
@tComment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies

Shin Hwei Tan
University of Illinois

Urbana, IL 61801, USA
stan6@illinois.edu

Darko Marinov
University of Illinois

Urbana, IL 61801, USA
marinov@illinois.edu

Lin Tan
University of Waterloo

Waterloo, ON N2L 3G1, Canada
lintan@uwaterloo.ca

Gary T. Leavens
University of Central Florida

Orlando, FL 32816, USA
leavens@eecs.ucf.edu

Abstract—Code comments are important artifacts in soft-
ware. Javadoc comments are widely used in Java for API
specifications. API developers write Javadoc comments, and
API users read these comments to understand the API, e.g.,
reading a Javadoc comment for a method instead of reading the
method body. An inconsistency between the Javadoc comment
and body for a method indicates either a fault in the body or,
effectively, a fault in the comment that can mislead the method
callers to introduce faults in their code.

We present a novel approach, called @TCOMMENT, for
testing Javadoc comments, specifically method properties about
null values and related exceptions. Our approach consists of
two components. The first component takes as input source files
for a Java project and automatically analyzes the English text
in Javadoc comments to infer a set of likely properties for a
method in the files. The second component generates random
tests for these methods, checks the inferred properties, and
reports inconsistencies. We evaluated @TCOMMENT on seven
open-source projects and found 29 inconsistencies between
Javadoc comments and method bodies. We reported 16 of these
inconsistencies, and 5 have already been confirmed and fixed
by the developers.

Keywords-comment analysis; random testing; test generation

I. INTRODUCTION

Source code comments are important artifacts in software
and have been around as long as code has been around.
While comments are not executed, they aid in many tasks
such as code comprehension, reuse, or maintenance. Com-
ments can be broadly categorized into those that appear in
the body of a method to describe its inner working and
those that appear in the header of a method to describe its
specification [27]. Java has standardized the writing of API
specifications as Javadoc comments with tags such as @param
to describe method parameters and @throws to describe what
exceptions the method could throw. API developers write
Javadoc comments to describe their classes and methods.
API users often read these comments to understand the code,
e.g., reading a Javadoc comment for a method instead of
reading the body of the method.

A comment-code inconsistency between the Javadoc com-
ment for a method and the code of that method’s body is
highly indicative of a fault. First, it can be the case that the
comment is correct (in that it properly specifies what the
code should do) but the method body has a fault (in that it

improperly implements the specification). Second, it can be
the case that the method body is correct (in that it properly
implements the intended specification) but the comment is
incorrect (in that it does not properly describe the intended
specification). While the second case does not by itself have
an executable fault, it can mislead the users of the method
to introduce faults in their code [38].

Because comment-code inconsistencies are indicative of
faults, it is important to check for such inconsistencies.
However, automating such checking is challenging because
it requires automated understanding of the natural-language
text in the comments. While natural-language processing
(NLP) techniques have made much progress in the recent
decades [28], they are still challenged by ambiguities in-
herent in understanding general text. For example, consider
the Javadoc snippet “@param chrono Chronology to use,

null means default”, which describes a method parameter
chrono that is an object of type Chronology. The part “null
means default” is hard to understand; it could specify that
null is treated in some “default” manner (e.g., throwing a
NullPointerException) or that null is used to represent
some default value of Chronology.

The only currently viable solution for automated un-
derstanding of the natural-language text in the comments
is to build domain-specific analyses. Tan et al. [38], [39]
pioneered automated checking of comment-code inconsis-
tencies based on NLP analysis. Their iComment [38] and
aComment [39] projects focus on systems code written in
C/C++ and analyze comments in the domains of locking pro-
tocols (e.g., “the caller should grab the lock”), func-
tion calls (e.g., “function f must be called only from

function g”), and interrupts (e.g., “this function must

be called with interrupts disabled”). Their tools ex-
tract rules from such comments and use static analysis to
check source code against these rules to detect comment-
code inconsistencies.

We present a novel approach, called @TCOMMENT, for
testing comment-code inconsistencies in Javadoc comments
and Java methods. We make the following contributions.

New Domain: We focus @TCOMMENT on a new domain
in comment analysis, specifically method properties for null
values and related exceptions in Java libraries/frameworks.

This domain was not studied in the previous work on de-
tecting comment-code inconsistencies, but our inspection of
several Java projects showed this domain to be important and
widely represented in well-documented Java code. Detecting
comment-code inconsistencies in this domain has unique
challenges that require new solutions, as discussed below.

Dynamic Analysis: @TCOMMENT uses a dynamic analy-
sis to check comment-code inconsistencies, unlike previous
work that used static analysis. Specifically, our @TCOM-
MENT implementation builds on the Randoop tool [32] for
random test generation of Java code. Randoop randomly
explores method sequences of the code under test, checks
if execution of these sequences violate a set of default
contracts such as throwing an uncaught exception [32],
and generates as tests those sequences that violate some
constraint. We modify Randoop to check @TCOMMENT-
inferred properties during random test generation and to
report violations which correspond to comment-code incon-
sistencies. We refer to our modified Randoop as @Randoop.

We chose dynamic analysis to address the following chal-
lenges imposed by the new domain. First, even widely used
tools for static checking of Java code, such as FindBugs [21],
can have a large number of false alarms when checking
properties related to null values and exceptions if these
properties are available for only some parts of the code,
which is the case when inferring properties from Javadoc
comments that are not available for all methods. Second, we
focus on Java libraries and frameworks, which have few calls
to their own methods from their own code bases. Therefore,
an analysis cannot focus on callers to these methods to see
what parameters they pass in. Instead, a dynamic approach
such as Randoop, which generates call sequences to test
library methods, is particularly beneficial.

Improved Testing: @Randoop allows us not only to
detect comment-code inconsistencies but also to improve
test generation in Randoop. For detecting inconsistencies,
@Randoop generates tests that Randoop would not neces-
sarily generate otherwise because these tests need not violate
the default contracts that Randoop checks. For improving
test generation, @Randoop identifies some tests as likely
false alarms in Randoop so that developers can focus on the
true faults. A false alarm is a test that Randoop generates
but that does not find fault in the code under test, e.g., a test
that causes a method to throw exception, but the exception is
expected according to the Javadoc comment for the method.

Evaluation: We applied @TCOMMENT on seven open-
source Java projects that have well-developed, well-
documented, and well-tested code. We found 29 methods
with inconsistencies between Javadoc comments and method
bodies in these projects. We reported some of these in-
consistencies; 5 of them have been already confirmed and
fixed by the developers (one by fixing the code and four by
fixing the comment), while the rest await confirmation by
the developers. @TCOMMENT automatically inferred 2479

/ / I n a u t o m a t i c a l l y g e n e r a t e d t e s t c l a s s :
void t e s t 1 () throws Throwable {

org . j o d a . t ime . M u t a b l e P e r i o d va r2 =
new org . j o d a . t ime . M u t a b l e P e r i o d (1L , 0L) ;

va r2 . s e t S e c o n d s (0) ;
va r2 . s e t V a l u e (0 , 0) ;
o rg . j o d a . t ime . Chronology va r9 = n u l l ;
t r y {

va r2 . s e t P e r i o d (0L , va r9) ;
f a i l (” Expec ted some e x c e p t i o n when chrono == n u l l ”) ;

} catch (E x c e p t i o n e x p e c t e d) {}
}

/ / I n a c l a s s under t e s t :
/∗∗ . . .
∗ @param d u r a t i o n t h e d u r a t i o n , i n m i l l i s e c o n d s
∗ @param chrono t h e c h r o n o l o g y t o use , n o t n u l l
∗ @throws A r i t h m e t i c E x c e p t i o n i f t h e s e t e x c e e d s

t h e c a p a c i t y o f t h e p e r i o d
∗ /

void s e t P e r i o d (long d u r a t i o n , Chronology chrono)

Figure 1. Example test generated by @Randoop. Method under test and
its comment.

properties regarding null values and related exceptions from
Javadoc comments with a high accuracy of 97–100%. The
high accuracy was achieved without using NLP techniques,
largely due to the Javadoc null-related comments being well
structured with few paraphrases and variants.

II. EXAMPLES

We illustrate how @TCOMMENT can be used by showing
three examples of comment-code inconsistencies that we
found with @TCOMMENT in two projects, and one example
of a Randoop false alarm identified by @TCOMMENT. The
first three examples show progressively more complex cases:
(1) inferring that some exception should be thrown when
a method parameter is null; (2) inferring what type of
exception should be thrown when one method parameter
is null; and (3) inferring what type of exception should be
thrown when two method parameters are null.

Consider first the JodaTime project [9], a widely used
Java library for representing dates and times. JodaTime pro-
vides several classes that support multiple calendar systems.
JodaTime code is fairly well commented with Javadoc. We
ran @TCOMMENT to infer properties for the methods in
JodaTime and to check these properties with @Randoop.
For each test that @Randoop generates, it marks whether the
test, when executed, violated some @TCOMMENT-inferred
property or a default Randoop contract.

Figure 1 shows an example test that violates a @TCOM-
MENT-inferred property. This test creates a MutablePeriod

object var2 and invokes several methods on it. The execu-
tions of setSeconds and setValue methods finish normally,
but for setPeriod, @TCOMMENT reports that there is a
likely comment-code inconsistency: the parameter var9 is
null, but the method execution throws no exception, which
disagrees with the corresponding comment indicating that
some exception should be thrown. Note that this test passes
if some exception is thrown and fails otherwise.

Figure 1 also shows the relevant parts of the setPeriod

method. It has two parameters, and the Javadoc comment
provides a description for each of them. A typical Javadoc
comment has the main, free-flow text (for brevity omitted
in our examples) and specific tags/clauses such as @param,
@throws, @return, etc. We call the entire block of text before
a method one comment with several comment tags. Figure 1
shows one Javadoc comment with two @param tags and one
@throws tag.

The key part here is “not null” for the chrono parameter.
@TCOMMENT infers the property that whenever chrono is
null, the method should throw some exception (although
it does not know which exception because the tag for
ArithmeticException is not related to null). @Randoop
finds that the shown test violates this property. Note that
it may not be a comment-code inconsistency; the inference
could have been wrong, e.g., “not null” could represent
the method precondition—such that if chrono is null, the
method could do anything and is not required to throw an
exception—or “not null” could be a part of a larger phrase,
say, “not a problem to be null”—such that the method
must not throw an exception.

In this case, our inspection showed that @TCOMMENT
performed a correct inference and detected a real comment-
code inconsistency. In fact, @TCOMMENT also found a
similar inconsistency for another overloaded setPeriod

method. We reported both inconsistencies in the JodaTime

bug database [10], and JodaTime developers fixed them by
changing comments. It is important to note that Randoop
would have not generated this example test because it does
not throw an exception. More precisely, Randoop internally
produces the method sequence but would not output it to the
user as a possibly fault-revealing test. Indeed, @Randoop
generates the test precisely because it does not throw any
exception when some exception is expected.

Consider next the Apache Commons Collections project
(called just Collections for short) [1], a popular library
for representing collections of objects. Figure 2 shows two
example tests, each of which violates a @TCOMMENT-
inferred property, and the corresponding method declarations
and their comments.

For the synchronizedMap method, @TCOMMENT
correctly infers that the method should throw
IllegalArgumentException when the parameter map

is null; while this is explicit in the @throws tag, note that
the @param map tag could be contradicting by allowing
any behavior when map is null. Inferring a specific type
of expected exception is unlike in the previous example
when @TCOMMENT could only infer that some exception
should be thrown. Indeed, inferring the type in this case
is important because, when map is null, the method does
throw an exception but of a different type. In this case,
even the original Randoop generates test2 as it throws
an exception. However, Randoop also generates dozens of

/ / I n a u t o m a t i c a l l y g e n e r a t e d t e s t c l a s s :
void t e s t 2 () throws Throwable {

j a v a . u t i l . Map va r0 = n u l l ;
t r y {

j a v a . u t i l . Map va r1 = org . apache . commons . c o l l e c t i o n s
.

MapUt i l s . synchron izedMap (va r0) ;
f a i l (” Expec ted I l l e g a l A r g u m e n t E x c e p t i o n , ” +

” g o t N u l l P o i n t e r E x c e p t i o n ”) ;
} catch (I l l e g a l A r g u m e n t E x c e p t i o n e x p e c t e d) {}

}
void t e s t 3 () throws Throwable {

j a v a . u t i l . C o l l e c t i o n va r0 = n u l l ;
j a v a . u t i l . I t e r a t o r [] va r1 = new j a v a . u t i l . I t e r a t o r

[]{} ;
t r y {

org . apache . commons . c o l l e c t i o n s . C o l l e c t i o n U t i l s .
add Al l (var0 , (j a v a . l a n g . O b j e c t []) va r1) ;

f a i l (” Expec ted N u l l P o i n t e r E x c e p t i o n ” +
”when c o l l e c t i o n == n u l l ”) ;

} catch (N u l l P o i n t e r E x c e p t i o n e x p e c t e d) {}
}

/ / I n c l a s s e s under t e s t :
/∗∗ . . .
∗ @param map t h e map t o s y n c h r o n i z e , must n o t be n u l l
∗ @return a s y n c h r o n i z e d map backed by t h e g i v e n map
∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n i f t h e map i s n u l l
∗ /

s t a t i c Map synchron izedMap (Map map)

/∗∗ . . .
∗ @param c o l l e c t i o n t h e c o l l e c t i o n t o add to , must n o t

be n u l l
∗ @param e l e m e n t s t h e a r r a y o f e l e m e n t s t o add , must

n o t be n u l l
∗ @throws N u l l P o i n t e r E x c e p t i o n i f t h e c o l l e c t i o n or

a r r a y i s n u l l
∗ /

s t a t i c vo id addA l l (C o l l e c t i o n c o l l e c t i o n , O b j e c t []
e l e m e n t s)

Figure 2. Two more example tests generated by @Randoop. Methods
under test and their comments.

/∗∗ . . .
∗ @param i d t h e i d t o use
∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n i f t h e i d i s n u l l
∗ /

p r o t e c t e d DateTimeZone (S t r i n g i d)

Figure 3. Null-related Javadoc comment helps identify false alarms that
Randoop would generate.

others tests that are not fault-revealing, so this comment-
code inconsistency would be “the needle in a haystack”
among the tests generated by Randoop. In contrast,
@Randoop prominently highlights the inconsistency. We
reported this comment-code inconsistency [2], and the
Collections developers fixed it by removing the comment.

For the addAll method, @TCOMMENT correctly infers
that the method should throw NullPointerException when
either the parameter collection is null or the parameter
elements is null. This is similar to the previous case where
the specific exception type is inferred, but in this case
two method parameters are involved. The inconsistency that
@TCOMMENT finds is, in fact, related to the situation where
only one parameter—collection—is null (while the array
is empty), but the exception is not thrown as expected. We

Properties Meaning Comment Example Notation
Null Normal If the parameter is null, the method

should execute normally (no exception).
@param predicate the predicate
to use, may be null

predicate==null => normal

Null Any Ex-
ception

If the parameter is null, the method
should throw some exception.

@param collection the collection
to add to, must not be null

collection==null => excep-
tion

Null Specific
Exception

If the parameter is null, the method
should throw a specific type of exception.

@throws IllegalArgumentException
if the id is null

id==null => IllegalArgu-
mentException

Null Unknown We do not know the expected behavior of
the method when the parameter is null.

@param array the array over
which to iterate

array==null => unknown

Table I
PROPERTIES TO BE EXTRACTED. THE COMMENT EXAMPLES ARE REAL COMMENTS FROM THE PROJECTS USED IN OUR EVALUATION.

also reported this comment-code inconsistency [3], and it is
under consideration.

For all examples presented so far, an exception is ex-
pected (according to the Javadoc comments), but the method
under test either does not throw an exception or throws
an exception of a different type. We next discuss an
example where an exception is thrown by the method
under test, but it is expected as indicated by the rele-
vant comment (Figure 3). This example illustrates a case
where Randoop would generate a false alarm, but @TCOM-
MENT helps remove this false alarm. @TCOMMENT in-
fers that the constructor DateTimeZone should throw an
IllegalArgumentException if null is passed to the id

parameter. Randoop generates a test for DateTimeZone when
id is null, because the execution of this test indeed throws
an IllegalArgumentException, and Randoop reports as po-
tentially fault-revealing all tests that throw uncaught excep-
tions. In contrast, @TCOMMENT marks that the exception
is expected according to the comment.

III. @TCOMMENT DESIGN

Our @TCOMMENT approach consists of two components.
The first component takes as input the source code for
a Java project, automatically analyzes the English text in
the Javadoc comments in the project, and outputs a set of
inferred likely properties for a method. The second compo-
nent takes as input the same code and inferred properties,
generates random tests for the methods in the code, checks
the inferred properties, and reports inconsistencies.

Similar to prior work [38], [39], we build a domain-
specific comment analysis, due to the difficulty of inferring
arbitrary properties from general comments. In particular,
we focus on null-pointer related comments because null-
pointer deferences are common memory bugs [16], and a
large percentage of Javadoc comments (24.2% in the seven
projects we evaluated) contain the keyword null.

A. Inferring Properties from Comments

Our goal is to infer from Javadoc comments null-related
properties about method parameters. For a parameter of
non-primitive type, @TCOMMENT infers one of these four
kinds of properties: Null Normal, Null Any Exception, Null Specific

Exception, or Null Unknown.

Table I shows four examples of comment tags and their
corresponding inferred properties. For example, @TCOM-
MENT infers from the second tag, “@param collection the

collection to add to, must not be null”, that if the
method parameter collection is null, then the method
is expected to throw some exception, represented as
collection == null => exception. Based on our experi-
ence with the null-related Javadoc comments, we found that
this interpretation matches developers’ intention, and thus
we adopted it for @TCOMMENT. The comment-code incon-
sistencies that we reported and developers confirmed, as well
as the low false-positive rate of our reported comment-code
inconsistencies, confirm our decision. However, note that we
focus on library projects, where the methods need not trust
their callers. The interpretation may differ for applications
with more of a design-by-contract mentality where callers
were trusted more. As discussed earlier, this example tag
could have another interpretation, describing a precondition
such that passing null for collection allows the method to
do anything, not necessarily throw an exception.

Our @TCOMMENT implementation leverages the
Javadoc doclet [12] to parse Javadoc comments. For
example, consider the above tag for collection; Figure 2
shows the comment for this tag and the corresponding
method declaration. The Javadoc doclet parses this tag and
outputs the name of the method parameter (collection), its
type (java.util.Collection), the method’s full signature
(...CollectionUtils#addAll(Collection collection,

Object[] elements)), and the free-form comment text
(“the collection to add to, must not be null”). The
method parameter, its type, and the full method signature
are used later by @Randoop, the test-generation component
of @TCOMMENT, to check the generated tests.

@TCOMMENT first extracts all Javadoc @param (for pa-
rameters of non-primitive types) and @throws tags that
contain a non-empty free-form text, since a Javadoc tag with
an empty free-form text does not describe a Null Normal, Null

Any Exception, or Null Specific Exception property. Then, @TCOM-
MENT infers Null Normal and Null Any Exception properties from
the @param tags and Null Specific Exception properties from the
@throws tags. It assigns Null Unknown to a method parameter,
if neither its @param tag nor @throws tag describes any other

property. In this paper, however, we do not count Null Unknown

toward the 2479 inferred properties, since one cannot test
against these Null Unknown properties.

@TCOMMENT uses three relatively simple heuristics to
analyze the free-form text. First, if negation words, such
as “not” or “never”, are found up to three words before
or after the word null—e.g., “the collection to add to,

must not be null” has “not” two words from null—
@TCOMMENT infers the Null Any Exception property. If no
negation words are found up to three words around null—
e.g., the first tag in Table I—@TCOMMENT infers the Null

Normal property.
Second, for @throws tags—say, for example, “@throws

IllegalArgumentException if the id is null”—the
Javadoc doclet parses the tag and outputs the specific
exception (IllegalArgumentException) and the free-form
text (“if the id is null”). If the text contains the
keyword null, @TCOMMENT simply splits the text into
words and searches each word in the list of all method
parameter names generated by the Javadoc doclet. If a valid
parameter name is found, —e.g., id, @TCOMMENT infers
the property id == null => IllegalArgumentException.

Third, if the keyword “or” is in the @throws com-
ment text, e.g., “@throws NullPointerException if the

collection or array is null” in Figure 2, @TCOM-
MENT generates multiple properties, e.g., collection ==
null => NullPointerException and array == null =>
NullPointerException. If both Null Any Exception and Null

Specific Exception properties are inferred for the same method
parameter, e.g., collection, @TCOMMENT keeps only the
Null Specific Exception property.

B. Checking Properties in Test Generation

After @TCOMMENT infers likely method properties, it
uses our modified Randoop, called @Randoop, to check
these properties using random test generation. Figure 4
shows the simplified pseudo-code of the Randoop test-
generation algorithm [32], together with our extension for
checking @TCOMMENT-inferred properties.

We briefly summarize how Randoop works. It produces
random sequences of method calls (including constructors)
of the code under test. It maintains a set of error sequences
(to be output as generated unit tests that are likely fault
revealing) and a set of non-error sequences (to be used
for creating longer sequences). In a loop, it first randomly
selects a method m whose k parameters (including the
receiver for non-static methods) have types T1 . . . Tk. It then
selects sequences (previously generated) and values (e.g.,
“0”, “1L”, or “null”) of appropriate type to use for the
method parameters. It concatenates these sequences and adds
a new call to m. It then executes the new sequence to check
contracts (e.g., no uncaught exception during execution).
If there is a violation, it adds the new sequence to the
error sequences; otherwise, it adds the new sequence to the

// inferredProperties is specific to @Randoop
GenerateSequences(classes, contracts, inferredProperties, timeLimit)

errorSeqs ← {} // These will be generated as unit tests
// we add a comment-code inconsistency field to sequences

nonErrorSeqs ← {} // These are used to build longer sequences
while timeLimit not reached do

// Create new sequence
m(T1 . . . Tk)← randomPublicMethod(classes)
⟨seqs, val⟩ ← randomSeqsAndVals(nonErrorSeqs, T1 . . . Tk)
newSeq ← extend(m, seqs, vals)
// Execute new sequence and check contracts.
violated ← execute(newSeq, contracts)
// Classify new sequence and outputs.
if violated then

errorSeqs ← errorSeqs
∪
{newSeq}

else
nonErrorSeqs ← nonErrorSeqs

∪
{newSeq}

end if
// Execute and check @TCOMMENT-inferred properties.
match ← execute(newSeq, inferredProperties)
if match = ’Missing Exception’ then

// Add the new sequence, marked as inconsistency
errorSeqs ← errorSeqs

∪
{ newSeq }

newSeq.isCommentCodeInconsistency ← highlyLikely
else if match = ’Different Exception’ or

match = ’Unexpected Exception’ then
// Mark an already added sequence as inconsistency
newSeq.isCommentCodeInconsistency ← likely

else if match = ’Unknown Status’ then
// Unknown inconsistency status
newSeq.isCommentCodeInconsistency ← unknown

else // match = ’Expected Exception’
// Mark the sequence as likely consistent
newSeq.isCommentCodeInconsistency ← unlikely

end if
end while
return ⟨ nonErrorSeqs, errorSeqs ⟩

Figure 4. Integration of @Randoop checking of @TCOMMENT-inferred
properties into test generation.

non-error sequences. More details of the original Randoop
algorithm, including discarding duplicates and filtering ex-
tensible sequences, are available elsewhere [32].

Our @Randoop modification follows the similar approach
that Randoop performs for checking contracts: @Ran-
doop executes the sequence and checks the @TCOMMENT-
inferred properties for method calls where one or more
parameter have null values. We distinguish five kinds
of matches between method execution (does it throw an
exception and of what type) and @TCOMMENT-inferred
properties (is an exception expected and of what type).
Based on the match, @Randoop can (1) generate a sequence
that Randoop would not generate otherwise, (2) generate
the same sequence as Randoop but mark the sequence as
a comment-code inconsistency, or (3) generate the same
sequence as Randoop but mark the sequence as comment-
code consistent.

Before we describe the five possible kinds of matches,
we describe how @Randoop computes the set of expected

Comment-Code Inconsistent Unknown Comment-Code Consistent
Missing
Exception

Different Exception Unexpected Exception Unknown
Status

Expected Exception

Exception Thrown No Yes Yes Yes Yes
Properties that @TCOMMENT
inferred about expected excep-
tions for method parameters
with null values

Null Any
Exception
or Null
Specific
Exception

(1) at least one is Null
Specific Exception &
(2) thrown exception
is not in the set of all
specific exceptions

(1) at least one is Null
Normal & (2) there is no
Null Specific Exception
or Null Any Exception

Null
Unknown
for all
parameters
with null

(1) at least one is Null Specific
Exception or Null Any Excep-
tion & (2) thrown exception is
in the set of expected excep-
tions

Table II
CATEGORIES OF SEQUENCES THAT @RANDOOP CLASSIFIES BASED ON MATCHES FOR PARAMETERS WITH NULL VALUES.

exceptions. It handles multiple null values, which
naturally arise for methods with several parameters of
non-primitive types, e.g., addAll from Figure 2 has
“Collection collection” and “Object[] elements”.
If only one parameter is null, @Randoop uses the
property inferred for that parameter. If two or more
parameters are null, @Randoop puts in the set all
expected exceptions for these parameters, e.g., if we had
collection == null => NullPointerException and
elements == null => IllegalArgumentException,
@Randoop would assume that either of the two exceptions is
expected. If some parameter with null value has the Null Any

Exception property, then all types of exceptions are expected.
Finally, @Randoop adds to the set exceptions that are not
null-related but appear in the @throws tags for the Javadoc
comment of the method under test. For example, the method
arrayIterator(Object[] array, int start, int end)

has one such tag (“@throws IndexOutOfBoundsException

if array bounds are invalid”) and one null-related tag
(“@throws NullPointerException if array is null”);
although IndexOutOfBoundsException does not correspond
to a null input, @TCOMMENT always adds it to the set of
expected exceptions.

Table II lists the five kinds of matches:
Missing Exception sequences throw no exception during execu-
tion, but the corresponding inferred properties specify that
some exception is expected. These sequences should be gen-
erated as tests that are likely comment-code inconsistencies
(although they could be false alarms if the inference obtained
incorrect properties from the corresponding comments). To
repeat, these tests would not be generated by the original
Randoop because they throw no exception.
Different Exception sequences throw an exception that is differ-
ent from the exception(s) expected according to the inferred
properties. These are also likely comment-code inconsis-
tencies. These sequences would be generated by Randoop
as potentially fault-revealing tests, and by inspecting them,
the developer might find the inconsistency. However, these
tests would be hard to identify among a large number of
tests that Randoop generates (in our evaluation, only 8 tests
were Different Exception among 1,285 tests that Randoop would
generate). In contrast, @Randoop highlights these tests.

Unexpected Exception sequences throw an exception whereas
@TCOMMENT explicitly expects normal execution with no
exception. As for Different Exception, Randoop would also
generate these sequences as tests, but @Randoop highlights
them due to the inconsistency.
Unknown Status sequences throw an exception but @TCOM-
MENT inferred no property to tell if the exception is expected
or not. Both Randoop and @Randoop generate these as
error sequences. While they may indicate a fault in the
code, they do not show an inconsistency between code and
comment (unless the inference incorrectly missed inferring
some property about exceptions).
Expected Exception sequences throw an exception, but this
exception is expected according to the properties inferred by
@TCOMMENT from the relevant comments. Hence, @Ran-
doop marks these sequences as consistent. If @TCOMMENT
inference is correct for these cases, they are false alarms
that Randoop would generate; if the inference is incorrect,
@TCOMMENT would increase the time for developers to
find the true fault-revealing tests.

Currently, @Randoop modifies only the checking and
not the random selection performed by Randoop. Randoop
randomly selects methods to test and parameter values for
the methods, and @Randoop does not perform any addi-
tional selection that the original Randoop does not perform.
It could be beneficial to bias the selection based on the
properties inferred from comments. For example, if it is
inferred that an exception should be thrown when a method
parameter p is null (i.e., Null Specific Exception or Null Any

Exception), but Randoop does not select any sequence where
p is null, @Randoop could (non-randomly) generate such
additional sequences. This extension remains as future work.

IV. EVALUATION

We evaluate @TCOMMENT on seven open-source Java
projects. Table III lists information about these projects. We
modified Randoop revision 652 to build @Randoop. Ran-
doop provides several options that control random genera-
tion, and we consider two options that are the most important
for @Randoop: (1) nullRatio specifies the frequency that
the null value is randomly chosen as an input for a method
parameter of some non-primitive type (e.g., a nullRatio

of 0.6 instructs Randoop to use null 60% of the time); and

Project Source Description Version # LOC # Classes # Methods
Collections [1] Collection library and utilities 3.2.1 26,323 274 2,943
GlazedLists [7] List transformations in Java 1.8 5,134 35 456
JFreeChart [8] Chart creator 1.0.13 72,490 396 5,688
JodaTime [9] Date and time library 1.6.2 25,916 154 3,094
Log4j [4] Logging service 1.2 20,987 221 20,987
Lucene [5] Text search engine 2.9.3 48,201 422 4,017
Xalan [6] XML transformations 2.7.1 178,549 977 9,505

Table III
SUBJECT PROJECTS AND THEIR BASIC STATISTICS

Project Missing Exception Different Exception Unexpected Exception Unknown Expected Tested
= TI + FA = TI + FA = TI + FA Status Exception Properties

Collections 12 = 12 + 0 4 = 3 + 1 6 = 0 + 6 94 36 115
GlazedLists 0 = 0 + 0 0 = 0 + 0 6 = 1 + 5 151 1 11
JFreeChart 1 = 1 + 0 0 = 0 + 0 2 = 2 + 0 127 6 42
JodaTime 3 = 3 + 0 0 = 0 + 0 13 = 0 + 13 37 3 31
Log4j 1 = 1 + 0 0 = 0 + 0 3 = 0 + 3 186 152 179
Lucene 4 = 0 + 4 0 = 0 + 0 2 = 1 + 1 368 2 12
Xalan 9 = 5 + 4 0 = 0 + 0 2 = 0 + 2 544 32 43
Total 30 = 22 + 8 4 = 3 + 1 34 = 4 + 30 1507 232 433

Total
True Inconsistencies (TI) 22 3 4 29
False Alarms (FA) 8 1 30 39

Table IV
OVERALL RESULTS FOR THE DEFAULT CONFIGURATION OF OUR @RANDOOP (NULLRATIO=0.6, TIMELIMIT=3600S)

(2) timeLimit specifies the number of seconds that Randoop
should generate tests for one project. All experiments were
performed on a machine with a 4-core Intel Xeon 2.67GHz
processor and 4GB of main memory.

A. Comment-Code Inconsistency Detection
Table IV shows the results of @TCOMMENT with the

default values for @Randoop options. (Section IV-C dis-
cusses the sensitivity of the results to the value of these
options.) For each project, we tabulate the number of
tests that @Randoop generated based on the five kinds of
matches between inferred properties and method executions
(Section III-B). For three kinds of matches that could have
comment-code inconsistencies, the cells show the split into
True Inconsistencies and False Alarms. The last column
also shows the number of @TCOMMENT properties that
@Randoop checked during test generation.

In total, @Randoop generated 68 tests with potential
comment-code inconsistencies. Randoop would not gener-
ate 30 of those (column ‘Missing Exception’) where methods
execute normally while exceptions are expected by the
corresponding comments. @Randoop also generates 4 tests
where an exception is thrown but different than specified by
comments (column ‘Different Exception’) and 34 tests where
an exception is thrown but normal execution was observed
(column ‘Unexpected Exception’). @Randoop generates 1507
tests that throw an exception for cases where no null-related
properties were inferred (column ‘Unknown Status’). Finally,
@Randoop identifies 232 tests as throwing exceptions ex-
pected by the comments (column ‘Expected Exception’).

The cells with sums show the split of comment-code
inconsistencies reported by @TCOMMENT into those truly
inconsistent (summarized in row ‘True Inconsistencies’) and
not (row ‘False Alarms’). We inspected all the reports by
carefully reading the comments and the code. A subset
of reports was also independently inspected by two more
students. @TCOMMENT detected 29 previously unknown
comment-code inconsistencies and had 39 false alarms.

The sources of false alarms are incorrectly inferred
properties for the method with reported violation itself
(11 out of 39), missing properties (11 out of 39), and
incorrect/missing properties for another method in the se-
quence (17 out of 39). As an example of the first source,
@TCOMMENT inferred the property filter == null =>
exception from “@param filter if non-null, used to

permit documents to be collected”, because the nega-
tion word non is next to null. However, this tag does not
imply the parameter filter cannot be null. Section IV-B
discusses inference accuracy in detail. The second source is
when a method has at least one parameter missing property
(Null Unknown) and at least one not missing (Null Normal, Null

Any Exception, or Null Specific Exception). @Randoop reports an
inconsistency if the method throws an unexpected exception,
even if the parameter with Null Unknown caused it, because
@Randoop does not identify the cause of exception. The
third source results in some null values propagating through
fields. For example, @TCOMMENT may not know that a
constructor for some class should not have a null parameter.
If a test passes null, the value is set to some field. Later on,

Project @param @throws @param @throws Properties Precision [%] Recall [%] Accuracy
with null with null = N + A + S N A S N A S [%]

Collections 700 431 271 207 347=81+47+219 75 92 100 100 100 97 97
GlazedLists 110 55 14 17 19=14+0+5 100 100 100 100 100 100 100
JFreeChart 1808 75 902 3 902=362+537+3 100 100 100 100 100 100 100
JodaTime 802 726 529 96 553=445+23+85 100 75 100 100 100 78 98
Log4j 713 0 488 0 460=243+217+0 100 100 100 100 100 100 100
Lucene 498 373 39 15 67=13+25+29 100 67 100 80 100 100 99
Xalan 699 110 126 6 131=33+93+5 50 100 100 100 100 100 99
Total/Overall 5330 1770 2369 344 2479=1191+942+346 98 98 100 99 100 93 99

Table V
COMMENT ANALYSIS RESULTS. N IS FOR Null Normal, A FOR Null Any Exception, AND S FOR Null Specific Exception.

a method can dereference that field and throw an exception;
if the method itself has some null parameters, @Randoop
can falsely report an inconsistency (again because it does
not identify the real cause of exception).

It is worth pointing out that we set all @TCOMMENT
options (e.g., distance of negation words from null, treating
preconditions as requiring exceptions, ignoring Null Unknown,
etc.) by looking only at the first six projects. The experi-
ments with Xalan were performed with the same options.

B. Comment Analysis Results

Table V shows the comment analysis results. Columns
‘param’ and ‘param with null’ show, for parameters of non-
primitive types, the total number of @param tags and the
number of @param tags that contain null, respectively. Sim-
ilarly, columns ‘throws’ and ‘throws with null’ show the total
number of @throws tags and the number of @throws tags
that contain null, respectively. In total, 2713 @param and
@throws tags contain null in the seven evaluated projects.
@TCOMMENT inferred 2479 Null Normal, Null Any Exception,
and Null Specific Exception properties from these comments.
Of these 2479 properties, 433 are tested by @TCOMMENT
to automatically detect comment-code inconsistencies and
improve testing. As discussed in Section III-B, it would be
beneficial to modify Randoop’s random selection to actively
test more of the inferred properties in the future.

To evaluate the accuracy of our automatic comment-
analysis technique, we randomly sample 100 @param (for
parameters of non-primitive types) and @throws tags with
non-empty free-form text from each project, and manually
read them and the corresponding inferred properties to
check if the inferred properties are correct. The accuracy
is calculated as the number of correctly analyzed tags in
a sample over the total number of tags in the sample.
Note that the manual inspection is purely for evaluating
the accuracy of our comment analysis; @Randoop directly
uses the automatically inferred properties to detect comment-
code inconsistencies and improve testing, and no manual
inspection of the inferred properties is required.

In addition, we present the standard precision and recall
for Null Normal, Null Any Exception, and Null Specific Exception

respectively. For example, the precision for Null Normal is

the proportion of identified Null Normal properties that indeed
are Null Normal properties. The recall for Null Normal is the
proportion of true Null Normal properties in our sample that
@TCOMMENT identifies.

Our analysis of the free-form comment text achieves a
high accuracy of 97–100% (Column ‘Accuracy %’) without
using NLP techniques as iComment did [38]. In addition, the
precisions and recalls are in high nineties to 100% in most
cases. One exception is that the precision for Null Normal in
Xalan is only 50%, where only two Null Normal properties are
inferred, and one was inferred incorrectly. The general high
performance is partially due to the Javadoc API comments
being much more structured than the comments in systems
code written in C. There is also less variance in paraphrases
and sentence structures in the Javadoc comments than in
the C/C++ comments in systems code. While the general
idea of detecting comment-code inconsistencies through
testing should be applicable to C/C++ projects, the comment
analysis component may need to leverage more advanced
techniques as iComment did [38].

If some null-related properties are described in non-
Javadoc style comments, e.g., with no @param tag, @TCOM-
MENT would not analyze them. As we do not anticipate
many such comments, this paper focused on properly tagged
Javadoc comments.

C. Sensitivity of @Randoop Options

We want to understand how different values for @Ran-
doop options nullRatio and timeLimit affect our results
of comment-code inconsistency detection and false alarm
pruning. When time budget allows, users can run @TCOM-
MENT with many nullRatios and timeLimits to detect
more inconsistencies.

We run @Randoop with 5 timeLimits—50sec, 100sec,
200sec, 400sec, and 800sec—and 11 nullRatios—from
0.0 to 1.0 in increments of 0.1—on all seven projects and
measured the most important metric, the number of Missing

Exception tests. These are 5*11*7, a total of 385, sets of exper-
iments. Despite the randomness in @Randoop, it identifies
more Missing Exception tests (thus potentially detects more
comment-code inconsistencies) as the timeLimit increases
for all cases but one combination of the value and the

project. We found that when running @Randoop for 800sec,
nullRatio 0.6 helps @Randoop identify the largest number
of Missing Exception tests across all seven projects. Therefore,
we chose it as the default value. We found that 0.3, 0.5, 0.7,
0.8, and 0.9 are the next best values. Note that 0.0 is clearly
not good as it never selects null, but also 1.0 is not good
as it always selects null and thus Randoop cannot “grow”
bigger objects with non-null parameters.

To further understand the effect of timeLimits, we in-
creased the timeLimits to up to two hours with nullRatio

0.6. We found that the number of the Missing Exception tests
reaches a plateau at about one-hour mark, which is similar to
the fact that the original Randoop reaches a plateau around
one-hour mark [31].

To further understand the effect of nullRatios, we per-
formed additional experiments with timeLimit one hour
and nullRatios from 0.3 to 0.9. The results show that
they produce almost identical numbers for the five kinds
of matches, suggesting that if one runs @Randoop for an
hour, one can pick any nullRatio from 0.3 to 0.9 to obtain
similar results.

V. RELATED WORK

Automated Software Testing. Many automated software
testing techniques are designed to detect software faults [17],
[18], [22], [30], [32], [44], e.g., based on random generation
or using specifications. @TCOMMENT leverages an addi-
tional source—code comments—and modifies Randoop [32]
to detect more faults (in both code and comments), and
to identify false alarms generated by Randoop. It is quite
conceivable to extend @TCOMMENT to improve other au-
tomated testing techniques.
Detecting Comment-Code Inconsistencies. iComment [38]
and aComment [39] extract rules from comments and check
source code against these rules statically. The differences
between iComment/aComment and @TCOMMENT have al-
ready been discussed in the introduction, so we only sum-
marize them here: (1) @TCOMMENT leverages a new type
of comments, related to null values; (2) @TCOMMENT em-
ploys a dynamic approach to check comments during testing;
and (3) in addition to finding comment-code inconsistencies,
@TCOMMENT can find false alarms generated by Randoop.

A recent empirical study [24] examines the correlation
between code quality and Javadoc comment-code incon-
sistencies. It checks only simple issues, e.g., whether the
parameter names, return types, and exceptions in the @param,
@return, and @throws tags are consistent with the actual
parameter names, return types, and exceptions in the method.
Doc Check [11] detects Javadoc errors such as missing
and incomplete Javadoc tags. Different from checking for
these style inconsistencies, @TCOMMENT detects semantic
comment-code inconsistencies related to null values.
Empirical Studies of Comments. Several empirical studies
aim to understand the conventional usage of comments, the

evolution of comments, and the challenges of automatically
understanding comments [23], [27], [42], [43]. None of them
automatically analyze comments to detect comment-code
inconsistencies or improve automated testing.
Comment Inference from Source Code. Several recent
projects infer comments for failed test cases [45], excep-
tions [14], API function cross-references [26], software
changes [15], and semantically related code segments [35],
[36]. Comments automatically generated by these techniques
are more structured than developer-written comments; there-
fore, it may be easier to leverage such automatically-
generated comments for finding inconsistencies. However,
it is still beneficial to improve the analysis of developer-
written comments because (1) millions of lines of developer-
written comments are available in modern software; and
(2) these developer-written comments bring in information
that is not available in source code [38] to help us detect
more faults. FailureDoc [45] augments a failed test with
debugging clues, which could be extended to help explain
why the tests generated by @TCOMMENT fail.
Analysis of Natural-Language Text for Software. Various
research projects analyze natural-language artifacts such as
bugs reports [13], [20], [25], [29], [34], [37], [40], [41], API
documentation [46], and method names [19] for different
purposes such as detecting duplicate bug reports or identi-
fying the appropriate developers to fix bugs. @TCOMMENT
analyzes comments written in a natural language to detect
comment-code inconsistencies and to improve automated
testing. Rubio-González et al. detect error code mismatches
between code and manual pages in the Linux kernel by
combining static analysis and heuristics [33]. Different from
some of these studies [19], [46] that use NLP techniques
such as part-of-speech tagging and chunking, @TCOMMENT
does not use NLP techniques because our simple comment
analysis can already achieve a high accuracy of 97–100%,
partially due to the more structured Javadoc comments with
less paraphrases and variants.

VI. CONCLUSIONS AND FUTURE WORK

An inconsistency between comment and code is highly
indicative of program faults. We have presented a novel
approach, called @TCOMMENT, for testing consistency
of Java method bodies and Javadoc comments properties
related to null values and exceptions. Our application of
@TCOMMENT on seven open-source projects discovered 29
methods with inconsistencies between Javadoc comments
and bodies. We reported 16 inconsistencies, and 5 were
already confirmed and fixed by the developers.

In the future, @Randoop can be extended to (1) modify
the random selection performed by Randoop such that it
biases the selection based on the properties inferred by
@TCOMMENT; (2) identify some causes of exceptions to
reduce the rate of false alarms; and (3) rank the reported
inconsistencies. @TCOMMENT can be extended to handle

other types of properties and to be integrated with other
testing or static analysis tools.

Acknowledgments. We thank Sai Zhang for help with
Randoop and Aditya Dasgupta and James Tonyan for help in
labeling properties inferred by @TCOMMENT and comment-
code inconsistencies reported by @TCOMMENT. The work
is partially supported by the US National Science Foundation
under Grant Nos. CCF-0916715, CCF-0916350, and CCF-
0746856, the National Science and Engineering Research
Council of Canada, and a Google gift grant.

REFERENCES

[1] Apache Commons Collections. http://commons.apache.org/
collections/.

[2] Apache Commons Collections Bug Report 384. https://issues.
apache.org/jira/browse/COLLECTIONS-384.

[3] Apache Commons Collections Bug Report 385. https://issues.
apache.org/jira/browse/COLLECTIONS-385.

[4] Apache Log4j. http://logging.apache.org/log4j/.
[5] Apache Lucene. http://lucene.apache.org/.
[6] Apache Xalan. http://xml.apache.org/xalan-j/.
[7] Glazed Lists. http://www.glazedlists.com/.
[8] JFreeChart. http://www.jfree.org/jfreechart/.
[9] Joda Time. http://joda-time.sourceforge.net/.

[10] Joda Time Bug Report. http://sourceforge.net/tracker/?func=
detail&atid=617889&aid=3413869&group id=97367.

[11] Sun Doc Check Doclet. http://www.oracle.com/technetwork/
java/javase/documentation/index-141437.html.

[12] The Standard Doclet. http://download.oracle.com/javase/1,5.
0/docs/guide/javadoc/standard-doclet.html.

[13] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE, 2006.

[14] R. P. Buse and W. R. Weimer. Automatic documentation
inference for exceptions. In ISSTA, 2008.

[15] R. P. Buse and W. R. Weimer. Automatically documenting
program changes. In ASE, 2010.

[16] M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz.
Propagation of JML non-null annotations in Java programs.
In PPPJ, 2006.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO:
Adaptive random testing for object-oriented software. In
ICSE, 2008.

[18] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller.
Generating test cases for specification mining. In ISSTA’10.

[19] Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-
Shanker. Analysing source code: Looking for useful verb-
direct object pairs in all the right places. IET Software, 2008.

[20] M. Gegick, P. Rotella, and T. Xie. Identifying security bug
reports via text mining: An industrial case study. In MSR,
2010.

[21] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In PASTE, 2007.

[22] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT: Object
capture-based automated testing. In ISSTA, 2010.

[23] Z. M. Jiang and A. E. Hassan. Examining the evolution of
code comments in PostgreSQL. In MSR, 2006.

[24] N. Khamis, R. Witte, and J. Rilling. Automatic quality
assessment of source code comments: the JavadocMiner. In
NLDB, 2010.

[25] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now? – An empirical study of bug
characteristics in modern open source software. In ASID,
2006.

[26] F. Long, X. Wang, and Y. Cai. API hyperlinking via structural
overlap. In ESEC/FSE, 2009.

[27] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E.
Hassan. Understanding the rationale for updating a function’s
comment. In ICSM, 2008.

[28] C. D. Manning and H. Schütze. Foundations Of Statistical
Natural Language Processing. The MIT Press, 2001.

[29] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports
using a vocabulary-based expertise model of developers. In
MSR, 2009.

[30] C. Pacheco and M. D. Ernst. Eclat: Automatic Generation
and Classification of Test Inputs. In ECOOP, 2005.

[31] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .net
with feedback-directed random testing. In ISSTA, 2008.

[32] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
Directed Random Test Generation. In ICSE, 2007.

[33] C. Rubio-González and B. Liblit. Expect the unexpected:
error code mismatches between documentation and the real
world. In PASTE, 2010.

[34] P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language processing.
In ICSE, 2007.

[35] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker. Towards automatically generating summary com-
ments for Java methods. In ASE, 2010.

[36] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically
detecting and describing high level actions within methods.
In ICSE, 2011.

[37] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate bug
report retrieval. In ICSE, 2010.

[38] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:
Bugs or bad comments? */. In SOSP, 2007.

[39] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining
annotations from comments and code to detect interrupt-
related concurrency bugs. In ICSE, 2011.

[40] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. In ICSE, 2008.

[41] J. woo Park, M. woong Lee, J. Kim, S. won Hwang, and
S. Kim. CosTriage: A Cost-Aware Triage Algorithm for Bug
Reporting Systems. In AAAI, 2011.

[42] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect
of modularization and comments on program comprehension.
In ICSE, 1981.

[43] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code
that talks: An exploration of Eclipse task comments and their
implication to repository mining. In MSR, 2005.

[44] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static
and dynamic automated test generation. In ISSTA, 2011.

[45] S. Zhang, C. Zhang, and M. D. Ernst. Automated documen-
tation inference to explain failed tests. In ASE, 2011.

[46] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
ASE, 2009.

