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Abstract—Mutation testing is a powerful methodology for
evaluating the quality of a test suite. However, the methodology
is also very costly, as the test suite may have to be executed for
each mutant. Selective mutation testing is a well-studied technique
to reduce this cost by selecting a subset of all mutants, which
would otherwise have to be considered in their entirety. Two
common approaches are operator-based mutant selection, which
only generates mutants using a subset of mutation operators,
and random mutant selection, which selects a subset of mutants
generated using all mutation operators. While each of the two
approaches provides some reduction in the number of mutants
to execute, applying either of the two to medium-sized, real-
world programs can still generate a huge number of mutants,
which makes their execution too expensive. This paper presents
eight random sampling strategies defined on top of operator-
based mutant selection, and empirically validates that operator-
based selection and random selection can be applied in tandem
to further reduce the cost of mutation testing. The experimental
results show that even sampling only 5% of mutants generated
by operator-based selection can still provide precise mutation
testing results, while reducing the average mutation testing time
to 6.54% (i.e., on average less than 5 minutes for this study).

I. INTRODUCTION

Mutation testing [1]–[10] has been shown to be a powerful

methodology for evaluating the quality of test suites. In (first-

order) mutation testing, many variants of a program (known

as mutants) are generated through a set of rules (known as

mutation operators) that seed one syntactic change at a time in

order to generate one mutant. Then, all the generated mutants

are executed against the test suite under evaluation. A test

suite is said to kill a mutant if at least one test from the suite

has a different result for the mutant and original program. If

a mutant is semantically equivalent to the original program,

then it cannot be killed by any test. The more non-equivalent

mutants a test suite can kill, the higher quality the test suite is

predicted to be. Indeed, several studies [11], [12] have found

mutants to be suitable alternatives for real faults which can

be used for comparing testing techniques and test suites. The

predicted quality of test suites also depends on the quality of

mutants, consequently higher-order mutation testing has been

proposed to generate a small number of mutants that each

have multiple syntactic changes [13], [14]. Mutation testing

has also been used to guide the test generation to kill mutants

automatically [14]–[18].

While mutation testing could be useful in many domains,

it is extremely expensive. For example, a mutation testing

tool for C, Proteum [19], implements 108 mutation operators

that generate 4,937 mutants for a small C program with only

137 non-blank, non-comment lines of code [7]. Therefore,

generating and (especially) executing the large number of mu-

tants against the test suite under evaluation is costly. Various

methodologies for reducing the cost of mutation testing have

been proposed. One widely used methodology is selective

mutation testing [3]–[7], [9], [20], [21], which only generates

and executes a subset of mutants for mutation testing. Ideally,

the selected subset of mutants should be representative of the

entire set of mutants.

The most widely studied approach for selective mutation

testing is operator-based mutant selection [3]–[5], [7], [9],

[20], which only generates mutants using a subset of mutation

operators; the selected subset of mutation operators is required

to be effective, i.e., if a test suite kills all the non-equivalent

mutants generated by the selected set of operators (i.e., the

test suite is adequate for selected mutants), then the test suite

should kill (almost) all the non-equivalent mutants generated

by all mutation operators. Further, selected operators should

lead to high savings; the savings is usually calculated as the

ratio of non-selected mutants over all the mutants. Researchers

also evaluated a simple approach of random mutant selec-

tion [7], [9], [22], and a recent study [7] reported that random

selection is as effective as operator-based mutant selection

when random selection selects the same number of mutants

from all mutants as the operator-based selection selects.

Although the existing approaches are effective, mutation

testing remains one of the most expensive methodologies

in software testing. No previous study has explored how to

further reduce the number of mutants generated by operator-

based mutant selection, and whether operator-based selection

and random selection can be combined. Also, previous work

has not explored how random mutant selection and operator-

based selection relate for test suites that do not kill all non-

equivalent mutants (i.e., non-adequate test suites). In addition,

all the studies for sequential mutants [3]–[5], [7], [20], [22]

evaluated mutant selection on small C and Fortran programs—

the largest program used for selective mutation testing was

only 513 lines of code. Empirical studies on larger, real-world

programs are lacking.
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This paper makes the following contributions:

• Sampling mutation: We investigate a simple idea, which

we call sampling mutation, to reduce the number of mu-

tants generated by operator-based mutant selection: sam-

pling mutation randomly selects from the set of mutants

generated by operator-based mutant selection (rather than

from the set of mutants generated by all operators [7],

[9], [22]); we call the process of obtaining the mutants

sampling, the percentage of randomly selected mutants

the sampling ratio, and the resulting set of mutants a

sample.

• Various sampling mutation strategies: We evaluate 8

sampling strategies; our study is the first to consider

random selection based on the program elements (rather

than on the mutation operators). Our empirical study

shows that although all sampling strategies are effective

for mutation testing, sampling based on program elements

can provide the most effective results.

• Extensive study: We evaluate mutation sampling on 11

real-world Java projects of various sizes (from 2681 to

36910 lines of code) to investigate the effectiveness,

predictive power, and savings of sampling mutation. Our

study evaluates effectiveness in case of adequate test

suites, predictive power in case of non-adequate test

suites, and savings in terms of time to generate and

execute mutants.

• Empirical evidence: The study shows that sampling

mutation remains effective and has a high predictive

power even while providing high savings. The study

shows the cost-effectiveness of applying sampling mu-

tation with various strategies and ratios. Surprisingly,

for all our subjects, the experimental results show that

sampling only 5% of operator-based selected mutants

can still provide a precise mutation score, with almost

no loss in precision, while reducing the mutation time

to 6.54% on average. Moreover, the study shows that

the sampling strategies are more beneficial for larger

subjects; as more and more researchers are using mutants

to compare testing techniques, our sampling strategies can

help researchers to scale mutation to larger programs by

choosing a representative subset of mutants for efficient

but effective evaluation.

II. STUDY APPROACH

A. Problem Definition

Given a program under test, P , and a test suite, T , we

denote the set of all selected mutants generated by operator-

based mutant selection as M , and the set of non-equivalent

mutants in M as NEM . Following existing studies [3]–[5],

[7], we randomly construct n test suites of various sizes

{T1, T2, ..., Tn}; the set of mutants that can be killed by

Ti (1 ≤ i ≤ n) is denoted K(Ti,M). Then the (actual)

selected mutation score achieved by Ti over the selected

mutants M is defined as:

MS(Ti,M) =
|K(Ti,M)|

|NEM |
(1)

In this study, we apply a set of sampling strategies on top

of the selected mutants. Let S be a sampling strategy; the

set of mutants sampled by S from M is denoted MS . We

apply each strategy m times (with different random seeds) to

generate a set of mutant samples: {MS1
,MS2

, ...,MSm
}. The

set of mutants in MSj
(1 ≤ j ≤ m) that are killed by test suite

Ti (1 ≤ i ≤ n) is denoted K(Ti,MSj
). Then, the sampling

mutation score achieved by Ti over MSj
can be represented

as:

MS(Ti,MSj
) =

|K(Ti,MSj
)|

|MSj
∩NEM |

(2)

Intuitively, if MS(Ti,MSj
) is close to MS(Ti,M) for all

1 ≤ i ≤ n and 1 ≤ j ≤ m, we say that the sampling

strategy S applied on top of selected mutants is effective at

predicting the result that would be obtained on all selected

mutants. (Section III precisely defines the predictive power.)

B. Measurement

In the literature, there are two main approaches for evalu-

ating the effectiveness of how a subset of mutants represents

a larger set of mutants. (Traditionally, the sets are generated

by all operators, and the subsets are selected mutants; in

our study, the sets are selected mutants, and the subsets are

sampled mutants.) First, researchers [3], [4], [7], [20] construct

test suite Ti (1 ≤ i ≤ n) that can kill all non-equivalent

mutants from the subset (called adequate test suites), and

calculate the mutation score of Ti on the original set of

mutants. Second, Namin et al. [5] also examined how, for test

suites Ti (1 ≤ i ≤ n) that cannot kill all the non-equivalent

mutants from the subset (called non-adequate test suites), the

mutation score of Ti on the subset of mutants compares with

the mutation score of Ti on the original set of mutants.

In this study, we use both approaches to evaluate the

sampling strategies applied on top of operator-based mutant

selection. For the first approach, since our sampling strategy

may select different subsets of mutants at different runs, we

randomly construct n adequate test suites that can kill all

sampled non-equivalent mutants for each of the m sampling

runs. We denote the ith (1 ≤ i ≤ n) test suite that kills all

sampled non-equivalent mutants in the jth (1 ≤ j ≤ m) run of

sampling (i.e., the selected mutants are MSj
) as Tij . Following

previous work [7], we use the following formula to measure

the effectiveness of a sampling technique S:

EF (S) =
Σm

j=1
Σn

i=1
|MS(Tij,M)|

n ∗m
× 100% (3)

The only difference between our formula and the original

formula [7] is that we also average over m sampling runs;

the previous work did not average over different runs because

each run of their operator-based selection gives a fixed subset

of mutants. Also note that in the evaluation, we present the

standard deviation (SD) values across m sampling runs to

show the stability of the sampling strategies.

For the second approach, we randomly construct k non-

adequate test suites ({T1, T2, ..., Tk}) for each subject and

check how m runs of sampling influence the mutation scores
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of the constructed test suites. We use the correlation between

sampling mutation score of Ti and selected mutation score of

Ti to measure the predictive power of a random sampling

strategy S over the mutants generated by operator-based

mutant selection:

PP (S) = Corr({〈MS(Ti,MSj
),MS(Ti,M)〉

|1 ≤ i ≤ k ∧ 1 ≤ j ≤ m}) (4)

The correlation analysis is between the mutation scores on

the sampled mutant set MSj
and the mutation scores on

the selected mutants M for all constructed test suites for all

sampling runs (1 ≤ j ≤ m). Section III presents, both visually

and statistically, the Corr functions we use. To illustrate,

for all the m sampling runs of a strategy S, if we use the

mutation scores of the k tests suites on sampled mutants MSj

(1 ≤ j ≤ m), i.e., MS(Ti,MSj
) (1 ≤ i ≤ k) as the x-

axis values, for each x value we will have a corresponding

y value to predict, which is MS(Ti,M) (1 ≤ i ≤ k). For

a perfect strategy, the graph will be the straight line function

y = x, which means all the k test suites have exactly the same

mutation score on sampled mutants and all original mutants

before sampling.

C. Combining Operator-Based and Random Mutant Selection

Given selected mutants, M , we define eight random sam-

pling strategies that specify which mutants to select from M .

• Baseline Strategy, which samples x% mutants from the

selected set of mutants M . Formally, the set of mutants

sampled by strategy Sbase can be defined as:

MSbase
= Sample(M,x%)

where Sample(M,x%) denotes random sampling of x%
mutants from M .1

• MOp-Based Strategy, which samples x% mutants from

each set of mutants generated by the same mutation

operator. Assume the sets of mutants generated by the set

of selective mutation operators, say op1, op2, ..., opk, are

Mop1
, Mop2

, ..., Mopk
, i.e., M = ∪k

i=1
Mopi

. Then, the

set of mutants sampled by strategy Smop can be formally

defined as:

MSmop
= ∪k

i=1
Sample(Mopi

, x%)

• PElem-Based Strategies, which sample x% mutants

from each set of mutants generated inside the same pro-

gram element (e.g., class, method, or statement). Assume

the sets of mutants generated for the set of elements

in the project under test are Me1 , Me2 , ..., Mek , i.e.,

M = ∪k
i=1

Mei . Then, the set of sampled mutants can be

defined as:

MSpelem
= ∪k

i=1
Sample(Mei, x%)

1If the sample size is a float f , we first sample ⌊f⌋ mutants at random,
and then with probability f − ⌊f⌋ pick one more mutant at random.

TABLE I: Subject programs used in the evaluation

#Mutants
Subject LOC #Tests All Killed

TimeMoneyr207 [23] 2681 236 2304 1667

JDependv2.9 [24] 2721 55 1173 798

JTopasv2.0 [25] 2901 128 1921 1103

Barbecuer87 [26] 5391 154 36418 1002

Mime4Jv0.50 [27] 6954 120 19111 4414

Jaxenr1346 [28] 13946 690 9880 4616

XStreamv1.41 [29] 18369 1200 18046 10022

XmlSecurityv3.0 [30] 19796 83 9693 2560

CommonsLangr1040879 [31] 23355 1691 19746 12970

JodaTimer1604 [32] 32892 3818 24174 16063

JMeterv1.0 [33] 36910 60 21896 2024

In this way, Sclass, Smeth, and Sstmt can be defined when

using the program element granularities of class, method,

and statement, respectively.

• PElem-MOp-Based Strategies, which sample x% mu-

tants from each set of mutants generated by the same

mutation operator inside the same program element. As-

sume the sets of mutants generated for the set of program

elements in the project under test are Me1 , Me2 , ..., Mek ,

then M = ∪k
i=1

Mei . Also assume the sets of mutants

generated by the set of selective mutation operator are

Mop1
, Mop2

, ..., Moph
, then M = ∪h

j=1
Mopj

. Finally,

the set of sampled mutants can be defined as:

MSpelem−mop
= ∪k

i=1
∪h
j=1

Sample(Mei ∩Mopj
, x%)

In this way, Sclass−mop, Smeth−mop, and Sstmt−mop can

be defined when using the program element granularities

of class, method, and statement, respectively.

Note that the first two strategies, Sbase and Smop, have been

used by previous studies [7], [22] to evaluate random mutant

selection from all mutants. We believe that using all mutants

as the candidate set may be unnecessary. Therefore, we use

these two strategies to evaluate random mutant sampling from

operator-based selected mutants. In addition, our three Spelem

strategies, which aim to sample mutants across all program

locations evenly, are the first to randomly sample mutants

at the program element dimension. Furthermore, our three

Spelem−mop strategies are the first to sample mutants across

two dimensions: mutation operators and program elements.

III. EMPIRICAL STUDY

We performed an extensive empirical evaluation to demon-

strate the effectiveness, predictive power, and savings of the

proposed sampling strategies.

A. Subject Programs

The evaluation includes a broad set of Java programs from

various sources. We chose programs of different sizes (from

2681 to 36910 LOC) to explore the benefits of our sampling

strategies for various cases.
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Table I shows 11 subject programs used in the evalu-

ation: TimeMoney, a set of classes for manipulating time

and money; JDepend, a tool for measuring the quality of

code design; JTopas, a library for parsing arbitrary text data;

Barbecue, a library for creating barcodes; Mime4J, a parser

for e-mail message streams in MIME format; Jaxen, an

implementation of XPath engine; XStream, a library for fast

serialization/deserialization to/from XML; XmlSecurity, an

Apache project that implements security standards for XML;

CommonsLang, an Apache project that extends standard Java

library; JodaTime, a replacement for standard Java date and

time classes; and JMeter, an Apache project for performance

testing. All the 11 subjects have been widely used in software

testing research [6], [10], [34]–[37].

Table I includes some characteristics of the programs.

Column “Subject” shows the name of each subject program,

the version/revision number (as applicable) and the reference

to the webpage with sources; “LOC” shows the number of

non-blank lines of code measured by JavaSourceMetric [38];

“#Tests” shows the number of available tests for the pro-

gram (it is important to note that we have not created any

special test for the purpose of this study: all the tests for

11 subjects come from their code repositories, and to the

best of our knowledge, all these tests are manually written);

“#MutantsAll” and “#MutantsKilled” show the total number

of mutants that Javalanche [6], [34] generated using operator-

based selection and the number of killed mutants, respectively.

We used Javalanche because it is a state-of-the-art mutation

testing tool for Java programs. It generates mutants using the

operator-based mutant selection approach proposed by Offutt

et al. [3], [20]. Specifically, Javalanche uses the following four

mutation operators: Negate Jump Condition, Omit Method

Call, Replace Arithmetic Operator, and Replace Numerical

Constant. Note that the subjects used in our study are orders

of magnitude larger than the subjects used in previous studies

on selective mutation testing [3], [5], [7], [20], [22].

B. Experimental Design

We next describe our experimental setup and the data we

collected.

1) Independent Variables: We used the following indepen-

dent variables in the study:

IV1: Different Random Sampling Strategies. We apply

each of our eight sampling strategies on top of the mutants

generated by operator-based mutant selection, to investigate

their effectiveness, predictive power, and savings.

IV2: Different Sampling Ratios. For each sampling strategy

S, we use 19 sampling ratios r ∈ {5%, 10%, ..., 95%}.

IV3: Different Subject Sizes. For each strategy S with each

ratio r, we apply S on all the subjects with various sizes, and

investigate the differences.

2) Dependent Variables: We used the following dependent

variables to investigate the output of the experiments:

DV1: Effectiveness. For the mutants sampled by each strategy

S among all selected mutants, we construct test suites that

can kill all sampled non-equivalent mutants, and record the

selected mutation score of those test suites. The higher the

selected mutation score is, the more effective the selected

mutants are for evaluating test suites (Equation 3). (The same

experimental procedure was used previously to measure the

effectiveness of operator-base selection and random selec-

tion [3]–[5], [7], [9], [20].)

DV2: Predictive Power. For each sampling strategy S, we

also construct test suites that do not kill all sampled non-

equivalent mutants, and use statistical analysis to measure

the predictive power of the sampled mutants (equation 4). If

the constructed test suites have similar values for sampling

mutation score and selected mutation score, then the sampled

mutants are a good predictor of the selected mutants. More

precisely, we instantiate the Corr function to measure: R2

coefficient of determination for linear regression, Kendall’s τ

rank correlation coefficient, and Spearman’s ρ rank correlation

coefficient.

DV3: Time Savings. For each triple (P , S, r) of subject

program P , sampling strategy S, and sampling ratio r, we

compare the mutation testing time for the sampled mutants

and the mutation testing time for the selected mutants.

3) Experimental Setup: Following previous studies on se-

lective mutation testing [5], [7], we deemed all mutants that

cannot be killed by any test from the original test suite as

equivalent mutants in our study. We evaluate all the sampling

strategies with all sampling ratios on all subjects. Given a

subject program and selected mutants for that program, we

first run sampling 20 times for each of 8 sampling strategies

with each of the 19 sampling ratios. As a result, we get

20*8*19=3,040 samples of mutants for each subject program.

Then, for each sample of mutants, we randomly construct

20 adequate test suites that each kill all the non-equivalent mu-

tants in sampled mutants, i.e., we construct 20*3,040=60,800

test suites for each subject. Next, we measure the selected

mutation score for each test suite. Each test suite is randomly

constructed by including one test at a time until all sampled

non-equivalent mutants are killed. We deviate from the previ-

ous work [3], [7], [20] that constructed test suites by including

multiple tests at a time (using increment of 50 or 200), as such

decision can lead to large test suites and high selected mutation

scores that do not correspond to practice. By including one test

at a time, we simulate a more realistic use of mutation testing

in practice, where a user could include one test at a time until

all the mutants are killed.

Next, for each subject, we randomly construct 100 (non-

adequate) test suites of various sizes that do not necessary kill

all the sampled mutants. We randomly construct each test suite

by uniformly selecting the size of the test suite to be between

1 and the number of tests available for the subject. Note that

our experiments differ in this step from previous work [5],

where 100 test suites were generated by taking two test suites

for each size between 1 and 50. The reason to deviate from

previous work is that our programs greatly differ in size and

number of tests, which was not the case in previous studies.

For example, taking sizes between 1 and 50 does not seem

appropriate for both Barbecue and JodaTime (with 154 and
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3818 tests, respectively). Therefore, we uniformly select the

sizes of the test suites up to the total number of tests for

each subject program. Then we measure the sampling mutation

score (i.e., the mutation score on the sampled mutants) and

selected mutation score (i.e., the mutation score on the selected

mutants) achieved by each of the constructed test suites. We

further perform correlation analysis between the sampling

mutation score and the selected mutation score for all test

suites on each strategy and ratio combination on each subject.

(Section III-C2 shows the details.)

Finally, for each sample of mutants, we also trace the

time for generating and executing the mutants. Although it is

common in the literature to report the savings in terms of the

number of mutants not generated, this information is implicitly

given in our study through the sampling ratio (e.g., if a

sampling ratio is 5%, we have 20x fewer mutants). Therefore,

our study also reports the mutation execution time in order

to confirm that savings in terms of the number of mutants

correspond to the savings in terms of mutation execution time

for mutation sampling. We performed all experiments on a

Dell desktop with Intel i7 8-Core 2.8GHz processor, 8G RAM,

and Windows 7 Enterprise 64-bit version.

C. Results and Analysis

We report the most interesting findings of our study in this

section, while some additional results and detailed experimen-

tal data are publicly available online [39].

1) Effectiveness for Adequate Test Suites: Table II shows

the selected mutation scores achieved by randomly constructed

adequate test suites that achieve 100% sampled mutation score,

i.e., kill all the sampled non-equivalent mutants. According to

our experimental setup, for each triple of subject program,

strategy, and sampling ratio, (P , S, r), we obtain 20 samples

of mutants and construct 20 adequate test suites for each

sample. Thus, for each (P , S, r), we show the average

selected mutation score and standard deviation achieved by

the 20*20=400 test suites. Specifically, column “Ra.” shows

sampling ratio, column “Subject” shows the subject name, and

columns 3-18 show the average values and standard deviations

achieved by 8 sampling strategies. The results for all the 19

sampling ratios can be found on the project webpage [39].

Based on the obtained values, we make several observations

as follows.

First, for all subjects and all sampling strategies, one can

see that the sampled mutants are extremely effective, i.e., the

sampled mutants are representative of the selected mutants. For

example, even when sampling 5% of the selected mutants, the

test suites that kill all the sampled mutants can kill almost all

selected mutants. To illustrate, when sampling 5% of selected

mutants, the selected mutation score for Sbase strategy ranges

from 98.23% (on JDepend) to 99.91% (on JodaTime) with

the average value of 99.44%. As the sampling ratio increases,

all the strategies have higher selected mutation score and

lower standard deviation for all subjects. This demonstrate

that a user can use the sampling strategies to control the cost-

effectiveness of mutation testing: the more mutants sampled,

the more precise and stable the results would be.

Second, the studied strategies perform better on larger

subjects than on the smaller subjects. For example, when

sampling 5% of mutants, Smeth achieves the average selected

mutation scores ranging from 98.31% to 99.32% for the

first four subjects that have fewer than 6000 LOC, while it

achieves the average selected mutation scores ranging from

99.69% to 99.92% for all the other seven larger subjects. This

demonstrates that using small sampling ratios (e.g., r=5%) of

mutants is more beneficial for evaluating test suites for larger

subjects. Section III-D further investigates the effectiveness of

sampling mutation for ratios even below 5%.

Third, all the strategies perform similarly, but Smeth and

Smeth−mop tend to perform the best of all the strategies for

the majority of the subjects. Moreover, the additional use of

mutation operator information in Smeth−mop does not make it

outperform Smeth. This demonstrates that sampling mutants

across different program elements can be a better choice

than sampling mutants globally (Sbase) or across different

mutation operators (Smop). Smeth performs better than Sclass

and Sstmt likely because sampling at the class level is too

coarse (bringing it closer to Sbase), while sampling at the

statement level is too fine making it select no mutant from

some statements (because the number of mutants for each

statement is relatively small).

2) Predictive Power for Non-Adequate Test Suites: While

the above results showed that adequate sampling mutation

score implies high selected mutation score, it is uncommon in

practice to have adequate test suites. Thus, we further investi-

gate the predictive power of the sampling strategies for non-

adequate test suites that do not kill all sampled non-equivalent

mutants. More precisely, we analyze whether the sampling

mutation score is a good predictor of the selected mutation

score across a range of test suites, which are almost all non-

adequate. Ideally, for all (non-adequate) test suites sampling

and selected mutation score would have the same value. In

practice, if a test suite achieves selected mutation score MS,

the same test suite may achieve sampling mutation score MS′

such that MS < MS′, MS = MS′, or MS > MS′. We use

three statistical measures to evaluate the predictive power of

sampling mutation score for all strategies.

Evaluating Single Test Suite. Originally, mutation testing

was proposed as a method for evaluating the quality of test

suites by measuring mutation score; the higher mutation score

means higher quality. To evaluate a test suite using one of

the sampling strategies, we have to ensure that the result

obtained on the sampled mutants predicts the result that would

be obtained on all the selected mutants. Following previous

work [5], we determine how well the independent variable

(sampling mutation score) predicts the dependent variable

(selected mutation score) using a linear regression model.

We measure the quality of fit of a model by calculating the

adjusted coefficient of determination R2, which is a statistical

measure of how well the regression line approximates the real
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TABLE II: Selected mutation scores (%) achieved by the test suites that achieve 100% sampled mutation scores

Base MOp Class Meth Stmt Class-MOp Meth-MOp Stmt-MOp

Ra. Subjects MS. Dev. MS. Dev. MS. Dev. MS. Dev. MS. Dev. MS. Dev. MS. Dev. MS. Dev.

TimeMoney 99.14 1.12 99.30 0.98 99.15 1.20 99.32 0.90 99.35 0.94 99.10 1.23 99.26 1.00 99.09 1.17

JDepend 98.23 1.85 98.10 2.09 97.81 2.34 98.31 1.91 98.31 1.71 97.99 2.31 98.54 1.84 98.67 1.54

JTopas 99.37 1.09 99.24 1.23 99.32 1.18 99.25 1.18 99.30 1.22 99.19 1.35 99.25 1.31 99.16 1.30

Barbecue 98.63 1.66 98.64 1.82 98.92 1.56 98.99 1.26 99.03 1.37 98.64 1.76 99.04 1.41 98.69 1.73

Mime4J 99.77 0.34 99.78 0.34 99.77 0.32 99.81 0.29 99.76 0.32 99.82 0.26 99.80 0.28 99.78 0.39

5% Jaxen 99.72 0.33 99.69 0.36 99.67 0.37 99.69 0.33 99.67 0.42 99.70 0.36 99.64 0.39 99.70 0.36

XStream 99.85 0.21 99.86 0.17 99.87 0.18 99.90 0.14 99.88 0.15 99.87 0.18 99.88 0.15 99.85 0.19

XmlSecurity 99.62 0.61 99.53 0.74 99.68 0.56 99.69 0.50 99.64 0.70 99.73 0.46 99.73 0.45 99.68 0.56

CommonsLang 99.90 0.13 99.89 0.15 99.89 0.14 99.92 0.10 99.90 0.14 99.89 0.14 99.90 0.12 99.89 0.13

JodaTime 99.91 0.12 99.91 0.11 99.91 0.11 99.92 0.09 99.92 0.11 99.91 0.11 99.91 0.10 99.91 0.12

JMeter 99.71 0.53 99.73 0.52 99.76 0.43 99.76 0.37 99.72 0.48 99.72 0.51 99.77 0.44 99.67 0.59

Avg. 99.44 - 99.42 - 99.43 - 99.51 - 99.50 - 99.41 - 99.52 - 99.46 -

TimeMoney 99.61 0.61 99.66 0.47 99.71 0.43 99.75 0.37 99.67 0.48 99.67 0.48 99.69 0.45 99.72 0.43

JDepend 99.21 1.17 99.27 1.03 99.35 0.90 99.40 0.89 99.43 0.84 99.32 0.92 99.38 0.91 99.32 0.87

JTopas 99.67 0.61 99.62 0.65 99.74 0.44 99.66 0.54 99.65 0.65 99.64 0.61 99.76 0.46 99.75 0.43

Barbecue 99.45 0.79 99.36 0.95 99.42 0.82 99.60 0.64 99.56 0.62 99.54 0.72 99.47 0.88 99.49 0.74

Mime4J 99.91 0.17 99.90 0.16 99.93 0.13 99.91 0.15 99.91 0.15 99.92 0.13 99.92 0.13 99.92 0.14

10% Jaxen 99.85 0.19 99.85 0.20 99.87 0.17 99.87 0.17 99.87 0.17 99.85 0.19 99.86 0.18 99.87 0.16

XStream 99.95 0.08 99.94 0.08 99.94 0.08 99.96 0.06 99.96 0.07 99.95 0.09 99.95 0.07 99.95 0.09

XmlSecurity 99.88 0.23 99.86 0.27 99.88 0.22 99.86 0.23 99.88 0.20 99.86 0.26 99.86 0.25 99.88 0.25

CommonsLang 99.96 0.06 99.96 0.06 99.96 0.06 99.97 0.04 99.96 0.07 99.95 0.06 99.96 0.06 99.96 0.06

JodaTime 99.96 0.05 99.96 0.05 99.96 0.06 99.97 0.04 99.97 0.04 99.96 0.06 99.97 0.05 99.97 0.05

JMeter 99.86 0.27 99.87 0.25 99.90 0.21 99.92 0.17 99.88 0.23 99.88 0.27 99.89 0.24 99.88 0.25

Avg. 99.76 - 99.75 - 99.79 - 99.81 - 99.79 - 99.78 - 99.79 - 99.79 -

TimeMoney 99.81 0.30 99.81 0.30 99.82 0.29 99.88 0.19 99.86 0.23 99.84 0.27 99.86 0.24 99.81 0.30

JDepend 99.42 0.84 99.50 0.82 99.69 0.55 99.63 0.53 99.74 0.48 99.63 0.57 99.59 0.59 99.62 0.60

JTopas 99.82 0.32 99.82 0.35 99.80 0.32 99.84 0.28 99.87 0.24 99.85 0.26 99.83 0.32 99.79 0.37

Barbecue 99.68 0.50 99.73 0.40 99.70 0.47 99.74 0.36 99.70 0.46 99.72 0.47 99.74 0.41 99.69 0.52

Mime4J 99.95 0.10 99.95 0.10 99.96 0.08 99.96 0.09 99.96 0.08 99.94 0.10 99.97 0.08 99.95 0.10

15% Jaxen 99.90 0.15 99.91 0.12 99.92 0.11 99.92 0.10 99.92 0.12 99.92 0.10 99.92 0.12 99.92 0.11

XStream 99.97 0.05 99.97 0.05 99.97 0.06 99.98 0.04 99.98 0.04 99.97 0.05 99.97 0.04 99.97 0.06

XmlSecurity 99.91 0.19 99.94 0.12 99.93 0.16 99.92 0.15 99.94 0.11 99.92 0.14 99.95 0.11 99.93 0.15

CommonsLang 99.97 0.05 99.98 0.04 99.97 0.04 99.99 0.02 99.98 0.03 99.98 0.03 99.98 0.03 99.98 0.04

JodaTime 99.98 0.03 99.98 0.03 99.98 0.03 99.99 0.02 99.98 0.02 99.98 0.03 99.98 0.03 99.98 0.03

JMeter 99.93 0.16 99.93 0.17 99.93 0.18 99.96 0.12 99.94 0.15 99.94 0.17 99.96 0.14 99.94 0.15

Avg. 99.85 - 99.87 - 99.88 - 99.89 - 99.90 - 99.88 - 99.89 - 99.87 -

TimeMoney 99.89 0.19 99.88 0.21 99.88 0.20 99.91 0.15 99.91 0.16 99.88 0.20 99.90 0.21 99.89 0.18

JDepend 99.73 0.45 99.74 0.45 99.71 0.52 99.78 0.38 99.83 0.33 99.80 0.34 99.78 0.41 99.73 0.48

JTopas 99.89 0.20 99.89 0.20 99.86 0.26 99.90 0.20 99.89 0.20 99.89 0.22 99.85 0.31 99.87 0.27

Barbecue 99.80 0.38 99.72 0.44 99.81 0.31 99.84 0.28 99.82 0.31 99.80 0.33 99.81 0.33 99.78 0.39

Mime4J 99.97 0.07 99.97 0.07 99.98 0.05 99.97 0.05 99.98 0.04 99.97 0.06 99.97 0.06 99.97 0.07

20% Jaxen 99.95 0.07 99.94 0.09 99.94 0.09 99.95 0.08 99.94 0.08 99.95 0.07 99.94 0.08 99.94 0.09

XStream 99.98 0.03 99.98 0.04 99.98 0.03 99.99 0.02 99.98 0.03 99.98 0.03 99.99 0.03 99.98 0.03

XmlSecurity 99.95 0.09 99.94 0.13 99.95 0.10 99.96 0.08 99.97 0.07 99.94 0.15 99.95 0.10 99.95 0.10

CommonsLang 99.99 0.02 99.98 0.03 99.99 0.02 99.99 0.02 99.99 0.02 99.98 0.03 99.99 0.02 99.99 0.03

JodaTime 99.99 0.02 99.99 0.02 99.98 0.02 99.99 0.01 99.99 0.01 99.99 0.02 99.99 0.02 99.99 0.02

JMeter 99.95 0.15 99.95 0.13 99.95 0.14 99.98 0.09 99.96 0.12 99.97 0.10 99.98 0.07 99.94 0.16

Avg. 99.92 - 99.91 - 99.91 - 99.93 - 99.93 - 99.92 - 99.92 - 99.91 -

data points. The value of R2 is between 0 and 1, where a

higher value indicates a better goodness of fit.

We calculate R2 for each triple (P , S, r) consisting of a

subject program, strategy, and ratio. For each sample strategy

S, we sample mutants at each ratio r and measure sampling

mutation score for the same set of randomly constructed test

suites (Section III-B3). We repeat sampling 20 times to obtain

sampling and selected mutation scores for a variety of samples.

We then calculate how well the sampling mutation scores from

all the 20 sampling runs predict the selected mutation scores

by calculating R2 values2. Note that we calculate R2 for all

20 sampling runs at once (which gives a more robust result

than calculating R2 for individual runs and averaging the result

over 20 sampling runs). To illustrate, Figure 1 shows scatter

plots of the sampling mutation score and the selected mutation

score for CommonsLang. In each of the three subfigures,

2We use R language for statistical computing.

the x-axis shows the sampling mutation scores achieved by

the test suites on various sampling runs, while the y-axis

shows the selected mutation score for the same test suites.

There are 20*100=2,000 points on each plot. From the three

subfigures, we can see that a higher sampling ratio (r) leads to

more stable data points, which can also be seen by smoother

splines. However, note that the sampling mutation scores on

all sampling runs are close to their selected mutation scores

even when r = 5%.

The left part of Table III shows R2 values for all strategies

with the sampling ratio of 5% on all subjects. (Due to the

space limit, the detailed results for the other ratios are not

shown but can be found on the project webpage [39].) Column

“Subjects” lists the name of the subjects, and columns 2-9

include R2 values for all 8 sampling strategies. The higher

the R2 value is, the better predictor the sampling strategy

is. We find that the R2 results at the 5% ratio level are
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(c) 15% ratio

Fig. 1: Sampling mutation score vs. Selected mutation score, with best fit line (black color) and smoothing spline line (red

color), for CommonsLang subject, Meth strategy, and three different sampling ratios

TABLE III: R2 and τ correlation values between mutation scores on sampled 5% mutants and on mutants before sampling

R2 correlation Kendall’s τ correlation

Subjects Base MOp Class Meth Stmt Class Meth Stmt Base MOp Class Meth Stmt Class Meth Stmt

-MOp -MOp -MOp -MOp -MOp -MOp

TimeMoney 0.971 0.972 0.975 0.977 0.976 0.975 0.975 0.972 0.874 0.872 0.881 0.888 0.882 0.877 0.880 0.872

JDepend 0.936 0.928 0.927 0.946 0.948 0.933 0.934 0.920 0.784 0.782 0.774 0.791 0.796 0.766 0.789 0.790

JTopas 0.932 0.923 0.909 0.945 0.944 0.943 0.922 0.922 0.845 0.834 0.826 0.856 0.851 0.850 0.836 0.831

Barbecue 0.956 0.951 0.958 0.970 0.964 0.961 0.962 0.946 0.844 0.833 0.849 0.867 0.861 0.854 0.857 0.832

Mime4J 0.991 0.992 0.993 0.994 0.992 0.992 0.993 0.991 0.936 0.937 0.938 0.943 0.936 0.938 0.939 0.933

Jaxen 0.985 0.987 0.983 0.990 0.984 0.986 0.986 0.982 0.894 0.896 0.886 0.910 0.898 0.902 0.901 0.890

XStream 0.993 0.994 0.996 0.996 0.995 0.996 0.996 0.995 0.942 0.946 0.954 0.956 0.949 0.953 0.954 0.948

XmlSecurity 0.982 0.984 0.986 0.986 0.983 0.987 0.984 0.982 0.888 0.892 0.904 0.900 0.894 0.906 0.899 0.896

CommonsLang 0.996 0.996 0.997 0.998 0.997 0.997 0.997 0.997 0.953 0.955 0.955 0.964 0.957 0.956 0.958 0.956

JodaTime 0.996 0.996 0.997 0.998 0.996 0.996 0.997 0.996 0.950 0.950 0.954 0.957 0.952 0.950 0.953 0.949

JMeter 0.982 0.982 0.988 0.989 0.985 0.985 0.988 0.980 0.915 0.917 0.931 0.935 0.925 0.924 0.931 0.913

Avg. 0.975 0.973 0.974 0.981 0.979 0.977 0.976 0.971 0.893 0.892 0.896 0.906 0.900 0.898 0.900 0.892

already extremely high, e.g., ranging from 0.945 (on JTopas) to

0.998 (on CommonsLang) for the Smeth strategy. This further

confirms our findings for adequate test suites—the sampling

ratio of 5% can be effective for mutation testing in practice.

In addition, similar to our findings for adequate test suites,

the sampling strategies are less effective for smaller subjects,

e.g., the R2 for the Smeth strategy ranges from 0.945 to 0.977

for the first four subjects below 6,000 LOC, while it is over

0.98 for the other seven larger subjects. Furthermore, although

all the strategies perform well, the Smeth strategy slightly

outperforms Sbase and Smop for all the 11 subjects, indicating

again that sampling across different program elements can be a

better choice than sampling purely randomly from all mutants

or sampling across different mutation operators.

To show how the correlation varies when the sampling ratio

changes, Figure 2a shows the R2 values for all 8 strategies

when the sampling ratio increases from 5% to 95% for the

subject CommonsLang. The plots for the other subjects look

similar and are available on the project webpage [39]. We

can draw the following conclusions. First, Smeth is slightly

better than the other strategies across all sampling ratios,

further demonstrating the benefits of sampling mutants across

program elements. Second, more importantly, all sampling

strategies predict the selected mutation score very well. Across

all the programs, strategies, and ratios, the minimum R2 was

0.909 (for JTopas). Extremely high R2 gives evidence that

sampling mutation is valuable and can be used for evaluation

of test suites. We believe that the results of our study can

greatly impact the use of mutation testing in research practice;

using sampling mutation testing makes it feasible to evaluate

the quality of test suites for large-scale programs.

Comparing Testing Techniques and Test Suites. Mutation

testing has also been extensively used in studies that compare

testing techniques [40]–[42]. Commonly, a testing technique

or a test suite that has a relatively higher mutation score than

another testing technique or test suite is claimed to be better

(regardless of the absolute mutation score that it achieves). We

thus want to evaluate whether sampling mutation can be used

for comparison of testing techniques and test suites, i.e., if a

test suite T has a higher sampling mutation score than another

test suite T ′, does T have a higher selected mutation score than

T ′? Similar to a previous study [5], we calculate Kendall’s τ

and Spearman’s ρ rank correlation coefficients, which measure

the strength of the agreement between two rankings. Both τ

and ρ can take values between -1 and 1, where 1 indicates

perfect agreement, and -1 indicates perfect disagreement.

To illustrate how τ is computed, consider all the pairs of

sampling and selected mutation scores; two pairs (MS1, MS′

1
)

and (MS2, MS′

2
) are said to be concordant if (MS1 >

MS2 ∧ MS′

1
> MS′

2
) ∨ (MS1 < MS2 ∧ MS′

1
< MS′

2
)

and discordant if (MS1 < MS2 ∧MS′

1
> MS′

2
) ∨ (MS1 >

MS2 ∧MS′

1
< MS′

2
); otherwise, the pair is neither concor-
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Fig. 2: Correlation values for CommonsLang subject, all strategies, and all rates

TABLE IV: Selective and sampling mutation testing time

All Mutants 5% Sampled Mutants (mm:ss)

Subject (mmm:ss) Min. Max. Avg. (Pct.)

TimeMoney 7:13 0:54 0:57 0:55 (12.89%)

JDepend 3:02 0:31 0:33 0:32 (17.66%)

JTopas 34:59 1:01 1:12 1:03 (3.02%)

Barbecue 7:35 2:42 2:56 2:46 (36.62%)

Mime4J 181:20 6:44 9:24 8:09 (4.50%)

Jaxen 48:21 2:49 4:03 3:15 (6.75%)

XStream 132:02 4:37 9:49 6:07 (4.64%)

XmlSecurity 53:04 3:17 4:03 3:46 (7.10%)

CommonsLang 74:35 5:12 6:51 6:01 (8.08%)

JodaTime 196:28 12:28 19:03 14:57 (7.61%)

JMeter 57:32 3:42 5:26 4:28 (7.77%)

Avg. 72:22 - - 4:43 (6.54%)

dant nor discordant. Kendall’s τ is calculated as the ratio of

difference between the number of concordant and discordant

pairs over total number of pairs. In this paper we use τb, which

has a more complex computation because it takes ties into

consideration.

We calculate Kendall’s τb for each triple (P , S, r), following

the same procedure as for R2. Similar with the R2 measure,

we show the τb measure for all the strategies on all subjects

with the sampling ratio of 5% in the right part of Table III. We

also show Kendall’s τb values for CommonsLang subject, all

sampling strategies, and all sampling ratios in Figure 2b. The

plots for the other examples look similar and are available on

the project webpage [39]. Across all the subjects, all strategies,

and all ratios, the minimal value for τb in our study was 0.766

(for JDepend).

Considering Table III and Figure 2b, we can draw similar

conclusions as from the R2 correlation measures. First, all

sampling strategies provide very similar result for Kendall’s

τ . In addition, Smeth slightly outperforms Sbase and Smop for

all 11 subjects. Second, all the values are very high, which

indicates very strong agreement between rankings. The results

for Spearman’s ρ show even stronger agreement (details can

be found on the project webpage [39]). Based on our study, we

believe that the comparison of test suites or testing techniques

can be done using sampling mutation.

3) Savings Obtained by Mutation Sampling: Table IV

shows the selected mutation testing time for all the mu-

tants generated by Javalanche (recall that Javalanche uses

operator-based selection), and the sampling mutation testing

time for the sampling ratio of 5% and our Smeth strategy.

Column “Subject” lists the subjects, column “All Mutants”

shows the mutant generation and execution times for all the

mutants generated by Javalanche, and columns 3-5 list the

minimum/maximum/average mutant generation and execution

times for the sampling mutation with the sampling ratio of

5% across 20 sampling runs. In column 6 (“Pct.”), we also

show the ratio of the sampling mutation testing time over

the selected mutation testing time. Note that we include

the mutant generation time of all selected mutants for both

selected mutation and sampling mutation, because our current

implementation requires Javalanche to generate all the mutants

before sampling. The results show that the sampling mutation

testing time, with sampling ratio of 5%, is close to 5% of

the selected mutation testing time. We further noticed that the

sampling mutation testing time on small subjects tends to be

longer than expected 5% of selected mutation time, because for

small subjects the tool setup time and the mutant generation

time (rather than the mutation execution time) can dominate

the total mutation testing time. However, for the seven larger

subjects, the tool setup time and the mutant generation time

take insignificant time compared to the total mutation testing

time, leading to sampling mutation time from 4.50% to 8.08%

of the selected mutation time. On average across all the 11

subjects, the sampling mutation testing time is less than 5

minutes; in contrast, the original Javalanche time is much more

and exceeds 70 minutes.

D. Below 5%

Our experimental results show that it is possible to greatly

reduce the number of mutants (e.g., sampling only 5% mu-

tants) while still preserving the mutation score. However, it

was not clear whether we can use sampling ratio below 5%.

Thus, we additionally collected the experimental results for

sampling fewer than 5% mutants. Table V shows the results

for the Sbase and Smeth strategies. The detailed results for

all the 8 strategies can be found online [39]. In the table,

Column 1 lists all the studied sampling ratios, columns 2-4 list

the average selected mutation scores for adequate test suites

as well as the average R2 and the τ correlation values for
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TABLE V: Results of sampling below 5% of selected mutants

Ra. Base Meth

MS. R2 τ MS. R2 τ

0.5% 92.24 0.806 0.716 92.02 0.803 0.722

1.0% 96.55 0.896 0.792 96.32 0.905 0.799

1.5% 97.27 0.926 0.819 97.71 0.939 0.837

2.0% 98.21 0.944 0.843 98.48 0.952 0.858

2.5% 98.68 0.955 0.859 98.82 0.964 0.872

3.0% 98.94 0.964 0.874 99.00 0.973 0.885

3.5% 99.07 0.968 0.877 99.22 0.977 0.895

4.0% 99.22 0.974 0.888 99.34 0.978 0.899

4.5% 99.38 0.974 0.893 99.46 0.982 0.907

inadequate test suites by the Sbase strategy across all subjects.

Similarly, columns 5-7 list the corresponding results for the

Smeth strategy.

The results show that it is possible to have a fairly reliable

mutation score even when sampling fewer than 5% mutants.

However, by the “rule of 99%” [3], which would require

the sampling mutation score to be 99% or higher, the ratio

of 3-3.5% is on the borderline for our set of programs and

tests and may not generalize to other programs and tests. In

the future, we plan to evaluate whether advanced techniques

(e.g., search-based mutant selection [13], [43]) could achieve

even smaller sampling ratios. In addition, the results show that

Smeth outperforms Sbase in terms of all the three metrics with

sampling ratio of greater than 1%, further demonstrating the

benefits of our proposed sampling based on program elements.

E. Threats to Validity

Threats to construct validity. The main threat to construct

validity for our study is the set of metrics used to evaluate the

mutant sampling strategies. To reduce this threat, we use two

widely used metrics, the mutation score metric for adequate

test suites [3], [4], [7], [20], [22] and the correlation analysis

for non-adequate test suites [5]. Our study still inherits a major

threat to construct validity: as in those previous studies, we

considered all mutants not killed by the original test pool to be

equivalent due to the lack of precise techniques for detecting

equivalent mutants.

Threats to internal validity. The main threat to internal

validity is the potential faults in the implementation of our

sampling strategies or in our data analysis. To reduce this

threat, the first two authors carefully reviewed all the code

for mutant sampling and data analysis during the study.

Threats to external validity. The main threat to external

validity is that our results from this study may not generalize

to other contexts, including programs, tests, and mutants. To

reduce this threat, we select 11 real-world Java programs

with various sizes (from 2681 to 36910 lines of code) from

various application domains. Note that our study includes more

programs than any previous study on selective mutation testing

for sequential code [3]–[5], [7], [20], [22]. In addition, the 11

programs used in our study are one to two orders of magnitude

larger than programs used in similar previous studies.

IV. RELATED WORK

Mutation testing was first proposed by Hamlet [1] and

DeMillo et al. [2]. Since then, due to its cost and effectiveness,

a large amount of research has been dedicated to reducing

the cost of mutation testing and exploring the application of

mutation testing. In this section, we first discuss the related

work in reducing the cost of mutation testing. Then we discuss

the existing applications of mutation testing. More details

about existing work on mutation testing can be found in a

recent survey by Jia and Harman [8].

A. Reducing The Cost of Mutation Testing

There are mainly three ways to reduce the cost of mutation

testing – selecting a subset of all mutants (Section IV-A1), ex-

ecuting each mutant partially (Section IV-A2), and optimizing

mutation generation and execution (Section IV-A3).

1) Selective Mutation Testing: Selective mutation testing,

which was first proposed by Mathur [44], aims to select

a representative subset of all mutants that can still achieve

similar results as all mutants. Since its first proposal, a large

amount of research effort has been put on operator-based mu-

tant selection, which only generates mutants based on a subset

of mutation operators. Wong and Mathur [22] investigated

selection of two mutation operators among all the 22 mutation

operators in Mothra [45], and found that mutants generated

with the selected two mutation operators can achieve similar

mutation testing results as all the 22 mutation operators. Offutt

et al. [3], [20] then proposed five mutation operators, named

sufficient mutation operators, through a set of experimental

studies to ensure that the selected set of mutants achieves

almost the same results as the entire mutant set. Barbosa

et al. [4] proposed six guidelines to determine a set of 10

mutation operators. Namin et al. [5] used rigorous statistical

analysis to determine 28 mutation operators from all the 108

mutation operators of Proteum [19]. Recently, Gligoric et

al. [9] also investigated operator-based mutant selection for

concurrent mutation operators.

In contrast to operator-based mutant selection, random mu-

tant selection was less widely researched. The idea of random

mutant selection was first proposed by Acree et al. [46]

and Budd [47]. Wong and Mathur [22] empirically studied

randomly selecting x% of all mutants generated by Mothra.

Since then, researchers mainly used random mutant selection

as a control technique when evaluating operator-based mutant

selection [4]. However, a recent study by Zhang et al. [7]

demonstrated that random mutant selection can be equally

effective with operator-based selection when selecting the

same number of mutants. The study used larger subjects (7

C programs from Siemens Suite [48] ranging from 137 to

513 lines of code) and more mutation operators (108 mutation

operators implemented by Proteum [19]) than previous studies.

However, the studied subjects are still relatively small. In ad-

dition, they did not demonstrate that random mutant selection

can further be applied to operator-based selected mutants. In

contrast, our study is the first to show that random mutant

selection can be applied together with operator-based selected

mutants, e.g., even sampling 5% of operator-based generated

mutants can still achieve precise mutation score. In addition,

we used 11 real-world Java programs from 2681 to 36910 lines
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of code, which are orders of magnitude larger than subject

programs used in previous studies on selective mutation [3]–

[5], [7], [22].

2) Weakened Mutation Testing: Weakened mutation testing,

which was first proposed by Howden [49], aims to provide a

more efficient way to determine whether a mutant is killed by a

test. More precisely, the traditional mutation testing considers

a mutant as killed only when a test generates different final

results for the mutant and the original program. On the

contrary, the first work of weakened mutation testing, weak

mutation [49], considers a mutant as weakly killed when a test

triggers a different program internal state when executing the

mutated statement on the mutant and on the original program.

However, this approach is imprecise because some internal

states triggered by a test may not be propagated to the final

result. To better balance the cost and precision, Woodward and

Halewood [50] proposed firm mutation, which is a spectrum

of techniques between weak and strong mutation. Offutt and

Lee [51] experimentally investigated the relationships between

weak mutation and strong mutation. Our study is orthogonal

to this line of work; our study aims to reduce the number of

mutants while weakened mutation testing aims to reduce the

execution cost for each mutant.

3) Optimized Mutation Testing: Optimized mutation testing

aims to explore efficient ways to generate, compile, and

execute mutants. DeMillo et al. [52] extended a compiler to

compile all mutants at once to reduce the cost of generating

and compiling a large number of mutants. Similarly, Untch

et al. [53] proposed the schema-based mutation approach,

which generates one meta-mutant that encodes all the mutants

and can be compiled by a traditional compiler. Researchers

have also investigated various ways to run mutants in par-

allel to speed up mutation testing [54], [55]. Recently, we

proposed approaches inspired by regression testing [56]–[58]

to optimize the test execution for each mutant [10], [37].

More specifically, inspired by regression test selection, we

proposed ReMT [10] to incrementally collect mutation testing

results based on old mutation results; inspired by regression

test prioritization and reduction, we proposed FaMT [37] to

prioritize and reduce tests for each mutant to collect mutation

testing results faster. Our sampling strategies, which further

sample mutants over operator-based selected mutants, aim to

reduce the cost of mutation testing at a different dimension.

B. Applications of Mutation Testing

Mutation testing was initially used to evaluate the quality

of test suites. After achieving the mutation score for the test

suite evaluation, the user can improve the quality of the test

suite manually. Researchers have also proposed techniques

that automatically generate tests to kill mutants. DeMillo

and Offutt first proposed constraint-based testing (CBT) [59]

to generate tests (each killing one mutant) based on static

symbolic evaluation. Offutt et al. [15] further proposed the

dynamic domain reduction technique to further refine CBT.

Recently, researchers proposed more solutions for this area

due to the growing computing power. Fraser and Zeller [60]

used search-based software testing (SBST) to generate tests

for mutant killing. Zhang et al. [16] and Papadakis et al. [17]

used dynamic symbolic execution (DSE) to generate tests for

mutant killing. Harman et al. [14] combined SBST and DSE

techniques to generate tests that kill multiple mutants at a

time. Our sampling strategies may make these test generation

techniques more efficient by only generating tests that kill a

sample of mutants.

Mutants generated by mutation testing can also be used

to simulate real program faults to evaluate software testing

techniques. The advantage compared with seeded or real faults

is that mutation faults can be systematically generated, making

the generation replicable and sufficient for statistical analysis.

Andrews et al. [11], [12] empirically showed that the mutants,

which are generated by selective operators, simulate real faults

better than manually seeded faults, and is appropriated for

evaluating testing techniques. Do et al. [61] also showed that it

is suitable to use mutation faults to evaluate regression testing

techniques. Recently, Zhang et al. [62] showed that mutation

faults can be used to simulate the impacts of real faults. Thus,

more and more software testing techniques are evaluated using

mutation faults [41], [58], [63]–[65]. Currently, testing tech-

niques are mainly evaluated using an arbitrary set of mutants

due to the large number of mutants. Our study establishes rules

for evaluating testing techniques – if technique t outperforms

technique t′ on 5% sampled mutants, we can predict with high

confidence that t is better than t′ on all mutants.

V. CONCLUSIONS AND FUTURE WORK

This paper reports an empirical study to answer an important

question for selective mutation testing: Can random mutant

sampling be applied on top of operator-based mutant selection

to further reduce the cost of mutation testing? We evaluate

that question for various sampling strategies, for adequate and

non-adequate test suites, and on 11 real-world Java programs.

Surprisingly, the empirical results show that sampling only

5% of mutants generated by operator-based selection can

still provide a highly precise mutation score. In addition, the

study shows that our newly proposed random mutant sampling

strategies based on program elements can be more effective

than strategies based on mutation operators. Furthermore, the

study shows that mutant sampling is more beneficial for larger

programs, indicating a promising future for applying mutant

sampling to larger projects.

In the future, we plan to consider more sophisticated mutant

sampling based on dynamic test behavior (e.g., we may sample

more mutants on some critical paths) or on combinations of

random mutant sampling and search-based mutant selection.
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