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ABSTRACT
State-space exploration is the essence of model checking and an
increasingly popular approach for automating test generation. A
key issue in exploration of object-oriented programs is handling the
program state, in particular the heap. Previous research has focused
on standard program execution that operates on one state/heap. We
present Delta Execution, a technique that simultaneously operates
on several states/heaps. It exploits the fact that many execution
paths in state-space exploration partially overlap and speeds up the
exploration by sharing the common parts across the executions and
separately executing only the “deltas” where the executions differ.

We have implemented Delta Execution in JPF, a popular general-
purpose model checker for Java programs, and in BOX, a special-
ized model checker that we have developed for efficient exploration
of sequential Java programs. We have evaluated Delta Execution
for (bounded) exhaustive exploration of ten basic subject programs
without errors. The experimental results show that on average Delta
Execution improves the exploration time 10.97x (over an order of
magnitude) in JPF and 2.07x in BOX. We have also evaluated Delta
Execution for one larger case study with errors, where the explo-
ration time improved up to 1.43x.

Categories and Subject Descriptors:D.2.4 [Software Engineer-
ing]: Program Verification, D.2.5 [Software Engineering]:Testing
and Debugging.

General Terms: Performance, Verification.

Keywords: Model checking, delta execution.

1. INTRODUCTION
Software testing and model checking are important approaches

for improving software reliability. A core technique for model
checking isstate-space exploration[7]: it starts the program from
the initial state, searches the states reachable through executions re-
sulting from non-deterministic choices (including threadinterleav-
ings), and prunes the search when it encounters an already visited
state. Stateful exploration is also increasingly used to automate
test generation, in particular for unit testing of object-oriented pro-
grams [12, 14, 25, 42, 44, 45]. In this context, each test creates one
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or more objects and invokes on them a sequence of methods. State-
space exploration can effectively search how different method se-
quences affect the state of objects and can generate the testse-
quences that satisfy certain testing criteria [12,42,44].

A key issue in state-space exploration is manipulating the pro-
gram state: saving the state at non-deterministic branch points,
modifying the state during execution, comparing states, and restor-
ing the state for backtracking. For object-oriented programs, the
main challenge is manipulating the heap, the part of the state that
links dynamically allocated objects. Researchers have developed a
large number of model checkers for object-oriented programs [1,8,
16,20,29,31,35]. These model checkers have focused on efficient
manipulation and representation of states/heaps for the usual pro-
gram execution that operates on one state/heap. We refer to such
execution asstandard execution.

We present Delta Execution, referred to as∆Execution,a tech-
nique whereprogram execution simultaneously operates on sev-
eral states/heaps. ∆Execution exploits the fact that many execu-
tion paths in state-space exploration partially overlap.∆Execution
speeds up the state-space exploration by sharing the commonparts
across the executions and separately executing only the “deltas”
where the executions differ. The heart of∆Execution is anefficient
representation and manipulation of sets of states/heapsfor object-
oriented programs.∆Execution is thus related to shape analy-
sis [26,36,46], a static program analysis that checks heap properties
and operates on sets of states. However, shape analysis operates on
abstract states, while∆Execution operates on concrete states.

∆Execution is inspired by symbolic model checking (SMC) [7,
24] but considers states that include heap. SMC enabled a break-
through in model checking as it provided a much more efficientex-
ploration than explicit-state model checking. Conceptually, SMC
executes the program on a set of states and exploits the similar-
ity among executions. Typical implementations of SMC represent
states with Binary Decision Diagrams (BDDs) [5] that support ef-
ficient operations on boolean functions. However, heap operations
prevent the direct use of BDDs for object-oriented programs. Al-
though heaps are easily translated into boolean functions [28, 43],
the heap operations—including field reads and writes, dynamic ob-
ject allocation, garbage collection, and comparisons based on heap
symmetry [4, 7, 22, 27, 30]—do not translate directly into efficient
BDD operations.

This paper makes the following contributions.
Idea: We propose the idea of sharing similar executions to speed
up state-space exploration of object-oriented programs. The key
insight is that many execution paths in state-space exploration par-
tially overlap.
Technique: We describe∆Execution, a specific technique for shar-
ing commonalities across executions and separately executing only



public class BST {
private Node root;

private int size;

public void add(int info) {

if (root == null)
root = new Node(info);

else
for (Node temp = root; true; )
if (temp.info < info) {

if (temp.right == null) {
temp.right = new Node(info);

break;
} else temp = temp.right;

} else if (temp.info > info) {
if (temp.left == null) {

temp.left = new Node(info);

break;
} else temp = temp.left;

} else return; // no duplicates
size++;

}

public boolean remove(int info) { ... }

}

class Node {
Node left, right;
int info; Node(int info) { this.info = info; }

}

Figure 1: Excerpt from binary search tree implementing a set.

the “delta” differences. We introduce∆States, a novel representa-
tion for sets of states, and present efficient operations formanipu-
lating∆States.
Implementation: We have implemented∆Execution in two model
checkers, JPF [20, 29] and BOX. JPF is a general-purpose model
checker for Java programs; it can explore concurrent code and can
save/backtrack complete Java states, including stack and heap. We
have developed BOX, a special-purpose model checker that can ex-
plore only sequential code and can save/backtrack only heap.
Evaluation: We have evaluated∆Execution for (bounded) exhaus-
tive exploration. The results on ten basic subject programsshow
that on average∆Execution improves the exploration time 10.97x
(over an order of magnitude) in JPF and 2.07x in BOX, while tak-
ing on average 1.51x less memory in JPF and roughly the same
amount of memory in BOX. We have also evaluated∆Execution
for one larger case study with errors, where the explorationtime
improved up to 1.43x.

2. EXAMPLE
We next present an example that illustrates how∆Execution

speeds up the state-space exploration compared to standardexe-
cution. Figure 1 shows a binary search tree class that implements
a set. EachBST object stores the size of the tree and its root node,
and eachNode object stores an integer value and references to the
two children. TheBST class has methods to add and remove tree
elements. A test sequence for the binary search tree class consists
of a sequence of method calls, for exampleBST t = new BST();

t.add(1); t.remove(2);.
The goal of state-space exploration is to explore differentse-

quences of method calls. A common exploration scenario is to
exhaustively explore all sequences of method calls, up to some
bound [14, 42, 45]. Such exploration does not actually enumerate
all sequences but instead uses state comparison to prune sequences
that exercise the same states [42,45].

Figure 2 shows an example driver program that enables a model
checker to systematically explore different states of the tree. (The
code as shown is for standard execution, and the commented parts

// N bounds sequence length and parameter values
public static void mainStandard(int N) {

/* public static void mainDelta(int N) { */
BST bst = new BST(); // empty tree
for (int i = 0; i < N; i++) {

/* bst = Delta.newIteration(bst); */
int methNum = Verify.getInt(0, 1);

int value = Verify.getInt(1, N);
/* Delta.newValue(); */
switch (methNum) {

case 0: bst.add(value); break;
case 1: bst.remove(value); break;

}
Standard.stopIfVisited(bst); /* Delta.merge(bst); */

}
}

Figure 2: Drivers for standard execution and∆Execution.

are for∆Execution.) The driver creates the initial state of the bi-
nary search tree and exhaustively explores sequences (up tolength
N ) of the methodsadd and remove (with values between 1 and
N ). The driver selects different methods and input values using
the library methodgetInt(int lo, int hi) that introduces a non-
deterministic choice point to return a number betweenlo andhi.

The standard driver discards from further exploration any se-
quence that results in a state that has already been visited;the driver
uses the library methodstopIfVisited(Object root) that ignores
the current execution path and forces backtracking (to a preced-
ing choice point) if the state reachable fromroot has already been
visited in the exploration. Note that the comparison of states is
performed only at the method boundaries (not during method exe-
cution), which naturally partitions an execution path intosubpaths
that each cover execution of one method invocation. As in other
related studies [12, 42, 45], we consider a breadth-first exploration
of the state space. (A depth-first exploration could miss parts of
the state space since state comparison could eliminate a state with
a shorter sequence in favor of a state with a longer sequence.)

Figure 3 illustrates some states that arise in the state-space ex-
ploration corresponding to the callmainStandard(4). Among other
states, the exploration visits the five trees of size three shown at the
top of the figure. (For simplicity, the figure does not show theBST

object that contains size3 and points to the root node.) The explo-
ration executesadd(4) on the five trees of size three. The standard
driver separately executesadd(4) on each pre-state, resulting in the
five post-states shown at the bottom of the figure.

While standard execution invokesadd(4) separately against each
standard state,∆Execution invokesadd(4) simultaneously against
a set of standard states. ∆Execution itself operates on one state,
called a∆State,which represents a set of individual standard states.
We call the operation that combines standard states into a∆State
merging. The top of Figure 3 illustrates one set consisting of the
five pre-states. (Section 3.1 describes how to efficiently represent a
∆State, and Section 3.5 describes how to efficiently merge states.)

During program execution,∆Execution occasionally needs to
split the∆State. Informally, we say thata state (or set of states)
follows an execution pathif ∆Execution operates on that state as
it executes that path. Foradd(4), for example, the five pre-states
follow the same execution path until the first check oftemp.right

== null. At that point,∆Execution splits the set of states: one sub-
set (of two states) follows thetrue branch, and the other subset (of
three states) follows thefalse branch. Note that the split enforces
the invariant that all states in a set follow the same path.

Each split introduces a non-deterministic choice point in the ex-
ecution. Foradd(4), one execution with two states terminates after
creating a node with value4 and assigning it to the right of the root.
The figure depicts this execution with the left arrow. The other exe-
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Figure 3: Executions ofadd(4) on a set of states.

cution with three states splits at the second check oftemp.right ==

null: two (middle) states follow thetrue branch, and one (right-
most) state follows thefalse branch. These two executions termi-
nate without further splits, appropriately adding the value 4 to the
final trees.

We next describe themergingthat∆Execution performs to build
a ∆State from individual states. Merging is a dual operation of
splitting: while splitting partitions a set of states into subsets, merg-
ing combines several sets of states (or several individual states) into
a larger set. In principle, merging can be performed on any sets of
states whenever the executions associated with those states reach
the same program point. For example,∆Execution could merge all
three sets of states from Figure 3 when they reachsize++. How-
ever, our current implementation of∆Execution considers only the
program points that are method boundaries: it merges the states
only after all of them finish the execution path for one method,
since that is also where state comparison is done.

Figure 2 also shows a driver (obtained by using the commented
code) that explores states using∆Execution. The delta driver is
similar to the standard driver: both use non-deterministicchoices
to select different methods and input values, both prune theexplo-
ration based on the state ofbst, and both use breadth-first explo-
ration. However, the delta driver differs from the standarddriver
in the way it operates on the state. First,bst in the delta driver
is a ∆State that represents several individual trees. Second, the
delta driver backtracks the state differently than the standard driver.
Specifically, the methodnewIteration returns one∆State of all in-
dividual states that should be explored in a given iteration. In the
first iteration, this∆State is a singleton that has only the initial state
(with the empty tree). The methodmerge at the end of one method
execution path collects those trees (frombst) that have not been
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Figure 4: ∆State for the five pre-states from Figure 3.

previously visited and thus should be explored in the next loop iter-
ation. Effectively, the driver combines all distinct states reachable
with the method sequences of lengthi into one∆State for the it-
erationi+1. The methodnewValue updates the internal state for
∆Execution as backtracking should not restore some parts of that
internal state.

We next discuss how the performance of∆Execution and stan-
dard execution compare. In our running example,∆Execution re-
quires only three execution paths to reach all five post-states that
add(4) creates for the five pre-states. Additionally, these three
paths share some prefixes that can be thus executed only once.In
contrast, standard execution requires five executions ofadd(4), one
execution for each pre-state, to reach the five post-states.Also,
each of these five separate executions needs to be executed for the
entire path. The trade-off between∆Execution and standard ex-
ecution can be summarized like this:∆Execution performs fewer
executions (avoiding separate execution of the same path shared
by multiple states) than standard execution, but each execution in
∆Execution (that operates on a set of standard states) is moreex-
pensive than in standard execution (that operates on one standard
state). It is also important to note that the presence of constants
(i.e., values that are the same across a set of states) is essential
to efficient operations under∆Execution. Whether∆Execution is
faster or slower than standard execution for some exploration de-
pends on several factors, including the number of executionpaths,
the number of splits, the cost to execute one path, the numberof
constants, and the sharing of execution prefixes.

The experimental results from Section 5 show that∆Execution
is faster than standard execution for a number of subject programs
and values for the boundN from the drivers. For example, for the
binary search tree example andN = 10, ∆Execution speeds up
JPF 4.41x and our model checker BOX 1.67x, while using over 2x
more memory in JPF and 3x more memory in BOX. (On average,
∆Execution uses as much memory as standard execution.)

3. TECHNIQUE
The key idea of∆Execution is to execute a program simulta-

neously on a set of standard states. We first discuss∆Statesthat
represent sets of states. We describe in detail two main operations
on ∆States:splitting, which divides a set of states into subsets for
executing different program paths, andmerging, which combines
several states together into a set. We also present how program ex-
ecution works in∆Execution and how∆Execution facilitates an
optimized comparison of states.

3.1 ∆State
∆Execution represents a set of individual standard states asa sin-

gle∆State.Each∆State encodes all the information from the orig-



inal individual states. A∆State includes∆Objectsthat can store
multiple values (either references or primitives) that exist across the
multiple individual states represented by a∆State.

Figures 5, 6, and 7 show the classes used to represent∆States
for the binary search tree example. We discuss here only the field
declarations from those classes. (The methods from those classes
implement the operations on∆State and are explained later in the
text.) Each object of the classDeltaNode stores a collection of
references toNode objects, and each object of the classDeltaInt

stores a collection of primitive integer values. TheBST andNode

objects are changed such that they have fields that are∆Objects.
Figure 4 shows the∆State that represents the set of five pre-

states from Figure 3. Each∆State consists of layers of “regular”
objects and∆Objects. In this∆State, each of the pre-states has
a correspondingstate indexthat ranges from 0 to 4. Note that we
could extract each of the five pre-states by traversing the∆State
while indexing it with the appropriate state index. For example,
we can extract the balanced tree using state index 2. Also note that
some of the values in the example∆State are “don’t cares” (labeled
with ‘?’) because the corresponding object is not reachable for that
state index. For example, the first node to the left of the roothas
‘?’ in the field info for the last two states (with indexes 3 and 4)
because those states have the valuenull for the fieldroot.left.

While each∆Object conceptually represents a collection of val-
ues, the implementation does not always need to use collections or
arrays. In particular, a value is often constant across all (relevant)
states. For example, theinfo fields for all tree leaves in Figure 4
have constant values (for the relevant states). Our implementation
uses anoptimized representation for constants. The optimization is
straightforward, and we do not discuss it in detail. We pointout,
however, that the optimization is important both for reducing the
memory requirements of∆States and for improving the efficiency
of operations on∆States.

3.2 Splitting
∆Execution operates on a∆State that represents a set of stan-

dard states.∆Execution can perform many operations on the entire
set. It needs tosplit the set only at a branch control point (e.g., an
if statement) where some states from the set evaluate to different
branch outcomes (e.g., for one subset of states, the branch condi-
tion evaluates to true, and for the other subset of states, iteval-
uates to false). We call such pointssplit points; effectively, they
introduce non-deterministic choice points as∆Execution needs to
explore both outcomes. (Note that no split is necessary evenfor
branch control points when all states evaluate to the same branch
outcome.)

One challenge in∆Execution is to efficiently split∆States. Our
solution is to introduce astate maskthat identifies the currentlyac-
tive stateswithin a∆State. Each state mask is a set of state indexes.
At the beginning of an execution,∆Execution initializes the state
mask to the set of all state indexes. For example, the execution
of add(4) for the∆State from Figure 4 starts with the state mask
being{0, 1, 2, 3, 4}.

At the appropriate branch points,∆Execution needs to split the
set of states into two subsets. Our approach does not explicitly
divide a∆State into two∆States; instead, it simply changes the
state mask to reflect the splitting of the set of states. Specifically,
∆Execution builds a new state mask to identify the new subset of
active states in the∆State. It also saves the state mask for the
other subset that should be explored later on. The executionthen
proceeds with the new subset.

After ∆Execution finishes the execution path for some (sub)set
of states, itbacktracksto some unexplored split point to explore

the other path using the state mask saved at the split point. Back-
tracking changes the state mask but restores the∆State to exactly
what it was at the split point. Backtracking can be implemented in
several ways; Section 4 discusses how JPF uses state saving and
restoration while BOX uses re-execution.

To illustrate how the state mask changes during the execution,
consider the example from Figure 3. The state mask is initially
{0, 1, 2, 3, 4}. At the first split point, the execution proceeds with
the state mask being{0, 1}. After the first backtracking, the state
mask is set to{2, 3, 4}. At the second split point, the execution
proceeds with the state mask being{2, 3}. After the second back-
tracking, the state mask is set to{4} for the final execution.

Appropriate use of a state mask can facilitate optimizations on
the∆State. Consider, for example, a∆Object that is not a constant
when all states are active. This object can temporarily be trans-
formed into a constant if all its values are the same for some state
mask occurring during the execution. For instance, in our running
example, the value ofroot.right becomes the constantnull when
the state mask is{0, 1}. Additionally, the state mask allows the
use ofsparse representationsfor ∆Objects: instead of using an ar-
ray to map all possible state indexes into values, a sparse∆Object
can use representations thatmap only the active state indexes into
values, thereby reducing the memory requirement.

3.3 Program execution model
We next discuss how∆Execution executes program operations.

The key is to execute each operation simultaneously on a set of
values. ∆Execution uses a non-standard program execution that
manipulates a∆State that represents a set of standard states. Such
non-standard execution can be implemented in two ways: (1) in-
strumenting the code such that the regular execution of the instru-
mented code corresponds to the non-standard execution [25,40,45]
or (2) changing the execution engine such that it interpretsthe op-
erations in the non-standard semantics [12]. Our current imple-
mentation uses instrumentation: the subject code is preprocessed
to support∆Execution.

We use parts of the instrumentation to describe the semantics of
∆Execution.
Classes:The instrumentation changes the original program classes
and generates new classes for∆Objects. Figure 1 from Section 2
shows a part of the original code for the binary search tree exam-
ple. Figures 5, 6, and 7 show the key parts of the instrumented
code for this example. Figure 5 shows the instrumented version
of the originalBST andNode classes. Figure 6 shows the new class
DeltaNode that stores and manipulates the multipleNode references
that can exist across the multiple states in a∆State. Figure 7 shows
the classDeltaInt that stores and manipulates multipleint values;
this class is a part of the∆Execution library and is not generated
anew for each program.

It is important to note that∆Objects are immutable from the
perspective of the instrumented code in the same way that regular
primitive and reference values are immutable for standard execu-
tion. This allows sharing of∆Objects. For example, this allows
direct assignment of oneDeltaInt object to another (e.g.,int x

= y simply becomesDeltaInt x = y). Our implementation inter-
nally mutates∆Objects to achieve higher performance, in particu-
lar when values become constant across active states. The mutation
handles the situations that involve shared∆Objects and require a
“copy-on-write” cloning.
Types: The instrumentation changes all types in the original pro-
gram to their delta versions. Comparing figures 1 and 5, notice that
the occurrences ofNode andint have been replaced with the new
DeltaNode class (from Figure 6) and theDeltaInt class (from Fig-



public class BST {
private DeltaNode root = DeltaNode.NULL;

private DeltaInt size = DeltaInt._new(0);

public void add(DeltaInt info) {

if (get_root().eq(DeltaNode.NULL))
set_root(DeltaNode._new(info));

else
for (DeltaNode temp = get_root(); true; )
if (temp.get_info().lt(info)) {

if (temp.get_right().eq(DeltaNode.NULL)) {
temp.set_right(DeltaNode._new(info));

break;
} else temp = temp.get_right();

} else if (temp.get_info().gt(info)) {
if (temp.get_left().eq(DeltaNode.NULL) {

temp.set_left(DeltaNode._new(info));

break;
} else temp = temp.get_left();

} else return; // no duplicates
}
set_size(get_size().add(DeltaInt._new(1)));

}

public DeltaBoolean remove(DeltaInt info) { ... }
}

class Node {
DeltaNode left, right;

DeltaInt info;
Node(DeltaInt info) { this.info = info; }

}

Figure 5: Instrumented BST and Node classes.

ure 7), respectively. The instrumentation also appropriately changes
all definitions and uses of fields, variables, and method parameters
to use∆Objects.
Field accesses:The instrumentation replaces standard object field
reads and writes with calls to new methods that read and write
fields across multiple objects. For example, all reads and writes
of Node fields are replaced with calls to getter and setter methods
in DeltaNode. Consider, for instance, the field readtemp.left. In
∆Execution,temp is no longer a reference to a singleNode object
but a reference to aDeltaNode object that tracks multiple references
to possibly many differentNode objects. Theleft field of Node is
now accessed via theget left method inDeltaNode. This method
returns aDeltaNode object that references (one or more)Node ob-
jects that correspond to theleft fields of all temp objects whose
states are active in the state mask. In general, this can result in an
execution split when some objects intemp arenull.
Operations: The instrumentation replaces (relational and arith-
metic) operations on reference and primitive values with method
calls toDeltaNode andDeltaInt objects. All original operations
on values now operate on∆Objects that represent sets of values.
More precisely, the methods in∆Objects do not need to operate
on all values but only on those values that correspond to the active
state indexes as indicated by the state mask.

For an example arithmetic operation, consider integer addition.
In standard execution, the addition takes two integer values and cre-
ates a single value. In∆Execution, it takes twoDeltaInt objects
and creates a newDeltaInt object. Theadd method inDeltaInt
(Figure 7) shows how∆Execution conceptually performs pairwise
addition across all active state indexes for the twoDeltaInt ob-
jects. Our implementation optimizes the cases when those objects
are constant (to avoid the loop or state indexing).

For an example relational operation, consider reference equal-
ity. The methodeq in DeltaNode (Figure 6) performs this operation
across all active state indexes. Note that this method can create
a split point in the execution if the result of the operation differs

class DeltaNode {
// maps each state index to a Node object

Node[] values; // conceptually

DeltaNode(int size) { values = new Node[size]; }

private DeltaNode(Node n) { values = new Node[]{ n }; }
public static DeltaNode _new(DeltaInt info) {

return new DeltaNode(new Node(info));
}

public boolean eq(DeltaNode arg) {
StateMask sm = StateMask.getStateMask();

StateMask trueMask = new StateMask(sm.size());
StateMask falseMask = new StateMask(sm.size());

foreach (int index : sm)
if (values[index] == arg.values[index])

trueMask.enable(index);

else
falseMask.enable(index);

boolean result;
if (trueMask.isEmpty()) result = false;
else if (falseMask.isEmpty()) result = true;

else result = (Verify.getInt(0, 1) == 0); // split
StateMask.setStateMask(result ? trueMask : falseMask);

return result;
}

public DeltaNode get_left() {
StateMask sm = StateMask.getStateMask();

DeltaNode result = new DeltaNode(sm.size());
foreach (int index : sm) {

DeltaNode dn = values[index].left;
result.values[index] = dn.values[index];

}

return result;
}

public void set_left(DeltaNode arg) {
StateMask sm = StateMask.getStateMask();

IdentitySet<Node> set = new IdentitySet<Node>();
foreach (int index : sm) {
Node n = values[index];

if (set.add(n)) // true if n was added
n.left = n.left.clone();

n.left.values[index] = arg.values[index];
}

}

public DeltaNode get_right() { ... }
public void set_right(DeltaNode arg) { ... }

public DeltaInt get_info() { ... }
public void set_info(DeltaInt arg) { ... }

}

Figure 6: NewDeltaNode class.

class DeltaInt {
// maps each state index to an integer value
int[] values; // conceptually

DeltaInt add(DeltaInt arg) {

StateMask sm = StateMask.getStateMask();
DeltaInt result = new DeltaInt(sm.size());
foreach (int index : sm)

result.values[index] = values[index] + arg.values[index];
return result;

}
...

}

Figure 7: Part of DeltaInt library class.

across the states. If so,eq introduces a non-deterministic choice
(with getInt) that returns a booleantrue or false after appropri-
ately setting the state mask.
Method calls: The instrumentation replaces a standard method call
with a method call whose receiver is a∆Object, which allows mak-
ing the call on several objects at once. Note that each call intro-
duces a semantic branch point (since different objects may have
different dynamic types) and can result in an execution split.



void linearize(Object o, StateMask sm) {
foreach (int index : sm) {

Pair(Map _, Seq s) = linObject(o, new Map(), index);
checkVisited(index, s);

}

}

Pair<Map, Seq> linObject(Object o, Map ids, int index) {
if (o == null) return Pair(ids, Seq(NULL));
if (o in ids) return Pair(ids, Seq(ids.get(o)));

int id = ids.size();
return linFields(o, ids.put(o, id), Seq(id), index);

/*return linFields(o, 0, ids.put(o, id), Seq(id), index);*/
}

Pair<Map, Seq> linFields(Object o, Map ids,
Seq seq, int index) {

for (int f = 0; f < o.numberOfFields(); f++) {
Object fo = o.getField(f).values[index];

Pair(ids, Seq s) = linObject(fo, ids, index);
seq = seq.append(s);

}

return Pair(ids, seq);
}

Pair<Map, Seq> linFields(Object o, int f, Map ids,

Seq seq, int index) {
if (f < o.numberOfFields()) {

Object fo = o.getField(f).values[index];

Pair(Map m, Seq s) = linObject(fo, ids, index);
return linFields(o, f + 1, m, seq.append(s), index);

} else return Pair(ids, seq);
}

Figure 8: Non-optimized linearization of ∆State.

3.4 Optimized state comparison
Heap symmetry [7, 22, 27, 30] is an important technique that

model checkers use to alleviate the state-space explosion problem.
Heap symmetry detects equivalent states: when the exploration en-
counters a state equivalent to some already visited, the exploration
path can be pruned. In object-oriented programs, two heaps are
equivalent if they areisomorphic(i.e., have the same structure and
primitive values, while their object identities can vary) [4, 22, 30].
An efficient way to compare states for isomorphism is to uselin-
earization(also known as serialization or marshalling) that trans-
lates a heap into a sequence of integers such that two heaps are
isomorphic if and only if their linearizations are equal.

∆Execution exploits the fact that different heaps in a∆State can
share prefixes of linearization. Instead of computing linearizations
separately for each state in a set of states,∆Executionsimultane-
ously computes a set of linearizationsfor a ∆State. Sharing the
computation for the prefixes not only reduces the execution time
but also reduces memory requirements as it enables sharing among
the sequences used for linearizations.

We next present how to transform a basic algorithm that sepa-
rately linearizes each state from a∆State into an efficient algorithm
that simultaneously linearizes all states from a∆State. Figure 8
shows a pseudo-code of a basic algorithm that iterates over each
active state from the state mask and computes the linearization for
the individual state. For simplicity of presentation, thisalgorithm
assumes that the heaps contain only reference fields of only one
class. Our actual implementation handles general heaps with ob-
jects of different classes, primitive fields, and arrays.

The methodlinObject produces a sequence of integers that rep-
resent linearization for the state reachable fromo. Wheno is null,
linObject returns a singleton sequence with the value that repre-
sentsnull. Wheno is a reference to a previously linearized object,
linObject returns a singleton sequence with the identifier used for
that object, which handles object aliasing. The mapids stores the

Stack stack; // mutable structure
void linearize(Object o, StateMask sm) {

stack = new Stack();
Triple(Map _, Seq s, StateMask tm) =

linObject(o, new Map(), sm);

checkVisited(tm, s); // all states from tm have sequence s
while (!stack.isEmpty()) {

Tuple(Object o, int f, Map ids,
Seq seq, StateMask nm) = stack.pop();

Triple(Map _, Seq s, StateMask tm) =

linFields(o, f, ids, seq, nm);
checkVisited(tm, s);

}
}

Triple<Map, Seq, StateMask>
linObject(Object o, Map ids, StateMask sm) {

if (o == null) return Triple(ids, Seq(NULL), sm);
if (o in ids) return Triple(ids, Seq(ids.get(o)), sm);

int id = ids.size();
return linFields(o, 0, ids.put(o, id), Seq(id), sm);

}

Triple<Map, Seq, StateMask>

linFields(Object o, int f,
Map ids, Seq seq, StateMask sm) {

if (f < o.numberOfFields()) {
Triple(Object fo, StateMask em, StateMask nm) =
split(o.getField(f), sm);

if (nm is not empty)
stack.push(o, f, ids, seq, nm);

Triple(StateMask om, Map m, Seq s) = linObject(fo, ids, em);
return linFields(o, f + 1, m, seq.append(s), om);

} else return Triple(sm, ids, seq);

}

Figure 9: Optimized linearization of ∆State.

association between objects and their ids. Wheno is an object not
yet linearized,linObject creates a new id for it, appropriately ex-
tends the map, and linearizes all the object fields.

The methodlinFields linearizes the fields of a given object. A
typical implementation is iterative, as shown in the firstlinFields

method. It is important to note that the value of the expression
o.getField(f).values[index] determines the linearizations for
different states. We target this expression to be the split point in
our optimized linearization algorithm. The algorithm thusneeds to
explore different execution paths from this point, effectively per-
forming backtracking. We want to implement the optimized algo-
rithm to execute on a regular JVM, so to support backtracking.

An intermediate step in the optimization is to transform theal-
gorithm to conceptually use the continuation-passing style [17]. In
practice, the methodlinFields is transformed into a recursive im-
plementation shown in the secondlinFields method. This version
exposes the field indexf and linearizes the fields ofo betweenf and
o.getNumberOfFields(). This version permits the linearization to
continuean execution from the point it was left at inlinFields.
Note thatlinFields andlinObject manipulate functional objects
Map andSeq, which facilitates backtracking of the state.

Figure 9 shows the pseudo-code of the optimized algorithm that
linearizes a∆State in the∆Execution mode. The new methods
linObject andlinFields do not take one state index but a state
mask with several active state indexes to linearize. These methods
now return a state mask and one linearization for all the states in
that state mask. The linearization can introduce non-deterministic
choices to enforce the invariant that all states in the statemask have
the same linearization prefix. When the linearization completes for
some state mask, it needs to backtrack to explore the remaining
state masks.

The stack object stores the backtracking points. Each entry
stores the state that needs to be restored to continue an execution



from a split point: the root object, the field index, the map for object
identifiers, the current linearization sequence, and the state mask.
While stack is mutable, the other structures are immutable, which
makes it easy to restore the state. Thewhile loop in linearize

visits each pending backtracking point until it finishes computing
all linearizations.

The only source of non-determinism in the linearization is the
reading of fields across different states from the state mask. The
methodsplit takes as input a∆Objectdo = o.getField(f) and
a state masksm. It returns a standard objectfo = do.values[idx]

for someidx from sm, a state maskem of index values such that
do.values[index] == fo, and a state masknm of index values
such thatdo.values[index] != fo. At this point,linFields first
pushes on the stack an entry with the backtracking information for
nm and then continues the linearization offo for the states inem.

3.5 Merging
The dual of splitting sets of states into subsets ismergingseveral

sets of states into a larger set. Recall the driver for∆Execution
from Figure 2. It merges all non-visited states from one iteration
into a ∆State to be used at the start of the next iteration. Specif-
ically, the merge method receives as the input a∆State and (im-
plicitly) a state mask. This method extracts the non-visited states
from the∆State and only stores their linearized representations.
The methodnewIteration builds and returns a new∆State from
the stored linearized representations.

Our merging usesdelinearizationto construct a∆State from the
linearized representations of non-visited states. The standard delin-
earization is an inverse of linearization: given one linearized rep-
resentation, delinearization builds one heap isomorphic to the heap
that was originally linearized. The novelty of our merging is that it
operates on asetof linearized representations simultaneously and,
instead of building a set of standard heaps, it builds one∆State
that encodes all the heaps. It is interesting to point out that we of-
ten used in debugging our implementation the fact that linearization
and delinearization are inverses; the composition of thesefunctions
gives the identity function: for any set of linearizationss, the lin-
earization of the delinearization ofs should equals.

We highlight two important aspects of the merging algorithm.
First, it identifies∆Objects that should be constants (with respect
to the reachability of the nodes), which results in a more efficient
∆State. Such constants can occur quite often; for instance, in our
experiments (see Section 5), the lowest percentage of the constant
∆Objects in the merged∆States is 33%. Second, the merging al-
gorithm greedilyshares the objects in the resulting∆State: it at-
tempts to share the same∆Object among as many individual states
as possible. For example, in Figure 4, the left node from the root is
shared among three of the five states. A more detailed discussion
of the merging algorithm can be found in a technical report [11].

4. IMPLEMENTATION
We have implemented∆Execution in two model checkers, JPF

and BOX. JPF [20, 29] is a popular model checker for Java pro-
grams, but it is general-purpose and has a high overhead [13]for the
subject programs considered in our study and related studies [13,
41, 42]. We have thus implemented a specialized model checker,
called BOX (fromBounded Object eXploration), for efficient ex-
ploration of such subject programs.

4.1 JPF
We have implemented∆Execution by modifying JPF version 4.

JPF is implemented as a backtrackable Java Virtual Machine (JVM)
running on top of a regular, host JVM. JPF provides operations

for state-space exploration: storing states, restoring them during
backtracking, and comparing them. By default, JPF comparesthe
entire JVM state that consists of the heap, stack (for each thread),
and class-info area (that is mostly static but can be modifieddue
to the dynamic class loading in Java). However, our experiments
require only the part of the heap reachable from the root object
in the driver. We have therefore disabled the JPF’s default state
comparison and instead use a specialized state comparison as done
in some previous studies with JPF [12,42,45].

We next discuss how we have implemented each component of
∆Execution in JPF. We call the resulting system∆JPF.∆JPF keeps
∆State as a part of the JPF state, which enables the use of JPF back-
tracking to restore∆State at the split points. We have implemented
the library operations on∆State (such as arithmetic and relational
operations or field reads and writes) to execute on the host JVM.
Effectively, the library forms an extension of JPF; our goalis not
to model check the library itself but the subject code that uses the
library. ∆JPF uses instrumented code to invoke the operations that
manipulate the∆State.

We have implemented splitting in∆JPF on top of the existing
non-deterministic choices in JPF. It is important to point out that
our implementation leverages JPF to restore the entire∆State but
uses state masks to indicate the active states. Therefore,∆JPF man-
ages state masks on the host JVM, outside of the backtracked state.
We have implemented merging also to execute on the host JVM and
to create one∆State as a JPF state that encodes all the non-visited
states encountered in the previous iteration of the exploration. Re-
call from Section 2 that the drivers in our experiments use breadth-
first exploration.∆JPF does not use the optimized state compari-
son (Section 3.4).

To automate the instrumentation of code for execution on∆JPF,
we have developed a plug-in for Eclipse version 3.2 [15]. This
plug-in takes a subject program and manipulates its Eclipseinternal
AST representation to automate the steps described in Section 3.3.

4.2 BOX
We have developed BOX, a model checker optimized for sequen-

tial Java programs. JPF is a general-purpose model checker for Java
that can handle concurrent code and can store/restore/compare the
entire JVM state that consists of heap, stack, and class-info area.
However, in unit testing of object-oriented programs, mostcode is
sequential and most drivers need to store/restore/compareonly the
heap part of the state. Therefore, we have used the existing ideas
from state-space exploration research [1,8,16,18,20,22,31,35] to
engineer a high-performance model checker for such cases.

BOX can store/restore/compare only a part of the program heap
reachable from a given root. The root corresponds to the mainob-
ject under exploration in the driver. BOX uses astatefulexploration
(by restoring the entire state)across iterationsandstatelessexplo-
ration (by re-executing one method at a time)within one iteration.
BOX needs to re-execute a method within an iteration as it does
not store the state of the program stack. Instead, BOX only keeps
a list of changes performed on the heap during a single method
execution and restores the state by undoing those changes. For ef-
ficient manipulation of the changes, BOX requires that code under
exploration be instrumented.

We refer to the∆Execution implementation in BOX as∆BOX.
∆BOX needs to backtrack the∆State in order to explore a method
for various state masks.∆BOX re-executesthe method from the
beginning to reach the latest split point. While re-execution is
seemingly slow, it can actually work extremely well in many sit-
uations. For example, Verisoft [18] is a well-known model checker
that effectively employs re-execution.



experiment JPF time JPF mem. BOX time BOX mem. # states # executions
subject N std delta std/delta std/delta std delta std/delta std/delta std delta std/delta

7 25.40 2.66 9.55x 1.16x 0.80 0.35 2.26x 2.71x 16864 236096 401 588
binheap 8 466.00 15.34 30.37x 1.03x 11.70 3.40 3.44x 1.08x 250083 4001328 863 4636

9 * * * * 107.14 32.91 3.26x 1.04x 1353196 24357528 1069 22785
9 44.34 10.98 4.04x 0.70x 2.45 1.55 1.58x 0.77x 46960 845280 10846 77

bst 10 216.72 49.17 4.41x 0.46x 12.65 7.57 1.67x 0.30x 206395 4127900 22688 181
11 * * * * 68.31 49.86 1.37x 0.18x 915641 20144102 46731 431
8 54.86 6.64 8.27x 1.50x 2.30 0.83 2.77x 1.54x 69281 1108496 576 1924

deque 9 550.57 57.72 9.54x 1.48x 22.53 7.58 2.97x 1.14x 623530 11223540 810 13856
10 * * * * 280.66 100.22 2.80x 1.18x 6235301 124706020 1100 113369
6 3.13 1.52 2.06x 0.98x 0.22 0.16 1.34x - 3003 21021 82 256

fibheap 7 24.88 3.13 7.94x 2.13x 1.17 0.67 1.75x 1.24x 36730 293840 130 2260
8 398.13 28.31 14.06x 0.88x 16.89 9.80 1.72x 0.68x 544659 4901931 209 23454
3 2.03 1.98 1.03x 0.97x 0.15 0.25 0.58x - 58 6264 576 10

filesystem 4 17.13 3.70 4.63x 11.50x 1.20 0.72 1.67x 1.72x 1353 194832 1568 124
5 * * * * 37.84 30.01 1.26x 0.97x 64576 11623680 3940 2950
8 104.50 4.18 24.99x 2.31x 1.24 0.89 1.39x 1.24x 97092 873828 258 3386

heaparray 9 2,718.12 26.96 100.81x 1.22x 12.02 9.00 1.33x 0.53x 804809 8048090 359 22418
10 * * * * 128.27 110.78 1.16x 0.58x 8722946 95952406 488 196623
6 7.76 1.62 4.79x 2.64x 0.37 0.18 2.10x - 10057 70399 45 1564

queue 7 104.41 6.37 16.38x 1.77x 3.90 0.94 4.14x 1.44x 147995 1183960 60 19732
8 * * * * 78.79 25.32 3.11x 1.00x 2578641 23207769 77 301399
6 4.95 1.46 3.38x 1.01x 0.31 0.12 2.50x - 9331 65317 42 1555

stack 7 59.44 5.08 11.71x 1.31x 2.93 0.68 4.27x 1.87x 137257 1098056 56 19608
8 * * * * 60.07 17.80 3.37x 1.31x 2396745 21570705 72 299593
10 579.50 7.61 76.14x 2.69x 3.29 1.25 2.63x 1.04x 13076 261520 3579 73

treemap 11 1,754.34 19.42 90.34x 3.04x 10.80 3.26 3.32x 1.38x 35405 778910 5269 147
12 * * * * 32.81 9.14 3.59x 1.34x 96401 2313624 7774 297
8 60.37 6.26 9.64x 1.57x 2.28 1.29 1.77x 1.30x 109681 987129 595 1659

ubstack 9 1,482.75 48.75 30.41x 1.48x 22.69 13.59 1.67x 0.66x 991189 9911890 931 10646
10 * * * * 271.56 175.61 1.55x 0.62x 9922641 109149051 1414 77191

gmean - - - 10.97x 1.51x - - 2.07x 0.97x - - - 3040x

Figure 10: Overall time and memory for exhaustive exploration in JPF and BOX and characteristics of the explored state spaces.

∆BOX implements the components of∆Execution as presented
in Section 3.∆BOX represents∆State as a regular Java state that
contains both∆Objects and objects of the instrumented classes.
Our instrumentation for∆BOX (as well as for BOX) is partly man-
ual at the time.∆BOX uses instrumented code to perform the op-
erations on the∆State. Similarly to∆JPF,∆BOX merges states
between iterations of the breadth-first exploration.∆BOX em-
ploys the optimized state comparison as presented in Section 3.4.

5. EVALUATION
We present an experimental evaluation of∆Execution. We first

describe the ten basic subject programs used in the evaluation and
then discuss the improvements that∆Execution provides for an ex-
haustive exploration of these programs in both JPF and BOX. We
then briefly mention an evaluation for a non-exhaustive exploration
in JPF. We finally present the improvements that∆Execution pro-
vides on a larger case study, an implementation of the AODV rout-
ing protocol [34].

We performed all experiments on a Pentium 4 3.4GHz work-
station running under RedHat Enterprise Linux 4. We used Sun’s
JVM 1.5.007, limiting each run to 1.8GB of memory and 1 hour
of elapsed time.

5.1 Basic subjects
We evaluated∆Execution on ten subject programs taken from

a variety of sources. All but one of these subjects have been pre-
viously used to evaluate testing and model-checking techniques.
The following nine subjects are data structures:binheap is an
implementation of priority queues using binomial heaps [42]; bst
is our running example that implements a set using binary search
trees [4,45];deque is our implementation of a double-ended queue
using doubly-linked lists;fibheap is an implementation of priority
queues using Fibonacci heaps [42];heaparray is an array-based

implementation of priority queues [4,45];queue is an object queue
implemented using two stacks [14];stack is an object stack [14];
treemap is an implementation of maps using red-black trees based
on Java collection 1.4 [4,42,45];ubstack is an array-based imple-
mentation of a stack bounded in size, storing integers without repe-
tition [9,33,39,44];The tenth subject isfilesystem, which is based
on the Daisy file-system code [10]. While the original code had
seeded errors, we use a corrected version from another study[14].
The primary purpose of our evaluation is to compare the efficiency
of ∆Execution and standard execution, so we use correct imple-
mentations of all basic subjects. (The AODV case study described
in Section 5.4 uses code with errors that violate a safety property.)

For each subject, we wrote drivers for standard execution and for
∆Execution (similar to Figure 2). The drivers exercise the main
mutator methods. For data structures, the drivers add and remove
elements. Forfilesystem, the drivers create and remove directo-
ries, create and remove files, and write to and read from files.

5.2 Exhaustive exploration
Figure 10 shows the experimental results for exhaustive explo-

ration. For each subject and several bounds (on the sequencelength
and parameter size, as in the driver shown in Figure 2), we tabulate
the overall exploration time and peak memory usage with and with-
out∆Execution in both JPF and BOX, and the characteristics of the
explored state spaces. The cells marked with ’*’ represent that the
experiment either ran out of 1.8GB memory or exceeded the 1 hour
time limit.

The columns labeled “std/delta” show the improvements that
∆Execution provides over standard execution. Note that the num-
bers are ratios and not percentages; for example, forbinheap and
N = 7, the ratio is 9.55x, which corresponds to about 90% im-
provement. For JPF, the speedup ranges from 0.68x (foraodv and
N = 6) to 100.81x (forheaparray andN = 9), with the aver-
age of 10.97x, which is over an order of magnitude improvement.



experiment standard execution time ∆Execution time

subject N exec. comp. backt. exec. comp. backt. merg.

binheap 7 18.21 0.54 6.65 0.57 0.59 1.10 0.39
8 369.49 5.55 90.97 4.09 6.11 1.04 4.10

bst 9 20.77 3.75 19.81 2.30 5.42 2.01 1.26
10 104.54 20.68 91.50 7.32 31.98 4.02 5.86
6 1.24 0.07 1.82 0.21 0.13 1.06 0.12

fibheap 7 15.03 0.52 9.33 0.40 0.79 1.09 0.84
8 257.91 8.21 132.01 3.89 11.43 1.34 11.64

treemap 10 567.16 2.65 9.69 1.39 4.34 1.48 0.41
11 1,724.36 8.55 21.44 2.48 14.36 1.59 0.98

Figure 11: Time breakdown for JPF experiments.

(The averages are geometric means over all the experiments.) For
BOX, the speedup ranges from 0.58x (forfilesystem andN = 3)
to 4.27x (forstack andN = 7), with the average of 2.07x. Note
that the ratio less than 1.00 means that∆Execution ran slower (or
required more memory) than standard execution, for examplefor
filesystem andN = 3 in BOX. While this can happen for smaller
bounds,∆Execution consistently runs faster than standard execu-
tion for important cases with larger bounds.

∆Execution provides these significant improvements becauseit
exploits the overlap among executions in the state-space explo-
ration. Figure 10 shows the information about the state spaces
explored in the experiments. Note that the number of explored
states is the same with and without∆Execution. This is as ex-
pected: ∆Execution focuses on improving the exploration time
and does not change the exploration itself. (We have used thedif-
ference in the number of states to debug our implementation of
∆Execution.) However, the numbers of executions with and with-
out∆Execution do differ, and the column labeled “std/delta” shows
the ratio of the numbers of executions. The ratio ranges from10x to
301399x. While this ratio effectively enables∆Execution to pro-
vide the speedup, there is no strict correlation between theratio and
the speedup. The overall exploration time depends on several fac-
tors, including the number of execution paths, the number ofsplits,
the cost to execute one path, the frequency of constants in∆States,
and the sharing of execution prefixes.

We next discuss in more detail where state-space exploration
spends time and where∆Execution reduces the time. Each state-
space exploration includes three components—(1) code execution,
(2) state comparison, and (3) state backtracking—and∆Execution
additionally includes merging. Figures 11 and 12 show the break-
down of the overall exploration time on these four components for
JPF and BOX. We show the numbers for only some of the experi-
ments; the conclusions are the same for the other experiments.

In JPF,∆Execution significantly reduces the time for code exe-
cution and state backtracking. For example, forbinheap andN =
7, ∆Execution reduces the execution time from 18.21s to 0.57s and
the backtracking time from 6.65s to 1.10s. These savings arebig
enough and make the times for merging and state comparison irrel-
evant. (∆JPF does not even use the optimized state comparison for
this exploration.) As mentioned earlier, JPF is a general-purpose
model checker that stores and restores the entire Java states and
thus has a high execution and backtracking overhead.

In BOX, ∆Execution sometimes results in a higher code execu-
tion time, yet has a smaller overall exploration time. The reason is
that∆Execution achieves significant savings in the state compari-
son using the optimized algorithm from Section 3.4. For example,
for bst and N = 11, ∆Execution increases the execution time
from 3.05s to 8.16s. However, it reduces the state comparison time
from 57.79s to 20.46s, which more than makes up for the longer
execution time. Note that the number of states and state compar-
isons is the same in both standard execution and∆Execution, but

experiment standard execution time ∆Execution time

subject N exec. comp. backt. exec. comp. backt. merg.

7 0.23 0.34 0.14 0.09 0.15 0.00 0.06
binheap 8 4.58 3.72 2.88 1.03 1.45 0.01 0.87

9 21.64 68.57 15.27 4.73 21.95 0.00 6.20
9 0.17 1.93 0.19 0.48 0.74 0.01 0.28

bst 10 0.60 10.72 0.97 1.83 3.83 0.01 1.85
11 3.05 57.79 4.71 8.16 20.46 0.02 21.06
6 0.06 0.08 0.04 0.04 0.05 0.00 0.02

fibheap 7 0.32 0.54 0.24 0.20 0.24 0.00 0.18
8 4.77 7.80 3.90 2.79 3.78 0.00 3.15
10 0.20 2.86 0.20 0.34 0.78 0.01 0.07

treemap 11 0.60 9.72 0.52 0.64 2.29 0.02 0.23
12 1.51 29.69 1.26 1.47 6.91 0.02 0.67

Figure 12: Time breakdown for BOX experiments.

the optimized state comparison is only possible for∆Execution.
Indeed, it is the execution on∆States that enables the simultane-
ous comparison of a set of states.

Figure 10 also provides a comparison of memory usage. Specif-
ically, the columns labeled “mem. std/delta” show the ratioof peak
memory usage for standard execution versus∆Execution. Our
setup uses the Sun’sjstat monitoring tool to record the peak us-
age of garbage-collected heap in the JVM running an experiment.
Although this particular measurement does not include the entire
memory used by the JVM process, it does represent the most rele-
vant amount used by a model checker. (The cells marked ’-’ repre-
sent experiments where the running time is so short thatjstat does
not provide accurate memory usage.)

For JPF, standard execution uses more memory than∆Execution
for most experiments and uses 1.51x more memory on average.
However,∆Execution occasionally uses more memory, for exam-
ple for bst. For BOX,∆Execution and standard execution on av-
erage use about the same amount of memory.

Many factors, already mentioned for exploration time, can influ-
ence the memory usage, but an important factor seems to be the
number of constant∆Objects. ∆Execution uses these objects to
represent values that are the same across all states in a∆State.
There is a relatively strong positive correlation between the per-
centage of constant∆Objects and the memory ratio for an exper-
iment. For example,bst andN = 11 has a poor memory ratio,
and the average percentage of constant objects in∆States is 33%,
the lowest of all subjects. Fortreemap andN = 12, on the other
hand,∆Execution uses less memory than standard execution, and
the average percentage of constant objects is 69%.

5.3 Non-exhaustive exploration
We have also evaluated∆Execution for a different state-space

exploration. Visser et al. [42] recently proposed and implemented
in JPF several non-exhaustive explorations. Their resultson four
subject programs—binheap, bst, fibheap, andtreemap—showed
thatabstract matchingachieved the best structural code coverage.
The main idea of abstract matching is to compare states basedon
their shape abstraction: two states that have the same shape are
considered equivalent even if they have different values innodes.
In summary, our evaluation of∆Execution for abstract matching on
the same four subjects shows that∆Execution improves the explo-
ration time for various bounds between 0.93x and 21.81x, with an
average of 3.37x. For lack of space, we cannot include the details
of the evaluation, but they can be found in a technical report[11].

5.4 AODV case study
We also evaluated∆Execution on a larger application, namely

the implementation of the Ad-Hoc On-Demand Distance Vector



experiment JPF time JPF mem. # states

subject N std delta std/delta std/delta

8 81.95 73.18 1.12x 0.52 14741
aodv 9 296.33 226.39 1.31x 0.58 51488

10 1,057.65 739.80 1.43x 0.51 173468

Figure 13: Exploration of AODV in JPF.

(AODV) routing protocol [34] in the J-Sim network simulator[23].
This application was previously used to evaluate a J-Sim model
checker [38] and a technique for optimizing the execution ofdeter-
ministic code blocks in JPF [13].

AODV is a routing protocol for ad-hoc wireless networks. Each
of the nodes in the network contains a routing table that describes
where a message should be delivered next, depending on the target.
The safety property we check in this study expresses that allroutes
from a source to a destination should be free of cycles, i.e.,not have
the same node appear more than once in the route [38].

The implementation of AODV, including the J-Sim library classes
that it depends on, consists of 43 classes with over 3500 non-blank,
non-comment lines of code. We instrumented this code using the
Eclipse plug-in that automates instrumentation for∆Execution on
JPF. The resulting instrumented code consisted of 143 classes with
over 9500 lines of code. We did not try this case study in BOX since
it currently requires much more manual work for instrumentation.

We used for this case study the driver previously developed for
AODV [38]. Like the bst driver shown in Figure 2, the AODV
driver invokes various methods that simulate protocol actions (send-
ing messages, receiving messages, dropping messages etc.). Unlike
thebst driver, the AODV driver (1) includes guards that ensure that
an action is taken only if its preconditions are satisfied and(2) in-
cludes a procedure that checks whether the resulting protocol state
satisfies the safety property described above. In our experiments,
when a violation is encountered, the driver prunes that state/path
but continues the exploration.

We ran experiments on three variations of the AODV implemen-
tation, each containing an error that leads to a violation ofthe safety
property [38]. Figure 13 shows the results of experiments onone
variation. Since the property was first violated in the ninthiteration
for all three variations, the results for the other two variations were
similar, and we do not present them here.

For AODV, ∆Execution improves the overall exploration time
for up to 1.43x, while taking about twice as much peak memory as
standard execution. We believe that it would be possible to improve
these results by using a specializedmerging at the abstract state
level. Namely, the default merging in∆Execution works at the con-
crete state level, and AODV operates on complex states, including
for example routing tables. Even when two routing tables repre-
sent the same abstract state (say a set{〈N1, N0〉, 〈N2, N0〉}), they
could have different concrete states (say lists[〈N1, N0〉, 〈N2, N0〉]
and [〈N2, N0〉, 〈N1, N0〉]). While such differences of concrete
states would disallow the default merging, it should be possible to
merge those states because they represent the same abstractstate.

6. RELATED WORK
Handling state is the central issue in explicit-state modelcheck-

ers [21, 22, 27, 30]. For example, JPF [29] implements techniques
such as efficient encoding of Java program state and symmetry
reductions to help reduce the state-space size [27].∆Execution
uses the same state comparison, based on Iosif’s depth-firstheap
linearization [22]. However,∆Execution leverages the fact that
∆States can be explored simultaneously to produce a set of lin-
earizations. Musuvathi and Dill proposed an algorithm for incre-

mental state hashing based on a breadth-first heap linearization [30].
We plan to implement this algorithm in JPF and to use∆Execution
to optimize it.

Darga and Boyapati proposed glass-box model checking [14] for
pruning search. They proposed a static analysis that can reduce
state space without sacrificing coverage. Glass-box exploration
represents the search space as a BDD and identifies, without ex-
ecution, parts of the state space that would not lead to more cov-
erage. However, glass-box exploration requires the definition of
executable invariants in order to guarantee soundness. In contrast,
∆Execution does not require any additional annotation on thecode.

Symbolic execution [25, 40, 45] is a special kind of execution
that operates on symbolic values. In symbolic execution, the state
includes symbolic variables (that can represent a set of concrete
values) and a path-condition that encodes constraints on the sym-
bolic variables. Symbolic execution has recently gained popularity
with the availability of fast constraint solvers and has been applied
to test-input generation of object-oriented programs [25,40,45]. In
the general case, constraints generated during symbolic execution
are undecidable. The recent techniques combining symbolicexecu-
tion and random execution show good promise in handling someof
these problems [6, 19, 37]. Conceptually, both symbolic execution
and∆Execution operate on a set of states. While symbolic exe-
cution can represent an unbounded number of states,∆Execution
uses an efficient representation for a bounded set of concrete states.
The use of concrete states allows∆Execution to overcome the
problems that symbolic execution has. Moreover, we plan to inves-
tigate how to apply∆Execution to speed up symbolic execution by
sharing symbolic states.

Shape analysis [26, 36, 46] is a static program analysis thatver-
ifies programs that manipulate dynamically allocated data struc-
tures. Shape analysis uses abstraction to represent infinite sets of
concrete heaps and performs operations on these sets, including
operations similar to splitting and merging in∆Execution. Shape
analysis computes overapproximations of the reachable sets of states
and loses precision to obtain tractability. In contrast,∆Execution
operates precisely on sets of concrete states but can explore only
bounded executions.

Offutt et al. [32] proposed DDR, a technique for test-input gen-
eration where the values of variables are ranges of concretevalues.
DDR uses symbolic execution (on ranges) to generate inputs.Intu-
itively, DDR can be efficiently implemented as the ranges aresplit
(using a technique calleddomain splitting) when constraints are
added to the system. DDR requires inputs to be given as ranges,
implements a lossy abstraction (to reduce the size of the state space
in favor of more efficient decision procedures), and does notsup-
port object graphs.∆Execution focuses on object graphs and does
not require inputs to be ranges, but the use of ranges as a special
representation in∆States could likely improve∆Execution even
more, and we plan to investigate this in the future.

In the introduction, we have discussed the relationship between
symbolic model checking [7, 24] and∆Execution.∆Execution is
inspired by symbolic model checking and conceptually performs
the same exploration but handles states that involve heaps.BDDs
are typically used as an implementation tool for symbolic model
checking. Predicate abstraction in model checking [2, 3] reduces
the checking of general programs into boolean programs thatare ef-
ficiently handled by BDDs. While predicate abstraction has shown
great results in many applications, it does not handle well complex
data structures and heaps. BDDs have been also used for efficient
program analysis [28, 43] to represent analysis information as sets
and relations. These techniques employ either data [28] or control
abstraction [43] to reduce the domains of problems and make them



tractable. It remains to investigate if it is possible to leverage on
a symbolic representation, such as BDDs, to represent sets of con-
crete heaps to efficiently execute programs in∆Execution mode.

We previously proposed a technique, called Mixed Execution,
for speeding up straightline execution in JPF [13]. Mixed Execu-
tion considers only one state and uses an existing JPF mechanism
to execute code parts outside of the JPF backtracked state, improv-
ing the exploration time up to 37%.∆Execution considers multiple
states and improves the exploration time by an order of magnitude.

7. CONCLUSIONS
We have presented∆Execution, a novel technique that signif-

icantly speeds up state-space exploration of object-oriented pro-
grams. State-space exploration is an important component of model
checking and automated test generation.∆Execution executes the
program simultaneously on a set of standard states, sharingthe
common parts across the executions and separately executing only
the “deltas” where the executions differ. The key to efficiency of
∆Execution is∆State, a representation of a set of states that per-
mits efficient operations on the set. The experiments on two model
checkers show that∆Execution can reduce the time for state-space
exploration from two times to over an order of magnitude.

In the future, we plan to apply the ideas from∆Execution in
more domains. First, we plan to manually transform some impor-
tant algorithms to work in the “delta mode”, as we did for the op-
timized comparison of states. For instance, we plan to transform
merging of∆States, which would further improve the results of
∆Execution. Second, we plan to evaluate automatic∆Execution
outside of state-space exploration. For example, in regression test-
ing the old and the new versions of a program can be run in the
“delta mode”, which would allow a detailed comparison of the
states from two versions. We believe that∆Execution can also
provide significant benefits in these new domains.
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