
Delta Execution for Software Reliability

Yuanyuan Zhou, Darko Marinov, William Sanders, Craig Zilles
Marcelo d’Amorim, Steven Lauterburg, Ryan M. Lefever and Joe Tucek

University of Illinois at Urbana-Champaign, Urbana, IL 61801

1 Introduction

1.1 Motivation

Software failures greatly reduce system reliability and
availability, contributing to 26-30% of system failures ac-
cording to several recent root-cause analysis studies [10].
Such software bugs can crash the system, making the ser-
vice unavailable. Moreover, “silent” bugs that go unde-
tected can corrupt information, generate wrong results, and
lead to unavailability.

Besides software defects, administrative errors are an-
other major cause for system failures. A recent study [14]
has shown a significant fraction (37%) of failures in Inter-
net services are caused by administrator mistakes. Among
all factors, misconfiguration (mistakes made in setting con-
figuration parameters) is a major root cause, contributing
to 78% of administrative errors [12]. To quickly recover
the system and repair the damage, service providers require
many administrators to troubleshoot misconfigurations. As
a result, system administration costs account for 60-80% of
the Total Cost of Ownership in IT [12].

To improve software reliability and reduce administra-
tive errors, many reliability assurance techniques have been
used at different stages of the software life-cycle, including
software testing, software patching, and online validation of
administrative reconfigurations.

Interestingly, all these reliability assurance tasks exhibit
a common characteristic: multiple almost-redundant execu-
tions (MARE). In other words, they all execute multiple
versions/copies of the same software, each execution dif-
fering from the others only slightly in code segment, input,
or configuration. Therefore, these executions are almost re-
dundant with a few exceptions. We next explain in more
detail the manifestation of MARE in each task.

MARE in software patch validation: To address soft-
ware defects, especially those that can be exploited to
launch security attacks, software companies frequently re-
lease patches to their software. Unfortunately, these patches
are often buggy themselves because vendors are under pres-
sure to release a patch quickly, without enough time for
thorough testing [3]. For example, several recent Microsoft

patches have caused major connectivity problems and re-
sulted in substantial loss in business [13]. Due to this con-
cern, administrators and users hesitate to apply patches, re-
sulting in a longer window of vulnerability to software fail-
ures and even security exploits.

As many field experts warn, faulty patches can cause ma-
jor financial damage to a business. The standard should
always be to download, test, and then deploy patches as
quickly as possible [4, 9]. Patch testing can be done either
off-line [2] or on-line [6]. Even though off-line validation
is simpler, on-line patch validation is much more accurate
and desirable. This is because an on-line validation tests
software patches against realistic and even live workloads,
and thereby such validation can catch a larger proportion of
mistakes.

During an on-line validation, two versions of the soft-
ware are executed simultaneously. Both executions are fed
with the same live inputs, but only the old stable version’s
outputs are visible. As software patches are usually small
both in terms of modified code segments and the amount of
touched data [11], the majority of code segments executed
by the two runs are exactly the same. Therefore, most on-
line validation of patches are MARE.
MARE in administrative reconfiguration validation:
Since administrative reconfigurations can easily result in
software failures or even permanent data corruption, a com-
mon practice is to validate the system after performing re-
configurations and before releasing them to production sys-
tems. Similar to software patch validation, administrative
reconfiguration can also be validated either off-line or on-
line, with similar advantages and disadvantages [12], i.e.,
on-line is more accurate because as it tests the new con-
figuration against realistic and live workloads. Also simi-
lar to on-line software patch testing, on-line reconfiguration
validation are also MARE, with each execution differing
slightly in certain configuration parameters.
MARE in software testing: Software usually goes
through several stages of testing before being released to
customers. Testing is an important but also a very time-
consuming part of validating software reliability. Each test
case can execute a large portion of the program, which

1

Execution 1 S1

Record � Data

Execution 2

M1 S2 M2

Read from � DataMerged execution

Split execution

Figure 1. The delta execution idea. Two simultaneous, almost-redundant executions are separated
only when they execute different code segments or access different data. Solid line segments indi-
cate actual execution. S1 and S2 are split points, and M1 and M2 are merge points.

makes it expensive to test with many inputs required to
achieve a good coverage. Also, it is necessary to test the
program in different environments. Hence, many test exe-
cutions are similar as they execute the same code for slightly
different inputs or in slightly different environments. Thus,
testing performs MARE. Another example of MARE arises
in regression testing, when a new version of code is tested
to behave the same as the old version, similar to the off-line
validation of patches. Finally, software model checking is
a form of thorough testing and can result in many similar
executions (Section 5).

MARE in partial replication-based fault detection and
recovery: Replication at the instruction, process, or sys-
tem level has long been used to provide dependability.
However, a major limitation to the adoption of replication
has been the overhead incurred when doing replication,
particularly if done at the process or system level. An-
other limitation of traditional replication is that it cannot
detect common mode faults (e.g., software design faults, or
bugs), since in that case, both replica would produce the
same (wrong) result. To address this problem, recently we
have developed a new replication approach known as par-
tial replication [1]. In this approach, slightly different ver-
sions of code are executed that will produce the same result
in the fault-free case, but will produce different results if
a software design fault occurs. In this new promising re-
covery approach, multiple partially-different copies of the
same software are executed simultaneously. In other words,
it also performs MARE and would benefit from efficient
support for performing MARE.

1.2 Current State of the Art

All of the above reliability assurance tasks involve
MARE. An existing solution commonly used to fulfill this
need is to fully execute these almost-redundant runs sequen-
tially (as done for software testing) or simultaneously (as
done for online patch and reconfiguration validation) on
the same or different machines. The inherent inefficiency
of this solution materializes in one of two ways: (1) large
overhead: complete execution of MARE on the same ma-
chine would introduce large CPU and memory overhead to
the production system, resulting in a significant decrease in

throughput and increase in average response time. This is
one of the primary reasons that prevents the prevalent usage
of on-line patch and reconfiguration validations; (2) large
waste of resources and human effort: executing MARE
on separate machines requires doubling machine resources,
as well as significant human administration effort to repli-
cate the execution environments, resulting in a substantial
increase in the costs of equipment, human operation, and
energy consumption. Furthermore, both approaches nega-
tively impact the validation time, by reduced throughput or
increased machine set up time, respectively.

1.3 Our Idea: Delta Execution

To efficiently support the MARE used in performing
various reliability assurance tasks, we propose a novel ap-
proach called delta execution and a comprehensive infras-
tructure to support it. The main idea of delta execution is
to minimize the cost of MARE by sharing redundant exe-
cution and separately executing only deltas—code regions
that run different code segments or process different data.
Figure 1 shows two simultaneous runs that share most ex-
ecution. The two runs split when they need to execute dif-
ferent code segments or read different data and then merge
later when their executions reconverge to (at least locally)
identical execution.

This position paper discusses the research challenges,
design and implementation issues by using several real
world patches as examples. Additionally, we have also con-
ducted some feasibility studies of our delta execution idea
on on-line patch validation and for improving model check-
ing, and our preliminary analysis has shown some promis-
ing results.

Terminology In all multiple almost-redundant execution
scenarios, the executions differ from each other in a small
fraction of execution segments (called delta segments) that
either execute private code segments (called delta code) or
access private data (called delta data). Each delta segment
starts with a split point and ends with a merge point. Ini-
tially, there is only one execution (called merged execution),
i.e., the target program executes only one original copy of
code, say the old stable version. At a split point, the single
execution then splits into two or multiple, each executing its

2

own private code and/or accessing its own private data. All
these executions (called split execution) will later merge at a
merge point, having their private data maintained separately
by the underlying delta execution system.

2 System Overview

To support efficient delta execution, we need to address
the following research challenges: (1) How to identify delta
code? (2) How to identify split and merge points? (3) How
to split and merge executions? (4) How to track and main-
tain delta data for each execution? (5) How to minimize
time and space overhead? (6) How to apply and extend delta
execution to support each specific reliability assurance task?

We address the above challenges by using a synergis-
tic co-design of multiple layers including the operating and
run-time system, dynamic and static compilation, program-
ming language constructs, and application-specific exten-
sions to support various reliability assurance tasks.

The merged execution splits because it needs to either
execute delta code or access delta data. For the first case,
the compiler marks the split points in the target program
based on either static or dynamic analysis of the multiple
executions. For the second case, the split point is triggered
dynamically when the run-time system detects an access
to private data. In both cases, the merge points are deter-
mined dynamically based on hints given by the compiler
from static program analysis and dynamic profiling.

The run-time system provides several functions: (1) sup-
porting splitting and merging of multiple executions; (2)
supporting multiple concurrent executions by multiplexing
inputs from other processes and external devices; (3) sand-
boxing side-effects made by selected executions; (4) main-
taining delta data for each execution and detecting accesses
to delta data during merged execution; (5) coordinating
delta execution on multiple nodes for distributed applica-
tions.

Programming language support is needed for two pur-
poses. First, it is needed to support application-specific
run-time actions by allowing software to select which ex-
ecution’s side-effects should be sandboxed and to validate
new execution against old. Second, it also provides sim-
ple language abstractions that allow programs to be written
modularly to minimize the run-time overhead due to exe-
cuting delta segments and maintaining delta data.

Extensions to support various reliability assurance tasks
are specific to each task. For example, for software patch
online validations, the compiler can relatively easily mark
the delta code segments, i.e., those that are different be-
tween the old version and the patched version. But for on-
line configuration validation, it requires more sophisticated
run-time profiling to identify split and merge points.

Due to space limitation, the remainder of this paper will
focus on the run-time system support and present some re-

sults on applying delta execution for improving software
model checking.

3 Examples
This section uses three real-world software patches from

the Apache Web Server (shown on Figure 2) as concrete ex-
amples to show how our proposed system would work and
motivate the needs for advanced features. The first two ex-
amples represent the majority of software patches, whereas
the last example gives a complex scenario that calls for ad-
vanced support for efficient delta execution.
Example 1: No state update. The first patch, which rep-
resents a large percentage of security patches, adds only
a bound-check to prevent security attacks that exploit the
buffer overflow bug. Therefore, in normal execution when
the buffer overflow does not manifest, the patch only per-
forms a bound check without any updates to the memory
state. In rare cases when the buffer overflow is triggered,
the patched version will deviate from the old version. As
the patched version could be buggy (e.g., the wrong bound
check or handling the buffer overflow incorrectly), it is im-
portant to validate it online before using it. Such a MARE
task is a perfect candidate for our delta execution. More-
over, to further reduce overhead, our delta execution en-
gine will use some light-weight system support to split, ex-
ecute, and merge the two executions because, in this exam-
ple, there is no delta data between the original version and
the patched version, and the delta code is also very small
during normal execution (no buffer overflow).
Example 2: With state updates. The second patch,
which represents a large class of bug fixes, not only revises
some code segments but also modifies a part of memory
states. Therefore, validating this patch online using delta
execution is more complex than the first type of patches,
because the system needs to maintain and detect accesses
to delta data. In this example, the compiler also needs to
carefully select the split and merge points. If the compiler
is conservative about merging, it can lead to fully redundant
execution; if it is too aggressive, the execution will too fre-
quently shift between split and merged execution, resulting
in high overhead.
Example 3: With data structure layout change. The
third patch, representing a small fraction of software
patches, is the most complex of the three examples. It not
only modifies the state, but also changes the data structure
layout. The naive way to support online validation of this
patch can result in almost fully redundant execution because
the memory layout can become very different, resulting in
large delta data and thereby large delta segments. A bet-
ter alternative is to exploit the data encapsulation enabled
by modern, type-safe languages to covertly allocate objects
that maintain a union of the necessary fields. This exam-
ple is more complex than patches that dynamically allocate

3

Patch: CAN-2004-0493
httpd-2.0/server/protocol.c, line #381
….

+ if ((fold_len - 1) >
+ r->server->limit_req_fieldsize) {
+ r->status = BAD_REQUEST;
+ return;
+ }
…

Patch: CAN-2004-0811
httpd-2.0/server/core.c, line #353
….

for (i = 0; i < METHODS; ++i) {
if (new->satisfy[i] !=

SATISFY_NOSPEC) {
conf->satisfy[i] = new->satisfy[i];

+ } else {
+ conf->satisfy[i] = base->satisfy[i];

}
}

…

Patch: for Bug #7067
experimental/cache_cache.c, line #80

Typedef struct{
…
cache_set_priority set_pri;

cache_get_priority get_pri;
+ cache_cmp cmp;

cache_inc_frequency *inc_entry;
…
}

(a) (b) (c)

Figure 2. Real software patch examples from the Apache Web Server. Note that the code is slightly
simplified for description purpose. Lines beginning with ’+’ are new code added by the patches.

some extra buffers. The latter case can be addressed by allo-
cating the extra buffer from some isolated location to avoid
artificially changing the heap alignment between the two
executions.

Similarly, in other reliability-assurance tasks such as on-
line configuration validation and software testing, different
cases may have different levels of complexity in delta exe-
cution. While some cases only require simple methods to
mark split and merge points (and light-weight system sup-
port for splitting, executing, and merging multiple execu-
tions), there are always other, more complex cases that re-
quire sophisticated program analysis and dynamic profiling
and heavy-weight system support. Programming language
constructs will be useful for such cases to improve the effi-
ciency of delta execution.
4 Design and Implementation Issues

Usage Models Our Delta Execution system supports two
usage models shown in Figure 3. In the first model, each of
the two executions runs on its own virtual machine, whereas
the second model runs both executions on the same OS.
Even though both models can sandbox the side effects of
selected executions (e.g., the patched version), the first us-
age model provides a high level of isolation and is thereby
more suitable for certain scenarios, such as the online val-
idation of software patches, where security attacks are po-
tential concerns. However, the first usage model is more
heavy-weight and therefore may be overkill for many other
scenarios such as software testing that do not necessitate
such high level of isolation.
Merged execution. In the very beginning, multiple ver-
sions of the program are loaded. In the separate VM usage
model, each execution starts on a separate VM. In the sin-
gle OS model, each execution starts as separate processes.
After being loaded, only the main execution (e.g., the old
version) continues whereas the other executions (along with
their VMs) are temporarily suspended until the next split
point. At any moment during the merged execution, the
global state and the memory updates are shared among all

executions. Shared virtual pages in multiple executions are
mapped to the same physical memory so that updates to
these shared data are visible to all executions. Such map-
ping would require support from the VM hypervisor similar
to Introvirt [9].
Split execution. At a split point, each suspended execution
continues by first copying the execution environment such
as stacks from the merged execution and then starts execut-
ing from the split point. During the split execution, each
execution runs on its private stack and either executes its
private code or accesses its private data. Any updates made
during split execution are maintained as delta data. Any
deallocation of a delta data (including stack frame pop-out
upon function returns) will remove the content of such data
from the private data pool. The split execution continues
until the next merge point, and then all executions except
one are temporarily suspended again. Any shared data up-
dated during split execution are removed from the shared
pool into the private pool and are no longer shared by mul-
tiple executions.
Memory layout. All executions share the same memory
manager for allocation and deallocation, so it is possible
to match the memory layout in each execution as much as
possible. During the merged execution, the memory man-
ager allocates buffers from the shared free memory pool.
During the split execution, by default, the memory manager
allocates from the private free memory pool associated with

VM Hypervisor
VM1 VM2

APP
Execution 1

OSOS

APP
Execution 2

OS

APP
Execution 1

APP
Execution 2

(a) Separate VM Model (b) Single OS Model
Figure 3. Two usage models supported by
our proposed Delta Execution system.

4

each execution. To reduce the amount of delta data, we will
also explore optimization techniques to align buffers allo-
cated during split execution.
Detecting accesses to delta data. The merged execution
needs to split at an access to delta data. Therefore, we need
to detect accesses to delta data during merged execution.
One method is to instrument each memory access to check
if this access is to delta data or shared data. This method
would incur large overhead. Another method is to use page
protection to monitor accesses to delta data. But due to the
large page granularity, the method can result in significant
false sharing. To avoid false sharing, we can allocate each
delta object in a separate page or use ECC memory as in
our previous work [15] to monitor accesses to delta data at
cache-line granularity.
Light-weight support for small delta segments For sim-
ple cases such as Figure 2(a), using the full Delta Execu-
tion system support described above can be unnecessarily
heavy-weight. Therefore, to handle simple cases, we can
run multiple executions one after another in only one stack.
After executing one version to the merge point, it records
the updates made during the execution in this version’s pri-
vate data area and then rolls back the updates to run the next
execution, and so on until all executions reach the merge
point. For cases that do not have any memory updates as
in example shown in Figure 2(a), this approach would work
extremely well because it can completely avoid the over-
head of stack copying described above. But for complex
cases, this optimization is not good because it serializes all
executions and thereby cannot take advantages of multipro-
cessor systems.
Optimizations to reduce split and merge overhead. Split
and merge operations incur overhead, so performing splits
and merges frequently can hurt performance. In some cases,
the merge point can be misplaced so that immediately after
such a merge point, the execution needs to split again. To
optimize, the system can remember this mistake and inform
the dynamic program analyzer to postpone a merge point
until some subsequent program locations. Moreover, the
system can even do some cost-benefit analysis to estimate
whether it is benefitial to merge or just rollback to the end
of previous split execution.
Handling file I/Os. File updates are also handled in a sim-
ilar way to memory updates using shared file blocks and
private file blocks. An access to a private file block also trig-
gers execution split. Any file blocks updated during split ex-
ecution also become private file blocks. Such functionality
can be achieved by leveraging versioning file systems. For
on-line patch and reconfiguration validations, only those
updates made by the old version are committed to perma-
nent storage.
Handling other I/Os and asynchronous events. External

inputs from keyboard, networks, and other processes are fed
in the same order to all executions during split execution
periods. To reduce the amount of delta data, we propose
to delay the delivery of asynchronous events until the next
merge point or the threshold of delay time expires. For ex-
ternal outputs to monitors, networks, and other processes,
the application can select which execution’s outputs can be
made visible to the outside world.
Extension for Distributed Applications For distributed
applications where multiple nodes require MARE, mes-
sages sent during split execution from one node, say node 1,
to another node, say node 2, should trigger execution split
on node 2. This is because different versions on node 1 may
generate different message content. As a consumer of this
message, node 2 should also split the execution with each
execution receiving the message from the corresponding ex-
ecution on node 1. Other than this, the execution on each
node can split or merge independently, even though coordi-
nating the merge point can reduce the amount of delta seg-
ments thus improving delta execution efficiency. Ideas can
be borrowed from coordinate checkpoints [5, 8] to explore
such optimization options.

5 Preliminary Results
We have conducted two studies to evaluate the feasibil-

ity of our delta execution idea on software testing [7] and
software patch validation.
5.1 Software testing (Model Checking)

We have evaluated the use of delta execution in explicit-
state model checking. Specifically, we use a model checker
to perform bounded-exhaustive testing of object-oriented
programs. In this testing scenario, a subject class is exer-
cised with sequences of method calls up to a given length.
A complete exploration considers all possible method or-
derings, as well as all variations of method arguments se-
lected from a bounded set of input values. Despite a model
checker’s ability to avoid repeated exploration of previously
seen states, this form of testing involves a vast number of
MARE and is an ideal target for delta execution.

We have compared the performance of a model checker
operating mormally and one using delta execution. Exper-
iments were conducted using Java PathFinder (JPF) [17],
a model checker for Java bytecodes. The exploration de-
scribed above is typically performed in a breadth-first fash-
ion, one method call at a time. Thus, we modified the
model checker to execute a method against sets of program
states simultaneously, splitting execution when necessary,
and merging the states that are generated at the end of each
level of the search: the exploration of level i + 1 is per-
formed with the new states produced in level i.

We first evaluate the delta execution model checker us-
ing 10 subjects taken from a variety of sources and used
previously in other studies of testing. Table 1 shows for

5

experiment JPF time JPF mem.
subject N std delta std/delta std/delta

7 25.40 2.66 9.55x 1.16x
binheap 8 466.00 15.34 30.37x 1.03x

9 44.34 10.98 4.04x 0.70x
bst 10 216.72 49.17 4.41x 0.46x

8 54.86 6.64 8.27x 1.50x
deque 9 550.57 57.72 9.54x 1.48x

7 24.88 3.13 7.94x 2.13x
fibheap 8 398.13 28.31 14.06x 0.88x

3 2.03 1.98 1.03x 0.97x
filesystem 4 17.13 3.70 4.63x 11.50x

8 104.50 4.18 24.99x 2.31x
heaparray 9 2,718.12 26.96 100.81x 1.22x

6 7.76 1.62 4.79x 2.64x
queue 7 104.41 6.37 16.38x 1.77x

6 4.95 1.46 3.38x 1.01x
stack 7 59.44 5.08 11.71x 1.31x

10 579.50 7.61 76.14x 2.69x
treemap 11 1,754.34 19.42 90.34x 3.04x

8 60.37 6.26 9.64x 1.57x
ubstack 9 1,482.75 48.75 30.41x 1.48x
gmean - - - 10.97x 1.51x

Table 1. Experiments using delta execution
for model checking.

each of these subjects, the bound in the sequence length
(i.e., the number of method invocations issued against the
subject under test), the time it takes to run the experiment
using the standard JPF tool, the time it takes to run the ex-
periment using the modified JPF tool for delta execution,
and the ratio of time and memory. Our initial findings show
that on average delta execution can speed up the exploration
time an order of magnitude while consuming 1.5 times less
memory than the standard exploration.

We also evaluate delta execution by model checking an
implementation of the Ad-Hoc On-Demand Distance Vec-
tor (AODV) routing protocol, a larger case study involving
43 Java classes and over 3,500 non-comment, non-blank
lines of code. This implementation was previously used
to evaluate other model checkers [16]. The results show
that delta executions speeds up the exploration of the AODV
state space to 1.43 times.
5.2 Software Patch Validation

We have conducted a preliminary investigation using two
different Apache Web Server patches to evaluate the feasi-
bility of our delta execution idea. We instrument the bi-
naries of the old version and the patched version using
an instrumentation tool called Pin from Intel. To com-
pare the difference in code executed, we collect the exe-
cution trace from each run and compared their differences.
The differences in data are computed using the checkpoint-
rollback support in Pin and we report the largest differences
during the entire execution. Each experiment is repeated
many times and the result is stable with very small error
rate caused by a small degrees of non-determinism. We
have also conducted similar experiments for several other

Versions 2.0.44 2.0.50
Dynamic Delta Code 0.6% 2%
Dynamic Delta Data 2% 12%

Table 2. Preliminary feasibility results.
Apache and MySQL patches, and the results fall between
the two extremes shown here.

Table 2 shows the amount of delta code and data of each
patch compared to the corresponding old version. The re-
sults show that the patched execution differs from the old
execution only slightly, smaller than 2% for code and 12%
for data, which indicates that our delta execution idea is fea-
sible and should significantly improve the resource and time
efficiency of MARE performed by various reliability assur-
ance tasks.

References

[1] V. S. Adve, A. Agbaria, M. A. Hiltunen, R. K. Iyer, K. R. Joshi,
Z. Kalbarczyk, R. M. Lefever, R. Plante, W. H. Sanders, and
R. D. Schlichting. A compiler-enabled model- and measurement-
driven adaptation environment for dependability and performance.
In Proceedings of the Next Generation Software (NGS) Workshop
at the International Parallel & Distributed Processing Symposium
(IPDPS’05), April 2005.

[2] R. Barrett, P. P. Maglio, E. Kandogan, and J. Bailey. Usable au-
tonomic computing systems: The administrator’s perspective. In
ICAC’04, 2004.

[3] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and
A. Shostack. Timing the application of security patches for optimal
uptime. In LISA, pages 233–242, 2002.

[4] H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen. A
trend analysis of exploitations. In IEEE Symposium on Security and
Privacy, 2001.

[5] Y. Chen, J. S. Plank, and K. Li. Clip: A checkpointing tool for
message-passing parallel programs. In SC, 1997.

[6] J. E. Cook and J. A. Dage. Highly reliable upgrading of components.
In ICSE, pages 203–212, 1999.

[7] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution for
efficient state-space exploration of object-oriented programs. In IS-
STA, July 2007. (To appear).

[8] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of
rollback-recovery protocols in message-passing system. Technical
report, TR CMU-CS-96-181, Carnegie Mellon University, 1996.

[9] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predicates.
SIGOPS Oper. Syst. Rev., 39(5):91–104, 2005.

[10] E. Marcus and H. Stern. Blueprints for High Availability. John Wil-
ley & Sons, 2000.

[11] Microsoft White Paper. Microsoft patch management sum-
mary, 2003. http://download.microsoft.com/ documents/australia/
business/mes/agenda/patch mgmt-final.doc.

[12] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D.
Nguyen. Understanding and dealing with operator mistakes in in-
ternet services. In OSDI, 2004.

[13] R. Naraine. Faulty microsoft update rekindles patch quality concerns,
2005. http://www.eweek.com/ article2/0,1895,1815956,00.asp.

[14] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet
services fail, and what can be done about it, 2003.

[15] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Produc-
tion Runs. In HPCA’05, Feb 2005.

[16] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. Find-
ing bugs in network protocols using simulation code and protocol-
specific heuristics. In ICFEM, 2005.

[17] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model check-
ing programs. Automated Software Engineering Journal, 10(2):203–
232, Apr. 2003.

6

