
Finding Bugs in Network Protocols Using

Simulation Code and Protocol-Specific Heuristics

Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov, and Jennifer C. Hou

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{sobeih, vmahesh, marinov, jhou}@uiuc.edu

Abstract. Traditional network simulators perform well in evaluating the per-
formance of network protocols but lack the capability of verifying the correct-
ness of protocols. To address this problem, we have extended the J-Sim net-
work simulator with a model checking capability that explores the state space
of a network protocol to find an execution that violates a safety invariant. In
this paper, we demonstrate the usefulness of this integrated tool for verifica-
tion and performance evaluation by analyzing two widely used and important
network protocols: AODV and directed diffusion. Our analysis discovered a
previously unknown bug in the J-Sim implementation of AODV. More impor-
tantly, we also discovered a serious deficiency in directed diffusion. To enable
the analysis of these fairly complex protocols, we needed to develop protocol-
specific search heuristics that guide state-space exploration. We report our
findings on discovering good search heuristics to analyze network protocols
similar to AODV and directed diffusion.

1 Introduction

Network simulators have been used for decades to provide an environment for a proto-
col designer to build a prototype of a network protocol and evaluate its performance.
One major deficiency of traditional network simulators, however, is that they only
evaluate the performance of network protocols in scenarios provided by the designer
but can not exhaustively analyze possible scenarios for correctness. For example, a
network simulator can evaluate the performance of a routing protocol but cannot
check whether this protocol may suffer from routing loops. If the error cases do not
appear (and hence cannot be investigated) in the scenarios studied, subtle errors in
the protocol specification/implementation may not be identified in the simulation.
These errors may then eventually manifest themselves after the protocol has been
implemented and deployed. In the light of recent research [1] that creates a physical
implementation of a protocol from the existing simulation code, without modifica-
tion, this seems to be highly likely. Therefore, building an integrated tool that allows
a network protocol designer to both verify a prototype and evaluate its performance
is an important task.

Design of special-purpose model checkers for network simulator code enjoys sev-
eral benefits over using general-purpose verification tools. First, it saves the protocol
designer the task of building a special-purpose model of the protocol for verification
and a separate model for performance analysis. Since building a formal model of a

protocol is an onerous, time-consuming and error-prone task, by designing special-
purpose model checkers for network simulator code, we not only ensure that verifying
a protocol is easier for the designer but also ensure that the model being verified
is consistent with the implementation. Second, using a model checker for C or Java
(like [2–7]) to verify the protocol code along with the simulator code might likely be
intractable due to the complexity of the general-purpose simulator code.

We have built a tool that extends J-Sim [8]—a component-based network simu-
lator written entirely in Java—with the model checking [9] capability to explore the
state space created by a network protocol up to a (configurable) maximum depth in
order to find violations of a safety property (e.g., the absence of routing loops). We
previously provided a proof-of-concept case study [10] in which we used our tool to
model-check an automatic repeat request (ARQ) protocol. In this paper, we demon-
strate the usefulness and effectiveness of our tool in analyzing much more complicated
protocol code. We examine two widely used and fairly complex network protocols: the
Ad-Hoc On-Demand Distance Vector (AODV) routing protocol [11, 12] for wireless
ad hoc networks and the directed diffusion protocol [13] for wireless sensor networks.
These are reasonably complex protocols whose J-Sim implementations (not including
the J-Sim library) have about 1200 and 1400 lines of code, respectively. Our choice of
AODV and directed diffusion was motivated by their potential to become represen-
tative routing and data dissemination protocols, respectively, in ad hoc networks and
sensor networks. We investigate whether these protocols satisfy the loop-free safety
property, i.e., data packets are not routed through loops.

Our surprising discoveries illustrate the practical importance of our tool. First, we
find a previously unknown bug in the J-Sim implementation of AODV. This shows
that even if the protocol specification [12] is correct, the simulator code could have
bugs that may eventually find their way to the deployed implementation. Second, we
identify a serious deficiency in the directed diffusion protocol [13] not only in its J-
Sim implementation. Specifically, our tool produces scenarios leading to corruption of
data caches due to timeouts and/or node reboots in a sensor network. This deficiency
would result in data packets being routed in a loop.

To analyze such large protocol implementations, we have developed search heuris-
tics that better guide the model checker to discover bugs. Specifically, we develop
best-first search (BeFS) strategies that exploit properties inherent to the network
protocol and the safety property being checked. An interesting and important research
question is how to determine a suitable BeFS strategy for a specific network proto-
col. In this paper, we make an attempt towards answering this question by studying
the performance of several BeFS strategies for both AODV and directed diffusion.
Unlike [3, 14–16], we found that the strategies need to explicitly make use of both
protocol-specific characteristics and the property being verified in order to be suc-
cessful. The results show that using good protocol-specific heuristics outperforms
standard breadth-first search (BFS) and depth-first search (DFS) strategies.

In this paper, we make the following contributions. First, we demonstrate the abil-
ity of our tool to find bugs in complex network protocols with large simulation code.
Second, we discover a previously unknown deficiency in directed diffusion. Third, we
report our findings on discovering good protocol-specific heuristics to analyze network
protocols similar to AODV and directed diffusion.

The rest of the paper is organized as follows. In Section 2, we give an overview of
the model checking framework in J-Sim, and in Section 3, we present our performance
results. In Section 4, we discuss related work. Finally, we conclude the paper in
Section 5 with a list of future research work.

2 The Model Checking Framework

The model checker, that we incorporated into J-Sim, is an explicit-state model checker [9]
that checks a network protocol by executing the J-Sim simulation code of that net-
work protocol directly and exploring the state space on-the-fly until either a coun-
terexample disproving a safety property is found or the state space is explored up
to a maximum depth (MAX DEPTH). In order to explore the state space created
by a network protocol, the notion of the “state” has to be adequately defined. To
this end, the model checker makes use of the GlobalState class. A state is an instance
of GlobalState. The model checking procedure modelCheck, shown in Figure 1, keeps
track of three instances of GlobalState; namely, initialState (the initial state of the
network protocol), currentState (the current state being explored) and nextState (one
of the possible successors of the current state). As shown in Figure 1, the two major
data structures are NonVisitedStates (which stores the states that have not yet been
visited) and AlreadyVisitedStates (which stores the states that have already been
visited). Figure 1 presents a stateful search that avoids visiting a state if another
equivalent state has already been visited before (i.e., a state that already exists in
AlreadyVisitedStates). AlreadyVisitedStates stores concrete states, and two states s1

and s2 are considered equivalent if s1.equals(s2) returns true.
In each state in the state space, some transitions (i.e., events) may or may not

be enabled, and an enabled transition may generate multiple successor states. For
instance, a packet arrival event may generate multiple successor states. This is be-
cause if the network contains two packets m1 and m2 whose destination is node n,
two successor states can be generated depending on whether node n receives m1 first
and then m2 or receives m2 first and then m1. In modelCheck, the enabling function
(Figure 1, line 9) returns the number of possible successor states (zero if the event
is disabled). For each state being explored (currentState), modelCheck generates all
the possible successor states (nextState) by executing the event handlers of the events
that are enabled in currentState. However, since an event handler is only invoked from
modelCheck but actually executed inside the protocol entities (i.e., the classes that
implement the network protocol being model-checked) themselves, modelCheck must
first restore the state of the protocol entities to the state reflected in currentState
before the execution of the event handler. This is achieved by the CopyFromModel-
ToEntities() function call (line 11). After the execution of the event handler (line 14),
the CopyFromEntitiesToModel() function is called (line 15) to extract the new state
information from the protocol entities and copy them to nextState. If nextState has
not been visited before (line 16), modelCheck then checks whether nextState violates
a safety property (line 17). (The network protocol designer specifies the safety prop-
erty that needs to be checked as a Java method whose output is true/false.) If so,
a counterexample is printed by calling the printPath() function (line 18); otherwise,
nextState is added to NonVisitedStates (line 20) in order to be explored later if its

procedure modelCheck()
1. AlreadyVisitedStates = { } ;
2. NonVisitedStates = { initialState } ;
3. while (| NonVisitedStates | > 0) {
4. currentState = NonVisitedStates.remove() ;
5. if (currentState does not exist in AlreadyVisitedStates) {
6. AlreadyVisitedStates = AlreadyVisitedStates ∪ { currentState } ;
7. for (all protocol entities p) { /* for all protocol entities */
8. for (all possible events e) { /* for all events */
9. NumberOfNextStates = e.EnablingFunction(p) ;

10. for (int i = 0 ; i < NumberOfNextStates ; i++) {
11. CopyFromModelToEntities(currentState) ;
12. nextState = currentState ; /* Start with nextState equal to currentState */
13. nextState.depth += 1 ; /* Increment the depth of nextState */
14. e.EventHandler(p) ; /* Invoke e’s event handler */
15. CopyFromEntitiesToModel(nextState) ;
16. if (nextState does not exist in AlreadyVisitedStates) {
17. if (nextState.verifySafety() == false) {
18. printPath(nextState) ; exit ;

} /* end if safety property is violated at nextState */
19. else if (nextState.depth < MAX_DEPTH)
20. NonVisitedStates = NonVisitedStates ∪ { nextState } ; } } } } } }

Fig. 1. Stateful model checking procedure

depth is strictly less than MAX DEPTH. Adding a state to NonVisitedStates (line
20) or AlreadyVisitedStates (line 6) needs a function that creates a copy of a state
(e.g., clone()).

It should be mentioned that the model checking process is not fully automated.
To model-check a network protocol, the protocol designer needs to do the following:

1. Provide an implementation of GlobalState (including writing the safety property
as a Java method, the function equals, and a function that creates a copy of
a state), and specify how to construct the initial state. To reduce the protocol
designer’s burden, we provide an implementation of a class, called SystemState,
that includes the protocol-independent information (e.g., the depth of a state,
which event generated the state). GlobalState, which can be implemented as a
sub-class of SystemState, includes the protocol-specific information.

2. Specify (a) the set of events that exist in the network protocol, (b) when each
event is enabled, and (c) how each event is handled (i.e., an event handler that
makes a transition from one state to another). Note that the protocol designer
has to write the event handlers anyway in order to have a working prototype of
the network protocol in J-Sim, even if he/she does not intend to model-check the
protocol.

3. Provide implementations for CopyFromModelToEntities() and CopyFromEnti-
tiesToModel(). To facilitate programming, we make use of ports (a feature pro-
vided by J-Sim) to provide a seamless interface between components; in this case,
between the model checker and the protocol entities [17].

4. (Required only in the case of using a BeFS strategy) Write a Java method that
assigns to each state a metric that represents how “good” this state is. The model
checking procedure will explore the “best” state first.

3 Evaluation and Results

We applied the model checking framework to the J-Sim implementations of the AODV
(Section 3.1) and directed diffusion (Section 3.2) protocols. For each protocol, we
give an overview of the key functionality, describe the protocol actions and property
being checked, present several BeFS heuristics, discuss detected errors, and show
performance results for model checking. We ran all experiments on a Pentium 4
1.6 GHz machine with Microsoft Windows XP 2002 SP2 with 1 GB memory. We
used Sun’s Java 2 SDK 1.4.2 JVM with 512 MB allocated memory.

3.1 AODV Routing in Multihop Wireless Ad Hoc Networks

Overview of AODV. The implementation of AODV [11] in J-Sim is based on
the AODV Draft (version 11) [12]. In AODV, each node n in the ad hoc network
maintains a routing table. A routing table entry (RTE), at node n, to a destination
node d contains, among other fields: nexthopn,d (the address of the node to which
n forwards packets destined for d), hopsn,d (the number of hops needed to reach d

from n) and seqnon,d (a measure of the freshness of the route information). Each
RTE is associated with a lifetime. Periodically, a route timeout event is triggered
invalidating (but not deleting) all the RTEs that have not been used (e.g., to send
or forward packets to the destination) for a time interval that is greater than the
lifetime. Invalidating a RTE involves incrementing seqnon,d and setting hopsn,d to
∞.

When a node n requires a route to a destination d, it broadcasts a route request
(RREQ) packet. When a node receives the RREQ, if it has a fresh enough route to
d (or it is d itself), it satisfies the RREQ by unicasting a route reply (RREP) packet
back to n; otherwise, it rebroadcasts the RREQ. The unicast RREP travels back to
n. Each intermediate node along the path of RREP sets up a forward pointer to
the node from which the RREP came, thus establishing a forward route to d, and
forwards the RREP packet to the next hop towards n. If node m offers node n a
new route to d, n compares seqnom,d of the offered route to seqnon,d, and accepts
the route with the greater sequence number. If the sequence numbers are equal, the
offered route is accepted only if hopsn,d > hopsm,d.

Each node maintains two monotonically increasing counters: seqnon and bidn.
When node n broadcasts a RREQ packet, it includes the current value of bidn in the
RREQ packet and then increments bidn. Therefore, the pair < n, bidn > uniquely
identifies a RREQ packet. Each node, receiving the RREQ packet from node n, keeps
the pair < n, bidn > in a broadcast ID cache so that it can later check if it has already
received a RREQ with the same source address and broadcast ID. Each entry in this
cache has a lifetime. Periodically, a broadcast ID timeout event is triggered causing
the deletion of entries in the cache that have expired.

Model checking AODV. We next present the steps that we follow to model-check
AODV. These steps constitute a generic methodology for model-checking a network
protocol in J-Sim.

(1) Definitions of the global state, the initial state, state equality and safety property:
We define GlobalState as a tuple that has two components; namely, the protocol state
and the network cloud. The protocol state of a node n includes n’s routing table,

broadcast ID cache, seqnon and bidn. The network cloud models the network as an
unbounded set that contains AODV packets, and also maintains the neighborhood
information. A broadcast AODV packet whose source is node s is modeled as a set
of packets, each of which is destined for one of the neighbors (i.e., the nodes that are
within the transmission range) of s.

In the initial global state, the network does not contain any packets and the AODV
process at each node is initialized as specified by the constructor of the AODV class
in J-Sim. Specifically, the AODV process starts with an empty routing table, empty
broadcast ID cache, seqnon = 2 and bidn = 1.

Two states, s1 and s2, are considered equal if they have the same (unordered) set
of AODV packets, the same neighborhood information, and for each node n, s1 and
s2 have equal corresponding values for seqnon, bidn, and node n’s routing table and
broadcast ID cache (each viewed as an unordered set of entries).

An important safety property in a routing protocol such as AODV is the loop-
free property. Consider two nodes n and m such that m is the next hop of n to
some destination d; i.e., nexthopn,d = m. The loop-free property can be expressed as
follows [3, 18]:

((seqnon,d < seqnom,d) ∨ (seqnon,d == seqnom,d ∧ hopsn,d > hopsm,d))

(2) Events: Next, we specify the set of events, when each event is enabled, and how
each event is handled. The events can be listed as follows:

T0 Initiation of a route request to a destination d: This event is enabled if the node
does not have a valid RTE to the destination d. The event is handled by broad-
casting a RREQ.

T1 Delivering an AODV packet to node n: This event is enabled if the network
contains at least one AODV packet such that n is the destination (or the next
hop towards the destination) of the packet and n is one of the neighbors of the
source of the packet. The event is handled by removing this packet from the
network and forwarding it to node n.

T2 Restart of the AODV process at node n: This event may take place because of
a node reboot. The event is always enabled and is handled by reinitializing the
state of the AODV process at node n.

T3 Loss of an AODV packet destined for node n: This event is enabled if the network
contains at least one AODV packet that is destined for node n. The event is
handled by removing this packet from the network.

T4 Broadcast ID timeout at node n: This event is enabled if there is at least one
entry in the broadcast ID cache of node n. The event is handled by deleting this
entry.

T5 Timeout of the route to destination d at node n: This event is enabled if n has a
valid RTE to d. The event is handled by invalidating this RTE.

(3) Use of protocol-specific properties to facilitate a BeFS strategy: A suitable BeFS
strategy for exploring the state space of AODV can be obtained by inspecting the
loop-free property. A node, which does not have a valid RTE to the destination d,
does not affect the truth value of the loop-free property. Therefore, a suitable BeFS
strategy (which we call AODV-BeFS-1) is to consider a state s1 better than a state
s2 if the number of valid RTEs to any node in s1 is greater than that in s2. Another

BeFS strategy (which we call AODV-BeFS-2) can also be obtained by inspecting the
loop-free property, which can be rewritten as follows:

(((seqnon,d − seqnom,d) < 0) ∨ (seqnon,d == seqnom,d ∧ ((hopsm,d − hopsn,d) < 0)))

Therefore, the greater (seqnon,d−seqnom,d) and/or (hopsm,d−hopsn,d) in a state
s, the more likely s is close to an error. Hence, AODV-BeFS-2 considers a state s1

better than a state s2 if the following summation

S =
∑

n6=d
((seqnon,d − seqnom,d) + (hopsm,d − hopsn,d))

in s1 is greater than that in s2, where nexthopn,d = m. The summation S includes
only the nodes n and m that have valid RTEs to the destination d. If none of the
nodes have a valid RTE to d, S is set to −∞. In addition to AODV-BeFS-1 and
AODV-BeFS-2, we also study the performance of the following BeFS strategies:

1. AODV-BeFS-3: This strategy considers a state s1 better than a state s2 if the
number of valid RTEs to the destination d in s1 is greater than that in s2. How-
ever, if s1 and s2 are equally good, s1 is considered better than s2 if the number
of valid RTEs to any node in s1 is greater than that in s2.

2. AODV-BeFS-4: Since a valid RTE is established upon receiving a RREP packet,
AODV-BeFS-4 considers a state s1 better than a state s2 if the number of RREP
packets in s1 is greater than that in s2.

3. AODV-BeFS-5: AODV-BeFS-5 is the same as AODV-BeFS-4, except that if s1

and s2 are equally good under the condition specified in AODV-BeFS-4, s1 is
considered better than s2 if the number of valid RTEs to any node in s1 is greater
than that in s2.

Errors discovered. We consider an initial state of an ad hoc network consisting
of 3 nodes: n0, n1 and n2 (the only destination node) arranged in a chain topology
where each node is a neighbor of both the node to its left and the node to its right
(if any exists). Although this initial state is simple, it ensures that n0 requires a
multihop route to reach n2; i.e., AODV multihop routing is needed. We will study
larger network topologies later in this section. In the course of model checking, we have
discovered an error (which we call Counterexample 1) in the J-Sim implementation
of AODV caused by not following part of the AODV specification. Conceptually, if
nexthop0,2 = 1 and the AODV process at n1 restarts, the net effect is that all the
RTEs stored at n1 will be deleted. As a result, n1 may later accept a route that was
offered by n2 with a lower sequence number than that of n0 (i.e., seqno0,2 > seqno1,2),
hence violating the loop-free property. We also manually injected two errors (which
we call Counterexamples 2 and 3 respectively): in Counterexample 2, seqnon,d is not
incremented when a RTE is invalidated and in Counterexample 3, a RTE is deleted
(instead of invalidated) when its lifetime expires. The model checking framework was
able to find these two errors too.1 A routing loop may occur due to either of these
two errors because if nexthop0,2 = 1 and a route timeout event takes place at n1, in
either Counterexample 2 or 3, if n1 is later offered a route to n2 by n0, this route will
be accepted (because in Counterexample 2, hops1,2 = ∞; hence, hops1,2 > hops0,2;
whereas in Counterexample 3, seqno0,2 > seqno1,2). The interested reader is referred
to [17] for a detailed account (along with the traces) of the three counterexamples.

1 For Counterexamples 2 and 3, we require that the counterexample contain at least one
state that is generated due to the route timeout event, T5.

Table 1. AODV case study: Time (in seconds) and space (in number of states explored)
requirements and the number of transitions explored for finding the three counterexamples
in a 3-node chain ad-hoc network using different search strategies. MAX DEPTH = 10

Counterexample 1 Counterexample 2 Counterexample 3
Time Space Transitions Time Space Transitions Time Space Transitions

BFS 4262.039 19886 40445 4231.124 20072 40781 4094.928 19056 39489
DFS 940.672 1844 21135 962.935 1833 20979 893.896 1817 20814
AODV-BeFS-1 139.310 1156 7493 137.168 1151 7440 127.053 1150 7431
AODV-BeFS-2 833.719 1753 19617 810.035 1750 19581 775.766 1739 19468
AODV-BeFS-3 14.882 535 2118 14.120 535 2079 14.400 534 2070
AODV-BeFS-4 367.038 1626 14151 3905.015 4901 44851 365.215 1617 14051
AODV-BeFS-5 347.529 1923 13577 3076.274 4649 38853 323.515 1889 13101

Table 2. AODV case study: Time (in seconds) and space (in number of states explored)
requirements and the number of transitions explored for finding Counterexample 3 in a
N-node chain ad-hoc network using AODV-BeFS-1

N MAX DEPTH Time Space Transitions
3 15 0.200 93 134
4 20 12.609 575 1971
5 25 944.769 3256 19803
6 30 1393.955 2640 25052
7 35 3784.462 3339 46532

Performance of the search strategies. Table 1 gives the performance evaluation
criteria: (i) time, (ii) space, and (iii) number of transitions explored for finding the
three counterexamples using several search strategies, including breadth-first (BFS)
and depth-first (DFS). As shown in Table 1, AODV-BeFS-1 achieves an order of
magnitude reduction with respect to the performance criteria when compared to
BFS. Also, the choice of the BeFS strategy has an impact on the performance. For
instance, as shown in Table 1, AODV-BeFS-2 performs worse than AODV-BeFS-1 for
the three counterexamples. This is because AODV-BeFS-2 requires a node (and its
next hop towards the destination) to have valid RTEs to the destination. This may
not be true in the first few stages (i.e., lower depths) of the search space. Therefore,
in the first few stages of the search, the nonvisited states may look equally good and
thus, AODV-BeFS-2 may not be able to explore the states that are most likely to
lead to the error first. AODV-BeFS-3 tackles this problem by further differentiating
equally good states by using a two-level best-first search approach. As shown in
Table 1, AODV-BeFS-1 and AODV-BeFS-3 outperform the other BeFS strategies
because they are more able to guide the BeFS towards the error even at the lower
depths of the search space.

Next, we study the effect of the size of the network on the performance of the model
checking framework in J-Sim. As shown in Table 2, the model checking framework
was able to find a counterexample in larger network topologies within reasonable time
and space requirements.

3.2 Directed Diffusion in Wireless Sensor Networks (WSNs)

Overview of directed diffusion. Directed diffusion [13] is a data-centric infor-
mation dissemination paradigm for wireless sensor networks (WSNs). In directed
diffusion, a sink node periodically broadcasts an INTEREST packet, containing the

description of a sensing task that it is interested in (e.g., detecting a chemical weapon
in a specific area). INTEREST packets are diffused throughout the network (e.g., via
flooding), and are used to set up exploratory gradients. A gradient is the direction
state created in each node that receives an INTEREST, where the gradient direc-
tion is set toward the neighboring node from which the INTEREST is received. Each
node maintains an interest cache. Each interest entry in this cache corresponds to
a distinct interest and stores information about the gradients that a node has (up
to one gradient per neighbor) for that interest. Each gradient in an interest entry
has a lifetime that is determined by the sink node. When a gradient expires, it is
removed from its interest entry. When all gradients in an interest entry have expired,
the interest entry itself is removed from the interest cache.

When an INTEREST packet arrives at a sensor node that senses data which
matches the interest (this sensor node is called a source node), the source node pre-
pares DATA packets (each of which describes the sensed data) and sends them to
neighbors for whom it has a gradient once every exploratory interval. Each node also
maintains a data cache that keeps track of recently seen DATA packets. When a node
receives a DATA packet, if the DATA packet has a matching data cache entry, the
DATA packet is discarded; otherwise, the node adds the received DATA packet to
the data cache and forwards the DATA packet to each neighbor for whom it has a
gradient. As a result, DATA packets are forwarded toward the sink node(s) along
(possibly) multiple gradient paths.

Upon receipt of a DATA packet, a sink node reinforces its preferred neighbor
that is determined based on a data-driven local rule. For instance, the sink node
may reinforce any neighbor from which it received previously unseen data (i.e., the
neighbor from which it first received the latest data matching the interest). The data
cache is used to determine that preferred neighbor. In order to reinforce a neighbor,
the sink node sends a positive reinforcement packet to that neighbor to inform it of
sending data at a smaller interval (i.e., higher rate) than the exploratory interval,
thereby establishing a reinforced gradient (also called data gradient) towards the
sink node. The reinforced neighbor will in turn reinforce its preferred neighbor. This
process repeats all the way back to the data source, resulting in a reinforced path
(i.e., a chain of reinforced gradients) between the source and the sink nodes.

Model checking directed diffusion. In order to illustrate the applicability of the
model checking framework, we follow the same steps given in Section 3.1.

(1) Definitions of the global state, the initial state, state equality and safety property:
To model-check directed diffusion, we use the same definitions of GlobalState and
network cloud that were introduced in Section 3.1. On the other hand, since the
protocol state is protocol-specific, the protocol state in directed diffusion includes
each node’s interest cache and data cache. In the initial global state, the network
does not contain any packets and the directed diffusion process at each node starts
with an empty interest cache and an empty data cache.

Two states, s1 and s2, are considered equal if they have the same (unordered)
set of packets, the same neighborhood information, and for each node n, s1 and s2

have correspondingly equal node n’s interest cache and data cache (each viewed as
an unordered set of entries).

An important safety property in the directed diffusion protocol is the loop-free
property of the reinforced path. Consider two nodes n and m where RPath(n,m) is
true if and only if there is a reinforced path from n to m. The loop-free property can
be expressed as follows:

¬ (RPath(n,m) ∧ RPath(m,n))

(2) Events: The events can be listed as follows:

T0 Initiation of a sensing task by node n: This event is enabled if n is a sink node.
The event is handled by broadcasting an INTEREST packet.

T1 Delivering a packet to node n: This event is enabled if the network contains at
least one packet that is destined for node n such that node n is one of the neighbors
of the source of the packet. The event is handled by removing this packet from
the network and forwarding it to node n.

T2 Restart of the directed diffusion process at node n: This event may take place
because of a node reboot. The event is always enabled and is handled by reini-
tializing the state of the directed diffusion process at node n.

T3 Loss of a packet destined for node n: This event is enabled if the network contains
at least one packet that is destined for node n. The event is handled by removing
this packet from the network.

T4 Gradient timeout at node n: This event is enabled if the interest cache of node
n contains at least one interest entry that has at least one gradient. The event is
handled by deleting this gradient.

T5 Data cache timeout2 at node n: This event is enabled if there is at least one entry
in the data cache of node n. The event is handled by deleting this entry.

(3) Use of protocol-specific properties to facilitate a BeFS strategy: In the course of
model-checking AODV, AODV-BeFS-1 and AODV-BeFS-3 provided comparatively
good performance results. We use these two BeFS strategies to devise two corre-
sponding BeFS strategies for directed diffusion. In particular, as the loop-free prop-
erty involves only valid RTEs to a destination d in AODV; by analogy, the loop-free
property involves only reinforced gradients in directed diffusion. Similarly, forwarding
of data packets in AODV is based on the next hop information stored in the valid
RTEs; by analogy, forwarding of data packets in directed diffusion is based on the
gradients established at the nodes. Therefore, two good BeFS strategies for exploring
the state space of directed diffusion are:

1. DD-BeFS-1: This strategy considers a state s1 better than a state s2 if the total
number of both exploratory and reinforced gradients in s1 is greater than that in
s2.

2. DD-BeFS-2: This strategy considers a state s1 better than a state s2 if the number
of reinforced gradients in s1 is greater than that in s2. However, if s1 and s2 are
equally good, s1 is considered better than s2 if the total number of both exploratory
and reinforced gradients in s1 is greater than that in s2.

2 For practical reasons, previously received DATA packets can not be kept in the data cache
for an indefinitely long time; otherwise, the size of the data cache can increase arbitrarily.
In the implementation of directed diffusion in J-Sim, each DATA packet in the data cache
is associated with a lifetime. Periodically, a data cache timeout event is triggered causing
the deletion of entries in the cache that have expired.

Along a similar line of arguments, we also devise the following BeFS strategies:

1. DD-BeFS-3: Since a reinforced gradient is established upon receiving a positive
reinforcement packet, DD-BeFS-3 considers a state s1 better than a state s2 if
the number of positive reinforcement packets in s1 is greater than that in s2.

2. DD-BeFS-4: DD-BeFS-4 is the same as DD-BeFS-3, except that if s1 and s2 are
equally good under the condition specified in DD-BeFS-3, s1 is considered better
than s2 if the total number of both exploratory and reinforced gradients in s1 is
greater than that in s2.

3. DD-BeFS-5: This strategy considers a state s1 better than a state s2 if the total
number of data cache entries at all nodes in s1 is greater than that in s2.

4. DD-BeFS-6: DD-BeFS-6 is the same as DD-BeFS-5, except that if s1 and s2 are
equally good under the condition specified in DD-BeFS-5, s1 is considered better
than s2 if the total number of both exploratory and reinforced gradients in s1 is
greater than that in s2.

Errors discovered. Next, we give two previously unknown errors that the model
checking framework in J-Sim was able to discover in directed diffusion (which we call
Counterexamples 1 and 2 respectively). We consider an initial state that consists of
a chain topology of 4 nodes: n0 (the only sink node), n1, n2 and n3 (the only source
node). The errors take place because in directed diffusion, the interest and gradient
setup mechanisms themselves do not guarantee loop-free reinforced paths between
the source and the sink nodes. In order to prevent loops from taking place, the data
cache is used to suppress previously seen DATA packets. However, we discover that,
in case of (a) a node reboot (which effectively deletes all the entries in the data
and interest caches) and/or (b) the deletion of a DATA packet from the data cache,
a loop may be created. For instance, in the 4-node chain topology, if n1 accepts a
DATA packet sent by n2, n2 becomes n1’s preferred neighbor. Now, if n2 deletes the
DATA packet from its data cache due to a data cache timeout (Counterexample 1)
or a node reboot (Counterexample 2), it may later accept the DATA packet sent by
n1 (because it will be previously unseen data) causing n1 to become n2’s preferred
neighbor. Therefore, n1 and n2 may positively reinforce each other causing a loop in
the reinforced path. In fact, positive reinforcement packets may not eventually reach
the source node causing a disruption in the reinforced path (i.e., the reinforced path
may include a loop that does not include the source node).3 The interested reader is
referred to [19] for a detailed account, and traces, of the two counterexamples.

Performance of the search strategies. Table 3 gives the performance of the
various search strategies in finding the two counterexamples. As shown in Table 3,
DD-BeFS-1 provides comparatively good results in terms of time and space require-
ments and the number of transitions explored for finding a violation of a safety
property. Furthermore, DD-BeFS-4 outperforms DD-BeFS-3, and DD-BeFS-6 out-
performs DD-BeFS-5. This is because both DD-BeFS-4 and DD-BeFS-6 are two-level

3 For Counterexample 2, we require that the counterexample contain at least one state that
is generated due to a node reboot event, T2. Furthermore, in order to show that the error
may still take place even if the data cache timeout event, T5, does not happen (i.e., the
data cache size is infinite), we disabled T5.

Table 3. Directed diffusion case study: Time (in seconds) and space (in number of states
explored) requirements and the number of transitions explored for finding the two counterex-
amples in a 4-node chain sensor network using different search strategies. N/A indicates that
the model checker was not able to find a counterexample in 8 hours

Counterexample 1, MAX DEPTH = 15 Counterexample 2, MAX DEPTH = 20
Time Space Transitions Time Space Transitions

BFS 22287.938 21224 84530 N/A N/A N/A
DFS 23876.914 4736 95706 N/A N/A N/A
DD-BeFS-1 3.475 200 1051 3900.118 6026 41132
DD-BeFS-2 4.026 200 1168 12189.227 6640 57124
DD-BeFS-3 19536.362 4630 93924 N/A N/A N/A
DD-BeFS-4 0.981 124 469 726.024 1870 17656
DD-BeFS-5 N/A N/A N/A N/A N/A N/A
DD-BeFS-6 24743.349 12920 72911 N/A N/A N/A

Table 4. Directed diffusion case study: Time (in seconds) and space (in number of states
explored) requirements and the number of transitions explored for finding Counterexample
1 in a N-node chain sensor network using DD-BeFS-4

N MAX DEPTH Time Space Transitions
4 15 0.981 124 469
5 20 335.833 925 11816
6 25 857.303 1346 19245
7 30 1538.152 1985 27640
8 35 7244.277 3679 59093

BeFS strategies that use DD-BeFS-1 if the non-visited states are equally good and
are thus more able to guide the BeFS in the lower depths of the search space than
DD-BeFS-3 and DD-BeFS-5 respectively.

Table 4 gives the time and space requirements and the number of transitions
explored for finding Counterexample 1 in a chain topology consisting of N nodes
using DD-BeFS-4. For sensor networks consisting of more than four nodes, both BFS
and DFS failed to find counterexamples.

3.3 Lessons Learned

In this subsection, we summarize the lessons that we learned. First, the ability of the
model checking framework to model-check large and complex network protocols such
as AODV and directed diffusion demonstrates that the model checking framework is
general enough and not tied to a particular network protocol. Specifically, for model-
checking another network protocol, one needs to follow the steps that we followed in
sections 3.1 and 3.2.

Second, we demonstrate that the use of BeFS strategies (that leverage protocol-
specific properties) reduces the time and space requirements by several orders of
magnitude. Based on the results obtained for the BeFS strategies that we studied,
we recommend deriving the BeFS strategy from properties inherent to the network
protocol and the safety property being checked. This is justified by the fact that
AODV-BeFS-1 (and DD-BeFS-1) provided good performance results in terms of time
and space requirements and number of transitions explored for finding a violation of
a safety property. Furthermore, using a two-level BeFS strategy, in which a BeFS
strategy such as AODV-BeFS-1 (or DD-BeFS-1) is used if the nonvisited states are

equally good, also improved the performance. This is justified by the fact that AODV-
BeFS-5 outperforms AODV-BeFS-4, DD-BeFS-4 outperforms DD-BeFS-3, and DD-
BeFS-6 outperforms DD-BeFS-5.

4 Related Work

Our work is inspired by previous work on model-checking the implementation code
directly for C and C++ (e.g., CMC [3, 14] and VeriSoft [20]). Although CMC has
been applied to model-check Linux implementations of networking code (e.g., AODV
and TCP), the major distinction between our approach and CMC is that CMC uses
protocol-independent properties in guiding the best-first search. It does so by attempt-
ing to focus on states that are the most different from previously explored states.
However, our approach uses protocol-dependent properties, which exploit properties
inherent to the network protocol and the safety property being checked, to guide
the best-first search strategy. Likewise, VeriSoft uses protocol-independent techniques,
namely partial-order reduction (POR) using the persistent/sleep sets [20]. Traditional
POR was static, but recent work shows how to perform dynamic POR [21]. POR can
be combined with BeFS strategies; while POR determines what transitions to explore,
BeFS determines the order in which to explore them [22].

In contrast to model-checking the implementation code directly, conventional
model checkers (e.g., SPIN [23], SMV [24], Murphi [25]) require that the system
be first specified using a high-level modeling language. This may not be desirable,
as the process of describing the system in a high-level modeling language is time-
consuming, painstaking, and error-prone. To deal with this problem, there has been
recent work (e.g., [2,7,26,27]) on translating programming languages (e.g., Java) into
the input modeling languages of several conventional model checkers. However, this
may not be always feasible because some features of C or Java (e.g., bit operations)
do not have corresponding ones in the destination modeling language. Therefore, our
approach of model-checking the simulation code, which has to be written by a net-
work protocol designer anyway for the purpose of performance evaluation, directly
reduces the network protocol designer’s effort and avoids the limitations of the input
languages of conventional model checkers. This also provides an important advantage
when compared to previous work on testing and verification of network protocols
(e.g., [28, 29]), which requires building another model for verification purposes.

Java PathFinder [30] performs model checking at the bytecode level. This involved
building a new Java Virtual Machine that is called from the model checker to interpret
Java bytecode. In contrast, our approach does not require any modifications to the
Java Virtual Machine. Our approach, however, requires the user to provide the code
for state manipulation (Section 2). Java PathFinder provides automatic manipulation
of the entire Java states (including stack and heap); to use Java PathFinder for a
tractable checking of protocol simulation code in J-Sim, the user would still need to
manually provide the code that manipulates state by abstracting the stack and parts
of the heap.

The idea of using best-first search strategies and/or heuristics to expedite the
model checking process has been explored in previous work (e.g., [15, 22, 31–33]).
However, what distinguishes our work is that we study the use of protocol-specific
heuristics in model-checking the simulation code directly and we focus on a specific

domain; namely, routing protocols for wireless ad hoc and sensor networks, and at-
tempt to discover effective protocol-specific heuristics that enable a best-first search
strategy to find counterexamples with less time and space requirements than classic
breadth-first and depth-first search strategies.

5 Conclusions and Future Work

This paper presents our research on extending the J-Sim network simulator with
the capability of verifying network protocols using on-the-fly model checking. We
demonstrate the effectiveness of the model checker to model-check two widely used
and fairly complex network protocols: AODV and directed diffusion. To the best of
our knowledge, the deficiency identified in directed diffusion has not been discovered
before. Experimental results show that the model checker is able to find violations of
a safety property within acceptable time and space requirements. Furthermore, we
study several best-first search strategies for both AODV and directed diffusion, and
provide recommendations based on our results.

We have identified several research avenues for future work. First, we intend to
extend the model checker to check general temporal properties. Second, the experi-
ments reported in this paper require considerable manual effort; in future research,
we will consider how to reduce such manual effort. An important research question is
how to (semi-)automatically derive the heuristics from the simulation code and the
safety property. Another interesting research avenue lies in studying to what extent
symbolic model checking can expedite model-checking the simulation code.

References

1. A. K. Saha, K. To, S. PalChaudhuri, S. Du, and D. B. Johnson, “Physical imple-
mentation of ad hoc network routing protocols using unmodified ns-2 models,” ACM
MobiCom’04, Poster.

2. K. Havelund, “Java Pathfinder, a translator from Java to Promela,” in Proc. of SPIN’99.
3. M. Musuvathi, D. Y.W. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC: A pragmatic

approach to model checking real code,” in Proc. of OSDI’02.
4. T. Ball, and S. K. Rajamani, “The SLAM Toolkit,” in Proc. of CAV’01.
5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular Verification of Software

Components in C,” in Proc. of ICSE’03.
6. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy Abstraction,” in Proc.

of POPL’02.
7. A. Farzan, F. Chen, J. Meseguer, and G. Rosu, “Formal analysis of Java programs in

JavaFAN,” in Proc. of CAV’04.
8. J-Sim, “http://www.j-sim.org/”
9. E. M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.

10. A. Sobeih, M. Viswanathan, and J. C. Hou, “Check and Simulate: A case for incorporat-
ing model checking in network simulation,” in Proc. of ACM-IEEE MEMOCODE’04.

11. C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Proc.
of IEEE WMCSA’99.

12. C. E. Perkins, E. M. Royer, and S. Das, “Ad hoc on demand distance vector (aodv)
routing,” IETF Draft, January 2002.

13. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and
robust communication paradigm for sensor networks,” in Proc. of ACM MobiCom’00.

14. M. Musuvathi and D. R. Engler, “Model checking large network protocol implementa-
tions,” in Proc. of NSDI’04.

15. S. Edelkamp, S. Leue and A. Lluch-Lafuente, “Directed Explicit-State Model Checking
in the Validation of Communication Protocols,” International Journal on Software Tools
for Technology Transfer (STTT), vol. 5, no. 2-3, pp. 247–267, March 2004.

16. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for heuristic determination
of minimum path cost,” IEEE Transactions on Systems Science and Cybernetics, vol.
4, pp. 100–107, 1968.

17. A. Sobeih, M. Viswanathan and J. C. Hou, “Incorporating Bounded Model Check-
ing in Network Simulation: Theory, Implementation and Evaluation,” Tech. Rep.
UIUCDCS-R-2004-2466, Department of Computer Science, University of Illinois at
Urbana-Champaign, July 2004.

18. K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification of standards for
distance vector routing protocols,” Journal of the ACM, vol. 49, no. 4, pp. 538–576,
July 2002.

19. A. Sobeih, M. Viswanathan and J. C. Hou, “Bounded Model Checking of Network
Protocols in Network Simulators by Exploiting Protocol-Specific Heuristics,” Tech.
Rep. UIUCDCS-R-2005-2547, Department of Computer Science, University of Illinois
at Urbana-Champaign, April 2005.

20. P. Godefroid, “Model checking for programming languages using VeriSoft,” in Proc. of
ACM POPL’97.

21. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proc. of ACM POPL’05.

22. P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic algorithms.
In Proc. of TACAS’02.

23. G. J. Holzmann, “The model checker SPIN,” IEEE Trans. on Software Engineering,
vol. 23, no. 5, pp. 279–295, May 1997.

24. K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
25. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol verification as a hardware

design aid,” in Proc. of IEEE ICCD’92.
26. D. Y. Park, U. Stern, J. U. Skakkebæk, and D. L. Dill. Java model checking. In Proc.

of IEEE ASE’00.
27. J. Corbett, M. Dwyer, J. Hatcliff, C. Păsăreanu, Robby, S. Laubach, and H. Zheng.

Bandera: Extracting finite state models from Java source code. In Proc. of ICSE’00.
28. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, “A formal approach for

passive testing of protocol data portions,” in Proc. of IEEE ICNP’02.
29. G. N. Naumovich, L. A. Clarke, and L. J. Osterweil, “Verification of communication

protocols using data flow analysis,” in Proc. of ACM SIGSOFT’96.
30. W. Visser, K. Havelund, G. Brat, and S.Park, “Model checking programs,” in Proc. of

IEEE ASE’00.
31. J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S. Leue. Heuristic-guided

counterexample search in FLAVERS. In Proc. of ACM SIGSOFT’04/FSE-12.
32. C. H. Yang and D. L. Dill. Validation with guided search of the state space. In Proc.

of ACM/IEE DAC’98.
33. A. Groce and W. Visser “Heuristics for Model Checking Java Programs,” International

Journal on Software Tools for Technology Transfer (STTT), vol. 6, no. 4, pp. 260–276,
August 2004.

