing the test functionality, refactoring a test, or
incompletely patching some flakiness itself. For the 152 flaky
tests for which we have evolution information, we calculate
the average number of days it takes to fix a test to be 388.46.
In sum, tools should extensively check tests when they are
first written, but some changes can also introduce flakiness.

See Finding F.2 and Implication I.2 in Table 1.

4. MANIFESTATION

Manifesting the flakiness of flaky tests is the first step in
fixing them. In practice, given a test failure that is suspected
to be from a flaky test, the most common approach is to

648

rerun the failing test multiple times on the same code to
find whether it will pass (and thus is definitely flaky) or will
not pass (and thus may be a real deterministic failure or
might be still a flaky test that did not manifest in a pass in
those multiple runs). While such rerunning can be useful in
some cases, it has disadvantages. When the probability for
a flaky test to change its outcome is low, rerunning it a few
times may not be enough to manifest that it can change the
outcome. Also, rerunning the tests multiple times is time
consuming, especially if there are multiple test failures.

While inspecting each flaky test in our study, we have
considered possible ways to automatically trigger the failure
of the flaky test, either to definitely show that it can both fail
and pass or at least to increase the probability of its failure
(under the assumption that it passes majority of the time).
Our analysis leads to findings that could help in developing
automatic techniques for manifesting flaky tests.

4.1 Platform (In)dependency

To understand how flaky tests manifest in failures, the
first question we want to answer is how many of those flaky
failures only manifest on a particular platform. By a “plat-
form”, we refer to the underlying system the test is running
on, including the hardware, operating system, JVM/JRE,
etc. It differs from the environment (mentioned later), as it
is not provided or controlled by the test or the application.
An example of platform dependence is a test failing due to
a different order of files on a specific file system.

From the flaky tests we categorized, we find that 154 out
of 161 (96%) have outcome that does not depend on the plat-
form. Namely, the test failures only depend on the events
in the application code and not on any system call to the
underlying platform. Of the 7 cases where the flaky failures
can only be reproduced on a certain platform, 4 tests require
a particular operating system to manifest the failure, 2 re-
quire a particular browser to manifest the failure, and only
1 requires a specific buggy JRE to manifest the failure.

See Finding F.3 and Implication 1.3 in Table 1.

4.2 Flakiness Manifestation Strategies

For each of the top three categories of root causes of flaky
tests, we next discuss how one could modify the tests from
that category to manifest the flaky failures.

4.2.1 AsynNc WAIT

How many Async Wait flaky tests can be manifested
by changing an existing time delay? To enforce a cer-
tain ordering in test execution, in many cases, developers
use a sleep or waitFor method with a time delay. A sleep
pauses the current thread for a fixed amount of time and
then resumes its execution. With waitFor, we refer to a set
of methods used to either let the current thread busy wait for
some condition to become true or block the current thread
until being explicitly notified. We find 25 out of 74 (34%)
Async WAIT flaky tests use sleep or waitFor with a time
delay to enforce ordering. Their flaky failures can be simply
manifested by changing the time delay of such method calls,
e.g., decreasing the sleeping time in the test. For the other
Async WAIT flaky tests, developers do not use a common
method call with a time delay to enforce certain ordering
but either do not enforce any ordering at all or use some
application-specific APIs to enforce the desired ordering.
See Finding F.4 and Implication I.4 in Table 1.

How many Async Wait flaky tests can be manifested
by adding one new time delay? We find two factors
that determine the difficulty of manifesting ASYNC WAIT
flaky tests. The first is whether a test depends on exter-
nal resources or not, because it is harder to control external
resources. The second is whether the flaky failure involves
only one ordering (where one thread/process is supposed to
wait for an action from another thread/process to happen)
or more orderings. Manifesting failures for multiple order-
ings would require carefully orchestrating several actions,
which is much harder than just delaying one action.

Our study finds that the majority of Async Wart flaky
tests, 67 out of 74 (91%), do not “wait” for external re-
sources. The few that do wait include a test that waits for
a specific process to be started by the underlying OS and a
test that waits for a response from the network.

Our study also finds that most AsyNc WAIT flaky tests
involve only one ordering. In fact, we find only 5 out of 74
(7%) cases with multiple orderings, e.g., a client waits for
multiple servers to be started in a certain order.

Overall, 63 out of 74 (85%) AsyNc WAIT flaky tests do
not depend on external resources and involve only one or-
dering. Their flaky failures can be manifested by adding
only one time delay in the code, without the need of con-
trolling the external environment. (Note that several tests
can be manifested as flaky by either adding a new time delay
or changing an existing time delay.) While finding the ap-
propriate place to add the delay could be quite challenging,
researchers can attempt to build on the heuristic or random-
ization approaches that were successfully used in manifesting
concurrency bugs [10, 35].

See Finding F.5 and Implication I.5 in Table 1.

4.2.2 CONCURRENCY

How many threads are involved? For all the 32 flaky
tests caused by CONCURRENCY, we also study how many
threads are involved in the test failure. We find out that
13 cases involve more than two threads. Seemingly con-
tradictory, Lu et al. [24] found out that most concurrency
bugs require only two threads to manifest. However, our re-
sult does not contradict their finding because we study real
tests that already contain multiple threads, whereas they
study bugs in the code and reason about tests that could
have been written to expose those bugs. To reproduce CON-
CURRENCY flaky failures, all the existing tests with multiple
threads that we studied could be simplified into at most two
threads. Interestingly enough, we even find one flaky test
for which only one thread suffices to trigger a deadlock bug.
How many Concurrency flaky tests do not depend
on external resources? We also find out that 31 out of 32
(97%) CONCURRENCY flaky tests do not depend on external
resources. In other words, their failures are only caused by
concurrent accesses to the objects in the main memory.
See Finding F.6 and Implication 1.6 in Table 1.

4.2.3 TgsT ORDER DEPENDENCY

We further study the source of dependency for each TEST
ORDER DEPENDENCY flaky test. We identify three sources
of dependency. We call the first one “Static field in TEST”
(3 out of 19), which means that several tests access the same
static field declared in the test code, without restoring the
state of that field in a setUp or tearDown method. We call the
second one “Static field in CUT” (6 out of 19), which means

649

Table 4: Flaky test fixes per category

. Rem- Decr-

Category Fix type Total ove case
Add/modify waitFor 42 23 19

o AT Add/modify sleep 20 0 20
ASYNG Warr Reorder execution 2 0 2
Other 10 9 1

Lock atomic operation 10 10 0

Make deterministic 8 8 0

CONCURRENCY Change condition 3 3 0
Change assertion 3 3 0

Other 8 8 0

TEST ORDER Setup/cleanup state 14 14 0
DEPENDENCY Remove dependency 3 3 0
Merge tests 2 2 0

that the shared static field is declared in the CUT rather
than in the test code itself. Test-order dependencies of the
first two kinds can be exposed by recording and comparing
object states. We call the third one “External dependency”
(10 out of 19), which means that the dependency is caused
by some external environment, such as shared file or network
port, and not by a static field.

Of the 19 TEsT ORDER DEPENDENCY flaky tests, we find
that more than half are caused by an external dependency.
Those tests cannot be easily manifested by recording and
comparing internal memory object states but instead require
more sophisticated techniques to model the state of external
environment or to rerun tests with different order [37].

See Finding F.7 and Implication 1.7 in Table 1.

S. FIXING STRATEGIES

Developers fix various root causes of flakiness in different
ways. We identify the main strategies that they use and
extract insights for practitioners to use in manually fixing
flaky tests and for researchers to use as starting points to
develop tools to automate this process. For the top three
categories of flaky tests, we give a detailed description of the
common fixes and discuss their effectiveness in removing the
flakiness. For the other categories, we only briefly discuss
the fixes. Some of the fixes for flaky tests change the CUT,
so we also study those cases.

5.1 Common Fixes and Effectiveness

We describe the main strategies that developers use to
fix flaky tests of different categories. Table 5 summarizes
the fixes for the top three categories. An interesting prop-
erty of these fixes is that they do not always completely
eliminate the root cause, namely they do not turn a (non-
deterministic) flaky test into a fully deterministic test. Rather,
some fixes change the code such that the test is less likely
to fail, although it could still fail. The column “Remove”
shows the number of fixes that completely remove the flaki-
ness, while the column “Decrease” shows the number of fixes
that only decrease the chance of failures in the flaky tests.

5.1.1 Async WAIT

Common fixes. The key to fixing AsyNC WAIT flaky tests
is to address the order violation between different threads or
processes. We describe the strategies used in practice and
evaluate their effectiveness.

Fixes using waitFor calls: 42 out of 74 (57%) ASYNC
Wairt flaky tests are fixed via some call to waitFor. Recall
that those calls block the current thread until a certain con-
dition is satisfied or a timeout is reached. The fixes add a

new call, modify an existing call (either the condition or the
timeout), or replace an already existing sleep (36% of these
fixes replace a sleep with a waitFor call). The latter shows
that waitFor is a preferred mechanism that developers should
use whenever possible. Also, out of all the waitFor fixes, 46%
have a time bound, while the others are unbounded.

Fixes using sleep calls: 20 out of 74 (27%) ASYNC WAIT
flaky tests are fixed by stalling some part of the code for a
pre-specified time delay using sleep. 60% of these cases
increase the waiting time of an already existing sleep, while
the other 40% add a sleep that was missing (conceptually
increasing the time delay from 0 up to the specified bound
in the added sleep). This shows the effect that machine
speed variation can have on flaky tests, especially for those
60% of the cases where the sleep was already there but the
waiting time was not long enough on some slower (or faster)
machines, leading to intermittent failures.

Fixes by reordering code: 2 out of 74 (3%) AsyNC
WAIT flaky tests are fixed by reordering code. Instead of
simply using sleep to wait for some time, the developer finds
a piece of code that can be executed such that the execution
of that code achieves the delay and hopefully achieves the
particular event ordering. A benefit of executing some code
rather than simply using sleep is that useful computation
gets done, but the problem remains that the developer can-
not precisely control the time taken for that computation.

Other: 10 out of 74 (14%) AsyNc WAIT flaky tests are
very specific to the code and hard to generalize. For ex-
ample, some of these fixes use an application-specific API
method to trigger an event so the ordering is not violated.
Effectiveness of fixes in alleviating flakiness. Using a
sleep is rarely a good idea when writing tests. As analyzed
in our earlier work that focused on writing multithreaded
tests [16], the use of sleep makes the test unintuitive, un-
reliable, and inefficient. It is hard to reason from the sleep
calls what ordering among what events they try to enforce.
Moreover, sleep calls cannot provide the guarantee that the
ordering that the developer wants to enforce among events
will indeed happen within the amount of time given in sleep.
For that reason, developers tend to over-estimate the time
needed in sleep calls, which makes the tests rather ineffi-
cient, because most of the time, the event can finish way
before the time bound (and yet occasionally it does not fin-
ish before the time bound, thus intermittently failing the
test). For all these reasons, we find that the fixes where
sleep calls are used to fix ASyNC WAIT flaky tests are only
decreasing the chance of a flaky failure: running tests on
different machines may make the sleep calls time out and
trigger the flaky failures again.

Using a waitFor is the most efficient and effective way to
fix AsyNnc WAIT flaky tests. Because waitFor makes explicit
the condition that has to be satisfied before the execution
can proceed, it becomes much easier to understand what
ordering the test expects. Moreover, the execution is more
efficient because it can proceed as soon as the condition is
satisfied, rather than waiting for some time bound when
the condition may or may not be satisfied. In fact, Table 5
shows that 23 out of 42 (55%) cases with waitFor completely
remove the flakiness. The remaining cases only decrease
the flakiness because those waitFor calls are bounded with
a timeout. Even when there is no explicit timeout on some
waitFor, the test itself can have a timeout. Such a timeout
is practically useful for preventing a single test from hang-

650

ing the entire test suite forever. We find that developers set
much higher timeouts when using waitFor rather than sleep;
in particular, the average waiting time for waitFor calls in
our cases is 13.04 seconds, while the average waiting time
for sleep calls is 1.52 seconds. The higher upper bound on
waitFor makes them more robust against flakiness when the
condition that is being waited for gets delayed; at the same
time, waitFor is more efficient than sleep when the condi-
tion gets available earlier than expected. While the tests
with waitFor may still fail when run on an extremely slow
machine, using waitFor is much more efficient and reliable
than using a sleep.

Reordering code is ineffective as using sleep calls, for the
similar reasons. The only advantage of reordering code over
sleeps is that the waiting time is not purely idle time but
rather some useful computation happens. However, the de-
veloper does not have a precise control over the amount of
time taken for that computation. Hence, the flaky tests can
still fail after the code is reordered.

See Finding F.8 and Implication I.8 in Table 1.

5.1.2 CONCURRENCY

Common Fixes. Concurrency bugs are caused by unde-
sired interleavings among different threads. The flaky tests
from the CONCURRENCY category in our study are similar
to common concurrency bugs in the CUT [24]. We find four
main strategies of fixes for CONCURRENCY flaky tests.

Fixes by adding locks: 10 out of 32 (31%) CONCUR-
RENCY flaky tests are fixed by adding a lock to ensure mu-
tual exclusion for code that is supposed to be accessed by
one thread at a time. 8 of these fixes address atomicity
violation, and 1 each addresses deadlock and race condition.

Fixes by making code deterministic: 8 out of 32
(25%) CoNCURRENCY flaky tests in the study are fixed by
making the execution deterministic. The specific changes
include modifying code to eliminate concurrency, enforcing
certain deterministic orders between thread executions, etc.

Fixes by changing concurrency guard conditions:
3 out of 32 (9%) CONCURRENCY flaky tests in our study are
fixed by changing the guard conditions in the test code or
the CUT. For example, developers use a condition check to
only allow certain threads to enter certain part of the code at
the same time. If that condition does not take into account
all the possible scenarios, the test may become flaky.

Fixes by changing assertions: 3 out of 32 (9%) CoON-
CURRENCY flaky tests in our study are fixed by changing
assertions in the test code. Although non-determinism is
permitted by the concurrent program, the test assertion fails
to accept all valid behaviors. The fix is to account for all
valid behaviors in the assertion.

Others: The remaining fixes for CONCURRENCY flaky

tests vary from case to case, and they are usually specific to
the application. For instance, developers may fix a CONCUR-
RENCY flaky test due to race condition by making a specific
shared variable to be thread local.
Effectiveness of fixes in alleviating flakiness. In our
study we find that all the fixes for CONCURRENCY flaky tests
completely remove flakiness in the test. As long as the root
cause of the CONCURRENCY flaky test is correctly identified
and understood by developers, the committed fix always re-
solves the problem completely.

Our finding seemingly contradicts a previous study [24]
by Lu et al. who found a number of concurrency bugs to be

hard to fix and typically have at least one incomplete patch
attempting to fix the bug but not completely fixing it. The
difference is likely due to the different methodologies we use.
In particular, we analyze one committed fix per a flaky test
in the repository, and if the same flaky test has multiple
commits, we pick the last commit to fully understand the
flakiness and how it was resolved. It is quite possible that
our study missed some incomplete fixes. Also, it is possi-
ble that some incomplete fixes were proposed with the bug
reports, but developers rejected these incomplete fixes with-
out committing them to the repository at all. In contrast,
Lu et al. study concurrency bugs from bug reports and not
from commits. Also, one reason that CONCURRENCY flaky
tests can be easier to fix than general concurrency bugs is
that general bugs may have no tests, making it harder to
debug than when a specific test is present.
See Finding F.9 and Implication 1.9 in Table 1.

5.1.3 TEeST ORDER DEPENDENCY

Common Fixes. TEST ORDER DEPENDENCY flaky tests
are not easy to debug because it may be difficult to find out
which other test is (or tests are) interdependent with the
intermittently failing test. However, once developers figure
out the dependency, the fix is usually simple and obvious.
We classify the common fixes into three main strategies.

Fixes by setting up/cleaning up states: 14 out of
19 (74%) TeEsT ORDER DEPENDENCY flaky tests are fixed
by setting up or cleaning up the state shared among the
tests. Basically, the test needs to set up the state before it
executes, clean up the state after it finishes, or both.

Fixes by removing dependency: 3 out of 19 (16%)
TeEST ORDER DEPENDENCY flaky tests are fixed by making
local copies of the shared variable and removing the depen-
dency on it.

Fixes by merging tests: 2 out of 19 (10%) TEST ORDER

DEPENDENCY flaky tests are fixed by merging dependent
tests. For example, developers copy the code in one test
into another one and remove the first test.
Effectiveness of fixes in alleviating flakiness. All the
fixes we find in our study for TEST ORDER DEPENDENCY
flaky tests completely remove the flakiness. However, the
first two strategies of fixes (Setup/cleanup state and Remove
dependency) are better than the last strategy. Setting up
or cleaning up state ensures that even if tests do depend
on the shared state, that state is always found as expected,
independent of the order in which the tests run. The second
strategy remedies the case where two or more tests access
and modify a common field that is expected to be local;
this strategy is somewhat related to concurrency, even when
tests are executed on one thread.

Merging dependent tests makes tests larger and thus hurts
their readability and maintainability, although it does re-
move the flakiness. Moreover, merging smaller tests into
large tests limits the opportunities for parallelizing the test
suite or applying test selection and prioritization techniques.

See Finding F.10 and Implication I.10 in Table 1.

5.1.4 Others

We next discuss briefly the common ways of fixing the
other categories of flaky tests.
Resource Leak. This category is one of the hardest for
generalizing the specific fixes. Fowler suggests to manage
the relevant resources through resource pools [13]. When a

651

client needs a resource, the pool provides it. The pool can
be configured to either throw an exception if all resources
are in use, or to grow. When the client is done with the
resource, it should return it to the pool. A resource leak
occurs if a client does not return resources. These leaky
clients can be detected by reducing the pool size so that
requesting a resource triggers an exception, and fixed by
properly returning the resources.
Network. Whether for internal communication between
processes on the same machine through sockets, or getting
data and services from remote servers, software relies ex-
tensively on the network. This dependency results in non-
determinism in test and code execution. One of the best
fixes for this category is to use mocks. Whenever the use
of mocks is non practical, the flakiness can be remedied by
using waitFor.
Time. Time precision differs from one system to another.
In general, tests should avoid using platform dependent val-
ues like time.
IO. Because they deal with external resources, I/O opera-
tions can cause intermittent test failures. Therefore, the de-
veloper should make sure to close any opened resource (file,
database, etc.) and to use proper synchronization between
different threads sharing the same resource.
Randomness. This category is associated with random
number generation. To avoid/fix flakiness due to random-
ness, the developers should control the seed of the random
generator such that each individual run can be reproduced
yet the seed can be varied across runs. The developer should
also handle the boundary values that the random number
can return, e.g., zero can be a problem in some scenarios.
Floating Point Operations. Floating-point operations
are non-deterministic by nature, and can cause a lot of prob-
lems if not handled correctly. In general, one has to be care-
ful when dealing with floating point operations. Imprecision
is not avoidable, but one should aim for determinism, and
it is good practice to have test assertions as independent as
possible from floating-point results.
Unordered Collections. Flakiness due to unordered col-
lections arises whenever the developer assumes that the API
guarantees a certain order that it does not. In general, a
good programming practice is to write tests that do not as-
sume any specific ordering on collections unless an explicit
convention is enforced on the used data structure.

See Finding F.11 and Implication I.11 in Table 1.

5.2 Changes to the Code under Test

38 out of 161 (24%) of the analyzed commits fix the flak-
iness by changing both the tests and the CUT. We classify
the changes to the CUT as follows.

Deterministic Bug. In some cases, the source code is
deterministic and contains a bug. The flakiness is in the
test code, but the test, by failing even intermittently, helps
in uncovering the real bug in the CUT.
Non-Deterministic Bug. The source code is non-determi-
nistic and contains a bug (e.g., a race condition) that causes
flakiness. The flaky failures again help to uncover the bug.
Non-Deterministic No Bug. The code is non-determi-
nistic but contains no bug. However, the developers decide
to make it more deterministic to avoid some cases. Such
change can help in writing tests because the flaky test need
not consider all the possible correct results.

See Finding F.12 and Implication 1.12 in Table 1.

6. THREATS TO VALIDITY

Our study is empirical and has the common threats of
internal, external, and construct validity as any empirical
study. We focus on more specific issues.

Choice of projects. We study only a subset of all soft-
ware projects, so our results may not generalize. To address
this threat, we consider all the projects from the Apache
Software Foundation. We examine a diverse set of projects
with more than 20 million LOC (just in the projects with
flaky tests) and 1.5 million commits. The projects use differ-
ent languages and various types of applications (web server,
databases, cloud, graphics, mail, build-management, etc.).
However, Apache does not contain many mobile applications
(such as Android Apps) or GUI tests [26], so some of our
findings and implications, such as platform independence,
may not apply to those cases.

Selection Criteria. In selecting the cases to study, we
(1) rely only on the commit log, (2) use specific keywords to
search it, and (3) study only the fixed tests. Section 2 ex-
plains in detail the benefits of choices (1) and (3), in partic-
ular finding fixed flaky tests that other approaches (such as
relying on bug reports) could miss. However, we could still
miss many flaky tests that are only reported in bug reports
and never got fixed. Concerning choice (2), we search the
commit messages using only two keywords, “intermit” and
“flak”, so there is no guarantee on the recall of our search. In
fact, we believe our search could miss many flaky tests whose
fixes could use words like “concurrency”, “race”, “stall”, “fail”,
etc. In our future work we intend to expand our search for
likely fixes of flaky tests. The large number of commits we
already find with just two keywords shows that flaky tests
are an important problem to study.

Manual inspection. Labeling and characterizing commits
manually can lead to incorrect labeling, e.g., our analysis
phase found some false positives from our filtering phase.
However, the number of false positives is relatively low. Fur-
ther, to minimize the probability of error, two authors inde-
pendently inspect every commit and then merge the results.

7. RELATED WORK

Several researchers and practitioners have pointed out prob-
lems with non-deterministic tests [1,7,12,13,20,21,26,29,32,
34,37]. For example, Fowler [13] described non-deterministic
test outcomes as a recurring problem in regression testing
and outlined some ways for avoiding and manually fixing
flaky tests. Memon and Cohen [26] pointed out a few pos-
sible reasons that make GUI tests flaky. Lacoste [20] also
described some of the unfortunate side-effects of flaky tests
in automated regression testing, e.g., some features may
miss a release deadline because of intermittent test failures.
More recently, Marinescu et al. revealed a number of non-
deterministic test suites in their study that analyzed evolu-
tion of test suite coverage [25].

Non-deterministic bugs and tests. Most existing work
on non-deterministic bugs (either in the CUT or in the test
code) focuses on one specific category of non-determinism
causes. For example, several researchers focus on TEST OR-
DER DEPENDENCY. Zhang et al. formalized the test depen-
dency problem, studied real-world test suites with test de-
pendency problems, and implemented several techniques to
identify these tests by reordering test runs [37]. Muslu et
al. found that isolating unit tests can be helpful in detecting

652

faults, but enforcing isolation can be computationally expen-
sive [29]. Bell and Kaiser proposed an automatic approach
for isolating unit tests in Java applications by tracking all
side-effects on shared memory objects and undoing these ef-
fects between tests [7].

CONCURRENCY was also well studied. For example, Farchi
et al. summarized common bug patterns in concurrent code
and employed static analysis to detect some of them [11].
Lu et al. published a comprehensive characteristic study [24]
examining bug patterns, manifestation, and fixes of concur-
rency bugs. Compared to prior work, our study focuses on
characterizing flaky tests across all categories, and we start
from commit logs rather than just bug reports. Our results
show that some categories of flaky tests such as Async WaIT
and CONCURRENCY are more prevalent than TEST ORDER
DEPENDENCY and should likely get more attention.

While we focus on flaky tests, some causes that we find
are general non-determinism bugs in the CUT. However, we
ignore the cases of bugs in the CUT that do not result in
test flakiness, but we do include the cases of test flakiness
that may have no bug in the CUT (e.g., TEST ORDER DE-
PENDENCY). We believe that the causes and fixes for flaky
tests differ enough from general bugs in the CUT to warrant
more special focus.

Bug-fixes study. Researchers have also studied different
characteristics of bug fixes. For example, Murphy-Hill et al.
conducted a large study to find factors that influence how
bugs get fixed [30]. Bachman et al. found that many bug-fix
commits do not have corresponding bug reports [5]; their
results motivate us to start from commits instead of bug re-
ports. Automated techniques have also been proposed to fix
concurrency bugs by Jin et al. [18]. Our study revealed a
number of different strategies for fixing flaky tests in differ-
ent categories, and we believe that our findings can help in
developing more automated techniques for fixing bugs.
Fixing tests. Daniel et al. proposed an automated tech-
nique for fixing broken tests [9]. Yang et al. proposed a dif-
ferent technique using Alloy specifications to repair tests [36].
However, existing test repair only focuses on broken tests
that fail deterministically, while we study flaky tests that
fail non-deterministically.

8. CONCLUSIONS

Regression testing is important but can be greatly under-
mined by flaky tests. We have studied a number of fixes to
flaky tests to understand the common root causes, identify
approaches that could manifest flaky behavior, and describe
common strategies that developers use to fix flaky tests. Our
analysis provides some hope for combating flaky tests: while
there is no silver bullet solution that can address all cate-
gories of flaky tests, there are broad enough categories for
which it should be feasible to develop automated solutions
to manifest, debug, and fix flaky tests.

9. ACKNOWLEDGMENTS

We thank John Micco for sharing personal experience
about flaky tests at Google, and Sebastian Elbaum and Sai
Zhang for the valuable discussions about this work. This re-
search was partially supported by the NSF Grant Nos. CNS-
0958199 and CCF-1012759, and the DARPA grant FA8750-
12-C-0284. Farah Hariri was also supported by the Saburo
Muroga Endowed Fellowship.

10.

(1]
2]
3]
(4]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES
API design wiki - OrderOfElements.

http://wiki.apidesign.org/wiki/OrderOfElements.
Android FlakyTest annotation.
http://goo.gl/e8PILv.

Apache Software Foundation SVN Repository.
http://svn.apache.org/repos/asf/.

Apache Software Foundation. HBASE-2684.

https://issues.apache.org/jira/browse/HBASE-2684.

A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu,
and A. Bernstein. The missing links: bugs and bug-fix
commits. In FSFE, 2010.

E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic
detection of floating-point exceptions. In POPL, 2013.
J. Bell and G. Kaiser. Unit test virtualization with
VMVM. In ICSE, 2014.

N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan. An empirical study on
inconsistent changes to code clones at the release level.
SCP, 2012.

B. Daniel, V. Jagannath, D. Dig, and D. Marinov.
ReAssert: Suggesting repairs for broken unit tests. In
ASE, 2009.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for Testing Multi-Threaded
Java Programs. CCPE, 2003.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In ITPDPS, 2003.

Flakiness dashboard HOWTO.
http://goo.gl/JRZ1J8.

M. Fowler. Eradicating non-determinism in tests.
http://goo.gl/cDDGmm.

P. Guo, T. Zimmermann, N. Nagappan, and

B. Murphy. Characterizing and predicting which bugs
get fixed: an empirical study of Microsoft Windows. In
ICSE, 2010.

P. Gupta, M. Ivey, and J. Penix. Testing at the speed
and scale of Google, 2011. http://goo.gl/2B5cyl.

V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu,
and D. Marinov. Improved multithreaded unit testing.
In FSE, 2011.

Jenkins RandomFail annotation.
http://goo.gl/tzyCOW.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit.

653

[19]
[20]

[21]
22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

31]
[32]

[33]
[34]
[35]

[36]

[37]

Automated atomicity-violation fixing. In PLDI, 2011.
JUnit and Java7. http://goo.gl/g4crZL.

F. Lacoste. Killing the gatekeeper: Introducing a
continuous integration system. In Agile, 2009.

T. Lavers and L. Peters. Swing Extreme Testing. 2008.
Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now?: An empirical study of bug
characteristics in modern open source software. In
ASID, 2006.

Y. Lin and D. Dig. CHECK-THEN-ACT misuse of
Java concurrent collections. In ICST, 2013.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics. In ASPLOS, 2008.
P. Marinescu, P. Hosek, and C. Cadar. Covrig: A
framework for the analysis of code, test, and coverage
evolution in real software. In ISSTA, 2014.

A. M. Memon and M. B. Cohen. Automated testing of
GUI applications: models, tools, and controlling
flakiness. In ICSE, 2013.

J. Micco. Continuous integration at Google scale,
2013. http://goo.gl/0gnzGj.

B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of Unix utilities. CACM, 1990.
K. Muslu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. ESEC/FSE, 2011.

E. R. Murphy-Hill, T. Zimmermann, C. Bird, and

N. Nagappan. The design of bug fixes. In ICSE, 2013.
Spring Repeat Annotation. http://goo.gl/vnfU3Y.
P. Sudarshan. No more flaky tests on the Go team.
http://goo.gl/BiWaEl.

6 tips for writing robust, maintainable unit tests.
http://blog.melski.net/tag/unit-tests.

TotT: Avoiding flakey tests. http://goo.gl/vHE4Tr.
R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting
where it hurts: An automatic concurrent debugging
technique. In ISSTA, 2007.

G. Yang, S. Khurshid, and M. Kim.
Specification-based test repair using a lightweight
formal method. In FM, 2012.

S. Zhang, D. Jalali, J. Wuttke, K. Muslu, M. Ernst,
and D. Notkin. Empirically revisiting the test
independence assumption. In ISSTA, 2014.

