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ABSTRACT
Mutation testing is one of the most powerful approaches for eval-
uating quality of test suites. However, mutation testing is also one
of the most expensive testing approaches. This paper presents Re-
gression Mutation Testing (ReMT), a new technique to speed up
mutation testing for evolving systems. The key novelty of ReMT
is to incrementally calculate mutation testing results for the new
program version based on the results from the old program ver-
sion; ReMT uses a static analysis to check which results can be
safely reused. ReMT also employs a mutation-specific test prioriti-
zation to further speed up mutation testing. We present an empirical
study on six evolving systems, whose sizes range from 3.9KLoC to
88.8KLoC. The empirical results show that ReMT can substantially
reduce mutation testing costs, indicating a promising future for ap-
plying mutation testing on evolving software systems.
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General Terms
Algorithms, Experimentation

Keywords
Regression Mutation Testing, Mutation Testing, Regression Test-
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1. INTRODUCTION
Mutation testing [9, 15, 39, 45] is a methodology for assessing

quality of test suites. The process of mutation testing has two ba-
sic steps. One, generate desired variants (known as mutants) of
the original program under test through small syntactic transfor-
mations. Two, execute the generated mutants against a test suite
to check whether the test suite can distinguish the behavior of the
mutants from the original program (known as killing the mutants).
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The more mutants the test suite can kill, the more effective the test
suite is considered to be.

Mutation testing is often viewed as the strongest test criterion in
terms of characterizing high-quality test suites [3,13]. Researchers
have used mutation testing in numerous studies on software testing;
see a recent survey by Jia and Harman [20]. Some studies have
even shown that mutation testing can be more suitable than manual
fault seeding in simulating real program faults for software testing
experimentation [4, 12].

However, despite the potential mutation testing holds for soft-
ware testing, it primarily remains confined to research settings. One
of the main reasons is the costly analysis that underlies the method-
ology: the requirement to execute many tests against many mutants.
A number of techniques aim to scale mutation testing, for example,
by selecting a subset of mutants to generate instead of generating all
of them [28,31,41,45], by partially executing mutants to determine
whether a test (weakly) kills a mutant [19, 42], and by executing
some mutants in parallel [23, 26, 33]. While these techniques are
able to reduce some cost of mutation testing, it still remains one of
the most costly software testing methodologies.

Our key insight is that we can amortize this high cost of mutation
testing in the context of software systems that undergo evolution
by incrementally updating the results for successive applications of
mutation testing. Real software systems undergo a number of revi-
sions to implement bug fixes, add new features, or refactor existing
code. An application of existing mutation testing techniques to an
evolving system would require repeated, independent applications
of the technique to each software version, inducing expensive costs
for every version. Our approach utilizes the mutation testing results
on a previous version to speed up the mutation testing for a subse-
quent version. Our approach opens a new direction for reducing the
cost of mutation testing; it is orthogonal to the previous techniques
for optimizing mutation testing, and it is applicable together with
these previous techniques.

This paper presents Regression Mutation Testing (ReMT), a novel
technique that embodies our insight. ReMT identifies mutant-test
pairs whose execution results (i.e., whether the test killed the mu-
tant or not) on the current software version can be reused from the
previous version without re-executing the test on the mutant. ReMT
builds on the ideas from regression test selection techniques that
traverse control flow graphs of two program versions to identify the
set of dangerous edges which may lead to different test behaviors in
the new program version [17,34,37]. More precisely, ReMT reuses
a mutant-test result if (1) the execution of the test does not cover a
dangerous edge before it reaches the mutated statement for the first
time and (2) the execution of the test cannot reach a dangerous edge
after executing the mutated statement. ReMT determines (1) with



dynamic coverage and determines (2) with a novel static analysis
for dangerous-edge reachability based on Context-Free-Language
(CFL) reachability.

As an additional optimization to our core ReMT technique, we
introduce Mutation-specific Test Prioritization (MTP). For each mu-
tant, MTP reorders the tests that need to be executed based on their
effectiveness in killing that mutant on previous versions and their
coverage of the mutated statement. Combining ReMT with MTP
can further reduce the time to kill the mutants.

Specifically, this paper makes the following contributions:

• Regression Mutation Testing. We introduce the idea of
unifying regression testing with mutation testing—two well-
researched methodologies that previous work has explored
independently—to make mutation testing of evolving sys-
tems more efficient.

• Technique. We develop a core technique for regression mu-
tation testing (ReMT) using dangerous-edge reachability anal-
ysis based on CFL reachability.

• Optimization. We introduce the idea of mutation-specific
test prioritization (MTP) and present an MTP technique to
optimize our core ReMT technique.

• Implementation. We implement ReMT and MTP on top
of Javalanche [39], a recent mutation testing tool for Java
programs with JUnit test suites.

• Evaluation. We present an empirical study on version repos-
itories of six open-source Java programs between 3.9KLoC
and 88.8KLoC. The results show that ReMT substantially re-
duce the costs of mutation testing on evolving systems.

2. PRELIMINARIES
This section describes some core concepts in mutation testing

(Section 2.1) and regression testing (Section 2.2). It also provides
some basic definitions that we use to present our Regression Muta-
tion Testing (Section 2.3).

2.1 Mutation Testing
Mutation testing, first proposed by DeMillo et al. [9] and Ham-

let [15], is a fault-based testing methodology that is effective for
evaluating and improving the quality of test suites. Given a pro-
gram under test, P , mutation testing uses a set of mutation opera-
tors to generate a set of mutants M for P . Each mutation operator
defines a rule to transform program statements, and each mutant
m ∈ M is the same as P except for a statement that is trans-
formed. Given a test suite T , a mutant m is said to be killed by a
test t ∈ T if and only if the execution of t on m produces a dif-
ferent result from the execution of t on P . Conceptually, mutation
testing builds a mutant execution matrix:

DEFINITION 2.1. A mutant execution matrix is a function M×
T → {U,E,N,K} that maps a mutant m ∈ M and a test t ∈ T
to: (1) U if t has not been executed on m and thus the result is
unknown, (2) E if the execution of t cannot reach the mutated state-
ment in m (and thus m cannot be killed by test t), (3) N if t executes
the mutated statement but does not kill m, and (4) K if t kills m.

The aim of our ReMT technique is to speed up the computation of
the mutant execution matrix for a new program version based on
the mutant execution matrix for an old program version. Note that
for the very first version the old matrix has all cells as U because
there is no previous version. For future versions, the old matrix

may in the limit be full, having no cell as U. However, our ReMT
technique does not require such full matrices. Indeed, to compute
the mutation score for a given program, for each mutant m, it suf-
fices that the matrix has (1) at least one cell as K (while others can
be E, N, or even U), or (2) all cells as E or N (indicating that the test
suite T does not kill m).

Some existing mutation testing tools, such as Javalanche [39]
and Proteum [7], support two mutation testing scenarios: (1) par-
tial mutation testing – where a mutant is only run until it is killed
and thus the matrix may have some U cells; and (2) full mutation
testing – where a mutant is run against each test and thus the mutant
execution matrix has no U cells. Our ReMT technique is applicable
for both scenarios.

2.2 Regression Testing
A key problem studied in regression testing is Regression Test

Selection (RTS): determine how changes between program ver-
sions influence regression tests and select to run only tests that are
related to changes. RTS techniques [17, 34, 37] commonly use the
control-flow graph (CFG) and its extended forms, e.g., the Java
Interclass Graph [17], to represent program versions and analyze
them. A typical RTS technique first traverses CFGs of two pro-
gram versions using depth-first search (DFS) to identify the set of
dangerous edges, EΔ, i.e., the edges which may cause the program
behavior to change in the new program version. Then, for each test
t in the regression test suite, the technique matches its coverage in-
formation on the old version with the set of dangerous edges EΔ to
determine whether t could be influenced by the dangerous edges.

Following previous work [17, 34], we consider RTS techniques
that use inter-procedural CFGs:

DEFINITION 2.2. An inter-procedural CFG of a program is a
directed graph, 〈N,E〉, where N is the set of CFG nodes, and
E : N ×N is the set of CFG edges.

Each inter-procedural CFG has several intra-procedural CFGs:

DEFINITION 2.3. An intra-procedural CFG within an inter-
procedural CFG 〈N,E〉 is a subgraph 〈Ni, Ei〉, where Ni ⊆ N
and Ei ⊆ E denote edges that start from nodes in Ni. Each intra-
procedural CFG has a unique entry node and a unique exit node.

Note that Ei includes edges that are method invocation edges con-
necting invocation nodes in Ni with entry nodes of other intra-
procedural CFGs, as well as edges that are return edges connect-
ing the exit node with return nodes of other intra-procedural CFGs.
Thus, Ei ⊆ Ni×N . Moreover, each invocation node can be linked
to different target methods based on the possible receiver object
types, and thus each invocation edge is labeled with a run-time re-
ceiver object type to identify dangerous edges caused by dynamic
dispatch changes.

Traditional RTS techniques [17, 34, 37] explore CFG nodes of
two programs versions using DFS search to determine the equiva-
lence of node pairs by examining the syntactic equivalence of the
associated statements. They determine the set of dangerous edges:

DEFINITION 2.4. The set of dangerous edges between two inter-
procedural CFGs 〈N,E〉 and 〈N ′, E′〉 is the set of edges EΔ ⊆ E
whose target nodes have been changed to non-equivalent nodes or
whose edge labels have been changed.

2.3 Regression Mutation Testing
To reuse mutation testing results from an old program version

for the new program version, ReMT maintains a mapping between
the mutants of the two program versions. This mutant mapping is
based on the CFG node mapping:



DEFINITION 2.5. For two inter-procedural CFGs 〈N,E〉 and
〈N ′, E′〉, the CFG node mapping is defined as function mapN:
N ′ → N ∪ {⊥} that maps each node in N ′ to its equivalent node
in N or to ⊥ if there is no such equivalent node.

Note that the node mapping is constructed during the DFS search
by RTS for identifying dangerous edges.

The mapping between mutants of two program versions is de-
fined as follows:

DEFINITION 2.6. For two program versions P and P ′ and their
corresponding sets of mutants M and M ′, mutant mapping be-
tween P and P ′ is defined as function mapM: M ′ → M∪{⊥}, that
returns mutant m ∈ M of P for mutant m′ ∈ M ′ of P ′, if (1) the
mutated CFG node nm′ of m′ maps to the mutated CFG node nm

of m (i.e., nm = mapN(nm′)) and (2) m′ and m are mutated by
the same mutation operator at the same location; otherwise, mapM
returns ⊥.

The traditional RTS techniques [17,37] compute influenced tests
by intersecting edges executed by the tests on the old program ver-
sion with the dangerous edges. However, such computation of in-
tersection for original, unmutated programs does not work for re-
gression mutation testing, because the test execution path for each
mutant may differ from the path for the original program. There-
fore, for ReMT, we introduce a static analysis for checking the
reachability of dangerous edges for each mutant when it is executed
by each test. Our ReMT technique computes the set of dangerous
edges reachable from each node n along the execution of each test
t in the test suite T based on inter-procedural CFG traversal:

DEFINITION 2.7. For an inter-procedural CFG 〈N,E〉 with a
set of dangerous edges EΔ, the dangerous-edge reachability for
node n ∈ N with respect to test t ∈ T is a predicate reach ⊆ N×
T ; reach(n, t) holds iff an execution path of t could potentially go
through node n and reach a dangerous edge after n.

Note that a node n can have different reachability results with re-
spect to different tests, i.e., reach(n, t) for a test t may differ from
reach(n, t′) for another test t′.

Our ReMT technique also utilizes the test coverage of CFG nodes
and edges. Specifically, we utilize partial test coverage on CFG
nodes and edges before a given CFG node is executed:

DEFINITION 2.8. For a program with CFG 〈N,E〉, test cover-
age is a function trace: T×(N∪{⊥}) → 2N∪E that returns a set
of CFG nodes Nsub ⊆ N and a set of CFG edges Esub ⊆ E cov-
ered by test t before the first execution of node n ∈ N ; trace(t,⊥)
is the set of all nodes and edges covered by test t.

Note that this notation allows simply using trace(t,mapN(nm))
to evaluate to (1) the set of nodes and edges covered before nm if
there is a corresponding mapped node for nm, and (2) the set of all
nodes and edges covered by t if there is no mapped node.

3. EXAMPLE
Figure 1 shows two versions of a small program, Account,

which provides basic bank account functionality. Lines 20 and 25
in the old version are changed into lines 21 and 26 in the new ver-
sion, respectively. As the change on line 25 would cause the re-
gression test suite (TestSuite) to fail on test3, the developer
also modifies test3 to make the suite pass.

Figure 2 shows the inter-procedural CFG. We depict the changed
nodes in gray; dangerous edges are the edges incident to the gray

1 public class Account {
2 double balance; double credit;
3 public Account(double b,double c){
4 this.balance=b; // deposit balance
5 this.credit=c; // consumed credit
6 }
7 public double getBalance(){
8 return balance;
9 }

10 public String withdraw(double value){
11 if(value>0){
12 if(balance>value){//deposit enough?
13 balance=balance-value;
14 return "Success code: 1";
15 }
16 double diff=value-balance;
17 if(credit+diff<=1000){//credit enough?
18 balance=0;
19 credit=credit+diff;
20 - return "Success code: 1";
21 + return "Success code: 2";
22 }
23 else return "Error code: 1";
24 }
25 - return "Error code: 1";
26 + return "Error code: 2";
27 }
28 }
29 public class TestSuite {
30 public void test1(){
31 Account a=new Account(20.0,0.0);
32 assertEquals(20.0,a.getBalance());}
33 public void test2(){
34 Account a=new Account(20.0,0.0);
35 String result=a.withdraw(10.0);
36 assertEquals("Success code: 1",result);}
37 public void test3(){
38 Account a=new Account(20.0,0.0);
39 String result=a.withdraw(-10.0);
40 - assertEquals("Error code: 1",result);
41 + assertEquals("Error code: 2",result);}
42 }

Figure 1: Example code evolution and test suite.

nodes (e.g., 〈19, 20〉, 〈11, 25〉, and 〈return, 40〉). The CFG con-
sists of six intra-procedural sub-CFGs, which are connected using
inter-procedural invocation and return edges. Each invocation site
is represented by an invocation node and a return node, which are
connected by a virtual path edge.

To illustrate ReMT, consider the mutants in Table 1. Assum-
ing we already have some mutant execution results from the old
version, we collect mutant execution results for the new version in-
crementally. We demonstrate both full mutation testing and partial
mutation testing scenarios. Following Definition 2.1, the example
input matrices of the old version in both scenarios are shown in
the top parts of tables 2 and 3. In both scenarios, we initialize the
mutation results of the new program version as a new mutant execu-
tion matrix with all U elements to denote that the mutant execution
results are initially unknown. In total, at most 27 mutant-test exe-
cutions are needed for computing each mutant execution matrix for
the new version.

To reduce the number of mutant-test executions, several muta-
tion testing tools [1, 21, 39] utilize the following fact: when a test
executed on the original, unmutated program does not cover the
mutated statement of a mutant, then that test cannot kill that mu-
tant. One can thus filter out a set of tests for each mutant (or dually
a set of mutants for each test). Figure 2 highlights the execution
traces of test1, test2, and test3 after evolution with bold
solid (red) lines, bold dashed (blue) lines, and bold dotted (gray)
lines, respectively. Here, for example, any mutant that does not



Table 1: Mutants for illustration.
Mutant Mutated Location Mutant Statement
m1 n4 this.balance=0
m2 n5 this.credit=0
m3 n8 return 1
m4 n11 if(value<=0)
m5 n12 if(balance<value)
m6 n13 balance=balance+value
m7 n13 balance=balance*value
m8 n13 balance=balance/value
m9 n14 return ""

Table 2: Incrementally collecting full matrix.
m1 m2 m3 m4 m5 m6 m7 m8 m9

t1 K N K N N N N N N
t2 N N N K N N N N K
t3 N N N K N N N N N

t1 K N K E E E E E E
t2 U U E U U N N N K
t3 U U E U E E E E E

Table 3: Incrementally collecting partial matrix.
m1 m2 m3 m4 m5 m6 m7 m8 m9

t1 K N K N N N N N N
t2 U N U K N N N N K
t3 U N U U N N N N U

t1 K N K E E E E E E
t2 (U) U E U U N N N K
t3 (U) U E U E E E E E

occur on the nodes in bold solid (red) lines cannot be killed by
test1, and any mutant that does not occur on the nodes in bold
dashed (blue) lines cannot be killed by test2. The matrices for
the new version can then be updated with E elements to denote a
mutant that cannot be killed by a test because its mutated statement
is not reached by the test. The light-gray cells in tables 2 and 3
show the cells updated with E’s. Now, 14 mutant-test executions
(i.e., cells not marked as E’s) are required for computing the full
matrix, and at most 14 executions are required for computing the
partial matrix.

To further reduce the number of mutant-test executions, our ReMT
leverages program evolution information. For instance, mutants
m6, m7, m8, and m9 would need to be executed against test2
when not consider evolution; however, we can compute that those
mutants cannot modify the test2’s execution trace to reach any
dangerous edge, because there is no CFG path from the nodes
where those mutants occur (i.e., n13 and n14) to the evolved code
(i.e., n20, n25, and n40). Therefore, the mutation testing results
for mutants on these two nodes cannot differ from their previous
results for the program before evolution, and these results can be
directly reused from the old mutant execution matrix.

We use a static analysis to determine which dangerous edges
can be reached by mutants. It is important to point out that this
analysis is done with respect to each test (Definition 2.7) because
the results can differ for different tests. For example, consider
node n4 and mutant m1. Although n4 cannot reach any danger-
ous edge through inter-procedural CFG traversal with respect to
test1, n4 can potentially reach dangerous edges through traver-
sal from test2. When executing m1 on test2, the execution
path takes a different branch at n12 than the execution path takes
when executing the unmutated new version. Thus m1 executes the
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Figure 2: Inter-procedural CFG for the example.
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Figure 3: General approach of ReMT.

dangerous edge 〈19, 20〉, which actually causes m1 to be killed for
the new version although it is not killed for the old version. There-
fore, our dangerous-edge reachability analysis considers potential
execution paths for each test. The matrices for the new version
can now be updated with history information from the old version
(shown as dark-gray cells in tables 2 and 3). Thus, only 7 mutant-
test executions (i.e., cells with U’s) are required for obtaining the
full matrix, and at most 5 executions are required for obtaining the
partial matrix (the two Us within brackets of m1 do not need to be
filled because m1 is already killed by test1). In sum, for this
example, compared with the state-of-the-art mutation testing tech-
niques, ReMT reduces the number of mutant-test executions 2X (7
vs. 14) for full mutation testing and over 2X for partial mutation
testing (depending on the order in which tests are executed for a
mutant as we discuss later).

4. REGRESSION MUTATION TESTING

4.1 Overview
This section presents regression mutation testing (ReMT). Fig-

ure 3 shows the three key components. The Preprocessing compo-
nent (Section 4.2) builds a mapping between the mutants of the two
versions and gathers initial data for the checking performed by the
core ReMT component (Section 4.3), which consists of two steps:
mutant-coverage checking and dangerous-edge reachability check-
ing. Mutant-coverage checking follows previous work [1, 21, 39]
in using the coverage information of all tests on the new program
version to select the subset of tests that actually execute the mu-
tated statement and thus may kill the mutant for the new version.
For the selected tests that do not have execution history (i.e., are
newly added tests), ReMT executes them for gathering mutation



testing results for the mutant. For the selected tests that have ex-
ecution history, ReMT’s dangerous-edge reachability checking de-
termines whether the mutation results can be reused. More pre-
cisely, a mutant-test result can be reused if (1) no dangerous edge
is executed from the beginning of the test to the mutated statement
and (2) no dangerous edge can be executed from the mutated state-
ment to the end of the test. For (1), ReMT uses dynamic cover-
age, and for (2), ReMT uses a novel dangerous-edge reachability
analysis. When possible, ReMT directly reuses execution results
from their previous execution on the mapping mutant of the old
version. Finally, as the order of test execution matters for killing
mutants faster, ReMT’s Mutation-specific Test Prioritization com-
ponent (Section 4.4) reorders tests to further optimize regression
mutation testing.

4.2 Preprocessing
Preprocessing consists of mutant mapping, coverage collection,

and dangerous-edge reachability analysis. Coverage collection uses
the common code instrumentation, so we present details of the mu-
tant mapping and dangerous-edge reachability analysis. The con-
struction of mutant mapping also identifies dangerous edges that
are used in dangerous-edge reachability analysis.

4.2.1 Mutant Mapping
Following existing regression test selection (RTS) techniques [17,

34, 37], ReMT uses control-flow graph (CFG) to represent pro-
gram versions and identifies program changes as dangerous edges.
ReMT uses a standard depth-first search (DFS) for detecting dan-
gerous edges [17, 37]. In addition, ReMT’s CFG comparison algo-
rithm builds mapN, which stores the CFG node mapping between
the two program versions (Definition 2.5) and is used to calculate
mutant mapping mapM (Definition 2.6). When visiting a node pair,
the CFG comparison algorithm first marks the node pair as visited
and puts the matched node pair into mapN. Then, the algorithm iter-
ates over all the outgoing edges of the node pair: (1) for the edges
without matched labels or target nodes, the algorithm puts the edges
into the dangerous edge set EΔ and backtracks the traversal along
those edges; (2) for the matched edges (i.e., when both labels and
target nodes are matched) whose target nodes have been visited,
the algorithm backtracks; (3) for the matched edges whose target
nodes have not been visited, the algorithm recursively traverses the
target node pairs. Finally, the algorithm returns all dangerous edges
EΔ, node mapping mapN, and mutant mapping mapM between the
old and new program versions.

4.2.2 Dangerous-Edge Reachability Analysis
Given a test t, a node n in the CFG, and a set of dangerous

edges EΔ, dangerous-edge reachability computes if n can reach
a dangerous edge with respect to t (Definition 2.7). We reduce the
dangerous-edge reachability problem to the Context-Free-Language
(CFL) Reachability [27,36] problem. The use of CFL-reachabillity
on the inter-procedural CFG allows us to obtain more precise re-
sults than we would obtain by running a simple reachability that
would mix invocation and return edges. (For example, in Figure 1,
a naïve reachability could mix the invocation of the Account con-
structor from test1 with the return from the Account construc-
tor to test3 and could then (imprecisely) find that test1 can
reach a dangerous edge that ends in n40.) In CFL-reachability,
a path is considered to connect two nodes only if the concatena-
tion of the labels on the edges of the path is a word in a particular
context-free language:

DEFINITION 4.1. Let L be a context-free language over alpha-
bet Σ and G be a graph whose edges are labeled with elements of

Σ. Each path in G defines a word over Σ formed by concatenating
the labels of the edges on the path. A path in G is an L-path if its
word is a member of the language L.

We reduce our dangerous-edge reachability analysis to a CFL-
reachability problem as follows. For a CFG 〈N,E〉 with I invo-
cation sites, the alphabet Σ has symbols (i and )i for each i from
1 to I , as well as two unique symbols, e and d. Following the
existing inter-procedural program analysis [27,36], our analysis la-
bels all the intra-procedural edges with e, and for each invocation
site i labels its invocation edge and return edge with (i and )i, re-
spectively. In contrast with the existing techniques, our analysis
further labels all dangerous edges with d. A path in 〈N,E〉 is a
matched path iff the path’s word is in the language L(matched)
of balanced-parenthesis strings according to the following context-
free grammar:

matched → matched matched

| (i matched )i ∀i : 1 ≤ i ≤ I

| e|d|ε (1)

The language L(dangerous) that accepts all possible valid ex-
ecution paths to dangerous edges is defined as:

dangerous → matched dangerous

| (i dangerous ∀i : 1 ≤ i ≤ I

| d (2)

The language L(dangerous) is a language of partially balanced
parentheses, which allows representing that the execution might go
into some deeper stacks and not return as long as it encounters a
dangerous edge. A path is a dangerous path iff the path’s word is
in the language L(dangerous).

The problem of determining all possible nodes that can reach
dangerous edges with respect to each test is transformed into the
problem of finding all the possible nodes reachable from the root
node of each test in the language L(dangerous). For a node n
and a test t, reach(n, t) holds if n is reachable from the root
node of t in the language L(dangerous); otherwise reach(n, t)
does not hold (Definition 2.7). Our implementation uses the gen-
eral dynamic-programming algorithm to efficiently solve the CFL-
reachability problem [27] and record all the nodes that can appear
on the dangerous paths for each test. Note that the analysis for
one test gives the dangerous-edge reachability for all mutants that
the test can execute, i.e., ReMT does not repeat this static analysis
for each mutant-test pair. Also note that we apply dangerous-edge
reachability analysis on the old (not new) program version.

4.3 ReMT Algorithm
Algorithm 1 shows our core ReMT algorithm, which supports

both the partial mutation testing and full mutation testing scenar-
ios. The underlined statements are specific to the partial mutation
testing scenario. Note that ReMT does not require a full input
matrix on old version. The algorithm expects that preprocessing
(Section 4.2) has been performed, which enables the use of mu-
tant mapping mapM in line 12, mutant-coverage checking (denoted
as MCoverageCheck) in line 5, and dangerous-edge reachability
checking (denoted as DReachabilityCheck) in line 10.

4.3.1 Basic Algorithm
Lines 2-19 iterate over the mutants of P ′ and the tests in T ′ to get

the mutation testing results. For each mutant m, lines 3 and 4 first
initialize all the test results as U. Line 5 applies mutant-coverage
checking [1, 21, 39] between P ′ and m to select the subset of tests



Algorithm 1: Algorithm for ReMT
Input: P and P ′, old and current program versions; M and M ′, the

mutants for P and P ′; T and T ′, test suites for P and P ′;
matrix, the mutant execution results for P .

Output: matrix’, the mutant execution results for P ′.
Require: Preprocessing (Mutant Mapping, Coverage Collection, and

Dangerous-Edge Reachability Results).
1 begin ReMT
2 foreach mutant m : M′ do
3 foreach test t : T′ do
4 matrix′(m, t)← U // initialization

5 Tc ← MCoverageCheck(T ′, P ′, m)
6 killed← false
7 foreach test t : T′ −Tc do
8 matrix′(m, t)← E // t cannot kill the mutant

9 T ′
c ← Tc ∩ T // tests with execution history

10 Tr ← DReachabilityCheck(EΔ, T ′
c, m, P , P ′)

11 foreach test t : T′
c −Tr do

12 matrix′(m, t)← matrix(mapM(m), t)
13 if matrix′(m, t) = K then
14 killed← true // m has been killed

15 if killed =true then continue
16 foreach test t : Tc do
17 if matrix′(m, t) = U then
18 matrix′(m, t)← Execution(t, m)
19 if matrix′(m, t) = K then continue

20 return matrix′ // return mutation testing result

within test suite T ′ that cover the mutated node nm of m on P ′.
Formally, the mutant-coverage checking is computed as:

MCoverageCheck(T ′, P ′,m) = {t ∈ T ′|nm ∈ trace
′(t,⊥)}

where trace′(t,⊥) is the entire coverage of t on P ′ (Definition 2.8).
The tests that do not cover nm in P ′ cannot kill m, so lines 7-8 as-
sign E to all such tests. Line 9 stores in T ′

c the tests in Tc that
have execution history (i.e., the tests that also exist in the old suite
of P ). Line 10 finds the tests from T ′

c that can potentially reach
dangerous edges in EΔ when executing the mutated statement nm

(Section 4.3.2). For the tests in T ′
c − Tr that cannot reach any

dangerous edge, ReMT directly copies the execution results from
the corresponding mapping mutant of P to the execution results on
m of P ′ (lines 11-14). Note that when the input matrix is partial,
ReMT may also copy U values to the new matrix. When ReMT
is applied in the partial mutation testing scenario, it sets the flag
killed to true if the mapping mutant has been killed for P and
proceeds to the next mutant (line 15). Lines 16-19 run all the tests
in Tc with value U on m (i.e., the newly added tests without execu-
tion history in Tc, the potentially influenced tests that could reach a
dangerous edge, and the tests whose results are copied as Us from
the input matrix). When ReMT is applied in the partial mutation
testing scenario, it terminates the test execution for m as soon as m
is killed by some test. Finally, line 20 returns the mutation testing
results for P ′.

4.3.2 Dangerous-Edge Reachability Checking
Algorithm 1 invokes DReachabilityCheck at line 10 to per-

form dangerous-edge reachability checking. After computing T ′
c,

the set of tests that execute the mutated statement for m and have
execution history, ReMT further computes Tr, the tests from T ′

c

that can potentially reach dangerous edges EΔ between P and P ′.
There are two types of tests from T ′

c that can potentially reach EΔ:
(1) the tests that directly execute edges in EΔ before the first ex-

ecution of the mutated CFG node nm; and (2) the tests that can
potentially reach edges in EΔ from the mutated CFG node. The
first type of tests is easily identified by intersecting EΔ with edge
coverage before the mutated node, while the second type of tests is
identified by checking the reachability to dangerous edges from the
mutated node with respect to the corresponding test. Formally, we
define the reachability checking as follows:

DReachabilityCheck(EΔ, T ′
c,m, P, P ′) =

{t ∈ T ′
c|trace(t, mapN(nm)) ∩EΔ �= ∅ ∨ reach(mapN(nm), t)}

where trace denotes the test coverage for P , and reach denotes
the reachability for dangerous edges. Note that the checking is per-
formed on the old version P because EΔ are edges from P . Thus,
we need to map nm back to its mapped node in P . (If there is no
mapped node, there must be a dangerous edge before nm and thus
trace(t, mapN(nm)) = trace(t,⊥) is overlapped with EΔ.)

4.4 Mutation-Specific Test Prioritization
We next present mutation-specific test prioritization (MTP) that

aims to prioritize remaining tests for each mutant to kill it as early
as possible in the partial mutation testing scenario. Given a mutant
m of a program P ′ (that evolved from P ), MTP calculates the pri-
ority of each test based on its coverage of the mutated statement as
well as the mutation testing history. Formally, the priority of test t
for m is calculated as:

Pr(t,m) =

{
〈1, CovNum(t, nm)〉, if matrix(mapM(m), t) = K

〈0, CovNum(t, nm)〉, otherwise.

The priority is a pair whose first element represents the muta-
tion testing result for the test on the corresponding mutant of the
old version P (1 if killed, 0 otherwise), and the second element,
CovNum(t, nm), is the number of times the test covers the state-
ment (in the unmutated new version P ′) to be mutated (to form the
mutant). Note that if the test does not have an execution history on
the old version (e.g., the test is newly added or was not executed in
the partial scenario), or the mutant does not have a mapping mutant
for the old version, the first element is set to 0.

For each mutant, ReMT prioritizes tests lexicographically based
on their priority pairs. The tests with first elements set to 1 are ex-
ecuted earlier based on the intuition that a test that kills a mutant in
the old version might also kill its mapping mutant in the new ver-
sion. The tests with second elements that indicate more execution
are executed earlier based on the intuition that a mutant is more
likely to be killed if its mutated statement was covered more times
by a test. If two tests have the same priority values, ReMT executes
them according to their order in the original test suite.

4.5 Discussion and Correctness
While we presented ReMT for Java and JUnit tests, it is also ap-

plicable for other languages and test paradigms. When the test code
does not have unit tests, our dangerous-edge reachability analysis
can be directly applied on the main method of the system under
test. Note that ReMT only works for traditional mutation operators
that change statements in methods. In the future, we plan to support
class-level mutation operators [24] that can change class hierarchy.

We need to show that for each mutant-test result reused from the
old version, the same result would be obtained if the corresponding
mutant and test were run on the new version. Intuitively, ReMT is
correct as it works similarly to regression test selection: for each
mutant, any test that might potentially reach dangerous edges is



selected. Due to space limitation, we do not show a detailed cor-
rectness proof here, but it can be found online1.

5. IMPLEMENTATION
We built ReMT on top of Javalanche [39], a state-of-the-art tool

for mutation testing of Java programs with JUnit tests. Javalanche
allows efficient mutant generation as well as efficient mutant ex-
ecution. It uses a small set of sufficient mutation operators [31],
namely replace numerical constant, negate jump condition, replace
arithmetic operator, and omit method calls [39]. Javalanche ma-
nipulates Java bytecode directly using mutant schemata [40] to en-
able efficient mutant generation. For efficient mutant execution,
Javalanche does not execute the tests that do not reach the mu-
tated statement, and it executes mutants in parallel. It provides the
javalanche.stop.after.first.failconfiguration prop-
erty to select partial or full mutation scenario.

Our ReMT implementation extends Javalanche with dangerous-
edge reachability checking and mutation-specific test prioritization.
For static analysis, our implementation uses the intra-procedural
CFG analysis of the Sofya tool [22] to obtain basic intra-procedural
CFG information and uses the Eclipse JDT toolkit2 to obtain the
inter-procedural information (method-overriding hierarchy, type-
inheritance information, etc.) for inter-procedural CFG analysis.
As a way to test our implementation, our experimental study ver-
ified that the incrementally collected mutation testing results by
ReMT are the same as (non-incrementally collected) mutation test-
ing results by Javalanche.

6. EXPERIMENTAL STUDY
ReMT aims to reduce the cost of mutation testing by utilizing

the mutation testing results from a previous program version. To
evaluate ReMT, we compare it with Javalanche [39], the state-of-
the-art tool for mutation testing.

6.1 Research Questions
Our study addresses the following research questions:

• RQ1: How does ReMT compare with Javalanche, which
does not use history information, in the full mutation testing
scenario in terms of both efficiency and effectiveness?

• RQ2: How does ReMT compare with Javalanche in the par-
tial mutation testing scenario under different original test-
suite orders?

• RQ3: How does the mutation-specific test prioritization (MTP)
further optimize ReMT in the partial mutation testing sce-
nario?

6.2 Independent Variables
We used the following three independent variables (IVs):

IV1: Different Mutation Testing Techniques. We considered the
following choices of mutation testing techniques: (1) Javalanche,
(2) ReMT, and (3) ReMT+MTP.
IV2: Different Mutation Testing Scenarios. We considered two
mutation testing scenarios for applying mutation testing: (1) full
mutation testing and (2) partial mutation testing.
IV3: Different Test-Suite Orders. As the performance of all
evaluated techniques under the partial mutation testing scenario de-
pends on the test-suite orders, we used 20 randomized original test-
suite orders for each studied revision to evaluate the performance
of each technique under that scenario.
1https://webspace.utexas.edu/lz3548/www/publications/tr2012a.pdf
2http://www.eclipse.org/jdt/

Table 4: Subjects overview.
Projects Description Source+Test(LoC)
JDepend Design quality metrics 2.7K+1.2K
Time&Money Time and money library 2.7K+3.1K
Barbecue Bar-code creator 5.4K+3.3K
Jaxen Java XPath library 14.0K+8.8K
Commons-Lang Java helper utilities 23.3K+32.5K
Joda-Time Time library 32.9K+55.9K

6.3 Dependent Variables
Since we are concerned with the effectiveness as well as effi-

ciency achieved by our ReMT technique, we used the following
two dependent variables (DVs):
DV1: Number of Mutant-Test Executions. This variable denotes
the total number of mutant-test pairs executed by the compared
techniques.
DV2: Time Taken. This variable records the total time (including
test execution time and technique overhead) taken by the compared
techniques.

6.4 Subjects and Experimental Setup
We used the source code repositories of six open-source projects

in various application domains. Table 4 summarizes the projects.
The sizes of the studied projects range from 3.9K lines of code
(LoC) (JDepend, with 2.7KLoC source code and 1.2KLoC test
code) to 88.8KLoC (Joda-Time, with 32.9KLoC source code and
55.9KLoC test code). We applied our ReMT on five recent revi-
sions of each project. We treated each commit involving source
code or test code changes as a revision; for commits conducted
within the same day, we merged them into one revision. Table 5
shows more details for each revision in the context of mutation
testing: Column 1 names the studied revision; Column 2 shows the
number of source/test files committed; Columns 3 and 4 show the
number of tests and mutants; Column 5 shows the ratio of killed
mutants to all mutants and the ratio of killed mutants to reached
mutants.

In this experimental study, for the full mutation testing scenario,
both the input and output mutation matrices are full (no U), and for
the partial mutation testing scenario, both the input and the output
mutation matrices are partial (but with enough information to com-
pute the mutation score). The experimental study was performed
on a Dell desktop with Intel i7 8-Core 2.8GHz processor, 8G RAM,
and Windows 7 Enterprise 64-bit version.

6.5 Results and Analysis

6.5.1 RQ1: Full Mutation Testing Scenario
In Table 5, Column 6 shows the total possible number of mutant-

test executions without any reduction techniques, i.e., the product
of the numbers of tests and mutants. Columns 7-9 show the actual
number of executions performed by Javalanche and ReMT, and the
reduction in the number of executions by ReMT over Javalanche.
First, we observe that both Javalanche and ReMT significantly re-
duce the number of executions from the total possible executions.
For instance, for all five revisions of Barbecue, the total possible
number of executions are more than 5 million, while both Javalanche
and ReMT are able to reduce the number of executions to around
or below 0.02 million. Second, although the reductions of ReMT
over Javalanche vary greatly across subject revisions, ReMT is able
to further achieve reductions of more than 50% on the majority
of all the revisions. Furthermore, ReMT is able to achieve reduc-
tions of more than 90% on 12 of the 30 studied revisions. For
instance, on revision Time&Money-4, ReMT is even able to iden-



Table 5: Experimental results of Javalanche and ReMT under the full mutation testing scenario.
Revision Chg Tests Mutants Mutant Kill Total Number of Executions Time Taken

Files Rates (%) Executions Javalanche ReMT Reduction Javalanche ReMT (Overhead) Reduction

JDepend-1 2 53 1,067 65.97/84.00 56,551 10,769 1,196 88.89% 00:05:45 00:02:04 (00:05) 64.05%
JDepend-2 8 53 1,166 67.40/84.24 61,798 12,000 10,516 12.37% 00:06:14 00:02:21 (00:05) 62.29%
JDepend-3 3 54 1,174 67.46/83.98 63,396 12,528 7,492 40.19% 00:06:00 00:02:11 (00:06) 63.61%
JDepend-4 2 55 1,174 67.97/84.62 64,570 12,956 7,920 38.87% 00:06:04 00:02:07 (00:06) 65.10%
JDepend-5 2 55 1,174 67.97/84.62 64,570 12,956 6,826 47.31% 00:06:06 00:02:40 (00:05) 56.28%

Time&Money-1 1 235 2,293 72.21/87.02 538,855 15,320 58 99.62% 00:09:08 00:02:11 (00:08) 76.09%
Time&Money-2 2 236 2,305 72.27/87.08 543,980 15,663 3,637 76.77% 00:09:19 00:02:23 (00:07) 74.41%
Time&Money-3 4 236 2,305 72.27/87.08 543,980 15,663 0 100.00% 00:09:18 00:02:12 (00:07) 76.34%
Time&Money-4 2 236 2,305 72.27/87.08 543,980 15,663 0 100.00% 00:09:18 00:02:12 (00:07) 76.34%
Time&Money-5 7 237 2,300 73.82/86.67 545,100 16,805 12,478 25.75% 00:09:22 00:07:30 (00:08) 19.92%

Barbecue-1 3 154 36,419 2.75/68.39 5,608,526 21,267 20,852 1.95% 00:09:31 00:07:23 (00:15) 22.41%
Barbecue-2 1 154 36,419 2.75/68.39 5,608,526 21,267 11,352 46.62% 00:09:32 00:05:57 (00:21) 37.58%
Barbecue-3 1 154 36,419 2.75/68.39 5,608,526 21,267 8,850 58.39% 00:09:36 00:06:10 (00:12) 35.76%
Barbecue-4 3 154 36,419 2.75/68.39 5,608,526 21,267 36 99.83% 00:09:47 00:04:21 (00:12) 55.53%
Barbecue-5 1 154 36,419 2.75/68.39 5,608,526 21,267 4,715 77.82% 00:09:11 00:05:27 (00:12) 40.65%

Jaxen-1 3 688 9,937 46.49/70.00 6,836,656 1,495,822 25,641 98.28% 01:06:35 00:16:05 (00:33) 75.84%
Jaxen-2 5 689 9,876 46.69/70.53 6,804,564 1,489,630 1,488,367 0.08% 01:06:10 01:06:52 (00:42) -1.05%
Jaxen-3 3 690 9,881 46.71/70.53 6,817,890 1,493,341 998,045 33.16% 01:06:21 00:42:25 (00:23) 36.07%
Jaxen-4 3 694 9,891 46.79/70.59 6,864,354 1,504,587 98,411 93.45% 01:06:50 00:21:07 (00:25) 68.40%
Jaxen-5 2 695 9,901 46.84/70.63 6,881,195 1,508,683 430,521 71.46% 01:07:35 00:27:40 (00:25) 59.06%

Commons-Lang-1 5 1,689 19,747 65.63/86.21 33,352,683 93,423 46 99.95% 01:31:57 00:32:11 (01:42) 64.99%
Commons-Lang-2 8 1,691 19,747 65.64/86.21 33,392,177 93,425 19 99.97% 01:32:07 00:32:08 (01:32) 65.11%
Commons-Lang-3 2 1,691 19,747 65.69/86.25 33,392,177 93,430 1,124 98.79% 01:32:10 00:31:55 (01:32) 65.37%
Commons-Lang-4 2 1,691 19,747 65.68/86.23 33,392,177 93,430 352 99.62% 01:32:33 00:32:09 (01:31) 65.26%
Commons-Lang-5 3 1,692 19,747 65.68/86.24 33,411,924 93,450 10,915 88.31% 01:32:15 00:40:31 (01:31) 56.07%

Joda-Time-1 2 3,818 24,175 65.09/85.41 92,300,150 1,064,395 776,299 27.06% 04:21:58 03:12:21 (03:33) 26.57%
Joda-Time-2 2 3,828 24,190 66.47/87.19 92,599,320 1,076,987 865,922 19.59% 04:30:47 03:27:05 (03:23) 23.52%
Joda-Time-3 3 3,829 24,219 66.43/87.09 92,734,551 1,077,851 619 99.94% 03:58:55 00:54:04 (01:56) 77.37%
Joda-Time-4 7 3,832 24,236 66.71/87.44 92,872,352 1,077,757 795,152 26.22% 03:59:48 03:14:03 (03:29) 19.07%
Joda-Time-5 1 3,834 24,236 66.41/87.05 92,920,824 1,078,573 1,443 99.86% 04:15:57 00:54:07 (01:44) 78.85%

tify that no executions are required to get the new mutation testing
results. Manually inspecting the code changes in this revision, we
found that the developers changed parts of two source files that
cannot be reached by any tests, and thus the mutation testing re-
sults cannot be influenced. However, there are also revisions for
which ReMT cannot achieve much reduction. For instance, on re-
vision Jaxen-2, ReMT is able to achieve a reduction of only 0.08%
over Javalanche. We looked into the revision history and found
that the developers conducted an import patch across all methods
of that org.jaxen.saxpath.base.XPathLexer class that
is a central class used by nearly all the tests in the suite.

Columns 10-12 compare the actual tool time rather than the num-
ber of executions. Column 10 of Table 5 shows the mutation test-
ing time taken by Javalanche. Column 11 shows the overall muta-
tion testing time taken by ReMT, including the time taken by the
preprocessing steps of ReMT (specifically by mutant mapping and
dangerous-edge reachability analysis)3. Column 12 shows the re-
duction of costs by ReMT over Javalanche in terms of time. First,
we observe that the reduction in terms of time does not directly
match the reduction in terms of the number of executions; some-
times the reduction for time is lower (e.g., JDepend-1), and some-
times it is higher (e.g., JDepend-2). The likely reasons for this in-
clude the following: (1) the times for different executions vary sig-
nificantly, (2) the reachability checking (lines 9-14 in Algorithm 1)
needs extra time, and (3) Javalanche’s parallel thread scheduling,
database setup, and database access can influence the execution
time. Second, we observe that our preprocessing step scales quite
well: it takes at most 3 minutes and 33 seconds across all revisions
(Joda-Time-1) and is negligible compared to the mutant-test execu-
tion time.

3We do not explicitly measure the coverage preprocessing time be-
cause node coverage is already traced by Javalanche, and edge cov-
erage is available for any system using regression test selection.

6.5.2 RQ2: Partial Mutation Testing Scenario
As different test-suite orders influence the performance of tech-

niques under the partial mutation testing scenario, we evaluated
the performance of ReMT and Javalanche under 20 different orig-
inal test-suite orders. Figure 4(a) shows the reduction that ReMT
achieves over Javalanche in terms of executions. In each plot, the
horizontal axis shows different revisions of each subject, and the
vertical axis shows the ratios of executions reduced by ReMT over
Javalanche. Each box plot shows the mean (a dot in the box), me-
dian (a line in the box), upper/lower quartile, and max/min val-
ues for the reduction ratios achieved over 20 randomized original
test-suite orders on each revision of each studied subject. The cor-
responding data dots are also shown to the left of each box plot.
First, we observe that the reduction achieved by ReMT in the par-
tial mutation testing scenario follows a similar trend as the reduc-
tion achieved in the full mutation testing scenario. In addition, the
reductions achieved by ReMT over Javalanche under the partial
mutation testing scenario are even slightly greater than under the
full mutation testing scenario for 23 of the 30 revisions. Second,
the reduction achieved by ReMT over Javalanche for each revision
is not greatly influenced by different test suite orders: the standard
deviation values for the reduction only range from 0 to 5.33. While
the reduction ratios are not greatly influenced by test-suite orders,
an interesting finding is that the reduction ratios tend to be more
stable when the reduction grows higher. For example, for all revi-
sions with reduction ratios of more than 90%, different test-suite
orders tend to have almost no impact at all on the reduction ratios.

6.5.3 RQ3: Mutation-Specific Test Prioritization
Figure 4(b) shows the further reduction of executions achieved

by mutation-specific test prioritization (MTP) over ReMT using 20
randomized original test-suite orders for each revision. Each box
plot has the same format as in Figure 4(a) except that the verti-
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(a) Reduction of executions (%) achieved by ReMT over Javalanche with 20 randomization seeds for ordering original test suites.
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(b) Reduction of executions (%) achieved by ReMT+MTP over ReMT with 20 randomization seeds for ordering original test suites.

Figure 4: Reduction of executions achieved by ReMT and MTP under the partial mutation testing scenario.

cal axis represents the ratios of executions reduced by ReMT+MTP
over ReMT (and not overJavalanche). First, we observe that tech-
nique ReMT+MTP further achieves a reduction over ReMT on
26 of the 30 revisions. There are also four revisions where MTP
does not make any further reductions over ReMT: Time&Money-
3, Time&Money-4, Barbecue-4, and Commons-Lang-2. The rea-
son is that ReMT has already reduced the number of executions
greatly, e.g., 0 executions for Time&Money-3 and Time&Money-4.
Second, we observe that the reduction achieved by ReMT+MTP
over ReMT for each revision can be greatly influenced by different
original test-suite orders: the standard deviation values of the re-
duction range from 0 to 24.60, which contrasts with the reduction
of ReMT over Javalanche. For example, the reductions achieved
on Joda-Time-5 range from 0.00% to 72.97%. The reason is that
MTP is just a reordering of all the tests identified by ReMT and
can even execute more tests than the original test order executed
by ReMT. Although the prioritization is done for each mutant, the
experimental study shows MTP is quite lightweight: on average,
its total prioritization time for all mutants is less than 1sec. for the
revisions of four projects (i.e., JDepend, Time&Money, Barbecue,
and Commons-Lang), and is 2.43sec. and 3.58sec. for the revisions
of Joda-Time and Jaxen, respectively.

7. RELATED WORK
In this section, we present related work on mutation testing. We

also discuss potential applications of ReMT to other related re-
search problems in mutation testing (e.g., detection of equivalent
mutants and test generation for killing mutants). Furthermore, as
ReMT is based on incremental analysis, we also discuss existing
related applications of incremental program analysis.

7.1 Tackling Cost of Mutation Testing
In general, research efforts to tackle the cost of mutation test-

ing can be divided into three categories: selective mutation testing,
weakened mutation testing, and accelerated mutation testing.

Selective mutation testing aims to select a representative sub-
set of all mutants that can achieve similar results as the entire set
of mutants. Since Mathur [25] first proposed the idea of selec-
tive mutation testing, there have been a number of research efforts
in this area. Typically, selective mutation testing can be classified
into operator-based mutant selection and random mutant selection.
Wong and Mathur [41] investigated two mutation operators among
the 22 mutation operators in Mothra [10], and found that mutants
generated with the two mutation operators can achieve similar re-
sults as all the 22 mutation operators. Offutt et al. [31] experi-



mentally expanded the two mutation operators to five mutation op-
erators (which are known as the five key mutation operators) to
ensure that the representative set of mutants achieves almost the
same results as the whole mutant set. Barbosa et al. [5] proposed
six guidelines to determine 10 key mutation operators. Namin et
al. [28] used variable reduction to determine 28 key mutation oper-
ators. Acree et al. [2] first proposed the idea of random mutant se-
lection. Wong and Mathur [41] empirically studied random mutant
selection using Mothra. While random mutant selection attracted
less research attention than operator-based mutant selection, a re-
cent study [45] demonstrated that operator-based mutant selection
is actually not more effective than random selection.

Weakened mutation testing relaxes the definition of mutant
killing. In strong mutation, a test kills a mutant if and only if the
output of executing the mutant with the test differs from the out-
put of executing the original program with the test. Howden [19]
proposed weak mutation, which checks whether the test produces
a different program state when executing the mutant than when ex-
ecution the original program. Woodward and Halewood [42] pro-
posed firm mutation, which is a spectrum of techniques between
weak and strong mutation.

Accelerated mutation testing aims to use efficient ways to gen-
erate, compile, and execute mutants. DeMillo et al. [8] proposed
compiler-integrated mutation, which extends a compiler to compile
all mutants at once, so as to reduce the cost of generating and com-
piling a large number of mutants. Similarly, Untch et al. [40] pro-
posed schema-based mutation, which transforms all mutants into
one metamutant that can be compiled by a standard compiler. Re-
searchers have also investigated the use of parallel processing (e.g.,
vector processors [26], SIMD [23], and MIMD [33]) to speed up
mutation testing. Offutt et al. considered reordering tests to kill
mutants faster [32]. However, their technique uses the same test or-
der, such as executing all tests forward or reverse, for all mutants.
In contrast, our MTP uses different orders for different mutants.

Our ReMT technique opens a new direction for tackling the cost
of mutation testing and differs from the previous techniques in sev-
eral ways. One, to the best of our knowledge, ReMT is the first
attempt to direct mutation testing on the differences between two
program versions. Two, ReMT obtains the same mutation results
as standard mutation but obtains them faster, whereas selective and
weakened mutation testing typically produce different results than
standard mutation. Three, ReMT is orthogonal to existing tech-
niques that optimize mutation testing and can be directly combined
with those techniques to further reduce the cost of mutation testing.

7.2 Detecting Equivalent Mutants
Equivalent mutants are mutants that are semantically identical to

the original program. As equivalent mutants would impact the cal-
culation of a test suite’s quality, it is preferable to identify equiv-
alent mutants for mutation testing. However, the problem of de-
tecting equivalent mutants is undecidable in general. Therefore,
researchers investigate approximation techniques for this problem.
Offutt and Craft [29] proposed a technique to detect equivalent mu-
tants via compiler optimization. Hierons et al. [18] used slicing
to reduce the numbers of possible equivalent mutants. Schuler et
al. [38] proposed to use execution information to detect equivalent
mutants. While not directly targeting detection of equivalent mu-
tants, our ReMT technique may also be utilized for this purpose:
ReMT determines that some tests have the same execution on a
mutant for the old and new versions and thus may reduce the cost
of collecting execution information needed by equivalent mutant
detection [38].

7.3 Generating Tests to Kill Mutants
A number of research projects consider the problem of gener-

ating high-quality tests based on mutation testing. DeMillo and
Offutt [11] proposed constraint-based testing (CBT), which uses
control-flow analysis and symbolic evaluation to generate tests each
killing one mutant. Offutt et al. [30] further proposed dynamic
domain reduction to address some limitations of CBT. In addition
to developing dedicated test-generation techniques to kill mutants,
researchers have also used existing test generation engines to kill
mutants. Fraser and Zeller [14] used search-based software test-
ing (SBST) to generate tests that kill mutants. Zhang et al. [46]
used dynamic symbolic execution (DSE) to generate tests that kill
mutants. Harman et al. [16] combined SBST and DSE to generate
tests that kill multiple mutants. Our ReMT may be also utilized
to reduce the cost of generating such high-quality test suites: it is
possible to incrementally generate tests for killing mutants in a way
similar to augmenting existing test suites [43].

7.4 Incremental Program Analysis
Regression test selection (RTS) [17, 34, 37] identifies the differ-

ences between two program versions as dangerous edges, and only
incrementally re-executes the subset of those tests whose behav-
ior might have been influenced by the dangerous edges. Our ReMT
technique also uses dangerous edges to represent program changes.
However, because each mutant makes a minor change to a program
CFG node, ReMT computes dangerous-edge reachability to cap-
ture all potentially influenced tests for each mutant. In fact, our
novel dangerous-edge reachability analysis can also be applied to
RTS. The main benefit of this analysis for test selection is that it
enables selection in the absence of previous coverage information
since it is computed statically. The main drawback is that it consid-
ers all possibilities and might select redundant tests.

There are also other applications of incremental analysis. RE-
COVER [6] uses dangerous edges and node mapping between two
program versions to incrementally collect program coverage. Re-
gression model checking [44] uses dangerous edges between two
program versions to drive the pruning of the state space when model
checking the new program version. Directed incremental sym-
bolic execution [35] leverages program differences in the form of
changed CFG nodes to guide symbolic execution to explore and
characterize the effects of program changes. Our ReMT differs
from existing techniques in three ways. One, ReMT is incremental
program analysis for a totally different area, mutation testing. Two,
the previous techniques only deal with the evolution changes be-
tween program versions, while ReMT deals with two dimensions
of changes: (1) the mechanical changes introduced by mutations
and (2) the evolution changes. Three, ReMT uses a novel static
dangerous-edge reachability analysis based on CFL reachability,
whereas the previous techniques mainly use dynamic coverage in-
formation to directly determine the reachability to dangerous edges.

8. CONCLUSIONS
We introduced Regression Mutation Testing (ReMT), a technique

that leverages program differences to reduce the costs of mutation
testing. ReMT is based on a static analysis that checks danger-
ous edge reachability for each program node with respect to dif-
ferent tests. We also presented a novel mutation-specific test pri-
oritization technique to further speed up mutation testing. We im-
plemented ReMT in Javalanche, a state-of-the-art mutation testing
system for Java programs, and evaluated its cost and effectiveness
using real-world revision repositories of six applications ranging
from 3.9KLoC to 88.8KLoC. The experimental results show that
ReMT can substantially reduce mutation testing costs.



In the future, we plan to explore whether different combinations
of static and dynamic analyses, as well as reusing various partial
results from previous runs, could further speed up mutation testing
for evolving code. We also plan to explore techniques that could
reduce the time to find the first mutant that is not killed (rather than
reduce the time to find all the mutants that are killed).
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