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ABSTRACT
This paper introduces the idea of mining container image reposito-

ries for configuration and other deployment information of software

systems. Unlike traditional software repositories (e.g., source code

repositories and app stores), image repositories encapsulate the en-

tire execution ecosystem for running target software, including its

configurations, dependent libraries and components, and OS-level

utilities, which contributes to a wealth of data and information. We

showcase the opportunities based on concrete software engineering

tasks that can benefit from mining image repositories. To facilitate

future mining efforts, we summarize the challenges of analyzing

image repositories and the approaches that can address these chal-

lenges. We hope that this paper will stimulate exciting research

agenda of mining this emerging type of software repositories.

CCS CONCEPTS
• Software and its engineering→ Software libraries and reposi-

tories; Software post-development issues; Software configuration

management and version control systems;
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1 INTRODUCTION
Mining software repositories (MSR) has been proven to be an effec-

tive approach for discovering, characterizing, and understanding

software engineering practices, towards improving software pro-

ductivity and quality. ExistingMSR studies mostly focus on software
development by mining code repositories (including source code,

commit histories, and bug reports) [11, 16, 24] and software release
by mining app stores and package repositories [2, 10]. Few studies
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Table 1: A comparison of image versus code repositories.

Container image repo Source code repo

Usage system operation software development

User sysadmins and operators developers

Store Docker Hub, Docker Store, ... GitHub, Sourceforge, ...

Content executables + exec. context source code

Configuration customized default/customizable

Scope entire software stack specific project

Evolution different software versions source code changes

cover field configurations of software systems (e.g., for deployment

and orchestration). In fact, information of field configurations is

highly desired, not only by operators and sysadmins to learn best

practices, but also by developers and DevOps engineers to measure

software usability and manageability [13, 17, 18, 25, 27, 29].

One fundamental obstacle to the study of configurations lies in

the fact that traditional software repositories such as source code

repositories and app stores contain little information of how the

software is actually being used in the wild. Historically, studying

field configurations used ethnographic methods [3, 8] and manual

data collection from second-hand data sources [25, 27]. For example,

a study of how software is configured in the field [25] took six

person-month to collect configuration files attached in issue reports

on mailing lists and online forums. However, this dataset, despite

the only one of its kind, is highly biased to misconfiguration cases

and is incomplete—it is hard to determine the values referencing to

execution context (e.g., environment variables and file content).

In this paper, we advocate that container image repositories, as

an emerging type of software repositories, provide a plethora of

opportunities to study configurations and other field operations for

a variety of software. Unlike source code repositories for software

development, container images are used for operations. A container

image is defined as a stand-alone, executable package of a piece of

software
1
that includes everything needed to run it: binary code,

configuration files, system libraries, language runtime, and man-

agement tools. Most of this information is not directly included in

traditional software repositories. Table 1 compares container image

repositories with traditional source code repositories.

Most importantly, the wide adoption of containerization tech-

niques drives the proliferation of image sharing. According to

Docker Hub’s statistics, it has hosted 100K+ public image reposito-

ries contributing to 900K+ images, serving 12+ billion image pulls

per week. Besides a small number of official image repositories from

certified software vendors (e.g., Apache, Oracle, and Red Hat), most

of the repositories are shared by individual users and organizations,

1
Containers are often designed for the microservice architecture in which each con-

tainer runs one software service, so each image has its target software.
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containing various customization, integration, and orchestration,

to serve their own use cases. These images are supposed to be di-

rectly invoked to create running containers, without the need to

compile or configure the software—“building, shipping, and running
any apps, anywhere [1].” Therefore, these image repositories form a

massive information base of configuration and operation practices

for mining and analysis.

We present the opportunities, challenges, and methods for mining

image repositories based on our experience of working with image

data. We focus on repositories of Docker-based container images

(a.k.a.,Docker images), the de facto image format adopted in industry,

and Docker Hub as the current largest online registry service for

public Docker images
2
. Our objective is to showcase the rich data

and information encoded in image repositories, and more impor-

tantly, describe how several software engineering tasks—ranging

from configuration design to dependency modeling to software or-

chestration to combinatorial testing—can potentially benefit from

or be enabled by mining these repositories (cf. §3).
3
To facilitate

future mining efforts, we summarize the challenges of mining im-

age repositories (cf. §4) and the methods that can address these

challenges (cf. §5). We hope that this paper will stimulate exciting

research agenda of mining the emerging image repositories.

2 IMAGE REPOSITORIES
This section goes over several preliminaries of container images

and their repositories from the perspective of mining and analysis,

which establishes the context necessary to understand the technical

content presented in the subsequent sections.

Image organization. In essence, an image is a filesystem-level

snapshot that includes all the files needed for launching a running

system instance (i.e., a container). For Docker, images are organized

as a series of layers stacking on top of one another. Each layer is

created by a build instruction specified in the image’s Dockerfile

(i.e., Docker’s build file for specifying the instructions that can be

executed to assemble an image, similar to Makefile for building an

executable from source code). Each layer consists of the filesystem

diff (files added or deleted) introduced by executing that instruc-

tion on the layer below it. Stacking all the layers comprises the

unified view of the image. Note that layers (identified by unique

LayerIDs) can be shared across multiple images, e.g., one can cre-

ate a new image by adding new files onto the ubuntu image, and

the new image shares all the layers of ubuntu. Figure 1 illustrates
how an image is constructed through layers, with an example from

Docker’s official documentation [6]. Each instruction in the Docker-

file creates a layer, starting with the base layer as the ubuntu image.

All the layers inside the image are read-only. When a container is

launched from the image, a read-write layer will be created on top

of the image layers (which is specific to the container).

An image can be pulled from and pushed to registry services

such as Docker Hub. The image’s metadata (e.g., version, Lay-

erIDs, size, update time) and Dockerfile can be fetched through

the inspect command or the Docker’s REST APIs.

2
There are other online image registries such as Docker Store, Google Container

Registry, and AWS Container Registry.

3
Our initial focus is on understanding software configurations, and we plan to use the

image mining infrastructure to address other software engineering tasks.

 91e54dfb1179               0B

 d74508fb6632           1.9 KB 

 c22013c84729         194.5 KB  

 d3a1f33e8a5a         188.1 MB  

(specific to each container)
container layer

       (R/W)

image layers 
       (R/O)

(base layer)

$ docker create ... 

FROM ubuntu:15.04

COPY . /app

RUN make /app

CMD /app/app.sh

# Dockerfile

 LayerID                     size

Figure 1: An example of a Docker image consisting of multiple lay-
ers corresponding to the Dockerfile instructions.

Image repositories. An image repository onDocker Hub contains

multiple images with different tags (typically used for annotating

versions). An image on Docker Hub is identified by the repository

name and the tag, for example, ubuntu:16.04 refers to the image

with the tag 16.04 in the ubuntu repository. All the tags, together

with other metadata of the repositories (e.g., description, maintainer,

community rating and comments, and update time) can be queried

through the Docker’s REST APIs.

Image repositories can be searched based on keywords. Although

Docker Hub does not provide the entire list of image repositories,

Shu et al. [22] show that a dictionary-based search method can

collect the vast majority of public repositories on Docker Hub.

Containers. Containers are runtime instances launched by docker
run images (with parameters specifying network settings, restart

policies, resource constraints, security settings, etc). A container’s

flat filesystem differs from the original image which is organized

in layers. Moreover, the container creates (virtual) files for device

drivers and procfs (/dev and /proc) based on the host OS, which

are not included in images. Also, containers typically execute initial

instruction (specified in Dockerfiles) to run the target software,

which creates new files (e.g., logs and traces).

3 OPPORTUNITIES
In this section, we showcase the research opportunities for soft-

ware engineering enabled by the unique data encoded in container

image repositories. We start from our initial focus—understanding

software configurations by mining image repositories, and envision

such mining efforts to go beyond and be broadly applied to other

software engineering tasks, including (but not limited to) depen-

dency modeling, software orchestration, and combinatorial testing.

Note that container images are supposed to run out of the box, with-

out the need of additional configuration efforts—the configurations

in image repositories are working samples rather than demos.

Creating a feedback loop for configuration design. One key

aspect of configuration design is the trade-off between flexibility

(configurability) and complexity (usability), which should be care-

fully made with a user-centric design philosophy, as configuration

is essentially an interface for users to control and customize soft-

ware behavior [25, 28]. Feedback loops should be created to help

developers understand how their software is configured in the wild,

in order to tune the usability accordingly. In addition, one can learn
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design lessons by comparatively studying the configuration charac-

teristics of multiple software systems, and verify design hypothesis

by selectively studying configurations of interests.

Furthermore, as shown in prior work [32], configuration require-

ments can change over time—a correct configuration value in an old

version could be obsolete or become invalid (producing undesired

behavior) after software upgrade. Understanding the characteristics

of configuration changes through software evolution is critical to

software configuration design and maintenance.

Historically, attacking the above problems is difficult, especially

for open-source software projects, due to the lack of publicly avail-

able datasets [30]. Unlike source code for which there are many

open-source online repositories (e.g., GitHub), software configura-

tions are independently maintained by sysadmins and operators

who have no incentives to share their settings. Some companies do

collect customers’ configuration values, but few of them are willing

to open such data to public as configuration settings often contain

sensitive, confidential information. Therefore, existing studies on

field configurations are either by the companies (which are specific

to one or two products), or based on tedious, time-consuming data

collection effort (as discussed in §1).

With container image repositories, the usage statistics of config-

uration parameters can be collected by analyzing the configuration

files in the image repositories built for the same piece of software.

For popular software (e.g., those studied in [25]), there are typically

thousands of image repositories made for different use cases and

scenarios, containing a diverse set of configuration settings.
4
More-

over, as image repositories contain different versions of the target

software and the configurations working for each version, mining

these repositories enables the opportunities to understand software

configuration with software evolution in depth.

Modeling cross-component configuration dependencies. Mis-

configurations across multiple software stacks or components are

among the most urgent but thorny problems in software reliabil-

ity [21, 30]. One fundamental obstacle in dealing with these miscon-

figurations lies in the challenges of understanding and modeling

dependencies of configurations across components. Existing studies

attempt to understand cross-component dependencies based on

user-reported issues posted on mailing lists and online forums [21].

However, the user-generated data cannot help understand the un-

known unknowns or model the complete dependency information,

not to mention the tremendous overhead of collect them.

Mining image repositories provides opportunities of unraveling

such information, as images encapsulate the complete environment

for running target software from the OS kernel to user-level appli-

cations. Many images are built for system infrastructure made up

of different components (each as a microservice) that have been

configured to work with each other. Therefore, image repositories

provide an open dataset of rich, extensive, and concrete configura-

tion values recorded in configuration files, databases, and system

environment. More importantly, unlike a second-hand dataset in

which configuration values are treated as isolated string literals, im-

age repositories associate these values with their context, including

4
As a comparison, mysqld and httpd studied in [25] have 9133 and 2006 image repos-

itories (which contain the corresponding configuration files with different versions of

the software) on Docker Hub, respectively, while the dataset in [25] only contains 823

and 311 configuration files of these two software projects, respectively.

the executable code, resources/entities referenced by these values,

and dependent software components.

Discovering software orchestration. Unlike source code repos-
itories dedicated for a specific piece of software, image repositories

often serve as building blocks for large-scale, complex systems

composed of multiple software components. These software com-

ponents can either be packed into a single image (e.g., the image

wordpress:php7.1-apache as a web stack), or form distributed

systems running on top of multiple images maintained in sepa-

rate repositories (e.g., the Hadoop-based data processing frame-

work published by uhopper that is composed by hadoop-namenode,
hadoop-datanode, hadoop-spark, and other hadoop-* reposito-

ries). Therefore, image repositories are great resources for studying

how different software components (and their versions) are glued

together and orchestrated as a service. Such study can not only

reveal the field practices of glue logic planned by software develop-

ers, but also potentially discover spontaneous use cases invented

by power users.

Note that for the case of multiple images, it takes additional effort

to collect orchestration information of these images, as each image

by itself does not explicitly specify the other images it connects to.

One data source are “compose files” used by docker composewhich
specify how multiple containers are orchestrated from images.

Improving combinatorial testing and tuning. Mining image

repositories can be used to understand common combinations and

value distributions of binaries and configurations, in order to help

test prioritization, performance tuning, and/or security auditing.

Testing of configurable software (e.g., a software product line,

SPL) requires not only executing the software for certain inputs

but also applying these inputs with various combinations of fea-

tures. One key challenge is to select the subset of combinations

that are representative and cover typical use cases, as testing all

possible combinations is not feasible (e.g., an SPL with 10 config-

urable features can have more than 2
10

distinct configurations).

While combinatorial methods can explore various combinations

of configurations, they are still quite costly [7, 9, 12, 14], and may

focus on irrelevant combinations rarely used in practice. Mining

image repositories can discover combinations that are actually used,

allowing both speeding up testing and finding bugs for relevant

configurations.

While combinatorial testing for functional correctness requires

checking all combinations that arise in practice, performance tuning

can be biased toward the most frequent configuration settings to

optimize expected runtime (over the distribution of configurations).

Understanding how the software is actually used can also help

developers better tune the performance of the software by focusing

on common systems environment and configuration settings.

The similar idea can be applied to security auditing—if the con-

tent of an executable file differs from all files with the same name

or path in the vast pool of image repositories, it is suspicious.

Using images as test beds for software engineering tools. Im-

age repositories can serve as real-world test beds for research tools,

including misconfiguration detection, binary analysis for malware

detection, portability testing, performance auto-tuning, etc. Taking

misconfiguration detection as an example, existing research efforts

mostly evaluate the proposed methods and tools on self-injected
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Figure 2: Size of image repositories versus code repositories.

errors or a small set of known misconfigurations [19, 20, 26, 31].

However, it is hard to measure the actual benefits in large-scale

real-world deployments. Image repositories can be used to quanti-

tatively answer such questions, as they themselves form a diverse

and comprehensive dataset of real-world configurations and their

context. We envision such test beds to be built on top of existing

container image repositories.

4 CHALLENGES

Image repositories are large in size. Compared with code bases

and apps, images often contain orders of magnitude more files, be-

cause they encapsulate the entire systems environment needed to

run the target software, including OS, libraries (e.g., libc), runtime

(e.g., JVM), and tools and utilities. As a result, images are typically

orders of magnitude larger in size than code bases or even the en-

tire code repositories. Figure 2 shows the sizes of the 134 official

image repositories on Docker Hub, compared with the size of corre-

sponding code repositories of target software on GitHub. The image

repositories are typically of sizes in gigabytes, with each image be-

ing hundreds of megabytes, while the source code repositories are

in the range of tens to hundreds of megabytes.

As image repositories typically contain several tens of images

with different tags, they could occupy up to tens of gigabytes in

total (the sizes keep growing with new versions released). There-

fore, a statistically meaningful image dataset (e.g., hundreds of

repositories) would amount to the terabyte scale in total.

The challenges imposed by the excessive repository sizes are

less at the storage level (as it can be mitigated by stream-based

methods, §5), but more for the bandwidth/time needed for fetching

and analyzing images (downloading terabytes of data through the

Internet). Images contain a large number of files, and thus need

significant processing time if all the files need to be iterated, though

most of the files may be irrelevant to the software engineering task.

Images are createdwith heterogeneous conventions. The het-
erogeneity mainly comes from the underlying OS distributions and

configurations. Even for the same version of software, images could

be packed on top of different OS distributions (e.g., Debian vs.

CentOS) which place binaries and configuration files at different

filesystem locations. Moreover, different images are equipped with

different tools (e.g., apt for Debian and yum for CentOS for manag-

ing packages and their dependencies). The pre-installed software

components can also be heterogeneous: (1) certain packages (even

those in coreutils) might not exist in all the images; (2) differ-

ent software variations can have incompatible requirements (e.g.,

different Unix shell variations have different syntax).

5 MINING METHODS
This section describes the methods for analyzing container image

repositories, including the process and techniques for addressing

the challenges derived from the characteristics of images (§4).

Stream-based mining. Due to the large sizes of image reposito-

ries (cf. §4), image repositories mining needs to adopt the stream-

based process if it cannot affordmirroring all the repositories locally.

A stream-based method extracts the target information continu-

ously after images are loaded into memory/disks, and then removes

these images to make space [22]. This can be done by either static
or dynamic method based on whether to run the images:

• static methods analyze the tar archive of an image saved on

local storage. As introduced in §2, an image is organized as

a series of layers in the form of filesystem diffs, which can

be composed to create a unified filesystem hierarchy. The

files of interest can be extracted;

• dynamic methods first launch containers from the target

images and then collect information of interest by invok-

ing mining and analysis code inside the containers (which

requires to copy the code into the container’s filesystem

and copy the analysis results from the container out to the

host filesystem). The code has the capability to invoke local

commands and utilities available in the containers.

In comparison to dynamic methods, static methods are more

lightweight (without the need to initialize/run containers); they are

also conceptually simpler as all the information is encoded in the

files inside the tar archives and can be analyzed through a uniform

file-based processing framework. On the other hand, dynamic meth-

ods can precisely capture runtime information by directly executing

commands in the containers. However, this comes with the cost of

complexity due to the diversity of containers (cf. §4). For example,

the mining code needs to consider different sets of pre-installed

packages/utilities in terms of types, versions, and configurations.

Downloading imageswith shared layers. Images are organized

in the granularity of layers (cf. §2). Each layer of an image is pulled

down separately, and stored in the host machine. If multiple images

share the same layers (e.g., built upon the same OS image), these

layers only need to be downloaded once. As a result, downloading

images with shared layers in batches can save significant storage

and downloading overhead, compared with treating each image

independently. Typically, images from the same repositories share

common layers and can be batched together, as they likely share

many base layers. Figure 3 shows the percentage of unique layers

across all the layers in each official repository on Docker Hub (there

are 143 official repositories)—batching the downloads can save 35+%

layers for 50+% repositories. A more sophisticated approach is to

leverage the FROM instruction in Dockerfile that specifies the base

image, from which the target images were built.

Layer-based analysis. Similar to downloading, the image min-

ing/analysis should be designed and implemented based on layers.
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Layers that have been processed should be recorded to avoid re-

peated computing effort in a Dynamic Programming (DP) style.

To illustrate the efficacy of layer-based analysis, we pull the 143

official image repositories from Docker Hub, and record the MD5

checksum of every file in each layer in a database (serving as the

knowledge base). Then, we randomly sample 100 image repositories

from Docker Hub and select the latest image in each repository.

Figure 4 shows the files with MD5 found in the knowledge base—on

average, 83.4% of the files hit a small base of 143 official repositories,

even though the coverage of exact layers (based on LayerIDs) is

much lower. The main reason of such significant coverage of files

is that most files in an image come from the OS and libraries. As

there are limited OS distributions and library versions, a DP-style

mining method can save significant (redundant) computing efforts.

Selective mining. Not every image in a repository is worth min-

ing for a specific software engineering task. For example, many

images are for the same application binaries and configurations,

but wrapped around different OS distributions or libraries. If the

information of interest lies in the application itself, only one of the

images needs to be downloaded and analyzed.
5

Leveraging Dockerfile. A Dockerfile records how an image is

created (cf. §2). The Dockerfile of an image can be fetched through

Docker’s REST API if available. A lot of information of images can

be collected and inferred by analyzing Dockerfiles, without the

need to download and mine the images. Unfortunately, as reported

in [4], many Dockerfiles are not reproducible due to missing version

pinning; moreover, 34% of Dockerfiles were not able to build the

images from a sample of 560 projects.

6 LIMITATIONS
It should be noted that images only contain static information at

the deployment time, but do not capture the dynamic information

of running container instances. For example, it is possible that

the configuration settings are changed during the operation of the

containers. Therefore, the configurations stored in the images may

not reflect the real usage in practice. It will be beneficial to relate

the data in container images to other data sources (e.g., runtime

logs, performance counters, and workload characteristics), towards

enabling richer and more insightful analysis.

5
Specifically, Alpine Linux is the OS distribution officially adopted by Docker since

2016, which is an order of magnitude smaller than ubuntu (the previous default).

Therefore, images based on Alpine are often the choice for downloading and analysis.

Regarding software orchestration, though it can be understood

better with Docker compose files, there could be management oper-

ations outside the scope of containers and images driven by home-

brewed scripts and procedures. Understanding the complete work-

flow and process of orchestration remains an open challenge.

7 RELATEDWORK
Prior studies on Docker images mostly focus on analyzing Dock-

erfiles as a special type of code [4] and the security implications

of adopting Docker images [5, 22, 23]. Differently, our focus is not

about how they were created and how secure to deploy them, but

about the data and information that can be distilled from the images

for the good and evil of software engineering research.

Prior studies on mining software repositories mainly focus on

source code repositories (including version-control systems and

bug databases), archived communications, and app stores [2, 10, 11,

15, 16, 24]. With the wide adoption of containerization techniques,

container images have become emerging data which encode infor-

mation unavailable in traditional software repositories. This paper

advocates opportunities of mining container image repositories, as

a special type of software repositories, to compliment prior work.

Besides Docker images, virtual machine (VM) images are also

available online, such as AMI (Amazon Machine Images) used for

deploying VMs on Amazon EC2. On the other hand, AMIs do not

have the same level of popularity as Docker Hub. Moreover, AMIs

do not have the notion of “repositories” but are traditional disk

images which contain less semantic information.

8 CONCLUDING REMARKS
In this paper, we advocate for mining container image repositories,

as a special and emerging type of software repositories, for under-

standing configurations and use cases of software systems. The

motivation derives from the observation that few existing studies

have paid attention to container image repositories, or have ex-

plored the unique, rich data and information which is not available

in traditional software repositories. To stimulate future research, we

have discussed the opportunities of mining container image reposi-

tories, followed by the challenges and mining methods. We hope

that image repositories mining can fill the gap between in-house

software development and the operations of software systems.
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