
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 1

Delta Execution for Efficient State-Space
Exploration of Object-Oriented Programs

Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov

Abstract— We present Delta Execution, a technique that speeds
up state-space exploration of object-oriented programs. State-
space exploration is the essence of model checking and an
increasingly popular approach for automating test generation. A
key issue in exploration of object-oriented programs is handling
the program state, in particular the heap. We exploit the fact that
many execution paths in state-space exploration partially overlap.
Delta Execution simultaneously operates on several states/heaps
and shares the common parts across the executions, separately
executing only the “deltas” where the executions differ.

We implemented Delta Execution in two model checkers: JPF,
a popular general-purpose model checker for Java programs,
and BOX, a specialized model checker that we developed for
efficient exploration of sequential Java programs. The results for
bounded-exhaustive exploration of ten basic subject programs
and one larger case study show that Delta Execution reduces
exploration time from 1.06x to 126.80x (with median 5.60x) in
JPF and from 0.58x to 4.16x (with median 2.23x) in BOX. The
results for a non-exhaustive exploration in JPF show that Delta
Execution reduces exploration time from 0.92x to 6.28x (with
median 4.52x).

Index Terms— Software/program verification, model checking,
testing and debugging, performance, delta execution

I. INTRODUCTION

SOFTWARE testing and model checking are important ap-
proaches for improving software reliability. A core technique

for model checking is state-space exploration [11]: it starts
the program from the initial state, searches the states reach-
able through executions resulting from non-deterministic choices
(including thread interleavings), and prunes the search when it
encounters an already visited state. Stateful exploration is also
increasingly used to automate test generation, in particular for unit
testing of object-oriented programs [16], [18], [26], [46], [48],
[49]. In this context, each test creates one or more objects and
invokes on them a sequence of methods. State-space exploration
can effectively search how different method sequences affect the
state of objects and can generate the test sequences that satisfy
certain testing criteria [16], [46], [48].

A key issue in state-space exploration is manipulating the
program state: saving the state at non-deterministic choice points,
modifying the state during execution, comparing states, and
restoring the state for backtracking. For object-oriented programs,
the main challenge is manipulating the heap, the part of the
state that links dynamically allocated objects. Researchers have
developed a large number of model checkers for object-oriented
programs, including Bandera [12], BogorVM [37], CHESS [32],
CMC [31], JCAT [19], JNuke [4], JPF [44], SpecExplorer [43],

Marcelo is with the Universidade Federal de Pernambuco, Centro de
Informática, Caixa Postal 7851, CEP 50732-970, Recife, PE, Brazil. E-
mail: damorim@cin.ufpe.br. Steven and Darko are with the Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL,
61801-2302, USA. E-mail: {slauter2, marinov}@cs.uiuc.edu.

and Zing [3]. These model checkers have focused on efficient
manipulation and representation of states/heaps for the usual
program execution that operates on one state/heap. We refer to
such execution as standard execution.

We present Delta Execution, referred to as ∆Execution, a
technique where program execution operates simultaneously on
several states/heaps. While such execution may be useful for
several software reliability tasks—including patch validation,
administrative configuration validation, testing, model checking,
or replica-based fault detection and recovery [51]—this paper
focuses on state-space exploration of programs with heaps.
∆Execution exploits the fact that many execution paths in state-
space exploration partially overlap. ∆Execution speeds up the
state-space exploration by sharing the common parts across the
executions and separately executing only the “deltas” where the
executions differ. Central to ∆Execution is an efficient representa-
tion and manipulation of sets of states. ∆Execution is thus related
to shape analysis [27], [38], [50], a static program analysis that
checks heap properties and operates on sets of states. However,
shape analysis operates on abstract states, while ∆Execution
operates on concrete states.

∆Execution was inspired by symbolic model checking
(SMC) [11], [25]. SMC enabled a breakthrough in model check-
ing as it provided a much more efficient exploration than explicit-
state model checking. Conceptually, SMC executes the program
on a set of states and exploits the similarity among executions.
Typical implementations of SMC represent states with Binary
Decision Diagrams (BDDs) [8], data structures that support effi-
cient operations on boolean functions. However, heap operations
prevent the direct use of BDDs for object-oriented programs.
Although heaps are easily translated into boolean functions [29],
[47], the heap operations—including field reads and writes,
dynamic object allocation, garbage collection, and comparisons
based on heap symmetry [7], [11], [23], [28], [30]—do not
translate directly into efficient BDD operations.

∆Execution operates on a ∆State, a novel representation for
sets of states that include heaps. We describe efficient operations
for manipulating ∆States, which enable ∆Execution to execute
programs faster than standard execution. These operations also
enable ∆Execution to speed up state comparison and backtrack-
ing, two important and costly parts of state-space exploration. The
key to these speed-ups in ∆Execution is that various values can
be constant across all states in a given set, and an operation can
execute at once on a large number of states rather than executing
on each of them individually.

We implemented ∆Execution in two model checkers: JPF
(from Java PathFinder) and BOX (from Bounded Object eX-
plorer). JPF is a popular, general-purpose model checker for
Java programs [1], [28], [44]. BOX, in contrast, is a specialized
model checker that we developed for efficient exploration of
sequential Java programs. The two implementations allowed us

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 2

class BST {
Node root;
int size;

1: void add(int info) {
2: if (root == null)
3: root = new Node(info);
4: else
5: for (Node temp = root; true;)
6: if (temp.info < info) {
7: if (temp.right == null) {
8: temp.right = new Node(info);
9: break;

10: } else temp = temp.right;
11: } else if (temp.info > info) {
12: if (temp.left == null) {
13: temp.left = new Node(info);
14: break;
15: } else temp = temp.left;
16: } else return; // no duplicates
17: size++;
18: }

void remove(int info) { ... }
}

class Node {
Node left, right;
int info; Node(int info) { this.info = info; }

}

Fig. 1. Binary search tree implementation of a set.

to evaluate ∆Execution on model checkers that follow different
design principles. While we found out that ∆Execution reduces
the overall exploration time in both model checkers, the reduction
is due to different reasons as discussed in Section V-A.

We evaluated ∆Execution using two types of exploration. The
first type is bounded-exhaustive exploration, which explores all
states that can result from sequences of method calls up to some
bound on the length of the sequence and input values. The second
type uses abstract matching, a recently proposed non-exhaustive
state-space exploration [46] that matches states based on their
shapes. For the bounded-exhaustive exploration, we evaluated
∆Execution on ten simple subject programs and one larger case
study, AODV [35]. For simple subject programs, ∆Execution
reduces exploration time from 1.06x to 126.80x (with median
5.60x) in JPF and from 0.58x to 4.16x (with median 2.23x) in
BOX. While the main goal of ∆Execution is to reduce time, it
also reduces, on average, peak memory requirement from 0.46x
to 11.50x (with median 1.48x) in JPF and from 0.18x to 2.71x
(with median 1.18x) in BOX. (Note that a number below 1.00x
represents that ∆Execution increases time or memory usage.)
For AODV, ∆Execution reduces exploration time from 0.88x
to 2.04x (with median 1.72x) in JPF. For the non-exhaustive
exploration, ∆Execution reduces exploration time from 0.92x to
6.28x (with median 4.52x) in JPF on the four of the ten simple
subject programs used previously with abstract matching [46].
The reduction is smaller for the non-exhaustive exploration than
for exhaustive exploration because abstract matching reduces the
total number of states that the model checker explores.

The rest of this paper is organized as follows. Section II shows
an example that illustrates the key aspects of ∆Execution and
how it speeds up standard execution. Section III presents in detail
the algorithms for ∆Execution. Section IV describes our two
implementations. Section V presents an evaluation of ∆Execution.
Section VI reviews related work, and Section VII concludes.

// N bounds sequence length and parameter values
exploreStandard(N)

Next = {sinit}
V isited = {linearize(sinit)}
for i = 1 to N do // iterations

Current = Next; Next = {}
while (|Current| > 0) do

sroot = choose a state from Current
foreach method m in methods do

for v = 1 to N do
snext = execute m(v) on sroot

l = linearize(snext)
if (l /∈ V isited) then

V isited = V isited ∪ {l}
Next = Next ∪ {snext}

Fig. 2. Breadth-first exploration using standard execution.

II. EXAMPLE

We present an example that illustrates what ∆Execution does
and how it speeds up the state-space exploration compared to
standard execution that operates on a single state at a time.
Figure 1 shows a binary search tree class that implements a set.
Each BST object stores the size of the tree and its root node,
and each Node object stores an integer value and references to
the two children. The BST class has methods to add and remove
tree elements. A test sequence for the binary search tree class
consists of a sequence of method calls, for example BST t =
new BST(); t.add(1); t.remove(2).

The goal of state-space exploration is to explore different
sequences of method calls. A common scenario of exploration
is to exhaustively explore all sequences of method calls, up to
some bound [18], [46], [49]. Such exploration does not actually
enumerate all sequences but instead uses state comparison to
prune sequences that exercise the same states [46], [49]. Another
scenario may be to generate those sequences that result in
assertion violations.
A. Standard exploration

Figure 2 shows pseudocode that systematically generates se-
quences of method calls to explore different states of a subject.
This exploration operates using standard execution, so we call it
a standard exploration. Starting with an initial state sinit for the
subject (in our example, an empty tree), it exhaustively explores
sequences (up to length N) of the subject’s methods (in our
example, add and remove), with values between 1 and N .

Following the execution of a subject method, a linearization
is computed for the resulting state snext. Linearization translates
an object graph into an integer array representing the graph in
a canonical form; it is a common technique used to facilitate
efficient comparison of state that include heaps [11], [23], [28],
[30]. If the linearization is not in the set Visited, it is added
and also added to the set Next for exploration during the next
iteration. Otherwise, any sequence that results in a state that has
already been visited is pruned from further exploration.

Note that state comparison is performed only at the method
boundaries (not during method execution). This naturally parti-
tions an execution path into subpaths, each covering execution
of one method invocation. As in other related studies [16], [46],
[49], we consider a breadth-first exploration of the state space.
A bounded depth-first exploration could miss parts of the state
space since state comparison could prune a shorter sequence (that
results in some state) because of a longer sequence (that results in
the same state). For example, a depth-first exploration limited to
three method calls could explore the sequence BST t = new

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 3

3

1

2

31

2

3

1

2

2

1

3

3

3

2

41

3

42

1

4 4 44

4

2

1

3

4

31

2

4

3

1

2 4

3

2

41 31

2

4

4

2

1

3

3

1

2 4

3

4

4 4 4 4 4

1

2

temp.right == null
splits on first splits on second

temp.right == null

add(4)

2

1

3 3 3 3 3

merge

Fig. 3. Executions of add(4) on a ∆State.

BST(); t.add(1); t.add(2); t.remove(1) before the
sequence BST t = new BST(); t.add(2). Since both se-
quences result in the same tree state, the latter would be pruned
and would miss, for instance, the tree BST t = new BST();
t.add(2); t.add(3).

B. Overlapping execution paths
Figure 3 shows several states that arise during a state-space

exploration of the binary search tree subject for N = 4. The
five trees shown at the top of the figure are all (non-equivalent)
trees of size 3 with values between 1 and 3. When it comes
time to execute add(4) on these five trees, standard exploration
separately executes add(4) on each pre-state, resulting in the
five post-states shown at the bottom of the figure. We use the
term individual state to emphasize that exploration using standard
execution operates on a single state at a time.

We next describe how various executions within a method can
have overlapping paths/traces. Each path is a trace of values for
the program counter. We focus on sequential programs, so there
is no thread interleaving, and the branching decisions determine
the trace. For example, execution of add(4) on the balanced tree
shown in the middle results in the following trace (for program
counter values from Figure 1): 1, 2, 4, 5, 6, 7, 10, 5, 6, 7, 8, 9,
17, 18. We say a state follows a path iff the execution starting

// N bounds sequence length and parameter values
exploreDelta(N)

Next = {sinit};
V isited = {linearize(sinit)};
for i = 1 to N do // iterations

∆State σroot = merge(Next); Next = {};
foreach method m in methods do

for v = 1 to N do
{σ1, . . . , σk} = execute∆ m(v) on σroot; // splits
foreach σ ∈ {σ1, . . . , σk} do

foreach l ∈ linearize∆(σ) do
if (l /∈ V isited) then

V isited = V isited ∪ {l};
Next = Next ∪ {state for l};

Fig. 4. Breadth-first exploration using ∆Execution.

with that state results in that path. For instance, the balanced tree
follows the aforementioned path.

It is important to note that several states can follow the same
path, i.e., each individual execution makes the same branching
decisions. For example, consider the two executions of add(4)
on the balanced tree in the middle and the tree to its right.
Both of these executions follow the same aforementioned path
(as they add a new node with value 4 to the right of the root’s
right child). ∆Execution exploits this similarity to speed up state-
space exploration. While this example shows the case when two
executions have identical paths, ∆Execution can also exploit
similarities among paths even when they are not identical in their
entirety.

C. Delta exploration
Figure 4 shows pseudocode for a state-space exploration us-

ing ∆Execution. We refer to this type of exploration as delta
exploration. Delta exploration is similar to standard exploration:
both prune the exploration based on resulting states and both use
breadth-first exploration. However, delta exploration differs from
the standard exploration in four important ways.

1) ∆State: ∆Execution conceptually operates on multiple in-
dividual states at the same time. More precisely, ∆Execution
operates on a single ∆State that represents several standard
states, each corresponding to one of the individual states found
in a standard execution. The type of the root object (σroot) in
delta exploration is ∆State. While standard execution invokes
add(4) separately against each standard state, ∆Execution in-
vokes add(4) on one ∆State, effectively invoking it simulta-
neously against a set of standard states. The top of Figure 3
represents one set consisting of the five pre-states. Section III-
B describes how to efficiently represent a ∆State.

2) Splitting: When a method is executed on a ∆State, the
result can be more than one ∆State: σ1, . . . , σk . Each of these
resulting k ∆States represents the subset of individual states from
the original ∆State that follow the same execution path through
the method, i.e., make the same branching decisions. The total
number of individual states in this set of ∆States is equal to the
number of individual states in the original ∆State the method is
executed on, i.e.,

∑k
i=1 |σi| = |σroot|.

During method execution, ∆Execution occasionally needs to
split the ∆State. Consider, for example, the executions illustrated
in Figure 3. For add(4), the five pre-states at the top follow
the same execution path until the first check of temp.right ==
null. At that point, ∆Execution splits the set of states: one subset
(of two states) follows the true branch, and the other subset

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 4

(of three states) follows the false branch. Note that splitting
enforces the invariant that all states in a set follow the same
execution path through the method.

Each split introduces a non-deterministic choice point in the
execution. For add(4), the execution with two states terminates
after creating a node with value 4 and assigning it to the
right of the root. The figure depicts this execution with the left
arrow. The other execution with three states splits at the second
check of temp.right == null: two (middle) states follow
the true branch, and one (rightmost) state follows the false
branch. These two executions terminate without further splits,
appropriately adding the value 4 to the final trees. Note that
∆Execution produces the same (number of) states as standard
execution (five in our example) but may result in fewer executions
(these five states require only three different execution paths, i.e.,
k = 3, whereas the while loop from Figure 2 would be executed
five times).

3) Merging: Since ∆Execution operates on sets of states (i.e.,
a ∆State), a delta exploration needs to periodically combine
multiple individual states (or multiple small ∆States) together
into a single ∆State. Figure 4 shows that states are combined
at the beginning of each iteration, using the merge operation.
Effectively, this operation combines all distinct states reachable
with the method sequences of length i into one ∆State that the
iteration i+1 will explore.

Merging is a dual operation of splitting: while splitting parti-
tions a set of states into subsets, merging combines several sets of
states (or several individual states) into a larger set. ∆Execution
can, in principle, perform merging on any sets of states at any
program point. For example, ∆Execution could merge all three
sets of states from Figure 3 when they reach size++. However, as
illustrated in Figure 4 our current implementation of ∆Execution
considers only the program points that are method boundaries.
While splitting occurs during method execution, merging only
occurs between method executions. Section III-F describes how
to efficiently merge states.

4) ∆Linearization: Delta exploration uses the linearize∆

operation to linearize the individual states in a ∆State σ all at
once rather than one by one. This operation returns a set of
linearizations and can do this faster than linearizing each state
individually. Section III-E describes this optimization.

D. Performance
We next discuss how the performance of ∆Execution and

standard execution compare. In our running example, ∆Execution
requires only three execution paths to reach all five post-states that
add(4) creates for the five pre-states. Additionally, these three
paths share some prefixes that can be thus executed only once. In
contrast, standard execution requires five executions of add(4),
one execution for each pre-state, to reach the five post-states.
Also, each of these five separate executions needs to be executed
for the entire path.

The experimental results from Section V show that ∆Execution
is faster than standard execution for a number of subject programs
and values for the exploration bound N . For example, for the
binary search tree example and N = 10, ∆Execution speeds
up JPF 7.11x (while taking about two times more memory than
standard execution) and speeds up our model checker BOX 1.67x
(while taking about three times more memory than standard
execution).

E. Reasons for speedup
We next discuss why ∆Execution can speed up the three major

operations in state-space exploration: (i) (straightline) execution,
which performs a deterministic step on the subject program
(execute in our algorithms); (ii) backtracking, which explores all
program paths created with non-deterministic choices (effectively
corresponds to choices of methods m and values v in our algo-
rithms); and (iii) (state) comparison, which prunes some of these
paths based, for example, on isomorphism of visited states [7],
[23] (linearize and lookup into V isited in our algorithms).

∆Execution can reduce execution time because some values are
constant across all states in a state set. For example, executing
size++ on all trees shown in Figure 3 takes constant time
(instead of time linear to the number of states) because all trees
have the same size. We measured the ratio of the number of
accesses to constants over the total number of value accesses for
binary search tree, and for N = 10, it is about 25%. However, the
time savings depends not only on the ratio of accesses to constants
but also on the number of states that a constant represents: if a
set has n states, then the execution saves n − 1 operations when
it operates on a constant and does not need to iterate over all n

states. Using the number of states to adjust the ratio of accesses
to constants shows that about 35% of accesses are to constants
for binary search tree and N = 10. (More details on constants
are available in d’Amorim’s PhD thesis [14].)

∆Execution can reduce the cost of backtracking as it reduces
the number of executions. For example, for states from Figure 3,
∆Execution backtracks 2 times (for 3 executions), while standard
execution backtracks 4 times (for 5 executions). ∆Execution
introduces a backtrack point only when it needs to split an
execution path because not all states in the current set evaluate
a branching condition to the same value. Effectively, the index k

in σ1, . . . , σk from Figure 4 is 3 in this example, while the size
of Current from Figure 2 starts out as 5.

∆Execution also enables optimized state comparison because
it is possible to compute a set of state linearizations on a set
of states simultaneously instead of one-by-one. In practice, this
enables the linearization algorithm to internally share the prefixes
of the linearization. Section III-E presents more details.

The trade-off between ∆Execution and standard execution can
be summarized as follows: ∆Execution performs fewer executions
(avoiding separate execution of the same path shared by multiple
states) than standard execution, but each execution in ∆Execution
(that operates on a set of standard states) is more expensive than in
standard execution (that operates on one standard state). Whether
∆Execution is faster or slower than standard execution for some
exploration depends on several factors, including the number of
execution paths, the number of splits, the cost to execute one path,
the sharing of execution prefixes, and the ratio of constants. In
particular, the presence of constants (i.e., values that are the same
across a set of states) is essential for efficient operations under
∆Execution.

III. TECHNIQUE

The main idea of ∆Execution is to execute a program simulta-
neously on a set of standard states. Figure 4 presents a high-level
algorithm for ∆Execution. We first discuss some key properties
of the algorithm. We then present more details of the algorithm.
The central part of ∆Execution is ∆State, a representation for
a set of individual states. We describe two main operations on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 5

class BST {
DeltaNode root;
DeltaInt size;

}
class Node {

DeltaNode left, right;
DeltaInt info;

}
class DeltaNode {

// maps each state index to a Node object
Node[] values; // conceptually

}
class DeltaInt {

// maps each state index to an integer value
int[] values; // conceptually

}

Fig. 5. Field declarations for instrumented BST and Node classes, the new
DeltaNode class and the DeltaInt library class.

∆States: splitting, which divides a set of states into subsets for
executing different program paths, and merging, which combines
several states together into a set. We also present how program
execution works in ∆Execution and how ∆Execution facilitates
an optimized comparison of states.

A. High-level properties
Recall figures 2 and 4 which show the pseudocode for the

standard exploration and delta exploration, respectively. The goal
of ∆Execution is to speed up standard exploration; ∆Execution
does not attempt to reduce the size of the state space but only to
reduce the exploration time. More precisely, given the same value
for the bound N (and the same methods), exploreStandard and
exploreDelta produce the same V isited set at the end of the
procedure.

Moreover, V isited not only contains the same values at the
end of the two procedures but also contains the same values at
the beginning of the main loop, i.e., for any iteration i from 1 to
N , V isited in exploreStandard has the same values as V isited

in exploreDelta. This can be shown by induction, and it implies
that V isited is equal at the end of the procedures. Similarly, Next

is equal in both procedures for any corresponding iteration i from
1 to N .

B. ∆State
∆Execution represents a set of individual standard states as a

single ∆State. Each ∆State encodes all the information from the
original individual states. A ∆State includes ∆Objects that can
store multiple values (either references or primitives) that exist
across the multiple individual states represented by a ∆State.

Figures 5 shows the classes used to represent ∆States for
the binary search tree example. We discuss here only the field
declarations from those classes. (The methods from those classes
implement the operations on ∆State and are explained later in
the text.) Each object of the class DeltaNode stores a collection
of references to Node objects, and each object of the class
DeltaInt stores a collection of primitive integer values. The
BST and Node objects are changed such that they have fields
that are ∆Objects.

Figure 6 shows the ∆State that represents the set of five pre-
states from Figure 3. Each ∆State consists of layers of “regular”
objects and ∆Objects. For this example, the circles represent
Node objects, the single rectangle represents a BST object,
the array-like structures represent either DeltaNode objects or

? ? 3 3 22 1 ? ?1

3 3 2 1 1

1 2 2 3

? ? ? ? ? ?? ?

3

Fig. 6. ∆State for the five pre-states from Figure 3.

DeltaInt objects, the stand-alone integers represent DeltaInt
objects that are constants, and the stand-alone arrow leaving
the top-most rectangle represents a DeltaNode object that is a
constant. In this ∆State, each of the pre-states has a corresponding
state index that ranges from 0 to 4. Note that we could extract
each of the five pre-states by traversing the ∆State while indexing
it with the appropriate state index. For example, we can extract
the balanced tree using state index 2. Also note that some of the
values in the example ∆State are “don’t cares” (labeled with “?”)
because the corresponding object is not reachable for that state
index. For example, the first Node object to the left of the root
has “?” in the field info for the last two states (with indexes
3 and 4) because those states have the value null for the field
root.left.

While each ∆Object conceptually represents a collection of
values, the implementation does not always need to use collec-
tions or arrays. In particular, a value is often constant across all
relevant states, i.e., the states where the value is not “don’t care”.
For example, the size field of the BST object has value 3 for
all five states, and the info field for each tree leaf in Figure 6
has a constant value (since there is only one relevant state).

Our implementation of ∆States uses an optimized represen-
tation for constants. When a field value is constant across all
relevant states, that field is represented in the ∆State as a single
value, as opposed to a sequence of values corresponding to
different states. This optimization is applied at merge time when
initially constructing a ∆State, and is important both for reducing
the memory requirements of ∆States and for improving the
efficiency of operations on ∆States.

C. Splitting
∆Execution operates on a ∆State that represents a set of

standard states. ∆Execution needs to split the set only at a branch
control point (e.g., an if statement) where some states from the
set evaluate to different branch outcomes (e.g., for one subset of
states, the branch condition evaluates to true, and for the other
subset of states, it evaluates to false). We call such points split
points; effectively, they introduce non-deterministic choice points
as ∆Execution needs to explore both outcomes. (Note that not all
branch control points require a split since it is possible that all
states can evaluate to the same branch outcome.)

One challenge in ∆Execution is to efficiently split ∆States. Our
solution is to introduce a statemask that identifies the currently
active states within a ∆State. Each statemask is a set of state
indexes. At the beginning of an execution, ∆Execution initializes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 6

the statemask to the set of all state indexes. For example, the
execution of add(4) for the ∆State from Figure 6 starts with
the statemask being {0, 1, 2, 3, 4}.

At the appropriate branch points, ∆Execution needs to split the
set of states into two subsets. Our approach does not explicitly
divide a ∆State into two ∆States; instead, it simply changes the
statemask to reflect the splitting of the set of states. Specifically,
∆Execution builds a new statemask to identify the new subset
of active states in the ∆State. It also saves the statemask for
the complement subset that should be explored later on. The
execution then proceeds with the new subset.

After ∆Execution finishes the execution path for some (sub)set
of states, it backtracks to some unexplored split point to explore
the other path using the statemask saved at the split point.
Backtracking changes the statemask but restores the ∆State to
exactly what it was at the split point. A model checker can im-
plement backtracking in several ways. JPF, for instance, stores and
restores state, while BOX uses program re-execution. Section IV
elaborates this discussion.

To illustrate how the statemask changes during the execution,
consider the example from Figure 3. The statemask is initially
{0, 1, 2, 3, 4}. At the first split point, the execution proceeds
with the statemask being {0, 1}. After the first backtracking,
the statemask is set to {2, 3, 4}. At the second split point, the
execution proceeds with the statemask being {2, 3}. After the
second backtracking, the statemask is set to {4} for the final
execution.

Appropriate use of a statemask can facilitate optimizations
on the ∆State. Consider, for example, a ∆Object that is not a
constant when all states are active. This object can temporarily
be transformed into a constant if all its values are the same for
some statemask occurring during the execution. For instance, in
our running example, the value of root.right becomes the
constant null when the statemask is {0, 1}. Additionally, the
statemask allows the use of sparse representations for ∆Objects:
instead of using an array to map all possible state indexes into
values, a sparse ∆Object can use representations that map only
the active state indexes into values, thereby reducing the memory
requirement.

D. Program execution model
We next discuss how ∆Execution executes program operations.

The key is to execute each operation simultaneously on a set
of values. ∆Execution uses a non-standard program execution
that manipulates a ∆State that represents a set of standard states.
Such non-standard execution can be implemented in two ways:
(i) instrumenting the code such that the regular execution of
the instrumented code corresponds to the non-standard execu-
tion [26], [45], [49] or (ii) changing the execution engine such
that it interprets the operations in the non-standard semantics [2],
[16]. Our current implementation uses instrumentation: the subject
code is pre-processed to support ∆Execution.

We use parts of the instrumentation to describe the semantics
of ∆Execution.

1) Classes: The instrumentation changes the original program
classes and generates new classes for ∆Objects. Figure 1 shows
a part of the original code for the binary search tree example.
Figures 7, 8, and 9 show the key parts of the instrumented code
for this example. Figure 7 shows the instrumented version of
the original BST and Node classes. Figure 8 shows the new

class BST {
DeltaNode root = DeltaNode.NULL;
DeltaInt size = DeltaInt._new(0);

void add(DeltaInt info) {
if (get_root().eq(DeltaNode.NULL))

set_root(DeltaNode._new(info));
else

for (DeltaNode temp = get_root(); true;)
if (temp.get_info().lt(info)) {
if (temp.get_right().eq(DeltaNode.NULL)) {

temp.set_right(DeltaNode._new(info));
break;

} else temp = temp.get_right();
} else if (temp.get_info().gt(info)) {
if (temp.get_left().eq(DeltaNode.NULL) {

temp.set_left(DeltaNode._new(info));
break;

} else temp = temp.get_left();
} else return; // no duplicates

}
set_size(get_size().add(DeltaInt._new(1)));

}

void remove(DeltaInt info) { ... }
}

class Node {
DeltaNode left = DeltaNode.NULL;
DeltaNode right = DeltaNode.NULL;
DeltaInt info = DeltaInt._new(0);
Node(DeltaInt info) { this.info = info; }

}

Fig. 7. Instrumented BST and Node classes.

class DeltaNode that stores and manipulates the multiple Node
references that can exist across the multiple states in a ∆State.
Figure 9 shows the class DeltaInt that stores and manipulates
multiple int values; this class is a part of the ∆Execution library
and is not generated anew for each program.

It is important to note that ∆Objects are immutable from
the perspective of the instrumented code in the same way that
regular primitive and reference values are immutable for stan-
dard execution. This allows sharing of ∆Objects, for example
directly assigning one DeltaInt object to another (e.g., int x
= y simply becomes DeltaInt x = y). Our implementation
internally mutates ∆Objects to achieve higher performance, in
particular when values become constant across active states. The
mutation handles the situations that involve shared ∆Objects and
require a “copy-on-write” cloning.

2) Types: The instrumentation changes all types in the original
program to their delta versions. Comparing figures 1 and 7, notice
that the occurrences of Node and int have been replaced with
the new DeltaNode class (from Figure 8) and the DeltaInt
class (from Figure 9), respectively. The instrumentation also
appropriately changes all definitions and uses of fields, variables,
and method parameters to use ∆Objects.

3) Field accesses: The instrumentation replaces standard ob-
ject field reads and writes with calls to new methods that read
and write fields across multiple objects. For example, all reads
and writes of Node fields are replaced with calls to getter
and setter methods in DeltaNode. Consider, for instance, the
field read temp.left. In ∆Execution, temp is no longer a
reference to a single Node object but a reference to a DeltaNode
object that tracks multiple references to possibly many different
Node objects. The left field of Node is now accessed via
the get left method in DeltaNode. This method returns a
DeltaNode object that references (one or more) Node objects
that correspond to the left fields of all temp objects whose

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 7

class DeltaNode {
// maps each state index to a Node object
Node[] values; // conceptually

DeltaNode(int size) { values = new Node[size]; }
DeltaNode(Node n) { values = new Node[]{ n }; }
static DeltaNode _new(DeltaInt info) {
return new DeltaNode(new Node(info));

}
boolean eq(DeltaNode arg) {
StateMask sm = StateMask.getStateMask();
StateMask trueMask = new StateMask(sm.size());
StateMask falseMask = new StateMask(sm.size());
foreach (int index : sm) {

if (values[index] == arg.values[index]) {
trueMask.enable(index);

} else { falseMask.enable(index); }
}
boolean result;
if (trueMask.isEmpty()) result = false;
else if (falseMask.isEmpty()) result = true;
else result = choose true or false /*** split ***/
StateMask.setStateMask(result ? trueMask : falseMask);
return result;

}
DeltaNode get_left() {
StateMask sm = StateMask.getStateMask();
DeltaNode result = new DeltaNode(sm.size());
foreach (int index : sm) {

DeltaNode dn = values[index].left;
result.values[index] = dn.values[index];

}
return result;

}
void set_left(DeltaNode arg) {
StateMask sm = StateMask.getStateMask();
IdentitySet<Node> set = new IdentitySet<Node>();
foreach (int index : sm) {

Node n = values[index];
if (set.add(n)) {

/* true if n was added */
n.left = n.left.clone();

}
n.left.values[index] = arg.values[index];

}
}
DeltaNode get_right() { ... }
void set_right(DeltaNode arg) { ... }
DeltaInt get_info() { ... }
void set_info(DeltaInt arg) { ... }

}

Fig. 8. New DeltaNode class.

class DeltaInt {
// maps each state index to an integer value
int[] values; // conceptually

DeltaInt add(DeltaInt arg) {
StateMask sm = StateMask.getStateMask();
DeltaInt result = new DeltaInt(sm.size());
foreach (int index : sm) {

result.values[index] =
values[index] + arg.values[index];

}
return result;

}
...

}

Fig. 9. Part of DeltaInt library class.

states are active in the statemask. In general, this can result in an
execution split when some objects in temp are null.

4) Operations: The instrumentation replaces (relational and
arithmetic) operations on reference and primitive values with
method calls to DeltaNode and DeltaInt objects. All original
operations on values now operate on ∆Objects that represent sets
of values. More precisely, the methods in ∆Objects do not need
to operate on all values but only on those values that correspond

to the active state indexes as indicated by the statemask.
Consider integer addition as an example of arithmetic opera-

tions. In standard execution, addition takes two integer values and
creates a single value. In ∆Execution, it takes two DeltaInt
objects and creates a new DeltaInt object. The add method in
DeltaInt (from Figure 9) shows how ∆Execution conceptually
performs pairwise addition across all active state indexes for the
two DeltaInt objects. Our implementation optimizes the cases
when those objects are constant (to avoid the foreach loop and
state indexing).

Consider reference equality as an example of relational opera-
tions. The method eq in DeltaNode (from Figure 8) performs
this operation across all active state indexes. Note that this method
can create a split point in the execution if the result of the
comparison differs across the states. If so, eq introduces a non-
deterministic choice that returns a boolean true or false. In
all cases, eq appropriately sets the statemask.

5) Method calls: The instrumentation replaces a standard
method call with a method call whose receiver is a ∆Object,
which allows making the call on several objects at once. Note that
each call also introduces a semantic branch point due to dynamic
dispatch (i.e., different objects may have different dynamic types)
and can result in an execution split.

E. Optimized state comparison
Heap symmetry [11], [23], [28], [30] is an important technique

that model checkers use to alleviate the state-space explosion
problem. Heap symmetry detects equivalent states: when the
exploration encounters a state equivalent to some already visited
state, the exploration path can be pruned. In object-oriented
programs, two heaps are equivalent if they are isomorphic (i.e.,
have the same structure and primitive values, while their object
identities can vary) [7], [23], [30]. An efficient way to compare
states for isomorphism is to use linearization (also known as seri-
alization or marshalling) that translates a heap into a sequence of
integers such that two heaps are isomorphic iff their linearizations
are equal.

∆Execution exploits the fact that different heaps in a ∆State
can share prefixes of linearization. Instead of computing lineariza-
tions separately for each state in a set of states, ∆Execution
simultaneously computes a set of linearizations for a ∆State.
Sharing the computation for the prefixes not only reduces the
execution time but also reduces memory requirements as it
enables sharing among the sequences used for linearizations.

Figure 10 shows the pseudocode for an optimized algorithm
that simultaneously linearizes all states from a ∆State. For
simplicity of presentation, the algorithm assumes that the heap
contains only reference fields and of only one class. We point
out that our actual implementation handles general heaps with
objects of different classes, primitive fields, and arrays. More
details about the general case, as well as how to develop this
algorithm from a basic one that linearizes one state at a time, are
available elsewhere [14], [15].

The top-level function, linearize∆, takes as input an object o,
which represents the root of a ∆State, and a statemask sm, which
represents the active states in that ∆State. It computes linSet, a
set of linearizations. Each linearization is a sequence of integers
l that represents one or more states marked by the statemask tm.
This function uses the helper functions linObject and linF ields

described below. We first explain these functions for the simple

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 8

linearize∆(Object o, StateMask sm)
stack = empty stack
(, l, tm) = linObject(o, empty Map, sm)
linSet = {l} // all states in tm have sequence l
while (|stack| > 0) do

(o, f, ids, lpre, nm) = pop from stack
(, l, tm) = linF ields(o, f, ids, lpre, nm)
linSet = linSet ∪ {l}

od
return linSet;

// returns a triple of a Map, Lin, and StateMask
linObject(Object o, Map ids, StateMask sm)

if (o = null) then return (ids, [NULL], sm)
if (o∈ ids) then return (ids, [get(ids, o)], sm)
id = |ids|
return linF ields(o, 0, put(ids, o, id), [id], sm)

// returns a triple of Map, Lin, and StateMask
linF ields(Object o, int f, Map ids, Lin l, StateMask sm)

if (f < numberOfFields(o)) then
(fo, em, nm) = split(getF ield(o, f), sm)
if (|nm| > 0) then

push (o, f, ids, l, nm) onto stack
(m, lpost, om) = linObject(fo, ids, em)
return linF ields(o, f + 1, m, append(l, lpost), om)

else return (ids, l, sm)

Fig. 10. Optimized linearization of states in a ∆State.

case with one state, effectively considering that sm is a singleton
and ignoring the variable stack. We then explain the general case.

The function linObject takes a root object o and produces a
sequence of integers that represent the linearization for the state
reachable from o. When o is null, linObject returns a one-
element sequence with the value that represents null. When o is
a reference to a previously linearized object, linObject returns
a one-element sequence with the integer id that the map ids

associates with that object. (The map ids facilitates handling of
object aliasing [23].) When o is an object not yet linearized,
linObject creates a new id for it, appropriately extends the map,
and linearizes all the object fields.

The function linF ields linearizes the fields of a given object,
starting from the field at offset f . (Each field has an offset that
ranges from 0 to one less than the number of fields in that object.)
In its simplest form, this function first linearizes the state from the
object fo that the field f points to (the result is called lpost) and
then recursively linearizes the remaining fields, from f+1, after
appending lpost to the resulting sequence l. (This is effectively a
tail-recursive function where l serves as the accumulator for the
result.)

When there is only one state in sm, there are no splits in the
execution. However, the linearizations depend on the value of the
field, getF ield(o, f), which may differ for different states. When
there is such a difference, it is necessary to split the statemask
into two, continue to explore one of them, and then backtrack to
explore the other. This is the only source of non-determinism in
the linearization. (Note that linF ields and linObject manipulate
functional objects Map and Lin, which facilitates backtracking of
the state.) Effectively, all three functions maintain the invariant
that the linearization prefix l that they compute up to any point
is the same for all states in the statemask sm.

The stack object stores the backtracking points. Each entry
stores the state that needs to be restored to continue an execution
from a split point: the root object, the field offset, the map
for object identifiers, the current linearization sequence, and
the statemask. While stack is mutable, the other structures are
immutable, which makes it easy to restore the state. The while

loop in linearize∆ visits each pending backtracking point until
it finishes computing all linearizations.

The function split in linF ields takes as input a ∆Object do =
getF ield(o, f) and a statemask sm. It returns a standard object
fo = do.values[index] for some index in sm, a statemask em

(which comes from “equals mask”) of index values such that
do.values[index] = fo, and a statemask nm (which comes from
“non-equal mask”) of index values such that do.values[index] 6=

fo. At this point, linF ields first pushes onto stack an entry
with the backtracking information for nm and then continues the
linearization of fo for the active states indicated in em.

F. Merging
The dual of splitting sets of states into subsets is merging

several sets of states into a larger set. Recall the exploration
for ∆Execution from Figure 4. It merges all non-visited states
from the previous iteration into a ∆State to be used for the
current iteration. More precisely, our current implementation of
the merge function receives as input the set of linearizations
representing those non-visited states.

Our merging algorithm uses delinearization to construct a
∆State from the linearized representations of non-visited states.
The standard delinearization is an inverse of linearization: given
one linearized representation, delinearization builds one heap
isomorphic to the heap that was originally linearized. The nov-
elty of our merging is that it operates on a set of linearized
representations simultaneously and, instead of building a set of
standard heaps, it builds one ∆State that encodes all the heaps.
It is interesting to point out that we often used in debugging our
implementation the fact that linearization and delinearization are
inverses: for any set of linearizations s, the linearization of the
delinearization of s should equal s.

We highlight two important aspects of the merging algorithm.
First, it identifies ∆Objects that should be constants (with respect
to the reachability of the nodes), which results in a more efficient
∆State. Such constants can occur quite often; for instance, in
our experiments (see Section V), the percentage of the constant
∆Objects in the merged ∆States ranges from 33% (for bst and
N = 11) to 69% (for treemap and N = 12). Second, the
merging algorithm greedily shares the objects in the resulting
∆State: it attempts to share the same ∆Object among as many
individual states as possible. For example, in Figure 6, the left
node from the root is shared among three of the five states.

Figure 11 shows the pseudocode for our merging algorithm. For
simplicity of presentation, the algorithm assumes that the heap
contains only reference fields and of only one class. Our actual
implementation handles general heaps with objects of different
classes, primitive fields, and arrays. The input is an array of
linearizations, and the output is a root object for a ∆State.
The algorithm maintains an array of maps from object ids to
actual objects (which handles aliasing and is dual of ids used
in linearization in Figure 10) and an array of offsets that track
progress through the different linearizations (since they do not
need to go in a “lockstep”).

The function createObject constructs one object shared for all
states in the given statemask and invokes createDeltaObject to
construct each field of the object. Note that this sharing does
not constitute aliasing in the standard semantics since only one
reference is visible for any given state.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 9

Object merge(Lin[] lin)
N = |lin| // number of individual states
offsets = array (size N) of 0’s
maps = array (size N) of empty maps // id→Object
sminit = {0, . . . , N-1} // statemask for all states
return createObject(sminit)

Object createObject(StateMask sm)
o = new Object
foreach i in sm do

id = lin[i][offsets[i]++]
put(maps[i], id, o)

od
foreach field f in o do o.f = createDeltaObject(sm)
return o;

DeltaObject createDeltaObject(StateMask sm)
d = new DeltaObject
cm = {}; // statemask if new object is needed
foreach i in sm do

id = lin[i][offsets[i]++]
if (id = NULL) then d.values[i] = null
else if (id∈maps[i]) then

d.values[i] = get(maps[i], id)
else // need to create a new object for this id

cm = cm ∪ {i}; offsets[i]--
od
if (|cm| > 0) then

co = createObject(cm)
// greedily share new object across states
foreach i in cm do d.values[i] = co

if (d.values is constant with respect to sm) then
// use constants where possible
d = new DeltaObjectConst

return d

Fig. 11. Pseudocode for the merging algorithm.

The function createDeltaObject examines the field values
across all states in the statemask sm. For each state, it checks
for three possible options for the field’s object id: (i) it denotes
the null reference, (ii) it denotes an alias, or (iii) it denotes a
new object. For the first two options, the algorithm assigns the
value to the ∆Object d as it performs the check. For the third
option, it just records in the statemask object cm the index of the
state during the check. If the statemask cm is not empty after the
check across all states, the algorithm recursively invokes (once)
createObject to create an object that will be shared among the
states in cm. Lastly, the algorithm checks if the ∆Object d is
semantically a constant, i.e., if it contains the same value across
all states denoted by sm. If so, a special constant object is created.

For states that have aliases between objects (unlike binary
search tree), this greedy algorithm does not always produce a
∆State with the smallest number of nodes, and some alternative
algorithms could produce smaller graphs. However, such alterna-
tive algorithms would require more time to search for appropriate
sharing opportunities that result in smaller ∆States. A detailed
example is available in d’Amorim’s PhD thesis [14].

IV. IMPLEMENTATION

We implemented ∆Execution in two model checkers: JPF and
BOX. JPF [44] is a popular model checker for Java programs; it
is general-purpose and can handle multi-threaded Java programs.
For the purpose of evaluating the technique under different im-
plementations, we also implemented BOX (from Bounded Object
eXplorer), a model checker specialized for sequential programs.

A. JPF
We implemented ∆Execution by modifying JPF version 4 [1].

JPF is implemented as a backtrackable Java Virtual Machine

(JVM) running on top of a regular, host JVM. JPF provides
operations for state-space exploration: storing states, restoring
them during backtracking, and comparing them. By default, JPF
compares the entire JVM state that consists of the heap, stack (for
each thread), and class-info area (that is mostly static but can be
modified due to dynamic class loading in Java). However, our
experiments require only the part of the heap reachable from the
root object. We therefore disabled JPF’s default state comparison
and instead use a specialized state comparison as done in some
previous studies with JPF [16], [46], [49].

We next discuss how we implemented each component of
∆Execution in JPF. We call the resulting system ∆JPF. ∆JPF
stores the ∆State as part of the JPF state, which allows the use
of JPF backtracking to restore the ∆State at split points. We
implemented the library operations on ∆State (such as arithmetic
and relational operations, and field reads and writes) to execute
on the host JVM. Effectively, the library forms an extension of
JPF; our goal is not to model check the library itself, but the
subject code that uses the library.

We implemented splitting in ∆JPF on top of the existing non-
deterministic choices in JPF. It is important to point out that our
implementation leverages JPF to restore the entire ∆State but uses
statemasks to indicate the active states. Therefore, ∆JPF manages
statemasks on the host JVM, independent of the backtracked state.
We also implemented merging to execute on the host JVM and to
create one ∆State as a JPF state that encodes all the non-visited
states encountered in the previous iteration of the exploration.
Recall that our experiments use breadth-first exploration.

∆JPF uses instrumented code to invoke the operations that
manipulate the ∆State. Section III-D describes in detail how
instrumentation changes standard classes and introduces corre-
sponding ∆Classes. Manual instrumentation is not particularly
difficult but can be time-consuming and error prone. To automate
instrumentation for ∆JPF, we developed a plug-in for Eclipse
version 3.2 (http://www.eclipse.org). The plug-in takes
a subject class (such as the Node class in our binary search
tree example) and manipulates its internal AST representation to
produce an instrumented class as described in Section III-D. Also,
the plug-in generates ∆Classes from templates. For example, it
generates the DeltaNode class in Figure 8 from information
extracted from the original Node class. The plug-in takes as input
the fields and constructors provided by the original class and
generates accessors, mutators, a method to compare reference
equality, and modified constructors. The template parameters
relate mostly to method names, return types, and argument types.
For example, the plug-in creates the method get left() from
a template by replacing a field name parameter with left
to produce the expression values[index].left. The new
∆Class also provides the internal representation for the set of
references to Node objects. In Figure 8, the class DeltaNode
explicitly represents the set of references as an array of Node
objects. In practice, we hide the representation in an interface so
that we can experiment with different implementations such as
sparse representation that only maps the active state indexes into
values (Section III-C).

B. BOX
We developed BOX, a model checker optimized for sequential

Java programs. JPF is a general-purpose model checker for
Java that can handle concurrent code and can store, restore,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 10

and compare the entire JVM state that consists of heap, stack,
and class-info area. However, in unit testing of object-oriented
programs, most code is sequential and test exploration needs
to store, restore, and compare only the heap part of the state.
Therefore, we used the existing ideas from state-space exploration
research [3], [12], [20], [23], [31], [37], [43], [44] to engineer a
high-performance model checker for such cases.

BOX can store/restore/compare only a part of the program
heap reachable from a given root. The root corresponds to the
main object under exploration. BOX uses a stateful exploration
(by restoring the entire state) across iterations and stateless
exploration (by re-executing one method at a time) within an
iteration. BOX needs to re-execute a method within an iteration
as it does not store the state of the program stack. Instead, BOX
only keeps a list of changes performed on the heap during a single
method execution and restores the state by undoing those changes.
For efficient manipulation of the changes, BOX requires that
code under exploration be instrumented. (This instrumentation is
required even for standard, non-∆ exploration.)

We refer to the ∆Execution implementation in BOX as ∆BOX.
∆BOX needs to backtrack the ∆State in order to explore
a method for various statemasks. In order to do this, ∆BOX
restores the state to the beginning of the method execution
by undoing any changes performed on the heap, and then re-
executes the method from the beginning to reach the latest split
point. While re-execution is seemingly slow, it can actually work
extremely well in many situations. For example, Verisoft [20] is a
well-known model checker that effectively employs re-execution.

∆BOX implements the components of ∆Execution as pre-
sented in Section III. ∆BOX represents a ∆State as a regular Java
state that contains both ∆Objects and objects of the instrumented
classes. ∆BOX uses instrumented code to perform the operations
on the ∆State. Instrumentation of code for ∆BOX (as well as
for BOX itself) is mostly manual at this time, though it could
be automated in a fashion similar to that used for ∆JPF. Like
∆JPF, ∆BOX merges states between iterations of the breadth-
first exploration.

V. EVALUATION

We next present an experimental evaluation of ∆Execution.
We first discuss the improvements that ∆Execution provides for
an exhaustive exploration of ten basic subject programs in both
JPF and BOX. We then present the results of performing a
non-exhaustive exploration using ∆Execution in JPF. Finally, we
present the improvements that ∆Execution provides on a larger
case study, an implementation of the AODV routing protocol [35]
in the J-Sim network simulator [24].

We performed all experiments on a Pentium 4 3.4GHz work-
station running RedHat Enterprise Linux 4. We used Sun’s JVM
1.5.0 07, limiting each run to 1.8GB of memory and 1 hour of
elapsed time.

A. Exhaustive exploration
To evaluate the performance of ∆Execution for exhaustive

exploration we used ten basic subject programs taken from a
variety of sources: binheap is an implementation of priority
queues using binomial heaps [46]; bst is our running example
that implements a set using binary search trees [7], [49]; deque
is our implementation of a double-ended queue using doubly

linked lists [15]; fibheap is an implementation of priority
queues using Fibonacci heaps [46]; filesystem is based on
the Daisy file-system code [36]; heaparray is an array-based
implementation of priority queues [7], [49]; queue is an object
queue implemented using two stacks [18]; stack is an object
stack [18]; treemap is an implementation of maps using red-
black trees based on Java Collections 1.4 [46]; ubstack is an
array-based implementation of a stack bounded in size, storing
integers without repetition [13], [34], [41]. These are small
programs, ranging from 1 class (for heaparray and ubstack)
to 4 classes (for filesystem) and from 27 (for stack) to 301
(for treemap) non-comment, non-blank lines of code.

Since the primary purpose of this portion of the evaluation is
to compare the efficiency of ∆Execution and standard execution,
we use correct implementations of all ten basic subjects. For
instance, the original code for the Daisy filesystem had seeded
errors, but we use a corrected version provided by Darga and
Boyapati [18]. (In contrast, the AODV case study described in
Section V-C uses code with errors that violate a safety property.)

For each subject described above, we wrote for both standard
execution and for ∆Execution test drivers [45], small programs
whose executions on JPF and BOX correspond to the state-space
explorations shown in figures 2 and 4. The drivers exercise the
main mutator methods for each subject. For data structures, the
drivers add and remove elements. For filesystem, the drivers
create and remove directories, create and remove files, and write
to and read from files.

Table I shows the experimental results for exhaustive explo-
ration. For each subject and several bounds (on the sequence
length and parameter size, as in the pseudocode shown in figures 2
and 4), we tabulate the overall exploration time and peak memory
usage with and without ∆Execution in both JPF and BOX. The
cells marked “*” indicate that the experiment either ran out of
1.8GB of memory or exceeded the 1 hour time limit.

The columns labeled “std/∆” show the improvements that
∆Execution provides over standard execution for the ten basic
subjects. Note that the numbers are ratios and not percentages; for
example, for binheap and N = 7, the ratio of times is 10.82x,
which corresponds to about 90% decrease. For JPF, the speedup
ranges from 1.06x (for filesystem and N = 6) to 126.80x
(for heaparray and N = 9), with median 5.60x. For BOX,
the speedup ranges from 0.58x (for filesystem and N = 3,
which actually represents almost a 2x slowdown) to 4.16x (for
queue and N = 7), with median 2.23x. Note that the ratio less
than 1.00x means that ∆Execution ran slower (or required more
memory) than standard execution, for example for filesystem
and N = 3 in BOX. While this can happen for smaller bounds,
∆Execution consistently runs faster than standard execution for
important cases with larger bounds.

∆Execution provides these significant improvements because
it exploits the overlap among executions in the state-space ex-
ploration. Table I also shows the information about the state
spaces explored in the experiments. Note that the number of
explored states is the same with and without ∆Execution. This
is as expected: ∆Execution focuses on improving the exploration
time and does not change the exploration itself. (We used the
difference in the number of states to debug our implementations of
∆Execution.) However, the numbers of executions with and with-
out ∆Execution do differ, and the column labeled “std/∆” shows
the ratio of the numbers of executions. The ratio ranges from 10x

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 11

TABLE I
OVERALL TIME AND MEMORY FOR EXHAUSTIVE EXPLORATION AND CHARACTERISTICS OF THE EXPLORED STATE-SPACES; “*” INDICATES

EXPERIMENTS THAT RAN OUT OF EITHER MEMORY OR TIME; “-” INDICATES UNRELIABLE MEASUREMENT OF MEMORY DUE TO SHORT RUNNING TIME.

JPF results BOX results state-space characteristics
experiment time (sec) mem. time (sec) mem. # states # executions

subject N std ∆ std/∆ std/∆ std ∆ std/∆ std/∆ std & ∆ std ∆ std/∆
7 24.87 2.30 10.82x 1.16x 0.78 0.35 2.23x 2.71x 16864 236096 401 588

binheap 8 458.81 11.92 38.50x 1.03x 11.63 3.38 3.44x 1.08x 250083 4001328 863 4636
9 * * * * 106.54 32.74 3.25x 1.04x 1353196 24357528 1069 22785
9 44.02 7.86 5.60x 0.70x 2.42 1.53 1.59x 0.77x 46960 845280 10846 77

bst 10 214.06 30.13 7.11x 0.46x 12.55 7.51 1.67x 0.30x 206395 4127900 22688 181
11 * * * * 67.64 49.62 1.36x 0.18x 915641 20144102 46731 431
8 54.70 4.13 13.25x 1.50x 2.20 0.77 2.86x 1.54x 69281 1108496 576 1924

deque 9 552.11 28.84 19.14x 1.48x 22.38 7.48 2.99x 1.14x 623530 11223540 810 13856
10 * * * * 281.84 99.77 2.82x 1.18x 6235301 124706020 1100 113369
6 3.18 1.46 2.17x 0.98x 0.22 0.16 1.40x - 3003 21021 82 256

fibheap 7 25.09 2.82 8.90x 2.13x 1.16 0.66 1.76x 1.24x 36730 293840 130 2260
8 400.84 21.59 18.57x 0.88x 16.77 9.75 1.72x 0.68x 544659 4901931 209 23454
3 1.98 1.88 1.06x 0.97x 0.14 0.25 0.58x - 58 6264 576 10

filesystem 4 17.18 3.08 5.59x 11.50x 1.18 0.71 1.67x 1.72x 1353 194832 1568 124
5 * * * * 37.43 30.04 1.25x 0.97x 64576 11623680 3940 2950
8 104.96 3.61 29.09x 2.31x 1.21 0.88 1.37x 1.24x 97092 873828 258 3386

heaparray 9 2,724.63 21.49 126.80x 1.22x 11.92 8.91 1.34x 0.53x 804809 8048090 359 22418
10 * * * * 127.10 110.26 1.15x 0.58x 8722946 95952406 488 196623
6 6.46 1.46 4.42x 2.64x 0.37 0.16 2.25x - 10057 70399 45 1564

queue 7 84.42 5.08 16.63x 1.77x 3.87 0.93 4.16x 1.44x 147995 1183960 60 19732
8 * * * * 78.62 25.36 3.10x 1.00x 2578641 23207769 77 301399
6 5.00 1.41 3.55x 1.01x 0.31 0.12 2.55x - 9331 65317 42 1555

stack 7 59.70 4.14 14.43x 1.31x 2.92 0.71 4.09x 1.87x 137257 1098056 56 19608
8 * * * * 59.98 17.81 3.37x 1.31x 2396745 21570705 72 299593

12 274.26 53.40 5.14x 3.44x 32.88 9.12 3.61x 1.34x 96401 2313624 7774 297
treemap 13 871.16 160.75 5.42x 3.90x 102.85 29.02 3.54x 1.48x 282532 7345832 11105 661

14 2,860.23 562.70 5.08x 4.41x 365.54 104.09 3.51x 2.48x 844655 23650340 15178 1558
8 61.52 4.60 13.37x 1.57x 2.26 1.28 1.77x 1.30x 109681 987129 595 1659

ubstack 9 1,502.24 32.54 46.17x 1.48x 22.60 13.52 1.67x 0.66x 991189 9911890 931 10646
10 * * * * 265.49 174.96 1.52x 0.62x 9922641 109149051 1414 77191

median - - - 5.60x 1.48x - - 2.23x 1.18x - - - -

to 301399x. While this ratio effectively enables ∆Execution to
provide the speedup, there is no strict correlation between the ratio
and the speedup. The overall exploration time depends on several
factors, including the number of execution paths, the number of
splits, the cost to execute one path, the frequency of constants in
∆States, and the sharing of execution prefixes.

1) Time: We next discuss in more detail where state-space ex-
ploration spends time and specifically where ∆Execution reduces
time. Each state-space exploration, both standard and ∆, includes
three components: (i) (straightline) execution, (ii) backtracking,
and (iii) (state) comparison. ∆Execution additionally includes
(iv) merging. Table II shows the breakdown of the overall
exploration time on these four components for JPF and BOX.

In JPF, ∆Execution significantly reduces the time for code
execution and state backtracking. For example, for binheap and
N = 7, ∆Execution reduces the execution time from 17.62s
to 0.59s and the backtracking time from 6.71s to 1.12s. These
savings are big enough and make the times for merging and state
comparison irrelevant. As mentioned earlier, JPF is a general-
purpose model checker that stores and restores the entire Java
state and thus has a high execution and backtracking overhead.

In BOX, ∆Execution sometimes results in a higher code
execution time, yet still has a smaller overall exploration time.
The reason is that ∆Execution achieves significant savings in the
state comparison using the optimized algorithm from Section III-
E. For example, for bst and N = 11, ∆Execution increases the
execution time from 3.26s to 7.96s. However, it reduces the state
comparison time from 57.19s to 20.35s, which more than makes

up for the longer execution time. Note that the number of states
and state comparisons is the same in both standard execution and
∆Execution, but the optimized state comparison is only possible
for ∆Execution, which uses ∆States that enable the simultaneous
comparison of a set of states.

2) Memory: Table I also provides a comparison of memory
usage. Specifically, the columns labeled “mem. std/∆” show
the ratio of peak memory usage for standard execution and
∆Execution. Our experimental setup uses Sun’s jstat [42]
monitoring tool to record the peak usage of garbage-collected
heap in the JVM running an experiment. Although this particular
measurement does not include the entire memory used by the
JVM process, it does represent the most relevant amount used
by a model checker. The cells marked “-” represent experiments
where the running time is so short that jstat does not provide
accurate memory usage.

For JPF, standard execution uses more memory than
∆Execution for most experiments. The results show that
∆Execution reduces memory use from 0.46x to 11.50x (with
median 1.48x). Note that ∆Execution occasionally uses more
memory, for example for bst. In BOX, ∆Execution reduces
memory from 0.18x to 2.71x (with median 1.18x). Note that
the median of memory use in BOX has a lower value than in
JPF indicating that ∆Execution consumes more memory relative
to the standard execution. This is due to the fact that the
∆Execution implementation in JPF partially uses native state.
This state is managed by the host JVM, which has a better
memory management than the JPF JVM. In contrast, in standard

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 12

TABLE II
TIME BREAKDOWN FOR JPF AND BOX EXPERIMENTS.

experiment standard JPF time (sec) ∆JPF time (sec) standard BOX time (sec) ∆BOX time (sec)
subject N exec comp back exec comp back merg exec comp back exec comp back merg

7 17.62 0.54 6.71 0.59 0.26 1.12 0.34 0.22 0.37 0.12 0.10 0.13 0.00 0.06
binheap 8 364.45 4.90 89.46 3.99 2.21 1.24 4.48 4.57 3.74 2.78 1.01 1.43 0.01 0.87

9 * * * * * * * 21.46 67.74 15.03 4.70 21.77 0.01 6.27
9 20.44 4.20 19.39 2.25 2.40 1.94 1.27 0.23 1.90 0.18 0.47 0.73 0.01 0.29

bst 10 103.39 21.04 89.62 7.18 12.85 3.98 6.12 0.52 10.60 0.91 1.78 3.78 0.01 1.86
11 * * * * * * * 3.26 57.19 4.42 7.96 20.35 0.02 21.14
8 25.50 3.45 25.75 0.72 1.08 1.18 1.14 0.32 1.50 0.33 0.15 0.39 0.00 0.19

deque 9 267.42 38.31 246.38 6.37 12.19 1.26 9.02 2.30 16.26 3.17 1.36 4.46 0.00 1.57
10 * * * * * * * 21.95 214.30 31.48 16.48 59.01 0.01 23.87
6 1.25 0.11 1.81 0.18 0.08 1.08 0.13 0.06 0.08 0.03 0.05 0.04 0.00 0.03

fibheap 7 14.69 0.86 9.53 0.42 0.31 1.20 0.89 0.31 0.51 0.29 0.21 0.24 0.00 0.18
8 256.79 8.02 136.03 4.07 4.49 1.41 11.63 4.70 7.94 3.90 2.77 3.76 0.00 3.18
3 0.24 0.05 1.69 0.20 0.15 1.46 0.07 0.02 0.09 0.01 0.04 0.06 0.00 0.03

filesystem 4 4.67 0.46 12.04 0.60 0.69 1.59 0.20 0.06 0.99 0.06 0.16 0.38 0.01 0.06
5 * * * * * * * 3.30 30.35 1.70 16.74 10.45 0.02 2.59
8 15.10 1.72 88.13 1.10 0.38 1.13 1.00 0.12 0.88 0.12 0.38 0.35 0.00 0.10

heaparray 9 160.36 17.38 2546.90 8.85 4.40 1.36 6.87 1.17 9.25 1.06 3.73 4.05 0.00 1.03
10 * * * * * * * 11.47 98.01 10.46 44.85 46.36 0.01 18.52
6 3.07 0.15 3.24 0.04 0.07 1.11 0.24 0.05 0.19 0.10 0.03 0.05 0.00 0.04

queue 7 48.30 1.52 34.60 0.18 0.70 1.10 3.09 0.80 1.85 1.09 0.07 0.45 0.00 0.39
8 * * * * * * * 13.71 42.80 21.38 0.94 9.77 0.00 14.57
6 1.77 0.10 3.13 0.02 0.06 1.13 0.20 0.04 0.16 0.08 0.02 0.04 0.00 0.03

stack 7 28.38 1.85 29.46 0.02 0.49 1.18 2.44 0.40 1.54 0.94 0.02 0.34 0.00 0.29
8 * * * * * * * 7.04 34.77 16.58 0.02 7.54 0.00 10.21

12 191.51 26.06 56.70 5.05 43.52 2.00 2.83 1.44 29.60 1.26 1.55 6.74 0.02 0.66
treemap 13 622.58 81.12 167.46 13.11 137.08 2.10 8.46 4.23 94.53 4.05 4.39 22.04 0.02 2.42

14 2031.64 283.39 545.19 38.45 494.99 2.47 26.78 13.48 333.97 13.08 13.43 81.55 0.04 9.13
8 31.95 2.58 26.99 1.34 0.97 1.13 1.15 0.22 1.68 0.24 0.36 0.70 0.00 0.16

ubstack 9 357.06 30.19 1114.99 14.09 9.06 1.37 8.02 2.64 16.96 1.62 3.94 7.96 0.00 1.54
10 * * * * * * * 33.77 203.66 16.28 50.82 100.10 0.00 22.12

execution, only the JPF JVM handles the memory management.
Many factors, already mentioned for exploration time, can

also influence memory usage, but a key factor is the number
of constant ∆Objects in the merged state, i.e., in the ∆State.
∆Execution uses these objects to represent values that are the
same across all states in a ∆State. We measured the percentage
of all ∆Objects in merged states that are actually constant, across
an entire exploration. For example, if we run an experiment for
2 iterations and find x1 constants out of y1 ∆Objects in the first
iteration and x2 out of y2 in the second, then (x1 +x2)/(y1 +y2)

would be the percentage of constants. We found that there is
a relatively strong positive correlation between the percentage
of constant ∆Objects and the memory ratio for an experiment.
For example, bst and N = 11 has a poor memory ratio,
and the percentage of constant objects in ∆States is 33%, the
lowest of all subjects. For treemap and N = 12, on the other
hand, ∆Execution uses less memory than standard execution, and
the percentage of constant objects is 69%. Note that this ratio
of constants is “static” (measured during merging) and differs
from the ratios discussed in Section II-E which are “dynamic”
(measuring number of accesses during execution). The static ratio
better reflects the memory usage.

B. Non-exhaustive exploration
We next evaluate ∆Execution for a different state-space explo-

ration. While exhaustive exploration is the most commonly used,
there are several others such as random [13], [34] or symbolic
execution [2], [16], [26], [49]. Recently, Visser et al. [46] have
proposed abstract matching, a technique for non-exhaustive state-
space exploration of data structures. The main idea of abstract

matching is to compare states based on their shape abstraction:
two states that have the same shape are considered equivalent
even if they have different values in fields. For example, all
binary search trees of size one are considered equivalent. The
exploration is pruned whenever it reaches a state equivalent
to some previously explored state, which means that abstract
matching can miss some portions of the state space.

We chose to evaluate ∆Execution for abstract matching because
the JPF experiments done by Visser et al. [46] showed that
abstract matching achieves better code coverage than five other
exploration techniques, including exhaustive exploration, random,
and symbolic execution. (The experiments did not consider
whether higher code coverage results in finding more bugs.) Our
evaluation uses the same four subjects used to evaluate abstract
matching in JPF—binheap, bst, fibheap, and treemap—
and we also ran each subject for sequence bounds up to N = 30

or until the experiment reached the time bound of 1 hour. We used
the same test drivers as for exhaustive exploration, but randomized
the order in which methods and argument values were chosen
and used 10 different random seeds; Visser et al. use the same
experimental setup to minimize the bias that a fixed order of
method/value choices could have when combined with abstract
matching.

Table III shows the results for abstract matching with and
without ∆Execution. ∆Execution significantly reduces the overall
exploration time for two subjects (bst and treemap) and slightly
reduces or increases the time for the other two subjects (binheap
and fibheap). ∆Execution provides a smaller speedup for the
bounds explored for abstract matching (Table III) than for the
bounds explored for exhaustive exploration (Table I). This can

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 13

TABLE III
OVERALL TIME FOR NON-EXHAUSTIVE EXPLORATION IN JPF.

experiment standard JPF results ∆JPF results time
subject N time (sec) #states #exec. time (sec) #states #exec. std/∆

28 4.33 28 15680 4.12 28 956 1.05x
binheap 29 4.42 29 16820 4.16 29 958 1.06x

30 4.58 30 18000 4.27 30 1040 1.07x
20 549.85 166064 10168360 90.86 150192 49645 6.05x

bst 21 1,237.36 381535 22466178 246.28 416946 77951 5.02x
22 2,389.23 677848 43605496 380.42 626555 83569 6.28x
28 18.68 881 182323 20.40 1041 7810 0.92x

fibheap 29 19.15 961 184320 20.35 1157 7269 0.94x
30 28.68 1144 289571 28.56 1354 10981 1.00x
20 195.50 11879 1492080 43.28 11952 39131 4.52x

treemap 21 385.33 22455 2893212 65.82 20590 48974 5.85x
22 661.17 38126 4918100 107.33 36550 59693 6.16x

be attributed to the reduced number of states and executions
in abstract matching compared to exhaustive exploration. For
example, for bst, abstract matching for N = 20 explores fewer
states and executions (166,064 and 10,168,360, respectively) than
exhaustive exploration for N = 11 (915,641 and 20,144,102). In
addition, there is less similarity across states and executions in
abstract matching than in exhaustive exploration. Indeed, abstract
matching selects the states such that they differ in shape. (The
peculiarity of binheap is that it has only one possible shape for
any given size.)

Note that abstract matching can explore a different number of
states and executions with and without ∆Execution. The reason
is that standard execution and ∆Execution explore the states in
a different order: while standard execution explores each state
index in order, ∆Execution explores at once various subsets of
state indexes based on the splits during the execution. Thus, these
executions can encounter in different order states that have the
same shape, and only the first encountered of those states gets
explored. The randomization of non-deterministic method/value
choices, which is necessary for abstract matching, also minimizes
the effect that different orders could introduce for ∆Execution and
standard execution. As Table III shows, ∆Execution can explore
more states (for example for bst and N = 21) or fewer states
(for example for bst and N = 20) than standard execution,
but ∆Execution speeds up exploration whenever the shapes have
similarities.

C. AODV case study
We also evaluated ∆Execution on a larger application, namely

the implementation of the Ad-Hoc On-Demand Distance Vector
(AODV) routing protocol [35] in the J-Sim network simula-
tor [24]. This application was previously used to evaluate a J-Sim
model checker [40] and a technique that improves execution time
in explicit-state model checkers [17].

AODV is a routing protocol for ad-hoc wireless networks. Each
of the nodes in the network contains a routing table that describes
where a message should be delivered next, depending on the
target. The safety property we check expresses that all routes
from a source to a destination should be free of cycles, i.e., not
have the same node appear more than once in the route [40].

The implementation of AODV, including the required J-Sim li-
brary classes, consists of 43 classes with over 3500 non-comment,
non-blank lines of code. We instrumented this code using our
Eclipse plug-in that automates instrumentation for ∆Execution

on JPF. The resulting instrumented code consisted of 143 classes
with over 9500 lines of code. We did not try this case study
in BOX since it currently requires much more manual work for
instrumentation (for both standard and ∆Execution).

We used for this case study the test driver previously developed
for AODV [40]. Like the drivers used for exhaustive exploration,
the AODV driver invokes various methods that simulate protocol
actions: sending messages, receiving messages, dropping mes-
sages, etc. Unlike those drivers, the AODV driver also (i) includes
guards that ensure that an action is taken only if its preconditions
are satisfied and (ii) includes a procedure that checks whether
the resulting protocol state satisfies the safety property described
above. In this experiment, when a violation is encountered, that
state/path is pruned, but the overall exploration continues.

We ran experiments on three variations of the AODV imple-
mentation, each containing an error that leads to a violation of the
safety property [40]. Table IV shows the results of experiments
on one variation. Since the property was first violated in the
ninth iteration for all three variations, the results for the other
two variations were similar, and we do not present them here.
Table IV also includes the breakdown of time for the AODV
experiments. Note that most of the time in ∆Execution goes to the
execution operation indicating that AODV is much more complex
code than the ten basic subjects.

We implemented two optimizations in the evaluation of AODV.
The first introduces a special treatment for pre- and post-
conditions of methods that implement AODV actions. The second
takes advantage of domain-specific knowledge about AODV:
some data structures in the AODV state are semantically sets,
e.g., it does not matter in which order a routing tables for an
AODV node stores its entries.

1) Pre- and post-conditions: The evaluation of method pre-
and post-conditions can split the execution in ∆Execution, effec-
tively leading a model checker to exercise an AODV method (say,
dropping a message) more than once in a given iteration, with
different statemasks. This reduces the potential of ∆Execution to
take advantage of the similarity across states and paths (when
splitting on pre-conditions) and results in a less efficient merging
(when splitting on post-conditions). However, it is unnecessary
to exercise an AODV method differently for different paths of
executions through pre- and post-conditions: the only result that
matters is the boolean value of the conditions, not how the value
is obtained. To speed up the exploration, we changed the delta
exploration for AODV to merge the statemasks after evaluating
the pre-conditions and before evaluation of the post-conditions.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 14

TABLE IV
EXPLORATION OF AODV IN JPF.

experiment standard JPF time (sec) ∆JPF time (sec) time mem # states
subject N total exec comp back total exec comp back merg std/∆ std/∆ std & ∆

6 6.87 3.21 0.20 3.46 7.81 4.82 0.54 1.93 0.53 0.88x 0.53x 1061
7 21.44 11.48 0.64 9.32 16.97 11.79 1.96 2.28 0.94 1.26x 0.56x 3796

aodv 8 74.31 41.72 2.47 30.11 43.10 29.57 7.76 3.39 2.38 1.72x 0.52x 13195
9 262.20 148.06 9.51 104.63 128.60 85.88 29.68 6.00 7.04 2.04x 0.58x 44735

10 926.60 522.49 36.18 367.92 485.14 337.67 110.65 14.46 22.36 1.91x 0.51x 147805

This way, for instance, the model checker executes a method only
once (in a given iteration) against all states that evaluate the pre-
condition to true. This is a general optimization that can apply
to any subject where method pre- and post-conditions are clearly
identified.

2) Special data structures: Some data structures that the
AODV implementation uses are sets implemented with lists. As a
result of comparing states at the implementation level, the model
checker can explore more states than necessary. For instance,
two states can differ in the order of the elements in the lists
although they represent the same set. The routing table is a key
data structure in AODV, so we changed the implementation to
keep the routing tables as sorted lists. This change comes with
the cost of sorting the table when it is updated. However, it results
in fewer explored states—because the model checker finds more
states equivalent—in both standard and ∆Execution.

VI. RELATED WORK

Handling state is the central issue in explicit-state model
checkers [22], [23], [28], [30]. For example, JPF [44] implements
techniques such as efficient encoding of Java program state and
symmetry reductions to help reduce the state-space size [28].
Our ∆Execution uses the same state comparison, based on
Iosif’s depth-first heap linearization [23]. However, ∆Execution
leverages the fact that ∆States can be explored simultaneously to
produce a set of linearizations. Musuvathi and Dill proposed an
algorithm for incremental state hashing based on a breadth-first
heap linearization [30]. We plan to implement this algorithm in
JPF and to use ∆Execution to optimize it.

Darga and Boyapati proposed glass-box model checking [18]
for pruning search. They use a static analysis that can reduce
state space without sacrificing coverage. Glass-box exploration
represents the search space as a BDD and identifies parts of the
state space that would not lead to more coverage. However, glass-
box exploration requires the definition of executable invariants in
order to guarantee soundness. In contrast, ∆Execution does not
require any additional annotation on the code.

Symbolic execution [26], [45], [49] is a special kind of
execution that operates on symbolic values. The state includes
symbolic variables (which represent a set of concrete values)
and a path condition that encodes constraints on the symbolic
variables. Symbolic execution has recently gained popularity with
the availability of fast constraint solvers and has been applied to
test-input generation of object-oriented programs [2], [26], [45],
[49]. Common problems in symbolic execution include the treat-
ment of arrays, object graphs, loops (and recursion), domains of
unbounded size, libraries, and native code. CBMC [10] addresses
these problems using paths of bounded length and finite input
domains. The recent techniques combining symbolic execution
and random execution show good promise in addressing some

of these problems [9], [21], [39]. Conceptually, both symbolic
execution and ∆Execution operate on a set of states. While
symbolic execution can represent an unbounded number of states,
∆Execution uses an efficient representation for a bounded set of
concrete states. The use of concrete states allows ∆Execution to
overcome some of the problems that symbolic execution has with
representing dynamically allocated data (heap).

Shape analysis [27], [38], [50] is a static program analysis
that verifies programs that manipulate dynamically allocated
data. Shape analysis uses abstraction to represent infinite sets of
concrete heaps and performs operations on these sets, including
operations similar to splitting and merging in ∆Execution. Shape
analysis computes overapproximations of the reachable sets of
states and loses precision to obtain tractability. In contrast,
∆Execution operates precisely on sets of concrete states but can
explore only bounded executions.

Offutt et al. [33] proposed DDR, a technique for test-input
generation where the values of variables are ranges of concrete
values. DDR uses symbolic execution (on ranges) to generate
inputs. Intuitively, DDR can be efficiently implemented since
it splits the ranges when it adds constraints to the system.
DDR requires inputs to be given as ranges, implements a lossy
abstraction (to reduce the size of the state space in favor of
more efficient decision procedures), and does not support object
graphs. ∆Execution focuses on object graphs and does not require
inputs to be ranges. However, the use of ranges as a special
representation in ∆States could likely improve ∆Execution even
more, so we plan to investigate this in the future.

In the introduction, we discussed the relationship between sym-
bolic model checking [11], [25] and ∆Execution. ∆Execution is
inspired by symbolic model checking and conceptually performs
the same exploration but handles states that involve heaps. BDDs
are typically used as an implementation tool for symbolic model
checking. Predicate abstraction in model checking [5], [6] reduces
the checking of general programs into boolean programs that
are efficiently handled by BDDs. While predicate abstraction has
shown great results in many applications, it does not handle well
complex data structures and heaps. BDDs have been also used
for efficient program analysis [29], [47] to represent analysis
information as sets and relations. These techniques employ either
data [29] or control abstraction [47] to reduce the domains of
problems and make them tractable. It remains to investigate if
it is possible to leverage on a symbolic representation, such as
BDDs, to represent sets of concrete heaps to efficiently execute
programs in ∆Execution mode.

We previously proposed a technique, called Mixed Execu-
tion, for speeding up straightline execution in JPF [17]. Mixed
Execution considers only one state and uses an existing JPF
mechanism to execute code parts outside of the JPF backtracked
state, improving the exploration time up to 37%. ∆Execution

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 15

considers multiple states, improving the exploration time up to
two orders of magnitude.

VII. CONCLUSIONS

We presented ∆Execution, a novel technique that significantly
speeds up state-space exploration of object-oriented programs.
State-space exploration is an important element of model check-
ing and automated test generation. ∆Execution executes the
program simultaneously on a set of standard states, sharing the
common parts across the executions and separately executing only
the “deltas” where the executions differ. The key to efficiency of
∆Execution is ∆State, a representation of a set of states that
permits efficient operations on the set. The experiments done on
two model checkers, JPF and BOX, and with two different kinds
of exploration show that ∆Execution can reduce the time for state-
space exploration from two times to over an order of magnitude,
while taking on average less memory in JPF and roughly the same
amount of memory in BOX.

In the future, we plan to apply the ideas from ∆Execution
in more domains. First, we plan to manually transform some
important algorithms to work in the “delta mode”, as we did
for the optimized comparison of states. For instance, doing so
for the merging of ∆States would further improve the speedup
of ∆Execution. Second, we plan to explore the applicability of
∆Execution for multi-threaded programs. For instance, it may be
possible to efficiently execute code sections for multiple thread
interleavings at the same time using ∆Execution. Third, we
plan to evaluate automatic ∆Execution outside of state-space
exploration. In regression testing, for example, the old and the
new versions of a program can run in the “delta mode” which
would allow a detailed comparison of the states from the two
versions. We believe that ∆Execution can also provide significant
benefits in these new domains.

ACKNOWLEDGMENT

We would like to thank Corina Pasareanu and Willem Visser
for helping us with JPF, Chandra Boyapati and Paul Darga for
providing us with the subjects from their study [18], Ahmed
Sobeih for helping us with the AODV case study, and Brett
Daniel, Kely Garcia, and Traian Serbanuta for their comments
on an earlier draft of this paper. We also thank Ryan Lefever,
William Sanders, Joe Tucek, Yuanyuan Zhou, and Craig Zilles—
our collaborators on the larger Delta Execution project [51]—for
their comments on this work. This work was partially supported
by NSF grants CNS 0613665 and CNS 0615372 and by a CAPES
fellowship under grant #15021917. We also acknowledge support
from Microsoft Research. We also thank the anonymous reviewers
of our ISSTA 2007 paper [15] and this journal article for their
comments that helped us improve the presentation.

REFERENCES

[1] JPF webpage. http://javapathfinder.sourceforge.net.
[2] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A symbolic execution

extension to Java PathFinder. In Proceedings of the International
Conference on Tools and Algorithms for Construction and Analysis of
Systems (TACAS), pages 134–138, 2007.

[3] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing:
A model checker for concurrent software. In Proceedings of the
International Conference on Computer Aided Verification (CAV), pages
484–487, 2004.

[4] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller.
JNuke: Efficient dynamic analysis for Java. In Proceedings of the
International Conference on Computer Aided Verification (CAV), pages
462–465, 2004.

[5] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 203–213, 2001.

[6] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In Proceedings of the International SPIN Workshop
on Model Checking of Software (SPIN), pages 113–130, 2000.

[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 123–133, 2002.

[8] R. E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
pages 322–335, 2006.

[10] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-
C programs. In Proceedings of the Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2988 of LNCS,
pages 168–176, 2004.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, Cambridge, MA, 1999.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models from Java
source code. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 439–448, 2000.

[13] C. Csallner and Y. Smaragdakis. JCrasher: An automatic robustness
tester for Java. Software - Practice and Experience, 34:1025–1050,
2004.

[14] M. d’Amorim. Efficient Explicit-State Model Checking of Programs with
Dynamically Allocated Data. Ph.D., University of Illinois at Urbana-
Champaign, Urbana, IL, Oct. 2007.

[15] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution for effi-
cient state-space exploration of object-oriented programs. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pages 50–60, New York, NY, USA, 2007. ACM Press.

[16] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst.
An empirical comparison of automated generation and classification
techniques for object-oriented unit testing. In Proceedings of the IEEE
International Conference on Automated Software Engineering (ASE),
pages 59–68, 2006.

[17] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized execution of
deterministic blocks in Java PathFinder. In Proceedings of International
Conference on Formal Methods and Software Engineering (ICFEM),
volume 4260, pages 549–567, 2006.

[18] P. T. Darga and C. Boyapati. Efficient software model checking of data
structure properties. In Proceedings of the ACM SIGPLAN Sonference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 363–382, 2006.

[19] C. DeMartini, R. Iosif, and R. Sisto. A deadlock detection tool
for concurrent Java programs. Software - Practice and Experience,
29(7):577–603, 1999.

[20] P. Godefroid. Model checking for programming languages using
Verisoft. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 174–186, 1997.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Procedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), volume 40,
pages 213–223, New York, NY, USA, 2005. ACM Press.

[22] G. J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[23] R. Iosif. Exploiting heap symmetries in explicit-state model checking
of software. In Proceedings of the IEEE International Conference on
Automated Software Engineering (ASE), page 254, Washington, DC,
USA, 2001. IEEE Computer Society.

[24] J-Sim. http://www.j-sim.org/.
[25] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. In Proceedings
of the IEEE Symposium on Logic in Computer Science (LICS), pages
1–33, Washington, D.C., 1990. IEEE Computer Society Press.

[26] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proceedings of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 99, MONTH 2008 16

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 553–568, April 2003.

[27] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 17–32, 2002.

[28] F. Lerda and W. Visser. Addressing dynamic issues of program model
checking. In Proceedings of the international SPIN workshop on Model
checking of software (SPIN), pages 80–102, Toronto, Canada, 2001.

[29] O. Lhotak and L. Hendren. Jedd: a BDD-based relational extension
of Java. In Proceedings of the ACM SIGPLAN 2004 conference on
Programming Language Design and Implementation (PLDI), pages 158–
169, New York, NY, USA, 2004. ACM Press.

[30] M. Musuvathi and D. L. Dill. An incremental heap canonicalization
algorithm. In Proceedings of the International SPIN Workshop on Model
Checking of Software (SPIN), pages 28–42, 2005.

[31] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A
pragmatic approach to model checking real code. In Proceedings of the
Symposium on Operating Systems Design and Implementation (OSDI),
pages 75–88, December 2002.

[32] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 446–455, New York, NY, USA, 2007. ACM Press.

[33] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction procedure
for test data generation. Software - Practice and Experience, 29(2):167–
193, 1999.

[34] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and clas-
sification of test inputs. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages 504–527, Glasgow,
Scotland, July 2005.

[35] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector
routing. In Proceedings of the IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), pages 90–100. IEEE Computer
Society Press, 1999.

[36] S. Qadeer. Daisy File System. Joint CAV/ISSTA Special Event on
Specification, Verification, and Testing of Concurrent Software. 2004.

[37] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-
modular software model checking framework. In Proceedings of the
European Software Engineering Conference and SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE), pages
267–276, 2003.

[38] R. Rugina. Shape analysis quantitative shape analysis. In Proceedings
of the Static Analysis Symposium (SAS), pages 228–245, 2004.

[39] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In Proceedings of the European Software Engineering
Conference and the International Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 263–272, Sept. 2005.

[40] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. Finding bugs in
network protocols using simulation code and protocol-specific heuristics.
In Proceedings of the International Conference on Formal Engineering
Methods (ICFEM), pages 235–250, 2005.

[41] D. Stotts, M. Lindsey, and A. Antley. An informal formal method for
systematic JUnit test case generation. In Proceedings of the XP/Agile
Universe Conference, pages 131–143, 2002.

[42] Sun Microsystems. jstat: Java Virtual Machine Statistics Mon-
itoring Tool. http://java.sun.com/j2se/1.5.0/docs/
tooldocs/share/jstat.html.

[43] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing
with model programs. In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 273–282, New
York, NY, 2005. ACM Press.

[44] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering, 10(2):203–232, April 2003.

[45] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation
with Java PathFinder. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 97–107, 2004.

[46] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input generation
for Java containers using state matching. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pages 37–48, 2006.

[47] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 131–144, 2004.

[48] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting
redundant object-oriented unit tests. In Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering (ASE),
pages 196–205, Sept. 2004.

[49] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution. In
Proceedings of the International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), pages 365–381, Apr.
2005.

[50] G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computing most-
precise abstract operations for shape analysis. In Proceedings of the
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 530–545, 2004.

[51] Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d’Amorim, S. Lauter-
burg, R. M. Lefever, and J. Tucek. Delta execution for software relia-
bility. In Workshop on Hot Topics in System Dependability (HotDep),
Edinburgh, UK, June 2007.

Marcelo d’Amorim received his PhD degree from
the University of Illinois at Urbana-Champaign,
USA, in October 2007. He is currently a post-
doctorate research fellow in the Software Productiv-
ity Group at the Universidade Federal de Pernam-
buco, Brazil. His research interest is on productivity
in software engineering, focusing on the study of
automated techniques for testing and debugging.
More information is available at http://cin.
ufpe.br/˜damorim.

Steven Lauterburg received his BS degree in Com-
puter Science in 1985 from the University of Illi-
nois at Urbana-Champaign and his MS degree in
Computer Science in 2004 from DePaul University
in Chicago. He has extensive software industry and
process improvement experience, accumulated while
working at Accenture for over 17 years. Steven
is currently a PhD student at the University of
Illinois at Urbana-Champaign. His research inter-
ests include software testing, model checking, and
program analysis. More information is available at

http://mir.cs.uiuc.edu/˜slauter2.

Darko Marinov is an Assistant Professor in the
Department of Computer Science at the University
of Illinois at Urbana-Champaign. He received his
PhD degree in 2005 and SM degree in 2000, both
in Computer Science from MIT. His main research
interests are in software engineering, with an empha-
sis on improving software reliability, using software
testing and model checking. More information is
available at http://www-faculty.cs.uiuc.
edu/˜marinov.

