
Detecting Redundant Unit Tests for AspectJ Programs

Tao Xie1 Jianjun Zhao2 Darko Marinov3 David Notkin4

1 Department of Computer Science, North Carolina State University, USA
2 Department of Computer Science & Engineering, Shanghai Jiao Tong University, China

3 Department of Computer Science, University of Illinois at Urbana-Champaign, USA
4 Department of Computer Science & Engineering, University of Washington, USA

xie@csc.ncsu.edu, zhao-jj@cs.sjtu.edu.cn, marinov@cs.uiuc.edu, notkin@cs.washington.edu

Abstract

Aspect-oriented software development is gaining popu-

larity with the adoption of languages such as AspectJ. Test-

ing is an important part in any software development, in-

cluding aspect-oriented development. To automate gener-

ation of unit tests for AspectJ programs, we can apply the

existing tools that automate generation of unit tests for Java

programs. However, these tools can generate a large num-

ber of test inputs, and manually inspecting the behavior

of the software on all these inputs is time consuming. We

propose Raspect, a framework for detecting redundant unit

tests for AspectJ programs. We introduce three levels of

units in AspectJ programs: advised methods, advice, and

intertype methods. We show how to detect at each level

redundant tests that do not exercise new behavior. Our

approach selects only non-redundant tests from the auto-

matically generated test suites, thus allowing the developer

to spend less time in inspecting this reduced set of tests.

We have implemented Raspect and applied it on 12 sub-

jects taken from a variety of sources; our experience shows

that Raspect can effectively reduce the size of generated test

suites for inspecting AspectJ programs.

1 Introduction

Aspect-oriented software development (AOSD) is a new

paradigm that supports separation of concerns in software

development [4, 13, 16, 21]. AOSD makes it possible to

modularize crosscutting aspects of a software system. The

research in AOSD has so far focused primarily on problem

analysis, software design, and implementation activities.

Little attention has been paid to testing in AOSD, al-

though it is well known that testing is a labor-intensive

process that can account for half the total cost of software

development [3]. Automated software testing, and in partic-

ular test generation, can significantly reduce this cost. Al-

though AOSD can lead to better-quality software, AOSD

by itself does not guarantee correct software. An aspect-

oriented design can lead to a better system architecture, and

an aspect-oriented programming language enforces a dis-

ciplined coding style, but they do not protect against pro-

grammers mistakes. As a result, software testing remains

an important task in AOSD.

Aspect-oriented programming languages, such as As-

pectJ [13], introduce some new language constructs–most

notably aspects, advice, and join points–to the com-

mon object-oriented programming languages such as Java.

These specific constructs require adapting the common test-

ing concepts for testing aspect-oriented software.

We focus on unit testing, the process of testing each ba-

sic component (a unit) of a program to validate that it cor-

rectly implements its detailed design. For aspect-oriented

programs, the basic testing unit can be a part of an aspect

or a class. In unit testing, developers isolate the unit to run

independently from its environment, which allows writing

small testing code to exercise the unit alone. However, in

aspect-oriented programming, it is unusual to run an as-

pect in isolation. After all, the intended use of an aspect

is to affect the behavior of one or more classes through join

points and advice. Thus, the aspects are usually tested in

the context with some affected classes, which also allows

testing the complex interactions between the aspect and the

affected classes.

A part of our previous work [23] leverages the existing

tools that automate test generation for Java to automate test

generation for the aspects and their affected classes. Test-

generation tools for Java are available commercially (e.g.,

Jtest [18]) or as research prototypes (e.g., JCrasher [5]).

These tools test a class by generating and executing numer-

ous method sequences on the objects of the class. Because

typical programs do not have executable specifications for

automatic correctness checking, these tools rely on devel-

opers to inspect the executions of the generated tests for

correctness.



Another part of our previous work [22] proposed the

Rostra framework for detecting redundant tests in Java pro-

grams, i.e., tests that do not exercise new behavior of the

Java classes under test. Using Rostra, we found that au-

tomatic test-generation tools may generate a large number

of such tests [22], which only increases the testing time,

without increasing the ability to detect faults. Redundant

tests are even more common in testing aspects: the tests

that differ for the affected class can often be the same for

the aspect. (The reverse can also happen, but much more

infrequently.) Thus, it is important to avoid redundant tests,

not only to reduce the time on test generation and execution,

but also to reduce the time that developers need to spend in-

specting the tests.

This paper makes the following contributions:

• We propose Raspect, a novel framework for detect-

ing redundant unit tests for AspectJ programs; to the

best of our knowledge, this is the first such framework.

Raspect extends our previous Rostra framework [22],

which detects redundant tests for Java methods. For

Raspect, we extend the definitions of redundant tests

and the implementation to detect redundant tests for

advice and intertype methods.

• We present an implementation of Raspect for detecting

redundant unit tests for advised methods, advice, and

intertype methods.

• We evaluate Raspect on 12 AspectJ programs from a

variety of sources. The results show that Raspect can

effectively reduce the size of generated test suites for

inspecting AspectJ program behavior.

2 AspectJ

AspectJ is a seamless, aspect-oriented extension to Java.

AspectJ adds to Java several new constructs, including join

points, pointcuts, advice, intertype declarations, and as-

pects. An aspect is a modular unit of crosscutting imple-

mentation in AspectJ. Each aspect encapsulates functional-

ity that may crosscut several classes in a program. Like a

class, an aspect can be instantiated, can contain state and

methods, and can be specialized with sub-aspects. An as-

pect is composed with the classes it crosscuts according to

the descriptions given in the aspect.

A central concept in the composition of an aspect with

other classes is a join point. A join point is a well-defined

point in the execution of a program, such as a call to a

method, an access to an attribute, an object initialization,

or an exception handler. Sets of join points may be repre-

sented by pointcuts, implying that they crosscut the system.

An aspect can specify a piece of advice that defines the

code that should be executed when the executions reach a

join point. Advice is a method-like mechanism, which con-

sists of instructions that execute before, after, or around a

join point. The around advice executes in place of the

indicated join point, which allows the aspect to replace a

method. An aspect can also use an intertype declaration to

add a public or private method, field, or interface implemen-

tation declaration into a class.

An AspectJ compiler ensures that the base and aspect

code run together properly interleaved [1, 11]. The com-

piler uses aspect weaving to compose the code of the base

class (to which an aspect is applied) and the aspect to en-

sure that the applicable advice runs at the appropriate join

points. After aspect weaving, the base classes are called wo-

ven classes, and their methods are called advised methods.

We next present briefly how the AspectJ compiler trans-

lates aspects, advice, and intertype methods; more details of

AspectJ are available elsewhere [1].

The AspectJ compiler translates each aspect into a stan-

dard Java class (called aspect class) and each piece of ad-

vice declared in the aspect into a public non-static method

in the aspect class. The parameters of this public method

are the same as the parameters of the advice, possibly in

addition to some thisJoinPoint parameters that repre-

sent the information about the join point. The body of this

public method is usually the same as the body of the ad-

vice. At appropriate locations of the base class, the AspectJ

compiler inserts calls to the advice. At each site of these

inserted calls, first a singleton object of an aspect class is

obtained by calling the static method aspectOf defined in

the aspect class, and then a piece of advice is invoked on the

aspect object.

Both before and after pieces of advice are com-

piled into public methods of an aspect class in the pre-

ceding way; however, compiling and weaving around ad-

vice is more complicated. Normally a piece of around

advice is also compiled into a public method in the as-

pect class. But it takes one additional argument: an

AroundClosure object. A call to proceed in the com-

piled around advice body is replaced with a call to a run

method on the AroundClosure object. However, when an

AroundClosure object is not needed, the around advice

is inlined in the base class as a static private method whose

first argument is an object of the base class, being the re-

ceiver object of the advised method at runtime.

The AspectJ compiler translates each intertype method

declaration into a public static method (called intertype

method) in the aspect class. The parameters of this pub-

lic method are the same as the parameters of the declared

method in the aspect, except that the declared method’s re-

ceiver object is inserted as the first parameter of the inter-

type method. The body of this public method is usually

the same as the body of the declared method. The AspectJ

compiler inserts a wrapper method in the base class and



class Cell {
int data; Cell next;

Cell(Cell n, int i) { next = n; data = i; }
}

public class Stack {
Cell head;

public Stack() { head = null; }
public boolean push(int i) {

if (i < 0) return false;

head = new Cell(head, i);

return true;

}
public int pop() {

if (head == null)

throw new RuntimeException("empty");

int result = head.data; head = head.next;

return result;

}
Iterator iterator() { return new StackItr(head); }

}

Figure 1. An integer stack implementation

interface Iterator {
public boolean hasNext();

public int next();

}

public class StackItr implements Iterator {
private Cell cell;

public StackItr(Cell head) { this.cell = head; }
public boolean hasNext() { return cell != null; }
public int next() {
int result = cell.data;

cell = cell.next;

return result;

}
}

Figure 2. Stack iterator

this wrapper method invokes the actual method implemen-

tation in the aspect class. The AspectJ compiler compiles

each intertype field declaration into a field in the base class.

However, all accesses to the fields inserted in the base class

are through two public static wrapper methods in the aspect

class: one for getting field and the other for setting field.

(The compiler also adds the “get” and “set” methods for

the intertype fields in the aspect.)

3 Example

We next illustrate how Raspect determines redundant

tests for an AspectJ program. We use a simple integer

stack example adapted from Rinard et al. [19]. Figure 1

shows the stack implementation. Objects of the Cell class

store and link the stack items. The Stack class has two

public non-constructor methods, push and pop that im-

plement the standard stack operations, and one package-

private method, iterator that returns an iterator used to

traverse the items in the stack. Figure 2 shows the imple-

mentation of the iterator class. Figure 3 shows four aspects

for the stack class: NonNegative, NonNegativeArg,

Instrumentation, and PushCount.

aspect NonNegative {
before(Stack stack) : call(* Stack.*(..)) &&

target(stack) &&

!within(NonNegative) {
Iterator it = stack.iterator();

while (it.hasNext()) {
int i = it.next();

if (i < 0) throw new RuntimeException("negative");

}
}

}

aspect NonNegativeArg {
before() : execution(* Stack.*(..)) {

Object args[] = thisJoinPoint.getArgs();

for(int i=0; i<args.length; i++) {
if ((args[i] instanceof Integer) &&

(((Integer)args[i]).intValue() < 0))

System.err.println("Negative argument of " +

thisJoinPoint.getSignature().toShortString());

}
}

}

aspect Instrumentation {
static int count = 0;

public print() { System.out.println("count = " + count); }
after() : call(Stack.new()) { count = 0; }
after() : call(* Stack.push(int)) { count++; }

}

aspect PushCount {
int Stack.count = 0;

public void Stack.increaseCount() { count++; }
boolean around(Stack stack) :

execution(* Stack.push(int)) && target(stack) {
boolean ret = proceed(stack);

stack.incrementCount();

return ret;

}
}

Figure 3. Four aspects for stack

This stack implementation accommodates only nonneg-

ative integers as stack items. The NonNegative aspect

checks this property: the aspect contains a piece of advice

that iterates through all items to check whether they are non-

negative. The advice executes before a call to any Stack

method. The NonNegativeArg aspect checks whether

Stack method arguments are nonnegative. The aspect con-

tains a piece of advice that checks all arguments of an about

to be executed Stack method. The advice executes before

a call to any Stack method.

The Instrumentation aspect counts the number of

times the push method is invoked on a stack object since

its creation.1 The aspect contains a piece of advice that in-

creases the static count field defined in the aspect. The

advice is executed after any call to the push method. The

aspect contains another piece of advice that resets the static

count field. This piece of advice is executed after any call

to the Stack constructor.

The PushCount aspect is another version for counting

the number of times push is invoked on an object since

its creation. The aspect contains one intertype declara-

1The advice implementation works correctly only when there is no in-

terleaving among push and constructor calls.



tion that declares a count field for the Stack class. The

field records the number of times push is invoked. The

aspect contains another intertype declaration that declares

an increaseCount method for the class.2 The method

increases the count intertype field of Stack. The aspect

also contains a piece of around advice that invokes the

increaseCount intertype method declared in the aspect.

The advice is executed around any execution of push.

After we use the AspectJ compiler [1,11] to compile and

weave all four aspects (which do not interfere with each

other), we can use the existing Java test-generation tools,

such as Parasoft Jtest 4.5 [18], to generate unit tests for the

woven class. Each unit test consists of sequences of method

invocations. By default, Jtest 4.5 does not generate tests

that contain invocations of a public class’s package-private

methods; therefore, tests generated by Jtest for Stack do

not directly invoke iterator.
The following is an example test suite with three tests for

the Stack class:

Test 1 (T1): Test 2 (T2): Test 3 (T3):

Stack s1 = Stack s2 = Stack s3 =

new Stack(); new Stack(); new Stack();

s1.push(3); s2.push(3); s3.push(3);

s1.push(2); s2.push(5); s3.push(2);

s1.pop(); s3.pop();

s1.push(5); s3.pop();

Raspect determines redundant tests for advised methods,

advice, and intertype methods. We next discuss briefly how

Raspect does this and what results it produces for the exam-

ple test suite.

To determine redundant tests for advised methods,

Raspect dynamically monitors test executions. Each test

execution produces a sequence of method executions. Each

method execution is characterized by the actual method that

is invoked and a representation of the state (the receiver ob-

ject and method arguments) at the beginning of the execu-

tion. We call this state method-entry state, and its part that

is related to the receiver object state. We represent an object

using the values of the fields of all reachable objects. Two

states are equivalent if their representations are the same.

For instance, T2 has three method executions: a construc-

tor without arguments is invoked, push adds 3 to the empty

stack, and push adds 5 to the previous stack. We call two

method executions equivalent if they are invocations of the

same method on equivalent states. Raspect detects redun-

dant tests for advised methods: a test is redundant for a

test suite if every method execution of the test is equiva-

lent to some method execution of some test from the suite

(Section 4.1). For example, Raspect detects that Test 2 is

a redundant test for advised methods with respect to Test 1

because any of Test 2’s three method executions is equiva-

lent to one of Test 1’s method executions. However, Test 3 is

2We declare this intertype method as public for the illustration purpose

so that a client can invoke the increaseCount method to increase

count without invoking push.

not redundant for advised methods because the last method

execution s3.pop() is not equivalent to any of the method

executions of Test 1 or Test 2.

To determine redundant tests for advice, Raspect dynam-

ically monitors the execution of advice. Each test execution

produces a sequence of advice executions. Similar to the

definition of a method execution, each advice execution is

characterized by the advice that is invoked and a represen-

tation of the state (the aspect receiver object and method

arguments) at the beginning of the execution. We call this

state advice-entry state. Raspect detects redundant tests for

advice: a test is redundant for a test suite if every advice ex-

ecution of the test is equivalent to some advice execution

of some test from the suite. Because the NonNegative

and NonNegativeArg aspects do not declare any fields,

the advice execution is solely characterized by the advice’s

arguments: the target Stack object and the arguments of

invoked methods on Stack for advice in these two aspects,

respectively. Because the Instrumentation aspect de-

clares only a static count field, which is reachable from its

aspect objects, but its advice does not have any argument,

the advice execution is solely characterized by the aspect

object state. Raspect can detect both Test 2 and Test 3 are

redundant for advice in any of the first three aspects because

any advice execution of Test 2 or Test 3 is equivalent to one

of the advice executions of Test 1.

To determine redundant tests for intertype declarations

in aspects, which publicly declare methods for classes,

Raspect dynamically monitors the execution of the corre-

sponding intertype methods. Each test execution produces

a sequence of intertype method executions. Similar to the

definition of a method execution, each intertype method ex-

ecution is characterized by the actual intertype method that

is invoked and a representation of the state (method argu-

ments)3 at the beginning of the execution. We call this

state intertype-entry state. Raspect detects redundant tests

for intertype methods: a test is redundant for a test suite

if every intertype method execution of the test is equiva-

lent to some intertype method execution of some test from

the suite. The PushCount aspect declares a count inter-

type field for the Stack class, which is reachable from the

Stack object, but its increaseCount intertype method

does not have any argument. So the intertype method ex-

ecution is solely characterized by the Stack object state

as well as the state of the count field declared in the as-

pect for the Stack class. Raspect can detect Test 3 is re-

dundant for the increaseCount intertype method because

any intertype method execution of Test 3 is equivalent to

one of the intertype method executions of Test 1. However,

Test 2 is not redundant for increaseCount because the in-

tertype method execution generated by s2.push(5) is not

3There is no receiver object for the intertype method because the inter-

type method in the aspect class is static.



equivalent to the intertype method execution generated by

s1.push(5). The values of the count field are different at

the entries of these two intertype method executions.

4 Redundant-Test Detection for AspectJ

We consider three kinds of units in AspectJ programs:

(1) advised methods in woven classes, (2) advice in aspect

classes, and (3) intertype methods in aspect classes. We

first introduce a common definition of redundant tests for

all these units. Our definition is parameterized with respect

to the state at the beginning of unit executions within the

tests. We then describe how to minimize a test suite based

on the states. We finally instantiate the definition for each of

the three kinds, describing how to determine the appropriate

states for advised methods, advice, and intertype methods.

To detect redundant tests for advised methods, advice,

and intertype methods, we have developed Raspect, an ex-

tension of our previous Rostra framework [22] that works

for Java methods and can be viewed as detecting redundant

tests only for advised methods. The inputs to Raspect are

a class under test and a set of methods under test; Raspect

can treat an aspect class as the class under test, and pieces of

advice and intertype methods as methods under test. Specif-

ically, given an AspectJ program, Raspect performs the fol-

lowing steps:

1. Compile and weave aspects and base classes into class

bytecode using the AspectJ compiler.

2. Generate unit tests for woven classes using the exist-

ing test-generation tools based on class bytecode, e.g.,

Parasoft Jtest 4.5 [18]. (For some special types of ad-

vice, we need to use our previously proposed Aspec-

tra framework [23] to generate wrappers for the woven

classes to leverage the existing test-generation tools.)

3. Compile and weave aspects and generated test classes

into class bytecode using the AspectJ compiler. (This

is necessary because the tests contain call sites to the

base-class methods, and some aspects may be woven

into each such call site, e.g., the NonNegative and

Instrumentation aspects for the Stack class.)

4. Detect and remove redundant tests for the three kinds

of units:

• for each advised method, treat the woven class as

the class under test and the advised method itself

as the method under test;

• for each piece of advice, treat the aspect class as

the class under test and the advice as the method

under test;

• for each intertype method, treat the aspect class

as the class under test and the intertype method

as the method under test.

The use of Raspect for detecting redundant tests for ad-

vised methods, advice, and intertype methods assumes that

these methods are deterministic: for each method, any two

executions that begin with the same state (reachable from

the receiver and method arguments) have the same behav-

ior. In particular, this means that Raspect might not work

on multi-threaded code or on code that depends on tim-

ing. However, it is still useful for developers to run tests

on non-deterministic methods with Raspect as it can detect

non-determinism that results in different states. Namely,

Raspect collects the states reachable from the receiver and

method arguments both before and after a method execution

(in addition to the return values of the method execution).

If Raspect detects that two executions that begin with the

same state produce different states or return values, non-

deterministic behavior is exposed and both executions are

selected for inspection.

4.1 General Detection of Redundant Tests

Each execution of a test produces a sequence of method

calls on the objects of the class under test (either the wo-

ven class or the aspect class). Each method call produces

a method execution whose behavior depends on the state of

the receiver object and method arguments at the beginning

of the execution. We represent each method execution with

the actual method that was executed and a representation of

the state (reachable from the receiver object and method ar-

guments) at the beginning of the execution. We call such a

state method-entry state.

Raspect represents a method-entry state using the

WholeState technique from our previous Rostra frame-

work [22]. Each test focuses on the state of several ob-

jects, including the receiver object and method arguments.

Locally, the state of an object consists of the values of the

object’s fields, but some of the fields may point to other ob-

jects, and thus, globally the state of an object consists of

the state of all reachable objects. To represent the state of

specific objects, Raspect traverses and collects the values

of (some) fields reachable from these objects. Next section

presents which fields Raspect collects for each of the three

kinds of units.

During the traversal, Raspect performs a lineariza-

tion [22] on the collected field values of reference type.

Our linearization is similar to the standard Java serializa-

tion [20]: it translates an object graph into a sequence of

integers. Whereas the serialization is in general under the

control of the programmer and may produce arbitrary se-

quences, the linearization produces sequences that represent

object graphs uniquely up to isomorphism. Details of how

the linearization works are available elsewhere [22].

The linearization reduces the comparison of the method-

entry states to the comparison of sequences of integers.



We denote with linearize(s) the state representation of

a method-entry state s.

Definition 1 Two method-entry states s1 and s2 are equiv-

alent iff linearize(s1) =linearize(s2).

We define equivalent method executions based on equiv-

alent method-entry states.

Definition 2 A method execution 〈m, s〉 is a pair of a

method m and a method-entry state s.

Definition 3 Method executions 〈m, s〉 and 〈m′, s′〉 are

equivalent iff m = m′ and s and s′ are equivalent.

Each test execution produces several method execu-

tions. Under the assumption that equivalent method execu-

tions exhibit the same behavior, testing a method execution

equivalent to a previously tested method execution provides

no value in terms of increasing fault detection (for faults

that do not depend on sequences) or increasing code cover-

age for the method.

Definition 4 A test t is redundant with respect to a test suite

S iff for each method execution produced by t, there exists

an equivalent method execution of some test from S.

Definition 5 A test suite S is minimal iff there is no t ∈ S

such that t is redundant for S\{t}.

Minimization of a test suite S′ finds a minimal test

suite S ⊆ S′ that exercises the same set of non-equivalent

method executions as S′ does. Given a test suite S′, there

can be several possible test suites S ⊆ S′ that minimize

S′. We use a simple algorithm to approximately find (near-

)minimal test suites: our tool accepts a JUnit test suite, uses

the JUnit framework [12] to execute the suite in the default

order, and filters out the tests that are redundant with respect

to the previously executed tests. Regardless of the order in

which the tests from S′ are executed, the total number of

non-equivalent method executions (or object states) is the

same. Since the inspection effort for automatically gener-

ated tests should focus on the non-equivalent method exe-

cutions, it is practical for our tool to reduce the test suite

based on the default order of JUnit test executions instead

of searching for a minimal test suite.

4.2 Collecting States

The previous definitions use a method-entry state of the

unit under test. For advised methods, the state is simply (a

part of) the object graph reachable from the receiver object

and arguments. We next show how to build the state for the

other two kinds of units, advice and intertype methods. For

both of them, the aspect class is the class under test.

4.2.1 Collecting State for Advice

We first discuss the specifics of methods that represent

pieces of advice and then present the special treatment of

the JoinPoint arguments for advice.

The receiver object of advice is an aspect object (ob-

tained by calling aspectOf). There is a special treatment

for inlined around advice in the base class. Such advice

has no receiver object; the advice is a static method whose

first argument is the receiver object of the advised method as

presented in Section 2. The method-entry state for a method

that implements a piece of advice is called the advice-entry

state. We represent advice-entry states as the appropriate

method-entry states (defined in Section 4.1).

The body of a piece of advice can use special vari-

ables thisJoinPoint, thisJoinPointStaticPart,

and thisEnclosingJoinPointStaticPart to dis-

cover both static and dynamic information about

the current join point [1, 11]. For example, the

NonNegativeArg aspect shown in Figure 3 in-

vokes thisJoinPoint.getArgs() to retrieve the

arguments of the current join point and invokes

thisJoinPoint.getSignature().toShortString()

to get the method signature name associated with the cur-

rent join point.

The AspectJ compiler first detects which special

variables the body of the advice uses and then ex-

tends the signature of the advice with the correspond-

ing arguments for these special variables. In this ex-

ample, the AspectJ compiler extends the signature of

the advice with one additional argument, JoinPoint

thisJoinPoint. The JoinPoint type, the return type of

thisJoinPoint.getSignature(), and other AspectJ-

library types are in the packages whose names start with

org.aspectj. We refer to an object of an AspectJ-library

class as an AspectJ-library object.

At runtime, Raspect needs to carefully collect the state

to avoid the information not desired in the advice-entry

state. For instance, Raspect should not traverse and

collect all the fields reachable from the thisJoinPoint

argument that contains the reflective information about the

current join point. In fact, only the return values of the

methods transitively invoked on thisJoinPoint affect

the behavior of an aspect execution. For example, only

the return values of thisJoinPoint.getArgs() and

thisJoinPoint.getSignature().toShortString()

affect the behavior of the NonNegativeArg aspect.

Raspect specially treats the JoinPoint argument state

during the object-field traversal for state representation.

When the traversal encounters an AspectJ-library object,

Raspect stops collecting the fields of the object. Instead,

it captures the relevant parts of the JoinPoint state by

collecting the values of all object fields reachable from the

return of a method call invoked on an AspectJ-library ob-



ject; Raspect does this during the entire aspect execution

and recursively avoids collecting the fields of an AspectJ-

library object during the traversal of the fields from the re-

turn object. For example, thisJoinPoint.getArgs()

returns an object array that holds the method arguments

of the current join point. Raspect traverses and collects

as a part of the advice-entry state the values of the fields

reachable from these method arguments. In addition,

thisJoinPoint.getSignature() returns an object of

an AspectJ-library type org.aspectj.lang.Signature.

Raspect does not traverse and collect the fields of this

AspectJ-library object. When toShortString() is in-

voked on this object, it returns a String object (containing

the short-form name of the method signature), so Raspect

collects this string as a part of the advice-entry state.

4.2.2 Collecting State for Intertype Methods

In AspectJ, all intertype declarations are compiled into the

intertype methods in aspect classes. The method-entry state

for an intertype method is called the intertype-entry state.

Since all intertype methods in the aspect class are static,

there are no receiver objects for these methods. We repre-

sent intertype-entry states as the appropriate method-entry

states (defined in Section 4.1).

Raspect minimizes a test suite for testing intertype meth-

ods. Our implementation of the redundant-test detection

for intertype methods treats intertype methods as a spe-

cial type of advice. In the rest of this paper, thus, we use

redundant-test detection for advice to refer to redundant-

test detection for both advice and intertype methods. How-

ever, in test generation for AspectJ programs, we still dis-

tinguish between intertype methods and advice. When the

AspectJ compiler weaves intertype methods into the base

class, these methods can become a part of the base-class in-

terface. Therefore, the Java test-generation tools based on

bytecode may directly generate method calls that exercise

intertype methods, although the tools cannot directly gener-

ate method inputs that exercise advice.

5 Experimental Study

We have collected 12 AspectJ programs from a variety of

sources (Section 5.1) to use as subjects to evaluate Raspect.

We have implemented the Raspect techniques building on

our previous Rostra framework [22]. We have also imple-

mented Zhou et al.’s test-selection technique based on as-

pect coverage (AC) [24]; the technique selects a test if the

test covers an aspect even if the same input to the aspect

has been exercised by previously selected tests. We com-

pare Zhou et al.’s technique with Raspect (Section 5.2). We

have applied these techniques on the subject programs. The

results show that Raspect can detect redundant tests among

those selected by the AC technique, and the percentage of

these redundant tests is usually lower than the percentage of

redundant tests for advised methods, which is in turn is usu-

ally lower than the percentage of redundant tests for advice

(Section 5.3). The results thus suggest that: (i) our new

techniques perform better than the existing AC technique

and (ii) more tests need to be inspected for testing advised

methods than for testing advice. We finish with a discussion

of Raspect (Section 5.4).

5.1 Subjects

Table 1 lists the 12 AspectJ subjects that we use in

our experiments. The first four subjects (NonNegative,

NonNegativeArg, Instrumentation, and PushCount)

are the example aspects from Figure 3. NullCheck is a

program used by Asberry to detect whether method calls re-

turn null [2]. Following Rinard et al. [19], we refer to the

first five subjects as basic aspects. Telecom is an exam-

ple from the AspectJ distribution [1] that simulates a com-

munity of telephone users. BusinessRuleImpl comprises

two aspects of business rules for a banking system [14].

StateDesignPattern was developed by Hannemann and

Kiczales [7] to illustrate aspect-oriented implementations

of design patterns. DCM was developed by Hassoun et

al. [10] to validate their proposed dynamic coupling met-

ric (DCM) [9]. ProdLine uses intertype declarations and

was developed by Lopez-Herrejon and Batory for product

lines of graph algorithms [17]. Bean is an example used

in the AspectJ primer from http://aspectj.org to en-

hance a class with the functionality of Java beans. LoD was

developed by Lieberherr et al. to check the Law of Deme-

ter [15]. It includes one checker for object form and an-

other checker for class form; our study uses the checker for

object form. The basic aspects, DCM, and LoD do not come

with base classes; for these subjects, we use the Stack class

from Figure 1 or its adapted version as the base class.

Our subjects include most of the programs used by Ri-

nard et al. [19] in evaluating their classification system

for aspect-oriented programs, the benchmarks used by Du-

four et al. [6] in measuring the performance of AspectJ

programs (available at http://www.sable.mcgill.ca/

benchmarks/), and one of the aspect-oriented design

pattern implementations by Hannemann and Kiczales [7]

(available at http://www.cs.ubc.ca/∼jan/AODPs/).

Our subjects do not include several programs from the first

two sources because these programs are concurrent (our

Raspect framework works only on sequential programs) or

GUI-based (GUI applications are not suitable for automated

test generation with Jtest). Our subjects also do not in-

clude more design pattern implementations primarily be-

cause they use intertype declarations, which are also used

by some of the other subjects.



5.2 Implementations

We have implemented the techniques of Raspect for de-

tecting redundant tests for AspectJ programs by modifying

Rostra, our previous tool for detecting redundant object-

oriented unit tests for Java programs [22]. We reuse Ros-

tra to detect redundant tests for advised methods, advice,

and intertype methods. (Recall from Section 4.2.2 that we

use redundant tests for advice to refer to both advice and

intertype methods.) To apply Rostra, we first need to de-

termine which classes and methods are under test for the

three kinds of units (Section 4). Our implementation dy-

namically determines this. During class loading time, our

tool checks whether a class is an aspect class by inspecting

the names of its methods, base on the special names that

the AspectJ compiler gives to advice. Our tool similarly de-

tects inlined around advice in the base class based on their

names. When detecting redundant tests for advice, the tool

treats the identified aspect classes as the classes under test

and the identified advice as the methods under test.

We have also implemented the AC technique [24] that

has a similar goal as Raspect to reduce a test suite for

aspect-oriented programs. The AC technique selects a test

from the test suite if the test covers at least one piece of

advice (even if the input to the advice has been exercised

before). We quantitatively compare the AC technique with

our proposed Raspect techniques.

5.3 Results

We first feed the woven class bytecode for each subject

to Jtest 4.5 [18] to generate tests. Jtest allows the user to

set the length of method sequences between one and three;

we set it to three. Table 1 shows the number of tests gen-

erated by Jtest and the coverage of the branches within the

aspect classes achieved by these tests. (We have adapted

Hansel [8] to measure the branch coverage of aspect classes

at the bytecode level.)

We then run our tools for the Raspect and AC techniques

on the Jtest-generated test suites. Table 1 shows the per-

centage of redundant tests, the number of non-equivalent

(method or advice) executions, and the number of non-

equivalent (class or aspect object) states that the tools de-

tect. The results for the AC technique are in the columns

labeled “AC”. (The percentage of tests selected by AC cor-

responds to the percentage of non-redundant tests in our

context.) The results for the Raspect techniques are in the

columns labeled “AM” and “AD”, for advised methods and

(pieces of) advice, respectively.

5.4 Discussion

We first discuss the branch coverage of the test suites.

We then present more details of the redundant tests that var-

ious techniques detect. We finally consider the quality of

Raspect and its relationship with test generation.

We measured the aspect branch coverage achieved by

test suites minimized with different techniques. We found

that the coverage of minimized suites remains the same

as the coverage of the original suites, which shows that

the Raspect techniques based on equivalent states preserve

structural coverage for our set of subjects.

Our technique for advised methods detects the same

number of redundant tests for the first three subjects

in Table 1, even though it detects different numbers

of non-equivalent method executions. Receall that we

weave Stack with these aspects. The numbers dif-

fer because (i) the advice in the NonNegative as-

pect invokes iterator(), increasing the total num-

ber of non-equivalent method executions and (ii) for

NonNegativeArg, the AspectJ compiler inserts an extra

static initializer into the Stack class to enable the join-

point reflection. In general, when a base class is woven

with different aspects, running the same test suite on the wo-

ven class can produce different numbers of redundant tests,

non-equivalent method executions, or non-equivalent object

states for the advised methods.

The PushCount aspect has lower percentage of redun-

dant tests, more non-equivalent method executions, and

more non-equivalent object states than the first three as-

pects. The reason is that PushCount declares an intertype

field and an intertype method for Stack, which results in

more fields in states.

The NullCheck subject uses around advice for the

methods with non-void returns. To provide a base class

for NullCheck, we adapt Stack from Figure 1 by chang-

ing the int type to Integer and use NullCheck to advise

both pop and iterator methods. The aspect declares no

object field for itself and the inlined around advice is static;

therefore, our technique for advice detects no aspect object

state.

For the first five, basic aspects, our techniques detect

more redundant tests for advice than for advised methods.

For three other subjects (Telecom, BusinessRuleImpl,

and Bean), our techniques also detect more redundant

tests for advice than for advised methods. But for

StateDesignPattern, interestingly the aspect-object

states are more complicated than the base-class-object

states; this phenomenon is not common among As-

pectJ programs. Subsequently our techniques detect

fewer redundant tests for advice than for advised meth-

ods in StateDesignPattern. Like the states of the

StateDesignPattern aspect, the states of the DCM aspect

are also complicated. Interestingly our technique for ad-

vice detects no redundant tests but our technique for advised

methods detects 72.7 percent of redundant tests. Because

static fields defined in the DCM aspect store the information



AspectJ program number branch redundant tests [%] non-eq. executions non-eq. states

of tests coverage AC AM AD AC AM AD AM AD

NonNegative 44 6/7 6.8 72.7 90.9 71 16 5 6 1

NonNegativeArg 44 8/9 6.8 72.7 90.9 71 13 5 6 1

Instrumentation 44 4/4 0.0 72.7 84.1 106 12 8 6 4

PushCount 94 8/8 0.0 70.2 77.7 267 28 22 13 0

NullCheck 45 4/8 60.0 71.1 91.1 20 14 5 6 0

Telecom 798 19/28 0.0 95.2 98.5 5780 52 21 21 2

BusinessRuleImpl 439 14/21 50.1 94.1 97.7 268 35 12 6 2

StateDesignPattern 129 15/17 0.0 48.8 36.4 348 82 172 47 74

DCM 44 57/91 0.0 72.7 0.0 942 13 271 6 126

ProdLine 474 80/294 0.0 86.5 86.5 18057 68 206 30 6

Bean 1895 18/19 0.0 69.9 73.7 6864 1144 746 417 0

LoD 44 8/133 18.2 68.2 18.2 60 16 55 7 2

Table 1. Results of applying redundant-test detection on Jtest-generated tests using the aspect-
coverage technique (AC) and the Raspect technique on advised methods (AM) and advice (AD)

of method call history, the technique for advice would still

detect no redundant tests even if running the same test mul-

tiple times within a test suite.

The base classes of the ProdLine subject are a set of

empty classes. Our testing focuses on one of these classes:

Vertex. The woven class contains 10 intertype fields that

are declared by seven aspects. It also contains four methods

that are declared by two aspects: DFS and Undirected,

which are developed for depth-first search and undirected

graph, respectively. Because the methods under test are the

same for both advice and advised methods, our techniques

for advice and advised methods detect the same redundant

tests for Vertex.

The LoD subject defines a Check aspect. The method

arguments of advice in Check can reach the instances of

Percflow and Pertarget, which bring in complex calling

context information. Therefore, our techniques detect fewer

redundant tests for advice than for advised methods.

We next compare the AC technique and the Raspect tech-

niques. AC detects no redundant tests for seven subjects.

For the remaining five subjects, AC detects some tests as

redundant since they never cover any advice. In general,

Raspect can detect more redundant tests than AC.

As we described earlier, we also compare redundant tests

for advised methods (AM) and advice (AD). Our technique

for advised methods can often detect a high percentage of

redundant tests among those generated by Jtest. Jtest gener-

ates a relatively small number of method arguments for the

methods of the class under test and generates many different

combinations of method sequences with these arguments.

Thus, Jtest can produce a lot of redundant tests for Java pro-

grams, as observed in the Rostra experiments [22], which

also showed that removing these redundant tests does not

decrease the fault detection capability and structural cov-

erage achieved by the test suite. Our Raspect experiments

show that Jtest also generates a lot of redundant tests for ad-

vised methods. Moreover, our technique for advice usually

detects an even higher percentage of redundant tests, which

means that fewer automatically generated tests need to be

manually inspected when focusing on advice than when fo-

cusing on advised methods.

Our tool outputs traces of state information for non-

equivalent (method or advice) executions and (class or as-

pect) object states; the user can inspect these traces for

correctness. Aspect classes typically contain fewer object

fields than the base classes; therefore, the size of the ex-

ercised state space of aspect objects is smaller than the

size of the exercised state space of objects of base classes.

Three interesting exceptions are StateDesignPattern,

DCM, and LoD; for these subjects, Raspect detect fewer re-

dundant tests for advice than for advised method.

Our evaluation uses Jtest for test generation. While the

specific numbers (Table 1) depend on the generated test

suites (as well as the subjects, how they use aspects, etc.),

Raspect is not specific to Jtest. Raspect may work with any

other test-generation tool, and the percentage of redundant

tests may increase or decrease.

We expect that Raspect can be applied to a wide range

of AspectJ programs. The results show that Raspect can

substantially reduce the size of the (Jtest-)generated test

suites for manual inspection when specifications are absent,

a common case in practice. We expect that test inspection

for advice would require less effort than test inspection for

advised methods for most AspectJ programs. Our results

also show some cases in which a larger inspection effort is

needed for advice than for advised methods. Raspect is still

useful for such programs as it can improve the developer’s

understanding of the aspect behavior by drawing the atten-

tion to the dominating behavior.

Raspect is primarily based on a dynamic analysis; to de-



tect redundant tests for advice or advised methods, Raspect

needs to run the generated tests. Based on the results with

Jtest and the 12 subjects, Jtest’s test generation is relatively

expensive for large programs, but the execution of the gen-

erated tests is usually cheap with a reasonable runtime over-

head incurred by our dynamic analysis.

6 Conclusion

We have proposed Raspect, a framework for detecting

redundant unit tests for AspectJ programs. Redundant tests

are defined for three kinds of units: advised methods, pieces

of advice, and intertype methods. We have formally defined

inputs to these units based on object states. Raspect extends

our previous Rostra framework for detecting redundant tests

for (advised) methods with detection of redundant tests for

advice and intertype methods. Our focus is on detecting

and removing redundant tests before the manual inspection

of automatically generated tests. Raspect allows us to gen-

erate tests for AspectJ programs by reusing the existing Java

test-generation tools and postprocessing the generated test

suites.

Acknowledgments

This work was supported in part by the National Science

Foundation under grants ITR 0086003 and CCR00-86154.

We acknowledge support through the High Dependability

Computing Program from NASA Ames cooperative agree-

ment NCC-2-1298. We thank Alex Salcianu for the valu-

able feedback on an earlier version of this paper.

References

[1] AspectJ compiler 1.2, May 2004. http://eclipse.

org/aspectj/.

[2] R. D. Asberry. Aspect oriented programming (AOP): Using

AspectJ to implement and enforce coding standards. Draft

manuscript, 2002.

[3] B. Beizer. Software Testing Techniques. International Thom-

son Computer Press, 1990.

[4] L. Bergmans and M. Aksits. Composing crosscutting con-

cerns using composition filters. Commun. ACM, 44(10):51–

57, 2001.

[5] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-

bustness tester for Java. Software: Practice and Experience,

34:1025–1050, 2004.

[6] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittam-

palam, and C. Verbrugge. Measuring the dynamic behav-

iour of AspectJ programs. In Proc. 19th annual ACM SIG-

PLAN Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, pages 150–169, 2004.

[7] J. Hannemann and G. Kiczales. Design pattern implementa-

tion in Java and AspectJ. In Proc. 17th ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, pages 161–173, 2002.

[8] Hansel 1.0, 2003. http://hansel.sourceforge.

net/.

[9] Y. Hassoun, R. Johnson, and S. Counsell. A dynamic run-

time coupling metric for meta-level architectures. In Proc.

8th European Conference on Software Maintenance and

Reengineering, pages 339–346, 2004.

[10] Y. Hassoun, R. Johnson, and S. Counsell. Emprical val-

idation of a dynamic coupling metric. Technical Report

BBKCS-04-03, Birbeck College London, March 2004.

[11] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.

In Proc. 3rd International Conference on Aspect-Oriented

Software Development, pages 26–35, 2004.

[12] JUnit, 2003. http://www.junit.org.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-

gramming. In Proc. 11th European Conference on Object-

Oriented Programming, pages 220–242. 1997.

[14] R. Laddad. AspectJ in Action. Manning, 2003.

[15] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically

executable advice: checking the law of demeter with aspectj.

In Proc. 2nd International Conference on Aspect-Oriented

Software Development, pages 40–49, 2003.

[16] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented

programming with adaptive methods. Commun. ACM,

44(10):39–41, 2001.

[17] R. E. Lopez-Herrejon and D. Batory. Using AspectJ to im-

plement product-lines: A case study. Technical report, Uni-

versity of Texis at Austin, September 2002.

[18] Parasoft. Jtest manuals version 4.5. Online manual, April

2003. http://www.parasoft.com/.

[19] M. Rinard, A. Salcianu, and S. Bugrara. A classification

system and analysis for aspect-oriented programs. In Proc.

12th International Symposium on the Foundations of Soft-

ware Engineering, pages 147–158, 2004.

[20] Sun Microsystems. Java 2 Platform, Standard Edi-

tion, v 1.4.2, API Specification. Online documentation,

Nov. 2003. http://java.sun.com/j2se/1.4.2/

docs/api/.

[21] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N

degrees of separation: multi-dimensional separation of con-

cerns. In Proc. 21st International Conference on Software

Engineering, pages 107–119, 1999.

[22] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework

for detecting redundant object-oriented unit tests. In Proc.

19th IEEE International Conference on Automated Software

Engineering, pages 196–205, Sept. 2004.

[23] T. Xie and J. Zhao. A framework and tool supports for gen-

erating test inputs of aspectj programs. In Proc. 5th Inter-

national Conference on Aspect-Oriented Software Develop-

ment, pages 190–201, March 2006.

[24] Y. Zhou, D. Richardson, and H. Ziv. Towards a prac-

tical approach to test aspect-oriented software. In Proc.

2004 Workshop on Testing Component-based Systems,

Net.ObjectiveDays, Sept. 2004.


