Spring 2012 Course: CS 498, Section DM

Software Testing

Problem Set 3
Assigned: March 30, 2012
Due: Thursday, April 5, 2012 (by 12:30pm, beginning of class)

This problem set covers the material from Chapter 5 of the textbook and some basics of JPF. There are six
problems, worth a total of 120 points. You need only 100 points to get the maximum score for this
problem set, which accounts for 15% of the final grade. If you have more than 100 points, you will get
credit for the future problem sets and the project. For the problems labeled [MP], commit your code into
SVN. For the non-MP problems, you can either include your solutions in SVN (if so, please use simple
ASCII documents to write your solutions) or you can bring your (hand-written or printed) solutions to the
lecture. Important notel: do not collaborate on any of these problems, especially on the MP parts! If you
have questions, please feel free to schedule a meeting with Darko or email him the questions. Important
note2: you’re welcome to use any online resource you want as a help, including the book web page
(http://cs.gmu.edu/~offutt/softwaretest/), but if you copy some solution/idea from somewhere, please do
state the original source. Some of these online resource have bugs themselves. If you do not state the
original source but have exactly the same bugs (which would be unlikely), you will get negative points!

Problem 1 [15 points]: (This is a modified version of exercises after Section 5.1.2.)

Consider the Stream BNF (page 171, Section 5.1.1, also see slides) and the string “B 10 08.27.98.

(a) [3 points]: Give three valid and three invalid mutants of the above string.

(b) [3 points]: Specify three mutation operators for the Stream grammar (not Stream strings).

(c) [3 points]: For each operator, discuss whether it always produces a valid mutant, always produces an
invalid mutant, or could produce either.

(d) [3 points]: For each of your mutants from part (a), describe whether and how it can be generated
using your mutation operators from part (b).

(e) [3 points]: Compute the number of mutants (if it is too hard to compute the exact number, then
approximate) that your operators can produce from the above string.

Problem 2 [25 points]: [MP] Write a program that generates random tests in JUnit format for a given
class. See SVN for more details (search for TODO).

Problem 3 [5 points]: (This is a modified version of exercises after Section 5.1.2.)

(a) [2 points]: Define mutation score.

(b) [3 points]: How is the mutation score related to coverage from Chapter 1 (pages 16-20)? What are the
test requirements for mutation coverage? Which requirements are infeasible?

Problem 4 [25 points]: [MP] (This is a modified version of Exercise 6 after Section 5.2.) For the method
power, given in SVN, do the following:

() [16 points]: Define at least eight non-equivalent mutants for power. If possible, use for each mutant a
different operator from those effective mutation operators listed on pages 182-185, Chapter 5. If not
possible, discuss why.

(b) [3 points]: Write a set of test inputs (not in JUnit format) that strongly kills all mutants.

(c) [6 points]: Define at least three equivalent mutants for power.

See SVN for details on writing your mutants and tests (search for TODO).

http://cs.gmu.edu/~offutt/softwaretest/

Problem 5 [30 points]: (This is a modified version of Exercise 3 after Section 5.2.) This problem
considers the TestPat class from page 56, Chapter 2. (This is the same class from Problem 4 in Problem
Set 2.) Consider two mutants for this class:
(A) while (isPat == false && isub + patternLen - 1 < subjectLen) // Node 3

while (isPat == false && isub + patternLen - 0 < subjectLen) // Mutant A
(B) isPat = false; // Node 8

isPat = true; // Mutant B
For each mutant, do the following:
() [3 points]: If possible, find a test input that does not satisfy reachability for the mutant (i.e., a test
input whose execution does not reach the mutation).
(b) [3 points]: If possible, find a test input that satisfies reachability but not infection for the mutant (i.e.,
a test input that reaches the mutation but does not result in a modified state).
(c) [3 points]: If possible, find a test input that satisfies infection but not propagation for the mutant
(i.e., a test input that reaches the mutation and results in a modified state, but this state does not propagate
to the return value).
(d) [3 points]: If possible, find a test input that kills the mutant weakly but not strongly. (Hint: consider a
brief answer to this question.)
(e) [3 points]: If possible, find a test input that strongly Kills the mutant.
If any of the above is not possible, discuss why; simple “no” does not suffice. (Note about points: each of
the ten parts A.a, A.b... A.e, B.a, B.b... B.e is worth 3 points.)

Problem 6 [20 points]: [MP**] Java Pathfinder (JPF) can be used to explore various sources of non-
determinism such as thread interleavings in concurrent code and explicit non-determinism introduced
with the JPF's library call Verify.getInt(int min, int max) that returns values between min and max,
inclusively. The goal of this problem is to use such library calls to create sequential test sequences for the
Account class from Problem 2. Recall that each JUnit test creates several objects and invokes methods
on them, and then finally asserts that some properties should hold.

In particular, we will focus on the Account class and its methods deposit and withdraw. For each
method, we will use only a finite, specified set of parameter values. (The provided sample code uses “1”
and “2” as parameters, but the code that you write should work not only for those two parameters but for
all possible values arrays; in other words, your code should be generic and not rely on the particular,
provided array, e.g., you should use values.length rather than 2 where appropriate.) The goal is to explore
method sequences that have a specified number of method calls using these parameters. In general, we
can be checking some properties for each such sequence. In this MP, the goal is to output one JUnit test
for each different sequence.

Your specific task is to change the AccountDriver class provided in SVN so that running JPF on this
class generates a sequence of JUnit tests as described above. The program creates Account objects
through execution of a sequence of method calls. At the same time, the program creates the string/code
necessary to reconstruct those objects as part of a JUnit test. (In principle, as each Account object is
created, the program should compare the state of that object against previously generated objects, and it
should print JUnit tests only for those objects that have new, previously unseen states. You need not
worry about that in this problem.)

Note that the main method accepts a single argument. This argument is the length of the method sequence
(i.e., the number of deposit and withdraw method calls) that should be generated. Your solution should
be general and able to run correctly for sequence lengths greater than or equal to 1.

(** This problem is very hard, much harder than any previous we had. Please attempt this last only
if you have time and only if you didn’t already do well on your project and previous problem sets.)

