
Systematic Generation of Non-Equivalent
Expressions for Relational Algebra

Kaiyuan Wang1, Allison Sullivan1, Manos Koukoutos2,
Darko Marinov3, and Sarfraz Khurshid1

1University of Texas at Austin, USA
2École Polytechnique Fédérale de Lausanne, Switzerland

3University of Illinois at Urbana-Champaign, USA
kaiyuanw@utexas.edu, allisonksullivan@utexas.edu,

emmanouil.koukoutos@epfl.ch, marinov@illinois.edu, khurshid@utexas.edu

Abstract. Relational algebra forms the semantic foundation in multi-
ple domains, e.g., Alloy models, OCL constraints, UML metamodels, and
SQL queries. Synthesis and repair techniques in such domains require an
efficient procedure to generate (non-equivalent) expressions subject to
relational constraints, e.g., the types of sets and relations, their cardinal-
ity, size of expressions, maximum arity of the intermediate expressions,
etc. This paper introduces the first generator for relational expressions
that are non-equivalent with respect to the semantics of relational alge-
bra. We present the algorithms that define our generator, its embodiment
based on the Alloy tool-set, and an experimental evaluation to show the
effectiveness of its non-equivalent generation for a variety of problems
with relational constraints.

1 Introduction
Relational algebra forms the semantic foundation in multiple domains, e.g., Alloy
models [16], OCL constraints [39], UML metamodels [42], and SQL queries [25].
Developing program synthesis [6, 14, 22, 36, 37, 46] or program repair [10, 20, 23,
24, 40, 57] methods in such domains requires an efficient technique to generate
(non-equivalent) expressions subject to relational constraints, e.g., the types of
sets and relations, their cardinality, size of expressions, maximum arity of the
intermediate expressions, etc.

While syntactically different expressions can be generated by simple standard
bottom-up [54] or top-down [6] grammar-based generation techniques, generat-
ing expressions that way can produce an infeasibly large number of expressions
even for relatively small expression sizes. (In this paper, we measure the size of
an expression by the number of AST nodes in that expression.) For example,
for just one binary relation r ⊆ S × S on some set S and expression size up to
7, there are 17109 syntactically different expressions that can be built using the
operators from Alloy [16]: 5 standard binary operators (relational join, Cartesian
product, set union, intersection, difference) and 3 unary operators (transpose,
transitive closure, reflexive transitive closure). Reducing this number of expres-
sions requires reasoning about semantic equivalences in relational algebra. Some

II

such equivalences are well-known, e.g., associativity and commutativity (AC) for
set union and intersection. While AC rules reduce the number of expressions to
11191 in this example, there are actually only 771 non-equivalent expressions.
We need more advanced equivalences to prune out equivalent expressions.

We introduce RexGen, the first generator for semantically non-equivalent
relational expressions. We present the algorithms that define our generator, its
embodiment based on the Alloy tool-set, and an experimental evaluation to show
the effectiveness of its non-equivalent generation for a variety of problems with
relational constraints.

Our choice of Alloy is driven by its foundation in relational, first-order
logic [16], its focus on analyzability, and its wide application in various domains,
e.g., software design [7,17], analysis [4,9,18], testing [31], and security [21]. Alloy’s
tool-set includes an automatic analysis tool [53] for checking the satisfiability of
formulas written in Alloy using off-the-shelf propositional satisfiability (SAT)
solvers. The analyzer performs scope-bounded analysis, which checks the prop-
erties within a given scope, i.e., bound on the universe of discourse. While the
Alloy analyzer could be used to check semantic equivalences of all expressions
during generation, it results in an impractically slow generation.

Our key insight is that the Alloy analyzer enables a systematic method
for creating and evolving an optimized generator for non-equivalent relational
expressions. Our method first uses the analyzer (with its expensive, semantic
equivalence checks) to discover likely equivalences of expressions that already
get generated. We then generalize and validate these likely equivalences using
manual reasoning, and incorporate them in the expression generator as equiv-
alence rules. These rules directly prune equivalent expressions based on quick,
(mostly) syntactic checks without expensive, semantic equivalence checks.

RexGen offers three automatic pruning modes for bottom-up generation of
relational expressions. One mode, static pruning, directly prunes from generation
many equivalent expressions based on a fixed suite of equivalence rules, which
include well-known equivalences and also dozens more that we discovered using
the Alloy analyzer. Another mode, dynamic pruning, uses the analyzer during
generation to prune equivalent expressions incrementally by comparing each new
expression to a representative from each equivalence class formed thus far, while
forming new equivalence classes as needed. The third mode, modulo-instance
pruning, allows the user to provide AUnit test valuations [50, 51], and prunes
an expression if it is equivalent to some generated expression with respect to all
given test valuations (even if not equivalent for some other valuations [3]).

We perform an experimental evaluation of RexGen using expression gener-
ation problems derived from 12 Alloy models. We evaluate the number of ex-
pressions that RexGen generates and the time that RexGen takes to generate
those expressions for each problem under different settings. The experimental re-
sults show that static pruning offers the best trade-off, creating mostly semanti-
cally different expressions, substantially reducing the number of expressions from
simple grammar-based generation, while not increasing the generation time—in
fact, often having smaller generation time than not using any equivalence prun-

III

ing rules. In comparison, using only AC rules, as done by some state-of-the-art
systems for expression generation [23] (albeit not for relational expressions, so
we added appropriate extensions for comparison), generates a larger number of
expressions, while not substantially reducing the time. Using dynamic pruning
removes all equivalent expressions w.r.t. the scope but takes substantially more
time. Finally, pruning equivalences based on a relatively small but diverse suite
of test valuations works similarly to dynamic pruning.

This paper makes the following contributions:
Problem: We are the first to study the problem of expression generation for
relational algebra.
Optimizations: We introduce a suite of equivalence pruning rules for relational
expressions to improve the efficacy of expression generation.
Experiments: We present an experimental evaluation based on problems de-
rived from 12 Alloy models; the results show that RexGen with static pruning
offers a promising approach for generating non-equivalent relational expressions.

2 Example

We next present an example model to motivate relational expression genera-
tion and introduce the basic concepts of our approach. Consider this small but
illustrative Alloy model of directed trees, adapted from a recent paper [32]:

sig Node { edges: set Node }
pred Acyclic { no iden & ^edges }
pred Injective { edges.~edges in iden }
pred Connected { (Node -> Node) in ^(edges + ~edges) }
pred isDirectedTree { Acyclic and Injective and Connected }
run isDirectedTree for 4 Node

The model declares a set (called signature in Alloy) of nodes with a field called
edges that is a binary relation of type Node×Node. The keyword set declares an
arbitrary relation; Alloy also has keywords one and lone to constrain the relation
to be a total or partial function, respectively. The predicate (pred) is a named
formula that can be invoked elsewhere. The conjunction of Acyclic, Injective,
and Connected would precisely represent directed trees. The binary operator & is
set intersection; + is set union; in is subset; . is relational join (and relational
image); and -> is Cartesian product. The (prefix) unary operator ^ is transitive
closure, and ∼ is transpose; Alloy also has reflexive transitive closure (*). The
keyword iden represents the identity relation. The formula no E for expression E
constrains E to be the empty set. The run command runs a given formula, and
presents an instance of the given formula if the formula is satisfiable. The scope
of 4 instructs the analyzer to create an instance with at most 4 nodes.

To illustrate expression generation using our approach, consider the signa-
ture declaration in this model, which introduces one set (Node) and one binary
relation (edges). Given those declarations, a user may want to generate various
expressions, e.g., in synthesis or repair tasks. For example, many Alloy beginners
write pred Acyclic’ { all n: Node | n !in n.^edges } and may want to know

IV

if there is a semantically equivalent formula without any quantified variables (as
in Acyclic). In that case, the user may want to systematically try {UO E} where
UO represents any unary operator (no, some, lone, one) and E represents any valid
expression, such that the formula {UO E} is equivalent to Acyclic’.

Assume we set the maximum size of any generated expression to 5, which suf-
fices to generate even the largest relational expressions in this particular model.
RexGen generates 581 expressions with no pruning, 438 with AC pruning (i.e.,
associativity and commutativity), 116 with static pruning, 105 with dynamic
pruning, and 102 with modulo-instance pruning (for 14 tests). The generation
time is largest for dynamic pruning, which uses Alloy analyzer to check each
equivalence and takes 2.8 sec; in all other cases, no constraint solving is used,
and the generation time is <1 sec. The following shows some of the equivalences
discovered with dynamic pruning (where univ denotes the universe of discourse,
which is equal to Node in the example model):
Node->Node = univ->univ (~edges)&(^edges) = (~edges)&(*edges)
(~edges).Node = Node.edges *((^edges)-edges) = *((*edges)-edges)
edges.(Node.edges) = edges.Node ^(edges.(^edges)) = edges.(^edges)

To illustrate generation of larger expressions, consider size 7. RexGen gen-
erates 17109 expressions with no pruning, 11191 with AC pruning, 1464 with
static pruning, 771 with dynamic pruning, and 691 with modulo-instance prun-
ing (for 14 tests). The generation time for dynamic pruning increases to 82.3 sec,
for modulo-instance pruning increases to 1.7 sec, and for the other techniques
remains <1 sec. Thus, for this example, static pruning reduces the number of
expressions by 86.9% over AC pruning while taking a similar amount of time;
dynamic pruning reduces the number by 47.3% over static pruning but takes
much longer due to many SAT calls. Moreover, modulo-instance pruning cre-
ates a similar number of expressions as dynamic pruning, which indicates the
diversity of the tests, but takes less time due to not making SAT calls.

3 RexGen Framework
We next present our Relational Expression Generator (RexGen) approach for
generating non-equivalent relational expressions. We first describe the technique
input and then the expression generation techniques.

3.1 Technique input
RexGen takes as input (1) a number of sets (signatures), relations (fields), and
variables declared in an Alloy model (in the context in which the expressions
should be generated), (2) a limit on the size of generated expressions, (3) op-
tionally a target arity of expressions to generate, and (4) optionally a number
of test valuations, i.e., values for the input sets and relations (but not for the
bound variables). RexGen generates expressions using the following grammar:

expr ::= expr binOp expr | expr∗ | expr+ | expr−1 | terminal

binOp ::= ∪ | ∩ | \ | × | ./

terminal ::= set | relation | variable

V

The grammar captures a subset of syntactically possible Alloy expressions,
which cover a large space of candidate expressions likely to be intended by Al-
loy users. For example, we do not consider rarely used Alloy operators such as
domain restriction (<:). We use standard notation of relational algebra: ∪ is
set union, ∩ is set intersection, \ is set difference, × is Cartesian product, ./ is
the relational join; e∗, e+, e−1 denote the reflexive transitive closure, transitive
closure, and transpose of e, respectively. Additionally we use the empty set ∅,
the universal set univ, and the identity iden = {(x, x)|x ∈ univ}.

To systematically generate expressions, RexGen limits: (1) the size of ex-
pressions and (2) the maximum arity of expressions. There are different ways
to define expression size; we consider the number of AST nodes in the expression:
size(terminal) = 1, size(e1 binOp e2) = size(e1)+size(e2)+1, size(exprunOp) =
size(expr) + 1.

3.2 Generating expressions
We next describe how RexGen enumerates expressions within the given limits.
In the spirit of synthesis tools [3], enumeration works bottom-up, starting from
terminal expressions (sets, relations, and variables given as inputs) and then
iteratively combining smaller expressions to generate larger ones.

Our key contribution is pruning that aggressively removes expressions to in-
crease the efficiency of the generation and/or reduce the number of generated
expressions. The goal of pruning is to eliminate expressions that are semanti-
cally equivalent with previously generated expressions. Pruning has three modes:
static, dynamic, and modulo pruning.
Expression generation algorithm. The generation algorithm maintains a list
of expressions, exprs[arity], indexed by the arity. The list maintains a total order
among expressions of the same arity; we use ind(e) to denote the index of the
expression e in the list, and some pruning rules use this index.

The lists are instantiated with the terminal expressions (i.e., sets, relations,
and variables declared in the model), based on their arity. The size of these ex-
pressions is 1. Then, until a limit is reached, the algorithm iteratively increases
size and combines every operator and every combination of expressions of ap-
propriate smaller sizes to generate expressions of the larger size. Each generated
expression is then added to exprs if it is (1) within the limits given for the gener-
ation, (2) well typed in Alloy, and (3) not pruned by the current pruning mode.
Note that, by construction, expressions in exprs are syntactically different. The
rest of this section explains in detail well typedness and the three pruning modes.
Well typedness. RexGen tracks type information for generated expressions,
typically using the default Alloy type system, which includes subset/subtyping
and union types [16]. However, for some expressions, RexGen tracks a more
precise type than the default type system. The main reason is the semantics of
reflexive transitive closure (∗). In Alloy, reflexive transitive closure is a superset of
the identity relation for the union of all sets (univ) and thus has type univ×univ.
For example, if a model has two sets, Node and V alue, and a relation, edges,
of type Node × Node, then edges∗ is not of type Node × Node but univ ×
univ, where univ = Node ∪ V alue. However, this type is too broad; it allows

VI

for arbitrary applications of other operators and makes expression generation
intractable, producing expressions that are not intended in practical use.

For example, consider the expression a∗ + b, where a has type A × A. In-
tuitively, we want to allow only expressions of type A × A for b; however, we
cannot track this precisely if we allow a∗ to have type univ×univ. On the other
hand, we cannot consider a∗ to have type A×A because that would make a∗ a
subset of A×A, causing the static pruning to incorrectly prune expressions like
a∗ +A×A. Therefore, RexGen conceptually uses a special type system to type
intermediate generated expressions, but uses Alloy type for static pruning.
Static pruning. Static pruning removes expressions that are known to be se-
mantically equivalent with other generated expressions. This pruning considers
equivalence with respect to all possible valuations not only given test valuations.
To prune equivalent expressions, we derive a comprehensive suite of equivalence
rules specific to relational algebra. Other generation systems [36] use similar
pruning rules for other domains, but our work is the first to provide rules spe-
cific to relational algebra.

Table 1 presents the static pruning rules of RexGen. The first column gives
the pattern of equivalent expressions that the rule intends to eliminate. RexGen
prunes the expression whose syntactic shape is the left-hand side of the equiva-
lence. The second column specifies the condition for pruning. Note that almost
all rules use only syntactic information or type (and arity) information for the
involved expressions, which makes the rules easily checkable. An exception are
a few rules that check the subset property between two sets/relations; because
subset is a semantic property and not easily checkable, we approximate it conser-
vatively, as shown in Table 2. Another exception is the rule for commutativity.
To avoid generating both a op b and b op a, where op is a commutative operation,
we use the total order defined for each arity by exprs: we prune the expression
with ind(a) > ind(b), where ind(e) is the index of e in the list exprs.
Dynamic pruning. Dynamic pruning removes equivalent expressions by using
the Alloy analyzer to check whether an expression is equivalent to another one
already generated. Unlike static pruning, dynamic pruning considers (1) all sig-
nature/field constraints (e.g., that a relation must be a function) and (2) bound
variables in the scope of the generated expression. To our knowledge, no pre-
vious work handles variables locally bound by a quantifier in the scope of the
generated expression.

For a new expression, E, and a previously generated expression, E′, RexGen
creates a new Alloy model that includes all signature/field declarations from the
RexGen input plus check { all v1: D1 |...| all vn: Dn | E = E′ }, where
v1 . . . vn are variables used in the two expressions (except for sigs/fields from
the model) and D1 . . . Dn are their corresponding domains. For example, if E
is n.^edges and E′ is Node.*edges, then the equivalence checking command is
check { all n: Node | n.^edges = Node.*edges }. This check is issued for every
previously generated expression in exprs until either the new expression is found
equivalent to some previously generated one, or the new expression is found not
equivalent to any previously generated one and is thus added to exprs. Dynamic

VII

Table 1. Static pruning rules

Equivalence (lhs = rhs) Condition if needed; otherwise true
a op (b op c) = (a op b) op c op associative
a op b = b op a op commutative and ind(a) > ind(b)

a ∪ b = b and b ∪ a = b JaK ⊆ JbK
– Similar for ∩ and ⊇

a \ b = ∅ JaK ⊆ JbK
a ∪ b = c ∪ b ∃c.a ∼= c ∪ b or a ∼= b ∪ c or a ∼= c \ b
a ∪ b = b ∃c.a ∼= c ∩ b or a ∼= b ∩ c or a ∼= b \ c
– Also symmetrically – where ∼= is syntactic pattern matching

(a op1 b) op2 (a op1 c) = a op1 (b op2 c) op1 ∈ {./,×,∩}, op2 ∈ {∪,∩}
– Similar for (a op1 b) op2 (c op1 b)

a−1 op b−1 = (a op b)−1 op ∈ {∪,∩, \, ./}⋃
ei =

⋃
i6=j ei, ej ∼= ek for some j 6= k

– Similar for
⋂

a \ (b ∪ c) = (a \ b) \ c
a \ (a ∩ b) = a \ b
– Similar for a \ (b ∩ a)

a \ (a \ b) = a ∩ b
a \ (b \ a) = a
(a ∪ b) \ a = b \ a
(a op b) \ (a op c) = a op (b \ c) op ∈ {×,∩}
(a ∩ b) \ c = a ∩ (b \ c)
a ./ (a× b) = b card(a) ≥ 1
– Similar for (b× a) ./ a

a ./ b−1 = b ./ a arity(a) = 1
A ./ b∗ = A b : A×A
– Similar for b∗ ./ A – where b : A×A means that b has type A×A

A ./ b+ = A ./ b b : A×A
b+ ./ A = b ./ A b : A×A
b ./ b∗ = b+

– Similar for b∗ ./ b

a∗+ = a∗

– Similar for a+∗

a−1−1
= a

a∗−1 = a−1∗

a+−1
= a−1+

(a op b−1)
−1

= a−1 op b op ∈ {∪,∩, \, ./}
(a× b)+ = a× b

a ./ (b× c) = (a ./ b)× c arity(a) + arity(b) > 2
– Similar for (a× b) ./ c

b−1 ./ a = a ./ b arity(a) = 1
a+ ./ a = a ./ a+

a∗ ./ a∗ = a∗

a∗ ./ a+ = a+

– Similar for a+ ./ a∗

a+ ./ a+ = a ./ a+

(a \ b) ./ (b× c) = ∅
– Also symmetrically

a ./ ((b \ a)× c) = ∅
– Also symmetrically

A ./ (A× b) = b arity(A) = 1
– Similar for (b×A) ./ A b : B1 × ...×A× ...×Bn for some Bi = A

VIII

Table 2. Syntactic approximation for a ⊆ b. ∼= means syntactic match.

1. b ∼= A, a : A 5. a ∼= b \ c
2. a ∼= b 6. a ∼= c+, b ∼= c∗

3. b ∼= a ∪ c or b ∼= c ∪ a 7. a ∼= c ./ c .// c, b ∼= c+ or b ∼= c∗

4. a ∼= b ∩ c or a ∼= c ∩ b 8. a ∼= c× c, b ∼= d∗, a has cardinality 1, c has arity 1

pruning can be applied to all expressions for every arity or only expressions of
the target arity.
Modulo pruning. Modulo pruning [54] removes equivalent expressions based
on their values for the user-given valuations of the input test suite. Specifically,
modulo pruning builds equivalence classes of expressions by grouping together
all expressions that evaluate to the same value across all test valuations, and
keeping only one expression per equivalence class.

Modulo pruning determines an expression’s equivalence class without con-
straint solving, by utilizing the Evaluator feature of the Alloy Analyzer to per-
form constraint checking. The Evaluator takes as input an Alloy instance and an
Alloy expression, and returns the concrete value of the expression for the given
instance. For a new expression E, modulo pruning evaluates E for every test
valuation in the suite, building a map of E’s concrete values. If E contains any
free variable(s), modulo pruning evaluates E for each element in the variable’s
domain, or more generally, for the cross product of domain elements if E contains
multiple variables. If E’s concrete-value map matches a previous expression, then
E is pruned out; otherwise, E is kept. Modulo pruning only determines equiva-
lence based on the user-given test suite, not guaranteeing equivalence across all
instances in scope as dynamic pruning does.

4 Experimental evaluation
We next present our experimental evaluation of RexGen. We use 12 diverse
Alloy models for evaluation (Section 4.1). We evaluate the number of expressions
RexGen generates and the time it takes for each model under different settings
(Section 4.2).

4.1 Evaluation models
We evaluate RexGen using 12 models comprised of a wide variety of example,
educational, and “real-world” specifications. Address book (addr), Dijkstra mu-
tual exclusion algorithm (dijkstra), farmer crossing-river puzzle (farmer), Hal-
mos handshake problem (hshake), and genealogy (gene) are from the Alloy’s
distribution examples. Bad employee (bempl), colored tree (ctree), directed tree
(dtree), and grade book (grade) are Alloy translations of access-control specifica-
tions used to evaluate existing scenario-finding work [32,43]. Binary tree (btree)
constrains the graph to be a binary tree. Propositional resolution (resfm) is from
Torlak et al. [52]. Singly linked list (sll) models acyclic lists.

Table 3 shows the basic information of these models. Model is the name.
#AST is the number of AST nodes in each model. #Sig is the number of
signatures declared in each model. #Rel is the number of relations declared in

IX

Table 3. Basic information of models used to evaluate RexGen

Model #AST #Sig #Rel #Var #PrimVar #Test
addr 114 4 2 8 45 14

bempl 46 6 3 11 38 14
btree 53 2 2 6 24 14
ctree 71 4 2 8 18 14

dijkstra 385 3 1 10 57 14
dtree 49 1 1 2 12 14

farmer 169 6 3 14 24 14
gene 139 5 2 8 20 14

grade 64 5 4 11 48 14
hshake 127 3 2 6 19 14
resfm 285 8 7 19 101 14

sll 33 2 2 5 15 14
each model. For each model, we find all identifiers in scope, including signatures,
relations, and bound variables, for the largest expression (w.r.t. our measure of
size). #Var is the number of all identifiers in scope to generate expressions. In
our experiment, we first find the expression with the largest size in each model
and then use all sigs, relations, and variables in the scope of that expression
to generate more expressions. #PrimVar is the number of primary variables
when we run an empty command (run {}) without test-specific constraints; it
represents the basic complexity of signature declarations and constraints that
always hold in each model. #Test is the number of tests; we use the same
number of tests for each model so that the results do not depend on the number
of tests. We chose the number of tests based on the sll model, where we create
tests such that modulo pruning generates the same number of expressions of
size 4 as dynamic pruning for this model. We iteratively add tests until modulo
pruning and dynamic pruning create the same set of expressions. In the end, we
obtain 14 tests for sll and use the same number of tests for other models.

Our experiments are performed on a MacBook Pro running OS X El Capitan
with 2.5 GHz Intel Core i7-4870HQ and 16GB of RAM.

4.2 RexGen results
Table 4 shows the performance of RexGen across different expression pruning
environments: No Pr. uses no pruning rules, AC Pr. uses just associativity and
commutativity pruning rules, Static Pr. uses all static pruning rules, Dynamic
Pr. uses dynamic pruning, and Modulo Pr. uses modulo-instance pruning. Note
that both dynamic pruning and modulo-instance pruning are applied on expres-
sions after they are pruned by static pruning. Column Problem shows the Alloy
model and the corresponding size used for generation. For each pruning envi-
ronment, #expr shows the number of expressions generated and time shows the
time duration in milliseconds to generate all expressions, with a time-out of one
hour. The number of generated expressions shown in the table is for expressions
of all arities up to 3.

Expression generation using No Pr., AC Pr., and Static Pr. is fast, taking at
most 7.9 seconds (farmer and size 7 using No Pr.), but frequently finishing in

X

Table 4. RexGen performance. Times are in ms. ⊥ indicates a timeout (>1 hour).

Problem No Pr. AC Pr. Static Pr. Dynamic Pr. Modulo Pr.
#expr time #expr time #expr time #expr time #expr time

ad
d
r

4 231 2 199 4 129 25 118 1259 108 279
5 3984 18 2374 19 1335 56 823 15869 600 1396
6 7913 27 5563 29 2034 64 1193 19359 900 1879
7 139971 204 65346 131 24839 189 7116 635296 3546 7902

b
em

p
l 4 427 5 377 6 261 29 246 1939 237 343

5 7027 27 4369 25 2463 64 1708 25098 1424 2999
6 15396 50 11144 41 4096 80 2588 43840 2198 3814
7 254843 363 128706 274 47747 296 15363 1555983 10309 29174

b
tr

ee

4 415 4 355 6 223 29 215 6247 196 484
5 3264 18 2391 18 1032 51 915 62153 740 1920
6 17956 42 12919 41 4553 93 3424 999892 2227 6221
7 139882 204 88578 148 25031 195 ⊥ ⊥ 8505 26140

ct
re

e

4 369 4 327 6 202 27 185 2773 144 754
5 4625 21 3031 21 1446 59 996 28674 737 5282
6 14315 37 10707 38 3473 79 2143 192314 1169 9584
7 168181 221 93805 175 27660 213 ⊥ ⊥ 5530 60968

d
ij
ks

tr
a 4 287 2 251 4 140 26 135 2235 133 264

5 4661 19 2763 20 1397 53 1097 20544 1069 2185
6 9939 30 7159 39 2175 60 1637 36446 1552 3083
7 138703 213 65991 139 17976 180 7007 670275 5704 17820

d
tr

ee

4 111 1 95 3 40 21 38 680 37 144
5 581 4 438 6 116 30 105 2809 102 401
6 2957 15 2130 14 376 39 250 11247 234 841
7 17109 40 11191 34 1464 61 771 82268 691 1686

fa
rm

er

4 1077 8 939 8 654 39 619 28327 454 695
5 41007 73 24322 53 16969 141 ⊥ ⊥ 5116 8992
6 96607 140 68468 124 33097 215 ⊥ ⊥ 9247 22555
7 3666499 7942 1661501 4581 923952 3985 ⊥ ⊥ 80553 2156722

ge
n
e

4 641 5 551 6 376 32 348 10853 242 916
5 12055 31 7653 29 4597 83 3228 632913 1675 8614
6 42897 76 30703 64 14621 145 ⊥ ⊥ 4324 20490
7 763031 1998 393015 1150 177920 665 ⊥ ⊥ 26222 326804

gr
ad

e

4 421 4 373 6 267 30 244 2570 229 447
5 6533 25 4168 25 2342 65 1496 28995 1105 2450
6 14930 45 11033 42 4141 89 2321 52542 1740 3446
7 234482 373 122012 258 45312 311 13166 1858565 7300 19416

h
sh

ak
e 4 471 3 403 5 260 31 244 8543 173 1131

5 5625 20 3805 22 1936 61 1505 164478 1020 8180
6 25523 51 18319 46 7640 112 5378 2570827 3031 21775
7 286661 355 163874 247 58505 318 ⊥ ⊥ 16149 222019

re
sf

m

4 1030 8 940 12 652 38 625 10051 510 767
5 18692 50 12250 42 7337 99 5705 336197 3626 5634
6 47128 111 35984 94 13384 146 9406 938031 5026 9076
7 822434 2107 449935 653 175337 845 ⊥ ⊥ 24997 181425

sl
l

4 209 2 183 4 104 25 98 1468 98 283
5 1549 10 1100 13 397 40 331 6868 330 987
6 6267 25 4694 25 1203 58 808 37988 803 2593
7 45527 86 28622 64 5463 95 2712 429769 2671 9391

XI

under a second. Accordingly, both AC Pr. and Static Pr. have negligible over-
head. However, the number of expressions generated can vary greatly, as seen
in Table 4. No Pr. generates all possible expressions and provides a means of
measuring the effectiveness of different pruning environments. Compared to No
Pr., AC Pr. reduces the number of expressions generated by 8.7–54.7%, while
Static Pr. reduces the number of expressions generated by 36.6–91.4%. Com-
pared directly, Static Pr. generates 28.4–86.9% fewer expressions than AC Pr..
In other words, Static Pr.’s additional pruning rules highlight that associativ-
ity and commutativity are not strong enough to prune relational expressions on
their own. Moreover, Table 4 shows that the pruning rules for AC Pr. and Static
Pr. reduce the space of possible expressions by a large enough degree that both
techniques often finish faster than No Pr., despite the time they spend on ap-
plying equivalence rules to check expressions. Although Static Pr. has 40 more
rules than AC Pr., the difference in runtime between AC Pr. and Static Pr. is
often less than a second. Therefore, Static Pr.’s rules are inexpensive to run but
effective at reducing the number of generated expressions.

We can analyze expressions to prune out more equivalences. Dynamic Pr. fur-
ther prunes expressions generated by Static Pr.; Dynamic Pr. is motivated by
using Alloy to find all equivalences (within a given scope), thus capturing equiv-
alences which cannot be captured by generic static pruning rules. As expected,
Dynamic Pr. reduces the number of expressions from Static Pr., by 3.6–71.4%.
Dynamic Pr. gives the minimum number of non-equivalent expressions for each
model, showing the lower bound of what Static Pr. could achieve.

Modulo Pr. also filters expressions generated by Static Pr.; specifically, Mod-
ulo Pr. reduces the expressions from Static Pr. by 5.0–91.3%. Dynamic Pr. can
be viewed as Modulo Pr. if the input test suite covered all instances in scope.
However, since we use only 14 tests per model for Modulo Pr., Modulo Pr. may
even prune expressions that are semantically non-equivalent up to a given scope
but equivalent over all 14 tests. For example, Modulo Pr. prunes 10 more size 4
expressions and 223 more size 5 expressions for addr compared to Dynamic Pr..
Therefore, as expected, Modulo Pr. can reduce the number of generated expres-
sions compared to Dynamic Pr., by as much as 50.2% (addr), or Modulo Pr. can
generate the same number of expressions (sll and size 4) but 5.2× faster. The
trade-off is that, while Dynamic Pr. is guaranteed to not prune expressions that
are semantically non-equivalent within a given scope, it is slower than Modulo
Pr.; Dynamic Pr. times out on 7 different problems, while Modulo Pr. frequently
finishes in under a minute, with the longest runtime being 2156.7 seconds. While
Modulo Pr. provides a practical, lighter-weight alternative to Dynamic Pr., Mod-
ulo Pr. still has a high overhead over Static Pr.. For instance, for farmer and
size 7, Static Pr. can generate expressions in 4.0 seconds, while Modulo Pr. needs
2156.7 seconds to finish.

In our experiment, applying Dynamic Pr. or Modulo Pr. on expressions gen-
erated with No Pr. or AC Pr. takes significantly longer. Static Pr.’s ability
to significantly reduce the number of generated expressions, with a negligible
overhead, makes Static Pr. the recommended approach for relational expression

XII

generation (even when considering more advanced pruning techniques like Dy-
namic Pr. or Modulo Pr.). To check that our static pruning rules are correct, we
ran dynamic pruning on expressions generated using AC Pr. and Static Pr.: we
found that the numbers of non-equivalent expressions generated after dynamic
pruning for both AC Pr. and Static Pr. are exactly the same, which indicates
that Static Pr. does not incorrectly prune any non-equivalent expression.

5 Related work

Enumeration algorithms include bottom-up enumeration [3,54], used by Rex-
Gen, and top-down enumeration [6]. EuSolver [3] has been one of the most promi-
nent solvers in Syntax-Guided Synthesis (SyGuS) competitions. FlashMeta [38]
uses version-space algebra to concisely represent a large number of programs.
Neither EuSolver nor FlashMeta focus on relational expressions, which can gen-
erate a large number of equivalent expressions. Our work proposes a number of
pruning rules that substantially reduce the number of equivalent expressions,
thus providing basis for practical synthesis with relational expressions.
Search space pruning of expression generation is important because search
spaces for any realistic programming language quickly become intractable. Prun-
ing techniques include indistinguishability of expressions modulo a set of in-
puts [3,54] and partial evaluation of incomplete expressions [6]. Knowledge about
operator properties has also been used to explore equivalent expressions, either
after expression generation [36] or by applying an automated transformation
to the grammar which represents candidate programs [23]. However, most tech-
niques have only been explored in the domains of integers, booleans, and abstract
data types, all of which have less comprehensive sets of equivalence rules than
our work with the domains of sets and relations.
Applications of expression generation are quite common. For example, pro-
gram synthesis has attracted attention for a few decades [28], and researchers
have applied it in a variety of domains [5,6,8,12,22,27]. Program sketching [46] is
another example, which demonstrated the opportunities to apply modern solver
technology to the synthesis problem, and introduced the counter-example guided
inductive synthesis paradigm to program synthesis. Sketch requires the user to
provide generators of expressions for expression holes [2, 14, 19, 45]. While most
work on sketching is in the context of synthesis, SketchRep [13] applies sketching
to the problem of program repair [10, 20, 24, 40, 57], i.e., correcting faulty lines
of code. Synthesis from examples, the inspiration behind test valuations, has
also been extensively studied [1,35]. Notably, synthesis from examples has been
successfully employed in commercial products [11]. EdSketch [14] introduced an
optimized backtracking search for completing Java sketches using test execu-
tions for pruning. SketchFix [15] used EdSketch as the backend synthesis engine
for program repair. EdSynth [58] builds on EdSketch and synthesizes method
sequences for given sketches that may contain conditional branches. SyPet [5]
introduced a novel use of Petri nets in synthesizing straightline sequences of
method invocations for complex APIs using tests. The key enabler of all of the

XIII

above applications is efficient expression generation; ours is the first work that
addresses generation for relational algebra.
Alloy is a well studied lightweight modeling approach that has been applied in
various domains, including software design [29, 30], networking [41], and secu-
rity [26,34]. This paper is the first to study expression generation for Alloy and
more generally for relational algebra. Our work leverages the AUnit [48, 51] ap-
proach for writing tests for Alloy models. Various approaches assist Alloy users
to build their models correctly, e.g., by improving scenario exploration [32, 33],
supporting state modeling [7,17,18,31,49], highlighting UNSAT cores [44,52,53],
and creating tests [50,55]. RexGen provides a novel basis of a synthesis or sketch-
ing engine for Alloy in particular and relational logic in general [47,56].

6 Conclusions
We introduced RexGen, the first generator for non-equivalent relational expres-
sions. We presented a set of equivalence rules for relational expressions, used
them for pruning in our generator, embodied the generator based on the Alloy
tool-set, and presented an experimental evaluation of the effectiveness of our
non-equivalent generation for a variety of problems with relational constraints.
RexGen provides the key step to address the broader problems of synthesis and
repair of declarative models in Alloy. Our companion paper on ASketch [56]
shows how to use the generated expressions to synthesize Alloy models from
sketches. We hope our work inspires the development of a broader tool-set to
support software models and eventually leads to more reliable software systems.

Acknowledgements
We thank Viktor Kuncak for his comments on this work. Manos Koukoutos is
supported in part by the European Research Council (ERC) project “Implicit
Programming”. This material is based upon work partially supported by the US
National Science Foundation under Grant Nos. CCF-1409423, CCF-1421503,
CNS-1646305, CCF-1718903, and CNS-1740916.

References

1. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV (2013)

2. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD (2013)

3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: TACAS (2017)

4. Dennis, G., Chang, F.S., Jackson, D.: Modular verification of code with SAT. In:
ISSTA (2006)

5. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis
for complex APIs. In: POPL (2017)

6. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: PLDI (2015)

XIV

7. Frias, M.F., Galeotti, J.P., Pombo, C.G.L., Aguirre, N.M.: DynAlloy: Upgrading
Alloy with actions. In: ICSE (2005)

8. Galenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K.: CodeHint: Dynamic
and interactive synthesis of code snippets. In: ICSE (2014)

9. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: efficient SAT-based
bounded verification using symmetry breaking and tight bounds. TSE (2013)

10. Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program repair using
SAT. In: TACAS (2011)

11. Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B.: Inductive programming meets the real world. CACM (2015)

12. Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code snippets. In: CAV
(2011)

13. Hua, J., Khurshid, S.: A sketching-based approach for debugging using test cases.
In: ATVA (2016)

14. Hua, J., Khurshid, S.: EdSketch: Execution-driven sketching for Java. In: SPIN
(2017)

15. Hua, J., Zhang, M., Wang, K., Khurshid, S.: Towards practical program repair
with on-demand candidate generation. In: ICSE (2018)

16. Jackson, D.: Alloy: A lightweight object modelling notation. TSE (2002)
17. Jackson, D., Fekete, A.: Lightweight analysis of object interactions. In: TACS

(2001)
18. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA (2000)
19. Jeon, J., Qiu, X., Foster, J.S., Solar-Lezama, A.: JSketch: Sketching for Java. In:

FSE (2015)
20. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: CAV

(2005)
21. Kang, E., Milicevic, A., Jackson, D.: Multi-representational security analysis. In:

FSE (2016)
22. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.

In: OOPSLA (2013)
23. Koukoutos, M., Kneuss, E., Kuncak, V.: An update on deductive synthesis and

repair in the leon tool. In: SYNT Workshop (2016)
24. Long, F., Rinard, M.: Staged program repair with condition synthesis. In: FSE

(2015)
25. Maier, D.: Theory of Relational Databases. Computer Science Pr (1983)
26. Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting Network Policy

Conflicts Using Alloy (2014)
27. Mandelin, D., Xu, L., Bodík, R., Kimelman, D.: Jungloid mining: Helping to nav-

igate the API jungle. PLDI (2005)
28. Manna, Z., Waldinger, R.: Toward automatic program synthesis. CACM 14(3)

(1971)
29. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using Alloy

revisited. In: MODELS (2011)
30. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic differencing for class dia-

grams. In: ECOOP (2011)
31. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of

Java programs. In: ASE (2001)
32. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of "why"

and "why not": Enriching scenario exploration with provenance. In: FSE (2017)
33. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:

Principled scenario exploration through minimality. In: ICSE (2013)

XV

34. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: LISA (2010)

35. Pei, Y., Furia, C.A., Nordio, M., Meyer, B.: Automated program repair in an
integrated development environment. In: ICSE (2015)

36. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. PLDI
(2014)

37. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: PLDI (2016)

38. Polozov, O., Gulwani, S.: FlashMeta: A framework for inductive program synthesis.
In: OOPSLA (2015)

39. Richters, M., Gogolla, M.: Ocl: Syntax, semantics, and tools. In: Object Modeling
with the OCL, The Rationale Behind the Object Constraint Language (2002)

40. Rothenberg, B., Grumberg, O.: Sound and complete mutation-based program re-
pair. In: FM (2016)

41. Ruchansky, N., Proserpio, D.: A (not) NICE way to verify the Openflow switch
specification: Formal modelling of the Openflow switch using Alloy. SIGCOMM
(2013)

42. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition) (2004)

43. Saghafi, S., Danas, R., Dougherty, D.J.: Exploring Theories with a Model-Finding
Assistant (2015)

44. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging
overconstrained declarative models using unsatisfiable cores. In: ASE (2003)

45. Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations from sto-
ryboards. In: FSE (2011)

46. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: ASPLOS (2006)

47. Sullivan, A.: Automated Testing and Sketching of Alloy Models. Ph.D. thesis,
University of Texas at Austin (2017)

48. Sullivan, A., Wang, K., Khurshid, S.: AUnit: A test automation tool for Alloy. In:
ICST (2018)

49. Sullivan, A., Wang, K., Khurshid, S., Marinov, D.: Evaluating state modeling tech-
niques in alloy. In: SQAMIA (2017)

50. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation and
mutation testing for Alloy. In: ICST (2017)

51. Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test automation
framework for Alloy. In: SPIN (2014)

52. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: FM (2008)

53. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS (2007)
54. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,

Alur, R.: TRANSIT: Specifying protocols with concolic snippets. In: PLDI (2013)
55. Wang, K., Sullivan, A., Khurshid, S.: MuAlloy: A Mutation Testing Framework

for Alloy. In: ICSE (2018)
56. Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: Solver-based sketching Alloy

models using test valuations. In: ABZ (2018)
57. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches

using genetic programming. In: ICSE (2009)
58. Yang, Z., Hua, J., Wang, K., Khurshid, S.: Test execution driven synthesis of API

sequences with conditionals and loops. In: ICST (2018)

	Systematic Generation of Non-Equivalent Expressions for Relational Algebra

