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ABSTRACT

Mutation testing is a well-known but costly approach for deter-
mining test adequacy. The central idea behind the approach is to
generate mutants, which are small syntactic transformations of the
program under test, and then to measure for a given test suite how
many mutants it kills. A test ¢ is said to kill a mutant m of program
p if the output of ¢ on m is different from the output of ¢ on p. The
effectiveness of mutation testing in determining the quality of a test
suite relies on the ability to apply it using a large number of mu-
tants. However, running many tests against many mutants is time
consuming. We present a family of techniques to reduce the cost of
mutation testing by prioritizing and reducing tests to more quickly
determine the sets of killed and non-killed mutants. Experimental
results show the effectiveness and efficiency of our techniques.
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D2.5 [Software Engineering]: Testing and Debugging
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Algorithms, Experimentation
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1. INTRODUCTION

Test adequacy, i.e., the problem of evaluating the quality of a
test suite, plays a central role in software testing. Researchers have
developed a number of approaches for measuring test adequacy;
Zhu et al. present a comprehensive survey. Among these ap-
proaches, mutation testing [2}[31[8[12]] is often considered the most
effective approach. For example, mutation testing is used in nu-
merous research studies to evaluate testing techniques; Jia and Har-
man present a survey of mutation testing.

The central idea behind mutation testing is to generate mutants,
each of which contains a small syntactic change to the program
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under test, and then to determine for a given test suite how many
mutants it kills. A testt is said to kill a mutant m of program p if the
output of £ on m is different from the output of ¢ on p. The ratio of
the number of mutants killed to the total number of non-equivalent
mutants generated is termed the mutation score. A test suite with a
higher mutation score is of a higher quality. In the limit, a test suite
that kills all non-equivalent mutants is 100% adequate.

The key insight into the effectiveness of mutation testing is that
a test suite that kills a large number of mutants likely also finds a
large number of real faults [2[8l[121[T9]—even when the mutants
are not the same as the real faults. This effectiveness of mutation
testing relies on the ability to apply it on a large number of mutants.
These mutants are generated systematically using mutation opera-
tors, e.g., to replace an integer constant with 0. This paper focuses
on traditional, first-order mutation testing that applies only one op-
erator to generate a mutant; higher-order mutation testing
can apply multiple operators to generate a smaller, but still large,
number of mutants.

While mutation testing is very effective for evaluating test suite
quality, it is also very expensive because it requires running many
tests against many mutants. For each mutant that can be killed, we
potentially run several tests that do not kill the mutant until we run
one test that does kill the mutant. For each mutant that is not killed,
we must run every test (that reaches the mutated statement). The
cost of mutation testing can be measured in terms of the test-mutant
pairs that are run. One way to reduce the cost is to reduce the
number of mutants by selective mutation testing [41251126134137].
In contrast, our work reduces mutation testing cost in an orthogonal
way: we aim to reduce the cost of executing tests for each mutant.

This paper presents Faster Mutation Testing (FaMT) to reduce
mutation testing cost. FaMT includes novel techniques to prioritize
and reduce tests for each mutant. FaMT prioritization and reduc-
tion are inspired by regression test prioritization [10,[29,36] and
reduction [5l[6L[131[13]], which prioritize and reduce tests for regres-
sion testing [33]]. However, while both FaMT reduction and re-
gression test reduction reduce tests, FaMT reduction does not pre-
serve coverage of test requirements as regression reduction does.
Test prioritization has been applied to mutation testing by our pre-
vious work, ReMT [39], but ReMT is a specialized technique that
(1) only works for evolving code and (2) requires old mutation test-
ing results on previous versions to prioritize tests. In this paper, we
present the general FaMT approach to test prioritization for muta-
tion testing which (1) works even for one code version and (2) does
not require old mutation testing results. To our knowledge, test
reduction has not been previously used for mutation testing.

The goal of our test prioritization is to reorder the tests such that
a test that kills the mutant (when it can be killed) is run earlier. The
goal of our test reduction is to run only a subset of tests on a mutant
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to determine that it is not killed if no test from this subset kills
it. While test prioritization is precise in that it computes exactly
the same mutation score as traditional mutation testing but does
so faster, our test reduction is approximate in that it provides an
underapproximation for the mutation score (because a test that was
not run could kill a mutant even when no test that was run kills it).
To compute the bounds of mutation testing cost, consider a pro-
gram P with a set of mutants M and a test suite 7. Let the number
of mutants killed by 7 be m i and the number of mutants not killed
by 7 be mu; |[M| = mx + mn. Let the total number of test
executions for the killed mutants be tx (tx > mi) and the total
number of test executions for the non-killed mutants be ¢ 5. The to-
tal cost of mutation is tx + tn. Any precise (dynamic) technique
that reduces this cost can only reduce the number of test executions
to kill the mutants because for each mutant not killed, all tests (that
reach the mutant) must be run. An oracular technique could kill
each mutant (that can be killed) by running only one test per mu-
tant, and therefore has cost mx + tn. An approximate technique
could, in principle, have cost 0, by running no test against any mu-
tant, but it would not kill any mutant. Thus, a goal in optimizing
mutation testing is to achieve higher precision with lower cost.
This paper makes the following contributions:

e Idea: We present the idea of test prioritization and reduction
for mutation testing inspired by regression test prioritization
and reduction. Our idea addresses both the key elements in
the cost of mutation testing—executing some tests for killed
mutants and executing every test for non-killed mutants.

Techniques: We design and implement a family of tech-
niques based on coverage information about test execution
(e.g., the number of times the test reaches the mutated state-
ment while executing on the original, unmutated program),
on the history of test executions on other mutants (e.g., the
accumulating number of mutants that the test killed or did not
kill before executing the current mutant), and on the history
granularity levels (e.g., history at the method level).

Evaluation: We evaluate all 352 variant techniques of FaMT
prioritization and 3872 variant techniques of FaMT reduction
on 9 medium sized Java programs. The experimental results
show that FaMT prioritization can reduce the number of ex-
ecutions for killed mutants up to 47.52% over randomized
test execution orders (while providing the precise mutation
score). The study also shows that FaMT reduction can re-
duce the number of executions for all mutants around 50.0%

(while under-approximating the mutation score by only 0.50%).

Finally, the study shows that FaMT techniques incur very
small runtime overhead.

2. EXAMPLE

This section illustrates our FaMT techniques using the following
sample code snippet and its 4 mutants (m1, ma, ms, Mma):

int abs (int x) {
int vy = 0;
if (x < 0)

y o= %
if (x < 0)
return y;

} else {
return x; //m3:return 0; //m4:return -X;

}

{//ml:if(y < 0) //m2:if(x <= 0)

[ RN R I e Y R N N N

}

Note that each mutant is defined by exactly one change to the
program, e.g., mi replaces the variable x with y at line 5. In the

Table 1: Traditional mutation testing

mi mo ms my Total runs of
t1 N | t1 N | t1 N | t1 N test-mutant pairs
to N to N to K to K
ts K ts N 11
ta - ta N

Table 2: FaMT test prioritization

mi mo ms my Total runs of
ts K | t3 N | t1 N | to K test-mutant pairs
tq - tq N to K t1 -
t1 - t1 N 8
ta - to N

Table 3: FaMT test reduction

mq mo ms my Total runs of
ts K | ts N | t1 N | to K test-mutant pairs
tq - tq N to - t1 -
t1 - t1 - 5
to - |t -

actual mutation testing, there would be many more mutants even for
this simple code, but we use only 4 mutants for ease of exposition.
Consider further the following 4 tests for this code:

1| assert abs(0) == 0; // reach: ml, m2, m3, m4
2| assert abs(l) == 1; // reach: ml, m2, m3, m4
3| assert abs(-1) == 1; // reach: ml, m2
4| assert abs(-4) == 4; // reach: ml, m2

The goal of mutation testing is to determine the mutation score
for these 4 tests on these 4 mutants. A naive approach would run all
4 tests on all 4 mutants to determine the mutation score. However,
not all these 16 runs are necessary. Traditional mutation testing
employs two optimizations. First, it is unnecessary to run tests on a
mutant after it gets killed. Second, it is unnecessary to run tests that
do not even reach the mutated statement when these tests are run
on the original, unmutated program [1,2137139]. For our example
tests, the comments show this reachability information.

Table [I] shows the 11 test-mutant pairs that the traditional mu-
tation runs with these two optimizations. The cells indicate the
following: "N’ that the test was run but did not kill the mutant, XK’
that the test was run and did kill the mutant, and ’-’ that the test was
not even run for that mutant, e.g., ¢4 is not run for m; because m1
has been killed by ¢3 before t4. Note that ¢3 and ¢4 are blank for
m3 and my4 because they cannot reach the mutated statement.

FaMT improves on the optimized traditional mutation testing in
two ways. First, FaMT uses test prioritization to reorder the tests
that reach each mutant. (Section[33]presents the algorithm in de-
tail.) Intuitively, our prioritization uses the dynamic information
from test runs on the original program (recall that the tests are al-
ready run to find the reachability information) and on the history of
test runs on other mutants executed before the current mutant.

Table [2 shows the 8 test-mutant pairs that FaMT runs for our
example. For each mutant, the table also shows how FaMT or-
ders the tests for that mutant and the result of test runs. Note that
FaMT can run the tests in different orders for different mutants.
For m1, FaMT orders t3 and t4 before t; and t2 because t3 and
t4 execute more instructions before reaching the mutated statement
on the original program. (Section[B]describes the rationale for this
choice and the additional information that FaMT uses.) For myq,
FaMT orders t2 before ¢; because the execution history before m.4
(i.e., from m1 to m3) shows that to is a “better killer”; to killed
ms, whereas ¢, did not kill any mutant on which it was run before
executing on ma4. In sum, the reordering that FaMT makes allows
it to run only 8 test-mutant pairs (i.e., a reduction of 27.3%) and
still produce the precise mutation score (3 of 4 mutants are killed).

Second, FaMT can further use test reduction to reduce the num-
ber of test-mutant pairs run. Intuitively, the reduction runs only a
subset of the tests that reach a mutant; if none of these tests kills



the mutant, FaMT considers that the mutant cannot be killed by
the given test suite. (Section [3.4] discusses reduction techniques
that FaMT can use.) To illustrate, consider that FaMT runs at most
50% of the tests that reach the mutant, where 50% is just one exam-
ple value; the user can set any ratio here, and our empirical study
provides guidelines to choose proper ratios.

Table 3] shows the 5 test-mutant pairs that FaMT runs for our
example. Note that different from FaMT prioritization, after ¢3
and t4 are executed on ma, FaMT directly predicts that mo can-
not be killed because 50% of the tests that reach ms> have been
executed. However, test reduction is approximate and provides an
underapproximation for the mutation score because a test that was
not executed could kill a mutant even when no executed test kills
it. For example, after ¢; is executed on mg, t2 will not be exe-
cuted on m3. Therefore, FAMT reduction imprecisely predicts that
ms cannot be killed while actually it can be killed by ¢;. In brief,
using reduction allows FaMT to run only 5 test-mutant pairs (i.e.,
a reduction of 54.5%) but produces an imprecise mutation score
(2/4 as opposed to the actual score of 3/4). Please note that our
experimental study demonstrates that the underapproximations for
real-world programs are much smaller than this example.

3. APPROACH

This section presents our FaMT approach for faster mutation
testing. We first describe FaMT basics, including initial test or-
dering (Section 3.1 and adaptive test ordering (Section [3.2). We
then present test prioritization that FaMT performs to more quickly
compute the precise mutation score (Section[3.3), and test reduc-
tion that FaMT performs to more quickly compute an approximate
mutation score (Section[3.:4). Recall that the cost of mutation test-
ing has two key elements—running some tests for killed mutants
and running every test that reaches the mutant for non-killed mu-
tants. While FaMT prioritization addresses only the first element
and calculates a precise mutation score, FaMT reduction addresses
both elements but calculates an approximate mutation score.

3.1 Coverage-Based Initial Test Ordering

For each mutant m, FaMT first calculates the initial priority val-
ues of the tests that execute the mutated statement using test cov-
erage on the unmutated program version. This calculation uses
two basic heuristics: (1) tests that execute the mutated statement
more times have a higher probability to kill the mutant [39], and
(2) tests that execute the mutated statement more closely to the test
exit statement have a higher probability to propagate the mutated
state to the end and kill the mutant[] We also use a third heuristic
that combines these two.

Let ¢ be a test for mutant m. Our first heuristic calculates the
initial priority value of ¢ for m as:

C1(t,m) = covNum(t, statym,) (1

where CovNum (¢, stat., ) denotes the number of times that ¢ covers
stat,, that is the mutated statement of m.

Our second heuristic calculates the initial priority value of ¢ for
m using the ratio of the number of statements executed by ¢ be-
fore the first execution of stat,, to the number of all statements
executed by ¢:

COVBEFORE (t, stat,)
COVBEFORE (t, Staty,) + CovAFTER (£, Statm, )

C2 (t7 m) = (2)

"Note that a test can cover the mutated statement multiple times;
we measure the distance from the first execution of the mutated
statement to the test exit statement.

where CovBerorE (¢, staty,) denotes the number of unique state-
ments executed by ¢ before the first execution of the mutated state-
ment stat,,, and COVAFTER (t, statm) denotes the number of unique
statements executed by ¢ after the first execution of stat,,. The
higher the value is, the closer stat,, may be to the end of ¢.

Our third heuristic combines the first two and calculates the ini-
tial priority value of ¢ for m:

C3(t7m) = C1(t7m) X C2(t7m) 3)

3.2 Power-Based Adaptive Test Ordering

During the execution of the tests for a mutant, FaMT also collects
on-the-fly history information to adaptively update the test execu-
tion order. The basic intuition is that a test that killed more mutants
that are close to the current mutant has a higher likelihood to kill
the current mutant. We refer to this likelihood of a test to kill the
current mutant m as the power of a test with respect to m. For-
mally, we denote the mutation testing results as a matrix MATRIX,
where each cell Matrix (¢,m) denotes the execution result of ¢ on
m: K denotes that m is killed by ¢, and N denotes that m is executed
but not killed by ¢. Marrix is initially empty, and eventually filled
with N and K. We define the power of test ¢ with respect to m as the
ratio of the number of mutants in m’s neighborhood (denoted as
N, and defined below) which are killed by ¢ to the number of all
those in the neighborhood that have been executed by ¢ (whether or
not they are killed by ?):

{m' € N |Matrix (¢, m") = K}|
{m/ € N |Matrix (¢, m’) € {K,N}}|

Intuitively, the higher the ratio, the higher the likelihood that ¢ kills
m. Note that the history information used by FaMT is nor the mu-
tation testing information from previous program versions [39]. In-
stead, it is accumulating execution history of tests on other mutants
that have been executed before the current mutants in the same mu-
tation testing task.

Equation (@) calculates the power of a test by taking into account
all the mutants which are in N, and executed by ¢. However, the
mutants that cannot be killed by any tests may unnecessarily lower
the power of a test. Therefore, we propose another formula to cal-
culate the power of a test by excluding the mutants that have not
been killed by any test yet:

{m' € No|Matrix(t,m’) = K}|
|m/ € N |{KiL(m’) A Matrix (¢, m’) € {K,N}}|
)

P1(t7m) = (4)

P2 (t7 m) =

where KL (m’) denotes whether m’ has been killed by a test, i.e.,
KiL(m') < 3t, Matrix (£, m) = K.

While we believe there are various ways to define the neighbor-
hood among mutants, here we consider the mutants that share com-
mon program locations as neighbors. In particular, we define four
levels of neighborhood, each of which can be used for calculating
the power of a test with respect to a mutant:

e Statement-level history: FaMT groups all the mutants that
occur on the same statement with m as N, i.e., o =
{m/|stat,,, = statm}, where stat,, is the statement on
which m occurs.

e Method-level history: FaMT groups all the mutants within
the same method with m as Ny, i.e., Ny, = {m/|meth,,, =
methy, }, where meth,, is the source method in which m
occurs.

e Class-level history: FaMT groups all the mutants that occur
in the same class with m as No,, i.e., o = {m/|clas,, =
clasm }, where clasy, is the source class in which m occurs.



Algorithm 1: FaMT Prioritization Algorithm

Input: Program P, mutants M, test suite 7~
Output: MaTrIX

1 begin
2 Initialize MaTrIx as empty

// Collect coverage information when executing T on P
3 CovNUM, COVBEFORE, COVAFTER $— CovCoLLECT (T, P)

4 for m € M do

// Detect tests that execute the mutated statement on P

5 Tm < {t € T|covNum(t, statm) > 0}

6 fort: 7., do

// Note that the initial priority calculation is not
updated during mutation testing

7 Calculate (¢, m) according to Section[3.1]

// Note that the power calculation is continuously
updated during mutation testing

8 Calculate P(t, m) according to Section[38.2]

// Reorder T, based on the initial priority values, C

9 T REORDER(Tm, C)

// Split T,), into two lists by comparing the power
values, P, with Threshold

10 Ti, T2 < Partirion (7, P, Threshold)
// Iterate over the test list by concatenating T1 and T2
1 fort: 71 @ T2 do
12 Matrix (£, m) < Execute(t,m) // N or K
// If mutant m is killed, continue to next mutant
13 if Marrix (¢, m) = K then break

// Return the final mutation testing matrix
14 return MATRIX

e Global history: FaMT groups all the mutants as N, i.c.,
Nm = M, where M is the set of all the mutants for the
program under test.

Different levels of neighborhood enable FaMT to use different lev-
els of history information. For each history level, FaMT utilizes the
history information of a test ¢ on the mutants that occur in the same
neighborhood (e.g., in the same class) with the current mutant m to
calculate the likelihood that ¢ kills m. On one extreme, statement-
level history calculates the test power based on mutants that are on
the same statement because those mutants tend to perform simi-
larly when being tested. However, the number of mutants that are
on the same statement is usually too small for sampling. On the
other extreme, global-level history records the test power for the
entire program and may be imprecise for specific mutants, but the
number of mutants is sufficiently large. Therefore, we investigate
the impact of all four levels of history information.

3.3 Test Prioritization

The goal of our test prioritization technique is to reorder the tests
such that a test that kills the mutant (when it can be killed) is run
earlier than by simply following the default or random order of
tests. Algorithm [ gives the pseudo-code for our technique. The
algorithm employs a family of ordering functions. These functions
are based on coverage information of tests (Section[3.1)) and on the
accumulating execution history of tests (Section[3.2).

The algorithm takes program P, its mutant set M, and test suite
T as inputs, and returns the mutation testing matrix Matrix as out-
put. Line[initializes Matrix as empty. Line[3collects coverage in-
formation which is used during later steps. Lines [@[T3]iterate over

the mutant set to determine whether each mutant is killed. During
each iteration, Line [l identifies the set of tests 7Ty, that reach the
mutated statement of current mutant /m on the unmutated program,
because the tests which do not reach the mutated statement cannot
kill the mutant [[1L211[311[39]. Lines [@f]iterate over all the tests in
T and calculate the initial priority (Section[B.1) as well as power
(Section for each test with respect to m. Note that the initial
test priorities are fixed during the process of mutation testing, be-
cause they are based on the coverage information of the tests on
the unmutated program. However, the test powers are continuously
updated during the mutation testing process: the more mutants in
the neighborhood of m are executed, the higher the accuracy of the
power values.

Line Pl reorders 7,, according to the initial priorities of tests.
Line [I0] then partitions the reordered list into two sublists, 77 and
T2, based on the power of a test: if the power is less than the
Threshold, FaMT puts the test into 72; otherwise, FaMT puts the
test into 77. Note that each sublist is still ordered by initial test
priorities. Lines [[THI3]l concatenate 7; with 73 and iterate over the
concatenated list. Line executes mutant m on test ¢ and puts
its execution result into the resulting Matrix: if ¢ kills m, the ex-
ecution result is K; otherwise, the result is N. Line [[3] terminates
the execution for current mutant and continues to the next mutant
if the current mutant is killed. Finally, Line[[4lreturns the mutation
testing matrix Matrix as output and terminates the algorithm.

3.4 Test Reduction

Our test prioritization can reduce the number of executions to kill
mutants, but for the mutants that cannot be killed, the test prioriti-
zation cannot help. The goal of our test reduction is to run only a
subset of tests on a mutant to determine that it is not killed if no test
from this subset kills it. In this way, we can reduce the number of
executions for all the mutants, regardless of whether they are killed
or not. Note that this reduction may cause the mutation testing re-
sult to be approximate because some mutant may be mistakenly
predicted as not killable due to some tests that kill it not being ex-
ecuted. Therefore, this algorithm needs to be carefully evaluated
through an empirical study.

The basic intuition of our test reduction is that if those tests with
higher likelihood to kill a mutant cannot kill the mutant, the re-
maining tests will have little chance to kill the mutant. Recall that
our test prioritization also executes first the tests that have higher
likelihood to kill mutants. Therefore, we build our test reduction al-
gorithm directly on our test prioritization algorithm (Algorithm I}).
Our reduction modifies only Line[[T]of Algorithm[I] While our pri-
oritization algorithm always concatenates the entire 7; and 72, our
reduction algorithm only concatenates 71 with a prefix of 72. More
specifically, we change Line [[Tlinto the following line to form our
reduction algorithm:

for ¢t : T1 @ preFix (T2, Max(0, (|71 @ T2|) X MinRatio — |71]))

where PreFix (72, x) returns the sublist which contains the first
tests in 72, and Max(z, y) returns the larger of x or y. The reduction
algorithm concatenates 7; with a prefix of 75 such that ratio of
the concatenated list’s length to the length of 77 @ 7> is at least
MinRatio. Note that if the length of 77 is already larger than or
equal to (|71 @ 72|) X MinRatio, no tests from 72 will be executed.

4. EXPERIMENTAL STUDY

FaMT aims to reduce the cost of mutation testing by prioritizing
and reducing the tests that need to be executed for each mutant. To
evaluate FaMT, we implement FaMT on top of Javalanche [31]], a
state-of-the-art mutation testing tool for Java.



Table 4: Subjects

[ Subject | Version | Size | #Tests | #Mutants(KillRates) |
Time&Money 207 2681 236 2304 (72.35/87.14)
Jaxen r1346 | 13946 690 9880 (46.72/70.54)
Xml-Sec v3.0 | 19796 84 9693 (26.41/70.93)
Com-Lang | r1040879 | 23355 1691 | 19746 (65.68/86.24)
JDepend v2.9 2721 55 1173 (68.03/84.62)
Joda-Time rl604 | 32892 3818 | 24174 (66.45/87.16)
JMeter v1.0 | 36910 60 21896 (9.24/28.34)
Mime4J v0.50 6954 120 | 19111 (23.10/63.39)
Barbecue 187 5391 154 36418 (2.75/68.40)

4.1 Research Questions
Our experimental study addresses these research questions:

e RQ1: How does FaMT prioritization reduce the number of
executions?

e RQ2: How does FaMT reduction reduce the number of exe-
cutions and how it approximates the mutant killing ratio?

e RQ3: How does FaMT compare with regression test prioriti-
zation and reduction in the mutation testing scenario? (While
regression test prioritization and reduction are not originally
designed for mutation testing, they have a straightforward
application to it—to compare with FaMT, we apply regres-
sion test prioritization and reduction to mutation testing by
using the coverage information of the original program to
uniformly prioritize and reduce tests across all the mutants.)

e RQ4: What are the runtime overheads for both the test pri-
oritization and test reduction of FaMT?

4.2 Independent Variables

We used the following independent variables (IVs):
IV1: Different Initial Orderings. We considered different test
ordering randomizations for each mutant (DR) and all our three
coverage-based orderings (C1, Ca, and Cs; Section B.1).
IV2: Different Test Power Formulas. We considered both choices
of test power formulas presented in Section[3.2} (1) using history of
all neighbor mutants and (2) using history of only killed neighbor
mutants. We denote them as P; and P>, respectively.
IV3: Different History Information Levels. We considered all
four levels of history information presented in Section (1)
statement level, (2) method level, (3) class level, and (4) global
level. We denote them as Stat, Meth, Clas, and Glob, respectively.
IV4: Different Thresholds. We considered 11 Threshold values
for Algorithm[I] ranging from 0.0 to 1.0 with increments of 0.1.
IVS: Different MinRatios. We considered 11 MinRatio values
from Section[3:4] ranging from 0.0 to 1.0 with increments of 0.1.
IV6: Different Regression Testing Techniques. We considered
the widely used total and additional regression test prioritization
techniques using statement coverage [10129], and the widely used
greedy regression test reduction technique using statement cover-
age [38], to evaluate their effectiveness for RQ3.

4.3 Dependent Variables

To evaluate the effectiveness and the efficiency of FaMT, we
used the following three dependent variables (DVs):
DV1: Execution Reduction Ratio. This variable denotes the ratio
of test-mutant executions reduced by FaMT prioritization or reduc-
tion to the number of all test-mutant executions that reach mutants.
DV2: Error Rate. This variable shows the ratio of mutants that are
mistakenly predicted as unkillable by FaMT reduction, i.e., err =

“ﬁj} , where M. denotes the set of mistakenly predicted mutants

and M, denotes all the reached mutants.

DV3: Run Time Overhead. This variable records the runtime
overheads incurred by FaMT prioritization or reduction. Specif-
ically, we recorded all the extra setup costs for FaMT prioritiza-
tion/reduction in comparison with Javalanche, including calculat-
ing the coverage-based heuristic and test power information, as
well as prioritizing/reducing tests based on them.

4.4 Subjects and Experimental Setup

We evaluated FaMT using nine open-source projects which come
from various application domains and have been widely used for
mutation testing and regression testing research [30,3136}39]. Ta-
ble @ summarizes the projects. The sizes of the studied projects
range from 2.6K lines of code (LoC) to 36.9KLoC (excluding blank
lines and test code). Column 4 shows the number of tests for each
subject. In the last column of Table dl we show the number of all
generated mutants, the ratio (%) of killed mutants to all the mu-
tants, and the ratio (%) of killed mutants to the reached mutants.

We evaluate all the FaMT techniques on all subjects:

For FaMT prioritization, we studied all the combinations of 4
initial orderings, 2 choices of power calculation, 4 levels of history
information, and 11 Threshold values, i.e., 4*2%4*11=352 priori-
tization variant techniques.

For FaMT reduction, we studied all the combinations of 4 ini-
tial orderings, 2 choices of power calculation, 4 levels of history
information, 11 Threshold values, and 11 MinRatio values, i.e.,
4#*2%4%11#%11=3872 reduction variant techniques.

As the accumulated history varies for different orders of mutant
execution, we randomize the execution order for mutants and apply
each FaMT prioritization or reduction technique on each subject for
20 times to evaluate its effectiveness as well as the stability. We also
applied all other compared techniques for 20 times on each subject.
The experiments were performed on a Dell desktop with Intel 17
8-Core 2.8GHz processor, 8G RAM, and Windows 7 Enterprise
64-bit version.

4.5 Result Analysis

All the detailed experimental data can be found onlinda.

4.5.1 RQI: FaMT Test Prioritization

Evaluation with default threshold. We applied FaMT prioritiza-
tion techniques with the default Threshold of 0.3 on all the sub-
jects. Table [3] shows the detailed experimental results for FaMT
prioritization techniques using the history of all neighbor mutants
(P1). Column 1 (A.) and Column 2 (1.) show the levels of adaptive
history information and the initial test orderings used. Columns 3-
20 present the ratios of test executions for killed mutants reduced
by the studied techniques (both mean values and standard devia-
tions over 20 runs) compared with different randomized test orders
for each mutant (DR). Column 21 presents the total execution re-
duction ratios (the ratio of the sum of all reduced executions to the
sum of all executions over all subjects) by each technique. Simi-
larly, Table[6]shows the experimental results of FaMT prioritization
using the history of only killed neighbor mutants (). We also
compare the baseline DR with a more basic random technique, UR,
which randomizes the entire original test suite and then reorders the
tests for each mutant according to their ordering in the randomized
original suite (first row in Table[3). The key difference between UR
and DR is that UR uses the same random ordering for all mutants
whereas DR uses different random orderings for different mutants.
Our findings are as follows.
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Table 5: Execution reduction (%) for FaMT prioritization with Threshold=0.3 and history of all neighbor mutants (F;)

Al L | Time&Money | Jaxen | Xml-Sec | Com-Lang | JDepend | Joda-Time | JMeter | Mime4J | Barbecue | Total |
[ Red.  Dev. | Red. Dev. [ Red. Dev. [ Red.  Dev. | Red. Dev. [ Red.  Dev. [ Red.  Dev. [ Red.  Dev. | Red. Dev. [ Red. |
[- T UR] 08 939 | -184 6181 [ 22 1824 [ -06 347 [ 25 2175 -02 732 ] -02 375 ] 39 826 [ 2.9 10.15 [ -1.7 ]
- | DR 0.0 0.00 0.0 0.00 0.0 0.00 0.0  0.00 0.0 0.00 0.0 000 ]| 0.0 0.00 0.0 0.00 0.0 0.00 0.0
- | Ci| 49 471 | -45.8  60.44 2.0 5.87 2.7 143 | -3.0 8.12 16.5 298 0.6 1.61 6.7 4.50 9.8 5.67 -4.6
- | C2f 0.0 6.19 | 263 2797 | -152 1178 | 75 175 | -11.5 1033 | -0.0 424 | -1.8 216 | -11.0 498 | -147  7.11 12.2
Cs| 1.8 4.82 24 35.58 3.7 9.61 -1.1 1.60 7.0 8.31 195 339 | -06 2.14 7.3 4.07 43 7.29 12.8
S| DR| 142 328 15.7 5.85 19.1 6.40 8.1 079 | 17.4 2.32 145 139 | 4.1 082 | 16.6 1.81 | 25.0 2.72 13.7
t | Ci1| 184 506 | -27.4 5548 | 219 7.54 102 1.33 | 14.8 6.60 | 25.0 3.35 4.8 1.68 | 20.0 3.67 | 282 477 7.6
a | Cof 133 530 | 535 17.16 | 115  10.17 3.2 1.49 | 125 7.47 169  3.65 2.6 209 | 1.1 4.18 | 18.0 5.36 31.6
t | Cs| 168 494 | 205 30.04 | 225 8.99 8.2 1.42 | 21.0 6.77 203 342 3.8 212 | 203 355 | 262 5.59 25.5
M| DR| 18.0 419 | 20.1 8.49 26.9 8.22 9.7 091 | 225 3.17 23.1  1.65 6.4 1.55 189 286 | 32.6 3.69 18.9
e | Ci1| 207 503 | 223 53.64 | 284 8.61 1.7 123 | 222 6.52 | 292 3.06 | 74 1.92 | 206 376 | 352 4.30 11.4
t | Cof 175 523 | 589 1554 | 21.7 9.97 6.2 1.46 | 20.2 6.80 | 25.0 3.17 5.1 202 | 152 439 | 27.0 4.74 374
h | Cs| 198 515 | 242 2930 | 28.6 9.10 9.9 122 | 273 6.57 333 3.1 6.6 212 | 209 349 | 337 4.50 28.8
C| DR| 174  3.57 14.1 5.33 27.2 9.42 8.5 097 | 22.7 836 [ 282 251 6.4 147 | 171 323 | 259 3.51 18.4
1| Ci| 183 482 | -28.1 5630 | 28.9 9.06 104 1.28 | 194 11.54 | 343 328 7.5 1.94 | 16.6 470 | 32.6 3.76 10.8
a | Cof 185 529 | 553 1828 | 24.6 9.77 6.5 1.44 | 204 8.93 28.0 3.62 | 54 2.03 | 143 481 | 212 6.70 37.3
s | Cs| 183 484 19.2 3076 | 29.4 9.45 8.6 127 | 167 1129 | 36.8 286 | 6.6 210 | 173 413 | 31.1 4.78 27.8
G| DR| 141  3.04 2.2 1.49 23.2 8.32 7.7 1.17 | 233 599 | 294 267 4.7 1.61 151 4.07 | 18.8 5.76 14.1
1| Ci| 152 491 | 426 59.75 | 244 8.92 102 1.30 | 212  10.08 | 348 331 6.5 1.95 121 576 | 246 5.20 5.4
of| Cof 155 588 | 292 2779 | 20.1 10.06 | 5.8 1.41 179  10.11 | 31.0 3.88 53 203 | 126 640 | 116 8.12 28.9
b | Cs| 139 484 4.6 3498 | 26.1 8.43 8.5 136 | 194 7.78 356 3.38 6.1 256 | 13.8  5.62 | 216 5.79 22.0
Table 6: Execution reduction (%) for FaMT prioritization with Thresho1d=0.3 and history of only killed neighbor mutants (/)
A L | Time&Money | Jaxen [ Xml-Sec | Com-Lang | JDepend | Joda-Time | JMeter | Mime4] Barbecue | Total |
[ Red. Dev. [ Red. Dev. | Red. Dev. | Red.  Dev. [ Red. Dev. | Red. Dev. [ Red. Dev. | Red. Dev. [ Red. Dev. | Red. |
S| DR| 145 321 16.0 6.03 194 6.57 8.3 070 | 174 235 [ 147 136 | 42 086 | 17.0 1.78 | 252 2.67 | 139
t | Ci1| 188 489 | -27.3 5532 | 224 757 104 132 | 148 656 | 249 326 | 49 173 | 20.0 3.66 | 28.3 4.72 7.6
a| C2| 137 538 | 533 17.30 | 119 10.12 | 3.3 149 | 125 741 | 17.1 364 2.6 211 | 114 421 | 181 534 | 31.6
t | Cs| 172 491 20.5 3024 | 23.0  9.00 8.4 139 | 21.0 6.85 | 293 344 3.8 2.14 | 204 356 | 262 558 | 255
M| DR| 179 393 | 653 1299 | 27.8 8.63 9.9 089 | 226 339 [ 234 242 ] 59 132 | 21.5 279 | 357 3.13 | 40.1
e | Ci| 21,1 471 68.0 11.53 | 29.5 8.92 120 131 | 227 592 | 299 3.08 7.0 1.87 | 237 354 | 372 431 | 438
t | Cof 174 503 | 637 1312 | 23.7  9.87 6.3 134 | 20.1 6.60 | 26.1 349 | 43 2.08 | 17.7 398 | 337 425 | 39.7
h | Cs| 200 487 | 69.0 11.45 | 29.8 8.78 9.7 133 | 28.1  6.10 | 344 323 5.8 2.07 | 23.7 3.67 | 387 470 | 455
C| DR| 156  3.63 | 684 1284 | 275 8.92 8.3 089 | 233  6.04 | 268 221 6.0 1.45 1 205 289 | 363 341 | 422
1| Ci| 171 480 | 663 1333 | 284  9.25 107 146 | 247 784 | 333 276 | 7.0 1.86 | 23.9 415 | 389 446 | 443
a| Ca| 165 535 | 68.1 12.62 | 26.1 9.47 5.7 145 | 232 7.89 | 302 351 4.3 195 | 156 3.87 | 33.1 474 | 426
s | Cs| 169 485 | 674 13.01 | 288  9.47 8.8 142 | 294 555 | 383 266 | 54 2.03 | 239 3.61 | 386 480 | 462
G| DR[| 108 256 | 655 1278 | 17.1 6.80 7.3 098 | 19.5 557 | 30.1 255 4.2 133 | 13.1 240 | 31.5 289 | 41.1
1| Ci| 137 453 | 595 1564 | 19.0 7.99 10.0 1.50 | 19.8 7.50 | 36.5 336 | 5.7 194 | 199 411 | 348 501 | 422
of| Cof 126 534 | 688 1265 | 157 10.01 4.2 152 ] 195 812 | 333 3.08 2.7 2.08 6.5 522 | 28,0 574 | 427
b| Cs| 124 443 | 627 1507 | 219 830 7.9 147 | 27.5 476 | 395 254 | 4.1 224 | 192 425 | 339 509 | 442

First, FaMT prioritization techniques that embody history infor-
mation perform better than techniques without history information.
For example, UR, C1, C2 and C's without history information re-
duce the number of executions by -4.6% to 12.8% in total (com-
pared with DR). In contrast, all the techniques with history infor-
mation can effectively reduce the number of executions by 5.4%
(Cy with global-level history and P; formula) to 46.2% (Cs with
class-level history and P> formula) in total. Another interesting
finding is that history power information can even boost the DR
test order to achieve high reduction ratios. For example, when us-
ing the class level history and P, even DR can reduce the number
of executions by 42.2% in total. We also performed a statistical
test to confirm the effectiveness of FaMT. Specifically, the Fisher’s
LSD test shows that all FaMT techniques in Table[6] except the
first two, outperform the DR random technique at the significance
level of 0.05.

Second, for all levels of history information, using P performs
better than using P; in reducing executions. For example, for the
method level history information, techniques using P> reduce the
number of executions by 39.7% to 45.5%, while techniques using
P only reduce the number of executions by 11.4% to 37.4%. The
reason is that the non-killable mutants may unnecessarily lower the
power of tests and thus delay the execution of some good tests. The
only exceptions are the techniques using statement-level history.

Third, for both P; and P>, the techniques using the method or

class level history information tend to perform the best. For ex-
ample, FaMT techniques using method level history and P; for-
mula reduce the number of executions by 11.4% to 37.4%, and
FaMT techniques using class level history and P> formula reduce
the number of executions by 42.2% to 46.2%. Interestingly, for
those techniques, the best initial ordering within the same level of
history information depends on using P; or P-». For example, when
using P;, C> performs the best. On the contrary, when using Ps,
C3 performs the best.
Effectiveness trends when using various thresholds. Figure [
illustrates the trends for FaMT prioritization techniques with Py
formula using different thresholds from 0.0 to 1.0. The four plots
are for FaMT techniques using statement, method, class, and global
levels of history, respectively. In each plot, each line represents
using the initial ordering DR, C, C5, or Cs. Similarly, Figure
illustrates the trends for FaMT prioritization techniques with P>
formula using different thresholds.

First, when Threshold=0.1, almost all FAMT techniques achieve
highest reduction ratios. For example, techniques using class-level
history and P; formula reduce executions by 42.86% to 47.52%,
and techniques using class-level history and P» formula reduce ex-
ecutions by 42.17% to 46.63%. The only exception is for the tech-
niques using global-level history and P> formula, which tend to
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Table 7: Execution reduction (%) for killed/all mutants by the-

oretical techniques and an FaMT prioritization technique.
Subject [ Reduction for Killed Mutants [[ Reduction for All Mutants |

| T-Worst | T-Best [ FaMT || T-Worst | T-Best | FaMT |
Time&Money -115.6 34.3 16.9 -66.3 19.8 9.8
Jaxen -505.7 90.4 67.4 -27.3 5.9 4.6
Xml-Sec -122.9 41.3 28.8 -28.2 9.8 6.9
Com-Lang -94.3 24.4 8.8 -56.4 14.6 5.3
JDepend -179.8 47.7 29.4 -75.6 20.3 12.5
Joda-Time -981.8 66.6 38.3 -459.3 31.2 18.0
JMeter -41.8 14.9 54 -11.2 4.0 1.5
Mime4J -131.1 414 239 -41.0 13.0 7.5
Barbecue -199.9 66.9 38.6 -72.8 24.5 14.2

[ Total | 5246 [ 678 [ 462 -70.5 ] 9.1 ] 62 ]

perform best when using Threshold values between 0.2 and 0.4.

Second, when Threshold increases from 0.1 to 1.0, FaMT tech-
niques using P; drop more dramatically than techniques using P>
in terms of reduction. For example, when Threshold increases
from 0.1 to 0.2, the technique using C'1, method-level history, and
P, formula drops from 43.3% to 12.52%, while the technique us-
ing C'1, method-level history, and P> formula does not drop at all.
The reason is that using the history of all neighbor mutants unnec-
essarily lowers the power values of tests and the majority of tests
will not have power values of greater than 0.2. The only exceptions
are the techniques using statement-level history, which remain sta-
ble when Threshold increases for both 2, and P». The reason is
that if one mutant in a statement is killed, there is a high likelihood
that all other mutants in the same statement are also killed, making
prioritization using P; and using P> perform similarly.
Comparison of FaMT with two theoretical techniques. To fur-
ther investigate FaMT’s effectiveness, we further present the reduc-
tion of executions by the theoretically worst and best techniques,
and compare them with FaMT. The theoretically worst technique
executes for each mutant all the tests that cannot kill that mutant
before it executes a test that can kill that mutant, while the the-
oretically best technique executes a test that can kill the mutant
first. Table [7] presents the reductions achieved by the theoretically
worst/best techniques, and an example FaMT technique (i.e., Cs
with the default Threshold of 0.3, class-level history, and P» for-
mula) over DR. Column 1 lists all the subjects, Columns 2-4 present
the reduction of executions for killed mutants, while Columns 5-7
present the reduction of executions for all mutants.

First, the example FaMT technique is close to the theoretically
best technique. The theoretically best technique reduces the execu-

tions by 14.9% to 90.4% with a total reduction of 67.8%. The ex-
ample FaMT technique reduces the executions by 5.4% to 67.4%
with a total reduction of 46.2%, indicating that FaMT performs
closely to the theoretically best technique. For all the subjects, the
theoretically worst technique reduces the number of test-mutant
executions for killed mutants by -981.8% to -41.8% with a total
reduction of -524.6%, i.e., in other words, the theoretically worst
technique increases the number of executions by about six times.

Second, the executions for all mutants cannot be reduced greatly
even using the theoretically best prioritization technique. For all
the subjects, the theoretically best technique only reduces the num-
ber of executions for all mutants by 4.0% to 31.2% with a total
reduction of 9.1%. Therefore, FaMT also cannot reduce the num-
ber of executions for all mutants greatly: it reduces the number of
executions for all mutants by 1.5% to 18.0% with a total reduc-
tion of 6.2%. The reason for the low reduction on executions of
all mutants is that all prioritization techniques cannot reduce the
executions for the mutants that cannot be killed. This finding also
further motivates our second study of FaMT reduction.

4.5.2 RQ2: FaMT Test Reduction

Evaluation with default threshold and minratio. We applied
FaMT reduction techniques with Threshold and MinRatio both
at the default value of 0.3 on all subject programs. Similar with
FaMT prioritization techniques, we compared FaMT reduction tech-
niques with DR for 20 times for each subject. Table[§]presents the
mean reduction ratios and mean error rates across 20 runs for all
FaMT techniques with P, formula. Columns 1 and 2 show the
levels of adaptive history (denoted as A.) and initial orderings (de-
noted as 7.) used. Columns 3-20 present the reduction ratios and
error rates achieved by the studied techniques for each subject.
Columns 21 and 22 list the total reduction ratios and error rates
over all subjects. Similarly, Table 0] presents the experimental re-
sults for FaMT reduction using the P> formula.

First, all the techniques can reduce the test executions effectively
without causing high error rates. In total, when using P, the FaMT
reduction techniques with both Threshold and MinRatio of 0.3
reduce test executions by 48.1% to 65.1%, while only causing error
rates from 0.44% to 2.46%. When using P, the FaMT reduction
techniques can reduce the number of test executions by 5.3% to
63.3%, while only causing error rates from 0.07% to 1.22%.

Second, using the P> formula gets more conservative reduction
than using the P; formula. For example, for the statement-level



Table 8: Reduction results (%) for FaMT reduction with Threshold, MinRatio=0.3, and history of all neighbor mutants (P;)

‘ A.| L | Time&Money | Jaxen | Xml-Sec | Com-Lang | JDepend | Joda-Time | JMeter | Mime4J | Barbecue | Total |

[ Red. Err. [ Red.  Err. [ Red.  Err. [ Red.  Err. [ Red.  Err. [ Red.  Err. | Red.  Er. [ Red.  Err. [ Red.  Er. [ Red.  Err. |
S| DR| 157 093 | 545 1.16 | 33.1 042 | 166 051 | 254 036 | 20.7 0.51 8.0 0.06 | 299 1.06 | 30.7 1.09 | 485 0.61
t | Ci| 178 073 | 534 1.76 | 338 050 | 17.8 033 | 246 0.55 | 25.6 044 8.2 0.08 | 30.6 045 | 316 0.62 | 48.1 0.3
a| C2| 152 098 | 564 030 | 31.6 058 | 139 0.69 | 23.7 079 | 21.2 0.62 7.6 0.05 | 284 1.03 | 28.1 1.00 | 49.9 0.60
t | Cs| 167 077 | 549 050 | 340 052 | 167 042 | 273 053 | 27.1 050 7.9 0.05 | 30.7 049 | 30.8 0.53 | 495 044
M| DR| 223 093 | 656 199 | 488 1.68 | 23.5 129 | 374 1.09 | 346 1.12 | 11.8 022 | 445 247 | 470 255 | 598 136
e | Ci| 234 084 | 643 276 | 490 199 | 243 1.02 | 380 1.57 | 374 096 | 120 021 | 448 1.76 | 47.7 232 | 59.1 1.27
t | Caf 21.8 1.02 | 68.0 096 | 479 236 | 22.1 149 | 365 1.71 | 355 148 | 11.6 0.24 | 436 251 | 46.1 3.12 | 61.8 148
h| Cs| 227 089 | 659 124 | 49.1 210 | 235 1.17 | 402 141 [ 39.0 108 | 119 0.18 | 448 1.74 | 480 228 | 60.6 1.17
C| DR| 32.0 1.51 669 2.87 | 540 208 [ 254 150 | 484 193 | 44.1 1.58 | 127 031 | 494 238 | 51.8 527 | 622 1.76
1| Cy| 325 129 | 656 375 | 544 155 | 265 1.32 | 477 352 ( 46.6 135 | 129 028 | 494 230 | 529 461 | 614 1.70
a | Ca| 325 1.65 | 694 187 | 535 291 | 248 159 | 47.1 260 | 439 1.88 | 125 0.27 | 482 252 | 503 520 | 642 1.84
s | Cs| 322 1.30 | 67.2 223 | 539 256 | 258 149 | 473 392 | 47.1 145 | 12.8 025 | 494 219 | 529 439 | 628 1.65
G| DR| 2938 1.99 | 672 426 | 56.8 294 | 255 1.65 | 509 234 [ 52.1 265 | 124 052 | 502 229 | 542 747 | 633 240
1] Ci| 326 1.94 | 657 560 | 575 205 | 267 145 | 51.1 3.65 | 545 240 | 126 041 | 508 233 | 55.0 685 | 624 236
o| Ca| 309 237 | 693 324 | 56.6 335 | 249 178 | 504 2.60 | 53.5 3.04 | 126 049 | 49.7 2.03 | 53.0 8.19 | 65.1 246
b| Cs| 319 210 | 673 392 | 575 3.8 | 26.1 1.61 | 51.2 375 | 549 259 | 127 036 | 50.6 224 | 550 6.57 | 63.7 233

Table 9: Reduction results (%) for FaMT reduction with Threshold, MinRatio=0.3, and history of killed neighbor mutants (/-)

‘ A.| I [ Time&Money | Jaxen [ Xml-Sec | Com-Lang | JDepend | Joda-Time | JMeter |  Mime4] | Barbecue | Total |

[ Red.  Dev. [ Red. Err. [ Red. Err. [ Red. Em | Red. Em | Red. Err. [ Red.  Err. [ Red. Err. [ Red. Ermr. [ Red. Ermr |
S| DR| 10.0 0.21 109 0.05 5.5 0.02 6.6 0.08 9.2 0.06 9.8 0.10 1.4 0.00 7.1 0.05 11.9 0.26 10.6  0.07
t Cy| 122 0.19 14.1 0.06 6.3 0.02 7.4 0.07 8.1 0.34 144 0.13 1.7 0.00 7.3 0.04 11.9 023 13.6  0.08
a| Ca| 93 0.22 4.6 0.10 4.2 0.02 4.0 0.08 8.1 0.29 109  0.12 1.1 0.00 5.7 0.04 9.2 0.23 53 0.09
t Cs| 11.5 0.20 9.6 0.06 6.5 0.02 6.3 0.08 10.7  0.36 162  0.14 1.4 0.00 7.5 0.04 1.2 0.16 10.1 0.09
M| DR| 132 0.33 28.8 0.37 13.4  0.20 122 045 16.6  0.13 | 21.8  0.30 2.8 0.05 189  0.45 29.8 1.19 | 27.2  0.34
e | Ci| 145 0.22 392 042 13.7  0.13 120  0.35 176 048 | 244 035 3.1 0.05 18.1 0.37 26.1 1.14 | 35,6 0.33
t Co| 127 0.25 199 0.51 14.1 0.19 11.2 046 16,7 044 | 219 043 2.7 0.06 193 046 | 29.7 1.31 19.7 041
h | Cs| 14.0 0.20 285 0.36 143  0.09 11.0 040 19.1 0.47 | 25.8 0.36 3.1 0.05 185 036 | 29.5 096 | 270 0.33
C| DR| 185 0.76 46.3 091 175 033 149 052 | 376 0.72 | 305 0.66 4.0 0.08 | 31.6 0.76 | 439 278 | 429 0.63
1 Cy| 172 0.55 45.8 1.00 18.8 0.22 153 046 | 393 095 33.0 0.60 4.4 0.06 | 30.8 0.55 | 41.0 193 | 425 055
a | Cof 197 0.76 46.4 1.17 | 209 021 152 063 | 39.8 099 | 300 0.78 3.9 0.06 | 31.9 096 | 443 272 | 427 074
s | Cs| 179 0.61 375 091 19.0 0.17 149 0.51 40.6 093 | 339 0.66 4.1 0.05 | 31.1 0.58 | 445 223 | 358 0.8
G| DR| 164 0.88 69.0 237 | 394 0.50 158 0.62 | 359 1.04 | 45.7 1.66 4.7 0.04 | 339 1.09 | 50.7 445 | 63.0 1.20
1 Cq| 162 0.84 69.1 2.68 | 435 050 16.1 0.55 | 37.7 1.06 | 46.0 1.52 4.9 0.03 | 389 099 | 49.7 3.67 | 63.3 1.14
o| Ca2| 177 0.88 69.1 2.03 | 436 054 16.0 0.78 | 422 1.24 | 46.5 1.63 3.9 0.05 | 33.5 1.23 | 493 474 | 63.3 1.22
b | C3| 168 0.82 68.5 241 46.2  0.52 162 0.62 | 41.7 1.03 | 46.2 1.49 4.2 0.03 | 37.5 1.00 | 51.3 353 | 629 1.12
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Figure 3: Reduction and error rate trends on different Threshold and MinRatio values by FaMT reduction

Table 10: Reduction error rates (%) for example FaMT reduction techniques and corresponding random techniques

Tech. | Time&Money | Jaxen | Xml-Sec | Com-Lang | JDepend | Joda-Time | JMeter | Mime4J | Barbecue | Total |
[ Erm Dev. [ Err. Dev. [ Err. Dev. [ Er.  Dev. [ Err. Dev. | Err. Dev. | Err. Dev. | Eir. Dev. [ Err. Dev. | Ermr. |
FaMT1 0.93 0.30 1.16 1.27 | 042 0.27 | 0.51 0.07 0.36 0.30 0.51 0.07 | 0.06 0.03 1.06 0.28 1.09 0.40 0.61
Rand. 9.73 125 | 1159 132 | 840 1.15 | 654 056 | 1841 323 | 13.04 068 | 1.38 0.21 | 11.29 231 | 17.08 1.78 9.58
FaMT2 0.73 0.27 1.76 1.34 [ 0.50 0.21 | 033 0.06 0.55 0.41 0.44 0.05 | 0.08 0.03 0.45 0.09 0.62 0.27 0.53
Rand. 1078 1.09 | 11.56 141 | 897 1.13 | 720 024 | 1835 3.19 | 1470 049 | 1.56 0.18 | 12.60 2.51 | 17.26 1.84 | 1047
FaMT3 0.98 0.29 0.30 0.07 | 0.58 0.19 | 0.69 0.07 0.79 0.35 0.62 0.08 | 0.05 0.02 1.03 0.17 1.00 0.57 0.60
Rand. 9.69 1.05 | 1262 0.68 | 8.03 093 | 6.16 021 | 17.61 291 | 1298 040 | 1.35 0.15 | 10.78 2.09 | 1638 132 9.47
FaMT4 0.77 0.31 0.50 0.60 | 0.52 0.17 | 042 0.05 0.53 0.40 0.50 0.06 | 0.05 0.03 0.49 0.09 0.53 0.31 0.44
Rand. 1042  1.04 | 1190 135 ] 9.02 1.06 | 680 023 | 19.71 3.51 | 1438 047 | 1.53 0.15 | 1255 255 | 1725 1.53 | 1031

history, techniques using P reduce executions from 5.3% to 13.6%
and cause less than 0.1% error rates, while techniques using P; re-
duce executions by higher ratios (from 48.1% to 49.9%) and cause
slightly higher error rates (from 0.44% to 0.61%). The reason is
that using P> causes tests to have larger power values and tend to
stay in the first priority list (i.e., 71 from Section[3.4) and thus be

run. One interesting finding is that when the history level becomes
global, techniques using P> achieve similar execution reductions
with techniques using P, but cause much lower error rates. For
example, a technique using global history and P formula reduces
all test executions by 63.3% while causing an error rate of 1.14%,
while the corresponding technique using global history and P; for-



mula reduces executions by 62.4% while causing a twice as high
error rate, 2.36%. The reason is that using the global history of all
neighbor mutants unnecessarily lowered the power of tests, caus-
ing some powerful tests to be moved into the secondary list (i.e.,
T from Section[3.4) and not run later.

Third, there are many techniques that can reduce test execu-
tions significantly with negligible error rates. In total, techniques
using global-level history and P> formula reduce executions by
more than 63.0% with less than 1.22% error rates. Techniques us-
ing statement-level history and P; formula reduce executions by
around 50.0% with only around 0.50% error rates. Although the
techniques using statement-level history and P; formula reduce ex-
ecutions by smaller ratios, their error rates are smaller and more
stable. For example, when using the C'3 initial ordering, it only
causes error rates of 0.05% to 0.77% across all subjects.
Effectiveness and error rate trends when using various thresh-
olds and minratios. Figure[Blillustrates the total reduction and er-
ror rate trends for all subjects when two example FaMT reduction
techniques use different Threshold and MinRatio values from
0.0 to 1.0. The two example techniques are carefully chosen such
that they are different enough from each other. The trends for other
FaMT reduction techniques should be similar. More precisely, Fig-
ures and present the reduction and error rate trends for
FaMT reduction using the Cs initial ordering, statement-level his-
tory, and P formula. Figures and present the reduction
and error rate trends for FaMT reduction using the C's initial order-
ing, global-level history, and P> formula. In each sub-figure, the
two horizontal axes represent Threshold and MinRatio, and the
vertical axis represents the reductions or error rates.

First, when Threshold is fixed, if MinRatio increases from
0.0 to 1.0, the reductions achieved by FaMT reduction techniques
drop linearly for both techniques, while the error rates drop more
dramatically when MinRatio increases from 0.0 to 0.1. For in-
stance, for the first example technique with Threshold=1.0, when
MinRatio increases from 0.0 to 0.1, the reduction drops from 71.7%
to 63.0%, while the error rate drops from 9.42% to 1.22%. When
MinRatio increases from 0.1 to 0.2, the reduction ratio drops from
63.0% to 55.9%, while the error rate only drops from 1.22% to
0.93%. A similar observation can be made for the second exam-
ple technique. This indicates that using the MinRatio of 0.0 is not
cost-effective, and using MinRatio from 0.5 to 1.0 might cause
low reduction. Therefore, using MinRatio values between 0.1 and
0.5 can be cost-effective choices.

Second, when MinRatio is fixed, if Threshold increases from
0.1 to 1.d3, the reductions achieved by FaMT reduction techniques
increase linearly for both techniques, while the error rates increase
more dramatically when Threshold increases from 0.5 to 1.0. For
instance, for the first example technique with MinRatio of 0.0,
when Threshold increases from 0.5 to 1.0, the reduction ratio in-
creases from 71.6% to 71.7%, while the error rate increases from
5.68% t0 9.42%. Similarly, for the second example technique with
MinRatio of 0.0, when Threshold increases from 0.5 to 1.0, the
reduction ratio increases from 81.3% to 93.4%, while the error rate
increases from 9.56% to 40.74%. This indicates that Threshold
values between 0.1 and 0.5 are more cost-effective than Threshold
values between 0.5 and 1.0 for FaMT reduction.

Comparison of FaMT reduction with random techniques. To
further investigate the effectiveness of FaMT reduction techniques,
we compare FaMT techniques with random techniques that exe-
cute the same number of tests as FaMT reduction for each mu-
tant. Table presents the mean values and standard deviations

3When Threshold=0.0, all the tests are stored in the first priority
list and thus executed, and the reduction ratios are close to 0.

Table 11: Comparison between FaMT and regression test pri-
oritization and reduction

Sub Test Prioritization (%) || Test Reduction (%) |
FaMT | Tot. [ Add. [ FaMT [ Greedy |
Time&Money 70 | 157 471 167 (©7) ] 301 G99

Jaxen 674 | -1440 | 558 || 549 (0.50) | 727 (2.62)
Xml-Sec 288 | 294 | -92 || 340 (052) | 382 @12

Com-Lang 88 | -125 52| 167 (042 | 243 (1.97)
JDepend 29.4 48 | 183 || 273 (0.53) | 452 (3.15)
Joda-Time 383 55| 270 | 271 (050) | 505 (3.97)
JMeter 5.4 271 33| 79 005 | 52  (0.09

Mime4J 239 -30.7 -1.0 30.7  (0.49) | 31.8 (1.61)
Barbecue 38.6 -46.5 | -18.0 30.8 (0.53) | 53.4 (16.59)

of error rates caused by the four example FaMT techniques using
statement-level history and P} formula with corresponding random
techniques across 20 runs. Column 1 lists all the compared tech-
niques (each example FaMT technique followed with a random
technique). Columns 2-19 list the mean error rates and their stan-
dard deviations for each subject. Column 20 lists the overall error
rates for all subjects in total.

The error rates caused by random techniques are much larger
than those of FaMT techniques although they reduce the executions
to the same extent. For example, the first FAMT technique causes
an error rate of 0.61% in total for all subjects, while the correspond-
ing random technique causes an error rate of 9.58%. In addition,
the error rates caused by FaMT techniques are more stable than
those of random techniques. For example, the standard deviations
of error rates caused by the first FaMT technique range from 0.03%
to 1.27%, while the standard deviations of error rates caused by the
corresponding random technique range from 0.21% to 3.23%.

4.5.3 RQ3: Comparison with Regression Techniques

Table[[Tlsummarizes the comparison of two example FaMT tech-
niques and traditional regression testing techniques. Column 1
lists all the subjects. Columns 2-4 present the mean reduction
of executions for killed mutants (across 20 runs for each subject)
achieved by the example FaMT prioritization technique (using the
('3 initial ordering, class-level history, P> formula, and default
Threshold) with the fotal and additional regression test prioriti-
zation techniques. Columns 5 and 6 present the mean reduction of
executions for all mutants with mean error rates in brackets (across
20 runs) achieved by the example FaMT reduction technique (us-
ing C'3 initial ordering, statement-level history, P; formula, and
default Threshold and MinRatio) and the greedy regression re-
duction technique.

Both regression prioritization techniques do not always reduce
the number of executions for killed mutants. For example, the fo-
tal technique reduces executions by -144.0% to 5.5%, while the
additional technique reduces executions by -18.0% to 55.8%. In
contrast, the example FaMT prioritization effectively reduces exe-
cutions from 5.4% to 67.4% for all subjects. We believe the rea-
son is that regression prioritization techniques were not originally
designed for mutation testing. One interesting finding is that the
additional regression prioritization technique is able to reduce ex-
ecutions effectively for several subjects. For example, it reduces
executions by more than 10% for three subjects. The reason is that
diverse tests tend to be executed early against each mutant because
the additional technique always picks the test that covers most un-
covered program elements as the next test. The early execution of
diverse tests may have a higher probability to kill a mutant earlier.

The greedy regression reduction technique can significantly re-
duce the number of executions for all subjects (from 5.2% to 72.7%).
However, the error rates caused by it can be extremely high for



Table 12: Runtime overhead by FaMT techniques

Sub ‘ Javalanche || FaMT Prioritization | FaMT Reduction |

Time(s) [P [ PG [P ] PG
Time&Money 433 0.04 0.04 0.03 0.04
Jaxen 2901 18.34 17.68 17.72 17.47
Xml-Sec 3184 0.91 0.70 0.89 0.59
Com-Lang 4475 0.71 0.70 0.70 0.69
JDepend 182 0.07 0.06 0.05 0.06
Joda-Time 11788 8.55 8.13 8.16 8.28
JMeter 3452 0.22 0.16 0.15 0.13
Mime4J 10880 0.41 0.44 0.47 0.41
Barbecue 455 0.10 0.08 0.09 0.09

some subjects, e.g., 16.59% for Barbecue, making it not suitable
for reducing the cost of mutation testing. In contrast, although
the example FaMT reduction reduces executions by smaller ratios
(from 7.9% to 54.9%), it incurs small and stable error rates (from
0.05% to 0.77%), demonstrating that FaMT reduction is more suit-
able than regression reduction for reducing mutation testing cost.

4.5.4 RQ4: FaMT Efficiency

We measured the runtime overheads for all FaMT prioritization
and reduction techniques. Due to the space limitation, we only
show the overheads for the most expensive techniques that use C'3
(i.e., the heuristic that combines C and Cb, thus needing more
time to calculate) and the global history. The runtime overheads
for other FaMT techniques are no more than the ones shown. In
Table [[2] Column 1 lists the subjects, and Column 2 lists the total
execution time for the state-of-the-art Javalanche tool to calculate
the mutation score. Columns 3 and 4 list the execution time for
the example FaMT prioritization techniques using P; and P>, re-
spectively. Similarly, Columns 5 and 6 list the execution time for
the reduction techniques using P, and P, respectively. All the
presented four techniques cause similar overheads. The reason is
that all the techniques are based on the same basic algorithm (Al-
gorithm [T). The overhead for each technique varies a lot across
different subjects, because FaMT techniques cost more for subjects
with a larger number of mutants or larger sets of tests that reach
each mutant. The results also show that FaMT costs at most 18.34s
(on Jaxen), which is negligible compared to the cost of mutation
testing (2901s on Jaxen) and demonstrates the efficiency of FaMT.

4.5.5 Threats to Validity

Threats to external validity. First, although we used 9 medium-
sized Java programs, our results may not be generalizable to other
programs. Second, the results may not be generalizable to other test
suites. Third, our results based on mutants generated by Javalanche
may not be generalizable to mutants generated by other tools.

Threats to internal validity. The main threat to internal validity
for our study is that there may be faults in our implementation of
the 352 variant prioritization techniques and 3872 variant reduction
techniques of FaMT, as well as the other controlled techniques. To
reduce this threat, we reviewed all the code that we produced for
our experiments before conducting the experiments.

Threats to construct validity. The main threat to construct va-
lidity is the metrics that we used to assess the effectiveness and cost
of our techniques. To reduce this threat, we used the ratio of execu-
tions reduced to assess the techniques’ effectiveness, and used the
runtime overhead to assess the techniques’ cost. We also used error
rate to measure the approximation caused by FaMT reduction.

S. RELATED WORK

We present related work on reducing mutation testing cost. Fur-
thermore, as FaMT is inspired by regression test prioritization and
reduction, we also discuss related work in regression testing [33]].

Table 13: Regression testing techniques for mutation testing
[ | Regression Testing | Mutation Testing |

Test Selection [L6271128] 139]
Test Prioritization [1012411291136] [201139], This paper

Test Reduction [Sll6l[13II15] This paper

Table[[3]shows three main areas of regression testing and their ap-
plications to mutation testing.

5.1 Reducing Cost of Mutation Testing

Selective mutation testing selects a representative subset of all
mutants that can achieve similar results as the entire set of mutants.
Since its initial proposal by Mathur [22]], a large body of research
has investigated this topic. Researchers [4}[11125126}37] have ex-
perimentally investigated various subsets of mutants to ensure that
those representative sets of mutants achieve almost the same results
as the whole mutant set. Weak mutation testing, first proposed by
Howden , aims to check mutant killing more efficiently by de-
termining that a test kills a mutant if the test produces a different in-
ternal state (rather than the output) when executing the mutant. Re-
searchers also considered various efficient ways to generate, com-
pile, and execute mutants. DeMillo et al. extended compilers to
compile all mutants at once to reduce the cost of generating/com-
piling mutants. Similarly, Untch et al. proposed schema-based
mutation, which integrates all mutants into one meta-mutant that
can be compiled by a standard compiler. Researchers have also
used parallel processing to speed up mutation testing. Our
FaMT techniques are orthogonal to the existing techniques that op-
timize mutation testing and can be directly combined with those
techniques to further reduce the cost of mutation testing.

We recently adapted the idea of regression test selection for mu-
tation testing, and proposed the ReMT technique [39]], which relies
on program differences and incrementally collects mutation test-
ing results based on old mutation testing results of a previous ver-
sion (Table [[3). ReMT also includes test prioritization based on
program differences, and cannot be applied without mutation test-
ing results on old versions. In contrast, FAMT prioritization does
not rely on program differences, and can directly apply to any pro-
gram without old mutation testing results. After our ReMT, Just et
al. [20]] used test prioritization for one program version, but their
prioritization is quite different from our FaMT as they prioritize
tests only once for all mutants by simply executing slower tests
later. In contrast, FaMT re-prioritizes tests for each mutant (which
provides much better results) and uses different metrics based on
execution length, frequency, and the accumulating history of mu-
tant execution. Furthermore, this paper shows that even the theo-
retically best test prioritization cannot reduce the mutation testing
cost significantly, and further introduces the idea of test reduction
for mutation testing.

5.2 Regression Testing

Here we only discuss the most related regression test prioritiza-
tion and reduction areas.

Test prioritization reorders regression tests to detect faults in
code faster. Rothermel et al. [T0L[29]] proposed two general strate-
gies for test prioritization: (1) the fotal strategy which prioritizes
tests based on the number of code elements they cover, (2) the ad-
ditional strategy which prioritizes tests based on the number of ad-
ditional elements they cover. Do et al. [9] investigated the suitabil-
ity of using mutation faults to simulate real faults to evaluate tradi-
tional test prioritization techniques. Recently, Zhang et al. [36] pro-
posed unified models for test prioritization which subsume the total
and additional strategies as extreme cases, and also contain a spec-



trum of strategies between the two strategies. The basic intuitions
for regression prioritization and FaMT prioritization are similar: to
reorder the tests to make regression/mutation testing faster. How-
ever, their mechanisms are different—regression test prioritization
usually aims to cover more program units faster, thus increasing
the probability of revealing unknown faults earlier; whereas the lo-
cations of mutation faults (i.e., mutated statements) are known for
mutation testing and a simple strategy can just execute the tests
that reach the mutation faults, making the coverage-based regres-
sion test prioritization technique not suitable for mutation testing
(also confirmed by our experimental study).

Test reduction executes only a representative subset of regres-
sion tests, which can still satisfy all the testing requirements. Har-
rold et al. were inspired by the fact that some essential tests
should be picked as early as possible because they test rarely tested
requirements, and proposed a heuristic for iteratively picking es-
sential tests. Chen et al. [6]] further found that some redundant
tests, which test only a subset of requirements tested by other tests,
should be reduced as early as possible, and proposed to reduce tests
by iteratively applying essential test selection and redundant test
reduction. Researchers also considered integer linear pro-
gramming models for reducing regression tests. While the idea of
test reduction has been around for decades, to our knowledge, this
paper is the first to present a technique for mutation testing inspired
by this idea. However, the goals of regression test reduction and
FaMT reduction are different, and as our study shows, regression
test reduction alone is not suitable for mutation testing.

6. CONCLUSION AND FUTURE WORK

This paper presents the FaMT approach that provides a family
of techniques for prioritizing and reducing tests to speed up muta-
tion testing. The basic idea of FaMT was inspired by regression
test prioritization and reduction, but the technical details and goal
for FaMT are different from regression test prioritization and re-
duction. The paper reports an empirical study of 352 FaMT priori-
tization variant techniques and 3872 FaMT reduction variant tech-
niques on 9 real-world Java programs to investigate FaMT’s effec-
tiveness and efficiency. The experimental study shows that FaMT
prioritization techniques can reduce the number of executions by
up to 47.52% for killed mutants. The study of FaMT reduction
further shows that some FaMT reduction techniques can reduce all
executions for all mutants by around 50.0% while only causing er-
ror rates around 0.50%, and some FaMT reduction techniques can
reduce all executions for all mutants by more than 63.0% while
causing error rates smaller than 1.22%. Finally, the study shows
that FaMT incurs negligible runtime overhead.

For future work, we plan to investigate more heuristics for the
initial test ordering, and more effective ways to utilize test power
values. We also plan to empirically study FaMT with more con-
figurations on more real-world programs. In addition, we plan to
apply FaMT for higher-order mutation testing [14}18]].
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