
Towards a Test Automation Framework for Alloy

Allison Sullivan Razieh Nokhbeh Zaeem Sarfraz Khurshid Darko Marinov
University of Texas University of Illinois
Austin, TX 78712 Urbana, IL 61801

USA USA
{allisonksullivan,nokhbeh,khurshid}@utexas.edu marinov@illinois.edu

ABSTRACT
Writing declarative models of software designs and analyzing
them to detect defects is an effective methodology for devel-
oping more dependable software systems. However, writing
such models correctly can be challenging for practitioners
who may not be proficient in declarative programming, and
their models themselves may be buggy. We introduce the
foundations of a novel test automation framework, AUnit,
which we envision for testing declarative models written in
Alloy – a first-order, relational language that is supported
by its SAT-based analyzer. We take inspiration from the
success of the family of xUnit frameworks that are used
widely in practice for test automation, albeit for imperative
or object-oriented programs. The key novelty of our work
is to define a basis for unit testing for Alloy, specifically,
to define the concepts of test case and coverage, and cover-
age criteria for declarative models. We reduce the problems
of declarative test execution and coverage computation to
evaluation without requiring SAT solving. Our vision is to
blend how developers write unit tests in commonly used pro-
gramming languages with how Alloy users formulate their
models in Alloy, thereby facilitating the development and
testing of Alloy models for both new Alloy users as well as
experts. We illustrate our ideas using a small but complex
Alloy model. While we focus on Alloy, our ideas generalize
to other declarative languages (such as Z, B, ASM).

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Verification

Keywords
Test case, code coverage, coverage criteria, Alloy, JUnit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPIN ’14, July 21–23, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2452-6/14/07 ...$15.00.

1. INTRODUCTION
Building software designs is a key part of software develop-

ment for critical systems. Design flaws that go undetected
into later stages of development can be very costly to fix.
Analyzing software designs provides an effective method-
ology to get higher quality designs that can lead to more
dependable software systems. While the last two decades
have seen much progress in analyzable design languages [7]
– à la model checking [5] – the task of writing correct de-
signs that accurately capture the key elements of the soft-
ware system under development remains challenging, often
requiring much manual effort on part of the practitioners.
Two factors make this task particularly demanding. One,
design languages do not always bear similarities in syntax
and semantics to commonly used programming languages,
and thus pose a substantial learning burden on the prac-
titioners. Two, toolsets that support writing designs often
are not as advanced as those that are commonly used for
writing imperative (or object-oriented) programs, and thus
practitioners may employ ad-hoc and ineffective techniques
in their effort to validate designs.

Our thesis is that it is feasible to facilitate automated
testing of designs in the spirit of well-known and effective
testing techniques that are widely used for imperative pro-
grams. Our focus is on writing software designs in the Alloy
modeling language [7], which is among the first fully ana-
lyzable design languages. Alloy is a first-order declarative
language based on relations. The Alloy analyzer utilizes off-
the-shelf SAT technology [6] to analyze Alloy models. Given
(1) an Alloy model, (2) a command in the model to execute,
and (3) a scope, i.e., a bound on the universe of discourse,
the analyzer builds a constraint-solving problem and uses its
SAT-based backend to solve the problem.

This paper introduces some central ideas that lay the foun-
dation of AUnit, a novel test automation framework that
we envision for testing declarative models written in Alloy.
Our work takes inspiration from the success of the family
of xUnit frameworks [2] that are used widely in practice
for automated testing, albeit largely in the context of non-
declarative programs. Our primary design goals are: (1) to
facilitate writing Alloy models correctly for users who are
adept at commonly used programming languages but maybe
new to Alloy; and (2) to enable more effective testing of Al-
loy models by providing a framework that allows adapting
testing techniques that are effective in practice in the con-
text of imperative programs.

The key novelty of our work is to define declarative test
cases (à la unit tests for imperative code) and model cover-

age (à la code coverage for imperative code) for given test
suites for Alloy models. Our key insight is that to gain
confidence in the correctness of an Alloy model, it is cru-
cial to observe some valid as well as some invalid valuations
for the model. Valid valuations allow observing constraint
satisfaction, which helps determine whether the model is
under -constrained. In contrast, invalid valuations allow ob-
serving constraint violation, which helps determine whether
the model is over -constrained. Indeed, in our personal ex-
perience of writing Alloy models over the years, we often
found that bugs in our models were under-constrained or
over-constrained formulas. Moreover, we routinely found
ourselves validating our models by evaluating them for some
given candidate valuations as well as asking Alloy to enumer-
ate all solutions for some (very small) scope and then man-
ually checking if the solutions were indeed all expected (i.e.,
no invalid valuation was generated), and if all expected so-
lutions were generated (i.e., no valid valuation was missed).

We define a test case to be a pair 〈σ, ρ〉 where σ is an as-
signment of values to the relations in the model and ρ is an
Alloy command that defines the constraint-solving problem.
A test passes if σ is a solution with respect to the command
ρ, and fails otherwise. Our definition of model coverage
blends the spirit of logic-based coverage for imperative pro-
grams (e.g., clause coverage or predicate coverage [3]) with
the relational nature of Alloy models where each expression
is a relation, i.e., a set of tuples. A key novelty of our work
is to introduce model coverage criteria based on the specific
structure of Alloy models as well as the specific nature of Al-
loy formulas. To illustrate on a simple example, one of our
criteria defines requirements for quantified formulas, which
include requiring a universally quantified formula to be true
(1) vacuously and (2) with respect to a non-empty universe.

We reduce the problems of declarative test execution and
coverage computation to evaluation where Alloy formulas
and expressions are evaluated for each given assignment to
determine test pass/fail results and coverage requirements
that are met. Thus, our proposal does not require SAT
solving, which has much higher complexity than evaluation.

We make the following contributions: (1) unit testing
for Alloy – we introduce the idea of testing Alloy models
in the spirit of unit testing of imperative code where given
tests are executed to report test pass/fail and code coverage
results; (2) declarative test cases – we formalize the defi-
nition of test cases for Alloy models and define the semantics
of passing and failing of tests; (3) model coverage – we
introduce eight criteria for computing model coverage and
present a subsumption relation among the coverage criteria;
and (4) example – we present an illustrative demonstra-
tion of declarative tests and model coverage using a small
yet complex Alloy model.

2. EXAMPLE
Figure 1 presents a small Alloy model of singly-linked,

acyclic lists; specifically, the model allows multiple lists,
which may share nodes, but each list individually must be
acyclic. The keyword module names the model, which can
be imported in other models. The sig Node declaration in-
troduces Node as a set of atoms and link as a binary relation
that has the type Node × Node. The fact (fact) PartialFunc-

tion specifies that each node is related to at most one node
(lone) under the link relation, i.e., link is a partial func-
tion. The predicate (pred) NoDirectedCycles uses universal

module list

sig Node { link: set Node }
fact PartialFunction { all n: Node | lone n.link }

pred NoDirectedCycles() { all n: Node | n !in n.^link }

run NoDirectedCycles // the scope is implicitly set to 3

Figure 1: Alloy model of singly-linked, acyclic lists.

(α) (β) (γ)

[empty]

Node={}
link={}

Node={Node0, Node1}
link={Node1->Node0}

Node={Node0, Node1, Node2}
link={Node0->Node2,

Node1->Node2}

Figure 2: Three example Alloy instances (α, β, and
γ) shown graphically and textually.

(µ) (ν) (ξ)

Figure 3: Three invalid valuations (µ, ν, and ξ).

quantification (all) to define acyclicity. The operator ‘^’
is transitive closure. Conceptually, the expression n.^link

represents the set of all nodes reachable from n following
one or more traversals along link. Thus, NoDirectedCycles

specifies that the set of nodes reachable from any node does
not include that node itself. The command run NoDirect-

edCycles instructs the analyzer to find an instance, i.e., a
valuation of Node and link such that the fact formula and
the predicate formula are true for the default scope of 3, i.e.,
at most 3 atoms in the set Node. Figure 2 illustrates three
example instances generated for this command by the ana-
lyzer. Figure 3 illustrates three example valuations that are
not instances and will not be generated for this command
by the analyzer.

3. BACKGROUND: ALLOY
An Alloy model consists of five kinds of paragraphs.

Signature (sig). A sig declaration introduces a set of
atoms as well as 0 or more relations.
Fact (fact). A fact is a formula that must always evaluate
to true for any solution generated by the Alloy Analyzer.
Signature declarations may introduce facts implicitly.
Predicate (pred). A pred is a named (and optionally pa-
rameterized) formula, which can be invoked elsewhere. Alloy
Analyzer does not allow recursive predicates and inlines all
predicate invocations before solving them.
Assertion (assert). An assert is a named formula, which
is intended to be checked for validity.
Command (run or check). A run command invokes a pred-

icate and directs the analyzer to find an instance. Thus,
the constraint-solving problem for a run command is to find
a solution to the conjunction of all fact formulas and the
predicate formula. A check command invokes an assertion
and directs the analyzer to find a counterexample to the
assertion. Thus, the constraint-solving problem for a check

command is to find a solution to the conjunction of all fact
formulas and the negation of the assertion formula.

A command may invoke a formula anonymously by pro-
viding its body explicitly; the empty body “{}” represents
the formula “true”. Each command (implicitly or explicitly)
specifies a scope, and the instances and counterexamples
generated are within that scope. Moreover, each command
may optionally specify an expected outcome in terms of con-
straint satisfiability using the “expect k” clause where k = 0
states the analyzer is expected to find no instance or coun-
terexample and k ≥ 1 states the analyzer is expected to
find at least one instance or counterexample (but k does not
specify the number of solutions).

Given an Alloy model with a command, the analyzer ex-
ecutes the command using Alloy’s SAT-based backend and
reports the constraint-solving results. If an instance or a
counterexample is found, the user can inspect it in a va-
riety of different textual and graphical formats. The user
may choose to iterate through the solutions, say to enhance
her/his confidence in the correctness of the model. A model
may have more than one commands and the user may select
a specific command or all of them to execute. The analyzer
adds symmetry-breaking predicates to remove isomorphic
solutions and reduce the total number of solutions [10].

4. FOUNDATIONS: AUnit
We represent an Alloy model as a quintuple 〈S, F, P,A,C〉,

where S is the set of all signature declarations, F is the set
of all facts, P is the set of all predicates, A is the set of all
assertions, and C is the set of all commands in m.

Let m = 〈S, F, P,A,C〉 be an Alloy model. Assume S is
non-empty. Let Ξ be the set of all expressions (other than
variable declarations or uses) in the parse tree of m. Let Φ
be the set of all formulas in the parse tree of m. The sizes
of Ξ and Φ are linear in the size of m.

For ρ ∈ C, let Ξρ ⊆ Ξ and Φρ ⊆ Φ be the expressions and
formulas respectively in the constraint-solving problem for
ρ. E.g., for the list model: Ξ = {Node, link, ^link, n.link,
n.^link}; Ξ"run NoDirectedCycles" = Ξ; Φ = {"all n: Node |

lone n.link", "all n: Node | n !in n.^link", "lone n.link",
"n !in n.^link"}; and Φ"run NoDirectedCycles" = Φ.

Let ΞF , ΞP , and ΞA (each ⊆ Ξ) respectively be the sets
of all expressions that appear in any fact, predicate, or as-
sertion. Let ΦF , ΦP , and ΦA (each ⊆ Φ) respectively be
the sets of all formulas that appear in any fact, predicate,
or assertion.

4.1 Declarative Test Cases

Definition 1. A test case for m is a pair 〈σ, ρ〉 where σ is
an assignment of values to all sets and relations in S, and ρ
is either the default command “run {}” or a command that
invokes a predicate in P or an assertion in A.

Thus, a test case may have commands other than those that
already exist in the model, i.e., belong to set C.

Definition 2. A test case t = 〈σ, ρ〉 passes if σ is a solution
to the constraint-solving problem for the command ρ and
otherwise, t fails.

To illustrate, let σ1 be any instance in Figure 2; then, the
test case 〈σ1, "run NoDirectedCycles"〉 passes. As another
example, let σ0 be the valuation in Figure 3(µ); then, the
test case 〈σ0, "run NoDirectedCycles"〉 fails since σ0 is not an
instance of the "run NoDirectedCycles" command; note how-
ever, the test case 〈σ0, "run {!NoDirectedCycles}"〉 passes.

4.2 Coverage Computation
Let T be a test suite.

4.2.1 Coverage: Test Case
Let t = 〈σ, ρ〉 ∈ T be a test case.

Definition 3. The coverage obtained for t is a pair of maps
〈πt, ωt〉 where:

• πt maps each Alloy expression in Ξρ to the set(s) of
tuples it evaluates to for assignment σ; and

• ωt maps each Alloy formula in Φρ to the boolean value(s)
it evaluates to for assignment σ.

To illustrate, let σ be the instance shown in Figure 2(β)
and ρ = "run NoDirectedCycles". Then π〈σ,ρ〉 is:

Node={Node0, Node1},
link={Node1->Node0},
^link={Node1->Node0},
n.link={{}, {Node0}},
n.^link={{}, {Node0}}

To clarify, the expression n.link is mapped to {{}, {Node0}}

since Node0.link={} and Node1.link={Node0}.
Moreover, ω〈σ,ρ〉 is:

"all n: Node | lone n.link"=true,
"all n: Node | n !in n.^link"=true,
"lone n.link"=true
"n !in n.^link"=true

To clarify, the formula "lone n.link" is mapped to true since
"lone Node0.link"=true and "lone Node1.link"=true.

4.2.2 Coverage: Test Suite

Definition 4. The coverage obtained for test suite T is a
pair of maps 〈πT = ∪t∈Tπt, ωT = ∪t∈Tωt〉.

4.3 Coverage Criteria
The basis of our model coverage criteria are four sets of

coverage requirements – three (R0, R1, and R2) based on
Alloy expressions and one (R3) based on Alloy formulas:

• R0 – For each signature declaration in S, there are
three requirements on the basic set s in the signature
declaration: 1. |s| = 0; 2. |s| = 1; and 3. |s| ≥ 2.

For the list example, R0 has a total of 3 requirements
(as there is only one set Node). The suite {〈α, ε〉, 〈β, ε〉,
〈µ, ε〉} covers R0.

• R1 – For each signature declaration in S, for each re-
lation r (i.e., non-basic set) declared in S, there are
three requirements on r: 1. |r| = 0; 2. |r| = 1; and
3. |r| ≥ 2.

For the list example, R1 has a total of 3 requirements
(due to the relation link). The suite {〈α, ε〉, 〈β, ε〉,
〈γ, ε〉} covers R1.

Figure 4: Coverage criteria subsumption relation.

• R2 – For each expression e ∈ ΞF ∪ ΞP ∪ ΞA, there are
three requirements on e: 1. |e| = 0; 2. |e| = 1; and
3. |e| ≥ 2.

For the list example, R2 has a total of 15 requirements
– three each for the five expressions Node, link, ^link,
n.link, and n.^link. Note the 3 requirements on link

in R2 are the same as R1; however, if the relation link

was not an expression in the fact PartialFunction or
the predicate NoDirectedCycles, this overlap in R1 and
R2 would not exist. To illustrate, the suite {〈α, ε〉,
〈β, ε〉, 〈γ, ε〉} covers ^link.

• R3 – For each formula f ∈ ΦF ∪ ΦP ∪ ΦA, there are
two requirements on f : 1. f is true; and 2. f is false.
Moreover, if f is a quantified formula, say “Q x : d | b”
with quantifier Q, variable x, domain d, and body b,
there are six additional requirements on f :

1. |d| = 0;

2. |d| = 1 and b is true;

3. |d| = 1 and b is false;

4. |d| ≥ 2 and b is true for each atom in d;

5. |d| ≥ 2 and b is false for each atom in d; and

6. |d| ≥ 2, b is true for at least one atom in d, and b
is false for at least one atom in d.

While requirement #1 for quantified formulas (i.e.,
|d| = 0) may seem redundant due to requirement #1
for R2, R3 may be applied independently of R2, and
hence we have six requirements for quantified formu-
las. Our choice of “≥ 2” in all four sets of requirements
is inspired by the common coverage requirement of 2+
iterations for loops in imperative code [3].

For the list example, R3 has 20 requirements – two
each for the four formulas "all n: Node | lone n.link",
"all n: Node | n !in n.^link", "lone n.link", "n !in

n.^link", and additionally six each for the two quanti-
fied formulas. To illustrate, test 〈ξ, ε〉 covers additional
requirement #6 for "all n: Node | n !in n.^link".

Definition 5. Signature coverage (SC): R0

Definition 6. Relation coverage (RC): R0 ∪R1

Definition 7. Expression coverage (EC): R0 ∪R1 ∪R2

Definition 8. Fact coverage (FaC): R3 restricted to ΦF .

Definition 9. Pred coverage (PC): R3 restricted to ΦP .

Definition 10. Assert coverage (AC): R3 restricted to ΦA.

Definition 11. Formula coverage (FC): R3

Definition 12. Model coverage (MC): EC ∪ FC

4.3.1 Criteria Subsumption
Our eight coverage criteria satisfy the following subsump-

tion partial-order ‘�’: SC � RC � EC �MC; FC �MC;
FaC � FC; PC � FC; and AC � FC (Figure 4).

5. FUTURE WORK AND CONCLUSIONS
This paper introduced our vision of AUnit, a test automa-

tion framework for Alloy in the spirit of the xUnit frame-
works for imperative programs. Our key contribution is to
define the concepts of declarative test case and coverage, and
a family of coverage criteria for Alloy models. We are cur-
rently implementing AUnit as an extension to the standard
Alloy tool-set that supports writing tests and reports cov-
erage obtained by coloring (partially) covered expressions
and formulas (akin to code coverage tools for imperative
programs [1]). We plan to allow users to provide partial
solutions [8] to reduce the burden of test formulation and
utilize SAT solving in test exploration and coverage compu-
tation. Our model coverage metrics provide a novel basis for
scenario exploration [9]. We plan to study the effectiveness
of AUnit is finding and removing bugs in Alloy models.

Our work opens the possibility of adapting for Alloy sev-
eral well-known testing techniques that have shown to be ef-
fective in the context of imperative programs. For example,
our coverage criteria could provide a basis for introducing
directed test generation [4] for Alloy. More broadly, tech-
niques for regression testing [11] can now be considered for
Alloy. Moreover, while the basic inspiration of AUnit is to
facilitate testing of Alloy models, we believe the analogies
between declarative programming and imperative program-
ming, which lie at the heart of AUnit, also provide the basis
of a more comprehensive framework for development and
maintenance of Alloy models.

6. ACKNOWLEDGMENTS
This work was funded in part by the National Science

Foundation Grant Nos. CCF-0845628 and CCF-1012759.

7. REFERENCES
[1] EclEmma code coverage tool. http://www.eclemma.org.

[2] JUnit test automation framework. http://junit.org/.

[3] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, 2008.

[4] Cadar et al. Symbolic execution for software testing in
practice: Preliminary assessment. In ICSE, 2011.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[6] N. Een and N. Sorensson. An extensible SAT-solver. In
SAT, 2003.

[7] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2012.

[8] V. Montaghami and D. Rayside. Extending Alloy with
partial instances. In ABZ, 2012.

[9] Nelson et al. Aluminum: Principled scenario exploration
through minimality. In ICSE, 2013.

[10] I. Shlyakhter. Declarative Symbolic Pure Logic Model
Checking. PhD thesis, MIT, 2005.

[11] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: A survey. STVR, 22(2), 2012.

