
Spring 2012 Course: CS 498, Section DM

Software Testing

Problem Set 1

Assigned: January 29, 2012

Due: Thursday, February 9, 2012 (at 12:30pm, beginning of lecture)

This problem set covers the material from Chapter 1 of the textbook, basics of JUnit and statement

coverage, and basics of JPF. There are six problems, worth a total of 120 points. You need only 100

points to get the maximum score for this problem set, which accounts for 15% of the final grade. If you

have more than 100 points, you will get credit for the future problem sets and the project.

For the problems labeled [MP], you will have to submit your code through SVN. The detailed

instructions will be provided on the cs498dm mailing list when TSG sets up an appropriate SVN

repository. For the other problems, you can include the solutions as text files in SVN, or you can bring

hand-written/printed solutions to the lecture. Some starting files for the MP problems are available at

http://mir.cs.illinois.edu/~marinov/sp12-cs498dm/pset1.zip.

Discussing problems on the cs498dm mailing list is allowed and encouraged! However, you should write

your solutions individually.

Problem 1 [20 points]: [MP] (Based on the trityp example tested interactively in the lecture.) Consider

the class trityp from problem1 in pset1.zip.

(a) [4 points]: Write four JUnit passing tests for the Triang method.

(b) [4 points]: Change the trityp class to enable partial testing of the string output (rather than just the

integer value that encodes the triangle type).

(c) [4 points]: Write four JUnit failing tests where the code returns a string different from what you

would expect. (We already had several examples in the lecture, so just encode them in JUnit.)

(d) [4 points]: Write four JUnit tests that provide inputs directly to the main method (rather than to the

Triang method that computes the result); these tests need not check the output.

(e*) [4 points]: Write generic code that can check the output of the main method (capture System.out)

and then add specific output checks to the four tests you wrote in the previous part. (* Hard question.)

Problem 2 [20 points]: [MP] (Based on Exercise 2 after Section 1.1.) The following exercise is intended

to encourage you to think of testing in a more rigorous way than you may be used to. The exercise also

hints at the strong relationship between specification clarity, faults, and test cases.

(a) [4 points]: Write a Java method union with the signature

 public static Vector union(Vector a, Vector b)

The method should return a Vector of objects that are in either of the two argument Vector objects.

Describe in code comments how you interpreted the notion of union.

(b) [4 points]: Upon reflection, you may discover a variety of defects and ambiguities in the given

assignment. In other words, ample opportunities for faults exist. Identify at least eight potential faults.

(c) [4 points]: Write in JUnit a set of test cases that you think would have a reasonable chance of

revealing the faults you identified above. Document a rationale for each test in your test set. If possible,

characterize all of your rationales in some concise summary. Run your tests against your implementation.

(d) [4 points]: What statement coverage do your tests achieve? You can use (Ecl)Emma or a similar tool

to measure coverage, and it need not be 100%. Is 100% statement coverage feasible for your code?

(e) [4 points]: Rewrite the method signature to be precise enough to clarify the defects and ambiguities

identified earlier. You may wish to illustrate your specification with examples drawn from your test cases.

http://mir.cs.illinois.edu/~marinov/sp12-cs498dm/pset1.zip

Problem 3 [20 points]: [MP] (Based on an old exercise after Section 1.2.) Consider the class Count

from problem3 in pset1.zip.

(a) [4 points]: Complete this program by modifying the main method to contain exactly one call to the

numZero method. The arguments for the call can be read from the command line (parsing args) or from

standard input (see the trityp.java example in problem1).

(b) [4 points]: This program contains a fault. What is it? Does executing the program necessarily result in

either incorrect output or in failure?

(c) [4 points]: Write a JUnit test case that results in failure. Verify by executing this test case. For the test

case that results in failure, identify some error state. Be sure to describe the complete state.

(d) [4 points]: Write another JUnit test case that does not result in failure. Verify by executing this test

case.

(e) [4 points]: Write a JUnit test suite to execute every statement in the method numZero. Discuss

whether you wrote a minimal set, i.e., a set such that if any one test was removed, the remaining tests

would no longer execute every statement.

Problem 4 [20 points]: (Exercise 3 after Section 1.2.) Consider the following faulty method and a test

case that results in failure:

 public int countPositive(int[] x) {

 // Effects: If x == null throw NullPointerException

 // else return the number of positive elements in x.

 int count = 0;

 for (int i = 0; i < x.length; i++) {

 if (x[i] >= 0) {

 count++;

 }

 }

 return count;

 }

 // test: x = [-4, 2, 0, 2]

 // expected = 2

(a) [4 points]: Identify the fault.

(b) [4 points]: If possible, identify a test case that does not execute the fault.

(c) [4 points]: If possible, identify a test case that executes the fault, but does not result in an error state.

(d) [4 points]: If possible identify a test case that results in an error, but not a failure. Hint: Don’t forget

about the program counter.

(e) [4 points]: For the given test case, identify the first error state. Be sure to describe the complete state.

Problem 5 [20 points]: This exercise asks you to try out basics of some parts of Java PathFinder (JPF).

JPF can be used to explore non-deterministic choices, including various thread interleavings or explicit

non-determinism. For example, JPF's library call Verify.getInt(int min, int max) introduces an explicit

non-deterministic choice point that can return values between min and max, inclusively. Write a program

that has some thread interleavings or explicit non-deterministic choices. You can start from the example

code used in the lecture about JPF and modify it slightly but do not use the exact code from the slides.

(a) [4 points]: Run JPF on your program. How many states did JPF explore? (If you have more than 1000

states, your program is too big, so write a smaller one.) How many times did JPF backtrack in the

exploration? How many bytecode instructions did JPF execute?

(b) [4 points]: Run JPF for some non-default search strategy. How does it affect the number of states

explored and the number of backtracks performed?

(c) [4 points]: Run JPF with some listener. What additional information does it provide?

(d) [4 points]: Run JPF with DebugJenkinsStateSet. What additional information does it provide?

(e) [4 points]: Run some JPF feature that is not a search strategy or listener. What does it provide?

Problem 6 [20 points]: The basic functionality that JPF has is to execute a Java program as any regular

JVM does. This exercise asks you to test whether JPF gives the same output as a regular JVM. You will

write Java programs with various features, run them on both JPF and JVM, and compare the outputs. You

will submit the programs you wrote, the script/code you used for comparing outputs, and description of

any unexpected outputs you may obtain.

(a) [5 points]: Choose a Java library that you are not very familiar with (e.g., reflection or I/O). Write or

download five small programs that use this library. (If you download code, write where you got it from.)

Test if JPF gives the same output as JVM for those programs.

(b) [5 points]: Select some code with JUnit tests from the previous problems in this problem set. Run

these JUnit tests on JPF. Is the output the same as when running on JVM?

(c) [5 points]: Choose some Java code slightly larger than the examples from the previous problems (say,

choose a program with 5-10 classes). This can be code that you wrote previously or code that you

download from the Internet. (Again, if you download code, write where you got it from.) Test if JPF gives

the same output as JVM for this code.

(d) [5 points]: Java language version 7 was recently released, and it offers several new features and

enhancements, listed at http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html.

Choose one of these new features. Write or download five small programs that use this feature. (As

always, if you download something from somewhere, write where you got it from.) Test if JPF gives the

same output as JVM for those programs.

http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

