
A Case Study on Executing Instrumented Code
in Java PathFinder

Karl Palmskog, Farah Hariri, and Darko Marinov
University of Illinois at Urbana-Champaign

{palmskog, hariri2, marinov}@illinois.edu

ABSTRACT
Dynamic program analysis is widely used for detecting faults in
software systems. Dynamic analysis tools conceptually either use
a modified execution environment or inject instrumentation code
into the system under test (SUT). Tools based on a modified en-
vironment, such as Java PathFinder (JPF), have full access to the
state of the SUT but at the cost of a higher runtime overhead.
Instrumentation-based tools have lower overhead but at the cost of
less convenient control of runtime such as thread schedules. Com-
binations of these two approaches are largely unexplored, and to
our knowledge, have never been done in JPF. We present a case
study of adapting an existing instrumentation-based tool to run
inside JPF. To keep the instrumentation unchanged, we limited
our changes to the code invoked by the instrumentation. Ulti-
mately, the required changes were few and essentially reduce to
properly dividing the analysis-related state and logic between the
JPF and host JVM levels. Others can benefit from our experience
to quicker adapt their instrumentation-based tools to run in JPF.

Categories and Subject Descriptors: D.2.5 [Software En-
gineering]: Testing and Debugging

Keywords: dynamic analysis, instrumentation, Java PathFinder

1. INTRODUCTION
Dynamic program analysis is a popular technique for quality as-
surance of software systems. It can be used both for opportunistic
and exhaustive fault detection, and for comprehension of semantic
properties of the system under test (SUT). In particular, concur-
rent programs are a priority target for dynamic analysis, partly
due to their unique susceptibility to faults that often cannot be
reliably reproduced, such as atomicity violations and deadlocks.

Tools and techniques for dynamic analysis can be divided into
those that use a modified execution environment and those that
do not. Both approaches have their advantages and disadvan-
tages. If the execution environment is not modified, e.g., if a Java
program runs in a regular JVM, some form of code instrumen-
tation must be performed by the tool. This involves injecting
additional code into the SUT at locations of interest; when ex-
ecuted, this code generates events that are intercepted and pro-
cessed by the tool, while preserving the functional behavior of the
SUT. Leaving the environment in pristine condition allows taking
full advantage of optimizations such as JIT compilation, and lets
users explicitly control the boundary between the SUT and other
artifacts such as libraries, at the cost of diminished control over
runtime properties and less convenient access to the SUT state.
In comparison, executing a SUT inside a modified environment,
such as Java PathFinder (JPF) [8], allows full access to the SUT
state and control of runtime properties such as thread schedules,
but at a higher runtime cost. Running instrumented SUT code
generated by a dynamic analysis tool inside a modified execution

environment can capture key advantages of both approaches, but
is largely unexplored in the literature [1, p. 55]. To the best of our
knowledge, no combination of these approaches has been reported
previously in the context of JPF.

We present a case study of adapting an instrumentation-based
tool to run inside JPF. The original tool instruments Java byte-
code at locations of interest to concurrency, such as thread cre-
ations, methods calls, and field accesses [3]; Section 2 shows a
simple example. Our main motivation was to gain a convenient
control of thread schedules; we use JPF as we are familiar with
it. Because the original tool only considers single traces of the
SUT, we wanted to use JPF as a simulator, i.e., for execution
without backtracking—we do not explore schedules within one
JPF run but externally invoke JPF multiple times with different
parameters to obtain various schedules.

To keep the development effort of our adaptation low, a key re-
quirement was to keep the instrumentation of SUTs unchanged.
Thus, instrumented SUTs can still be analyzed outside of JPF,
and we did not have to touch the tool’s fairly complex bytecode-
injection logic. Instead, we limited our changes to the event-

processing logic, i.e., the code called by the operations injected
into the SUT. While one could, in principle, reimplement the
event processing using JPF listeners to execute uninstrumented
SUTs, it irrevocably ties the tool to JPF, and in our case would
have forced us to reimplement the complex code-injection logic.

Section 3 presents in detail the changes we performed; overall,
they were not extensive. Section 5 summarizes the tasks required
for these changes, which essentially reduce to dividing state and
logic related to event processing between the JPF and the host
JVM. Following these tasks for an instrumentation-based analysis
tool can increase the scope and accuracy of its analysis without
the need for extensive refactoring. We believe our approach could
be automated to a large extent, with users configuring division
of logic and state via configuration files and annotations. More-
over, developers of new analyses can consider implementing them
first in JPF (for easier debugging and experimentation) but us-

ing instrumentation rather than JPF listeners, to enable easier
deployment directly on the JVM (for faster and more scalable
analysis, with a potentially more complex implementation).

2. ORIGINAL DYNAMIC ANALYSIS TOOL
The purpose of the original dynamic analysis tool [3] is to infer
atomicity properties of concurrent programs; for lack of space,
we do not describe it in detail. Instead, we give an overview
of the key points via a simple example. Our example instru-
mented SUT is a multithreaded download manager that spawns
a configurable number of worker threads to download URLs from
a shared list. Fig. 1 shows the program source, with code in-



1 public class Downloader {

2 public static void main(String[] args)

3 throws InterruptedException, MalformedURLException {

4 ThreadData _td = ThreadData.current();

5 Updater.methodEntry("main", _td);

6 final URLManager manager = new URLManager();

7 String[] pages = {"wiki", "timeline", "roadmap"};

8 for (String p : pages) {

9 manager.addURL

10 (new URL("http://...nasa.gov/trac/jpf/" + p));

11 }

12 int numWorkers = Integer.parseInt(args[0]);

13 Thread[] threads = new Thread[numWorkers];

14 for (int i = 0; i < numWorkers; i++) {

15 threads[i] = new Thread() {

16 public void run() {

17 ThreadData _td = ThreadData.current();

18 Updater.methodEntry("run", _td);

19 URL url;

20 while ((url = manager.getNextURL()) != null)

21 download(url);

22 Updater.methodExit(_td);

23 }

24 private void download(URL url) {

25 ThreadData _td = ThreadData.current();

26 Updater.methodEntry("download", _td);

27 /∗ ... call to downloading library ... ∗/
28 _td.counter++;

29 Updater.methodExit(_td);

30 }

31 };

32 threads[i].start();

33 Updater.fork(threads[i], _td);

34 }

35 for (Thread t : threads) {

36 t.join();

37 Updater.join(t, _td);

38 }

39 Updater.methodExit(_td);

40 }

41 }

42 class URLManager {

43 private List<URL> urls = new ArrayList<URL>();

44 synchronized URL getNextURL() {

45 ThreadData _td = ThreadData.current();

46 Updater.methodEntry("getNextURL", _td);

47 URL url = urls.isEmpty() ? null : urls.remove(0);

48 Updater.fieldRefGet(this, urls, "urls", _td);

49 Updater.methodExit(_td);

50 return url;

51 }

52 synchronized void addURL(URL url) {

53 ThreadData _td = ThreadData.current();

54 Updater.methodEntry("addURL", _td);

55 urls.add(url);

56 Updater.fieldRefGet(this, urls, "urls", _td);

57 Updater.methodExit(_td);

58 }

59 }

Figure 1: SUT with instrumentation shown in bold.

jected by the instrumentation in bold. The main method creates
a URLManager instance (manager) and adds some URLs to the
shared list (lines 7–11). Then, it creates the specified number of
threads (numWorkers), each of which enters a loop that retrieves
and downloads URLs (lines 20–21). Finally, after all URLs have
been downloaded, all threads are joined (lines 35–38).

The code injected into the SUT calls methods in two classes,
Updater and ThreadData, whose simplified definitions are listed
in Fig. 2. The Updater class shows methods for five events; the
real tool processes many more events. The instrumentation adds
calls to methodEntry and methodExit at the start and end, re-
spectively, of each SUT method (e.g., lines 18 and 22 in Fig. 1).
It also adds calls to fork and join where a thread is started and
joined, respectively (e.g., lines 33 and 37 in Fig. 1). Because the
original instrumentation is performed at the bytecode level with-
out analyzing the class hierarchy, fork and join can be called

for objects that are not instances of Thread. Hence, the event-
processing code performs runtime checks (line 6 of Updater in
Fig. 2). Finally, the instrumentation adds calls to fieldGetRef

after a field is read (lines 48 and 56 in Fig. 1).

ThreadData is a bookkeeping class used to track data related to
SUT threads. The field threadId introduces a logical numbering
of SUT threads. The field counter counts the number of calls to
external libraries, which amounts here to calls to download a URL
(lines 27–28 in Fig. 1). ThreadData also holds observation data
produced when events are processed. The forThread method in
ThreadData looks up, for a given Thread instance, its correspond-
ing ThreadData instance, creating it if required. The methods in
Updater contain the logic that updates the observation data and
additionally maintains metadata for SUT objects using the map
objectsData. At the end of the SUT execution, all observation
data is summarized and written to file.

Two design decisions on event processing are important to point
out. First, most methods analyze only the identity of the ob-
jects passed in, e.g., to track which thread accesses which ob-
ject. The only exception are the fork and join methods that
also check the type of the objects and perform map lookups via
forThread. Second, the instrumentation mostly calls methods on
Updater and ThreadData to represent events, but it directly ac-
cesses the field counter (rather than calling some method, say,
incrementCounter), presumably for performance reasons. We are
not aware of the rationale behind these decisions for the original
tool. However, our goal was to make the instrumented code work

in JPF, without any changes to the instrumentation.

3. INSTRUMENTED CODE IN JPF
Simply running an instrumented SUT in JPF proved to be prob-
lematic, not least because the observation data summarizer calls
methods in java.io classes that are currently unavailable inside
JPF. In addition, mixing SUT code with extensive code added by
instrumentation inside JPF runs the risk of invalidating the anal-
ysis output, because JPF would be unable to distinguish between
the real SUT and instrumentation at runtime. Finally, unneces-
sarily executing code at the JPF level is expensive in terms of
both time and memory.

In light of these concerns, we decided to migrate instrumenta-
tion code to the JVM level by using the JPF’s Model Java Inter-
face (MJI). We introduced custom JVM equivalents of Updater
and ThreadData, named JVMUpdater and JVMThreadData, respec-
tively, to hold the analysis-related state and logic. Because the in-
strumentation code directly manipulates counter in ThreadData,
that field could not simply be moved to JVMThreadData. Instead,
we had to duplicate the field at both levels and to keep the levels
consistent when mapping ThreadData instances to JVMThreadData
instances in our peer classes. Handling instrumentation-injected
calls to methods that are not passed SUT objects directly, e.g.,
methodEntry and methodExit, was straightforward. After remov-
ing the method bodies and adding the native keyword to signa-
tures in Updater, moving the logic to JVMUpdater, and modifying
the MJI peer JPF_dyn_Updater to proxy calls, no other changes
are necessary. Fig. 3 illustrates the conceptual division between
JPF and the host JVM.

In contrast, the methods fork and join required splitting the
event processing logic between the stripped-down Updater class
and the JVMUpdater class. The reason for these splits is that
the lookup performed by forThread is difficult to perform at the
JVM level, since the map between Thread and ThreadData lives



1 public class Updater {

2 private static Map<Object,ObjectData> objectsData =

3 new WeakHashMap<Object,ObjectData>();

4 public static synchronized void fork

5 (Object childThread, ThreadData parentThreadData) {

6 if (!(childThread instanceof Thread)) return;

7 ThreadData childThreadData =

8 ThreadData.forThread((Thread) childThread);

9 /∗ ... logic updating observationData ... ∗/
10 }

11 public static synchronized void join

12 (Object thread, ThreadData waitingThreadData) {

13 /∗ ... similar to fork .. ∗/
14 /∗ ... logic updating observationData ... ∗/
15 }

16 public static void methodEntry

17 (String methodName, ThreadData threadData) {

18 /∗ ... logic updating observationData ... ∗/
19 }

20 public static void methodExit

21 (ThreadData threadData) {

22 /∗ ... logic updating observationData ... ∗/
23 }

24 public static void fieldRefGet(Object owner,

25 Object val, String fname, ThreadData threadData) {

26 /∗ ... logic updating observationData and objectsData ... ∗/
27 }

28 }

1 public class ThreadData {

2 public int counter;

3 private int threadId;

4 private ObservationData observationData;

5 public ThreadData(int threadId) {

6 this.threadId = threadId;

7 this.counter = 0;

8 this.observationData = new ObservationData();

9 }

10 public ObservationData getObservationData() {

11 return observationData;

12 }

13 public int getThreadId() {

14 return threadId;

15 }

16 public static ThreadData current() {

17 return localData.get();

18 }

19 public static synchronized ThreadData forThread

20 (Thread thread) {

21 ThreadData td = threadData.get(thread);

22 if (td == null) {

23 td = new ThreadData(nextThreadId++);

24 threadData.put(thread, td);

25 }

26 return td;

27 }

28 private static int nextThreadId = 0;

29 private static Map<Thread, ThreadData> threadData =

30 new WeakHashMap<Thread, ThreadData>();

31 private static ThreadLocal<ThreadData> localData =

32 new ThreadLocal<ThreadData>() {

33 protected ThreadData initialValue() {

34 ThreadData td =

35 forThread(Thread.currentThread());

36 ThreadDataSummarizer.register(td);

37 return td;

38 }

39 };

40 }

Figure 2: Classes used by instrumentation-injected code.

at the JPF level. To avoid this complication, we introduced the
methods forkNative and joinNative, which are invoked after
the respective map lookups. These calls are then proxied via the
MJI peer to JVMUpdater.

The definitions of the classes resulting from the change of Updater
are listed in Fig. 4. As is emphasized in the code, the objectsData
field has moved from Updater to JVMUpdater. The corresponding
classes for ThreadData are listed in Fig. 5. The observationData

JVM

JPF

instrumented

SUT

Updater

ThreadData
JVMUpdater

JVMThreadData

JPF_dyn_Updater

JPF_dyn_ThreadData

observation

data

Figure 3: Architecture of the changed tool.

field has moved from ThreadData to JVMThreadData, and, to make
sure that JVMThreadData objects are created for each new thread,
the method initialValueNative is called at the JPF level. In
the peer class JPF_dyn_ThreadData, the corresponding method
creates a new JVMThreadData instance and keeps track of the
mapping between it and the associated ThreadData object.

The signature of the method fieldRefGet changes in the transi-
tion to the JVM level; the parameters owner and value change
their types from Object to int. Because only the identities of
these objects are used for map lookups in the event-processing
logic, and the map objectsData can use int lookups via auto-
boxing, no further changes are required.

After applying the outlined changes, we managed to analyze 18
out of 19 instrumented small test programs unchanged inside JPF;
the remaining program had to be adapted slightly. We further
successfully analyzed five out of six of the larger benchmark pro-
grams [3], with the final program failing due to extensive calls
to java.io methods currently unavailable in JPF. We measured
the runtime of the five working benchmark programs on an Intel
Core2 Quad 2.33 GHz computer with 8 GB of memory. Table 1
shows the user execution time, i.e., the user-mode CPU time for
each benchmark program, uninstrumented directly on the JVM
(JVM ), instrumented directly on the JVM (JVM+i), uninstru-
mented in JPF (JPF ), and instrumented in JPF (JPF+i). With
all benchmarks being multithreaded, user execution time has the
advantage of eliminating the real time differences that arise as the
JVM leverages multiple processor cores, which the single-threaded
JPF is unable to do. tsp2 runs exceptionally slowly in JPF, most
likely due to its extensive use of array operations. The execu-
tion times are the average of 10 runs, except for tsp2 in JPF,
which are for single runs due to their long duration. The time
overhead (of using instrumentation and JPF) is the ratio between
the execution time and the corresponding uninstrumented JVM
execution time. The last three columns show the memory usage,
with and without instrumentation (plus the computed overhead),
as reported in the JPF output statistics summary.

As anecdotal evidence of the benefits of JPF, while running collec-
tions in JPF, we encountered a thread schedule that is unlikely to
be exercised by the JVM but that revealed a fault in the random
fuzzer driving the SUT execution. Specifically, the fuzzer called
the method nextInt in java.util.Random on the result of an
expression that performed a subtraction; in the unlikely schedule,
the result of the expression was negative. This shows that running
instrumented code inside JPF can offer immediate benefits.

4. RELATED WORK
The dynamic binary instrumentation tool Valgrind [5] combines
instrumentation and a modified execution environment, in a way
conceptually similar to what we do. In Valgrind, machine code is
translated to an intermediate format, instrumented, and recom-
piled to run in a controlled environment with a simulated CPU.
However, in our approach, the modified environment is unaware



1 public class Updater {

2 public static synchronized void fork

3 (Object childThread, ThreadData parentThreadData) {

4 if (!(childThread instanceof Thread)) return;

5 ThreadData childThreadData =

6 ThreadData.forThread((Thread) childThread);

7 forkNative(childThreadData, parentThreadData);

8 }

9 native public static void forkNative

10 (ThreadData childThreadData,

11 ThreadData parentThreadData);

12 public static synchronized void join

13 (Object thread, ThreadData waitingThreadData) {

14 /∗ ... similar to fork ... ∗/
15 joinNative(threadData, waitingThreadData);

16 }

17 native public static void joinNative

18 (ThreadData threadData,

19 ThreadData waitingThreadData);

20 native public static void methodEntry

21 (String methodName, ThreadData threadData);

22 native public static void methodExit

23 (ThreadData threadData);

24 native public static void fieldRefGet(Object owner,

25 Object val, String fn, ThreadData threadData);

26 }

1 public class JPF_dyn_Updater extends NativePeer {

2 @MJI public static void forkNative

3 (MJIEnv env, int cref, int ctref, int ptref) {

4 JVMUpdater.fork

5 (JPF_dyn_ThreadData.remap(env, ctref),

6 JPF_dyn_ThreadData.remap(env, ptref));

7 }

8 @MJI public static void joinNative

9 (MJIEnv env, int cref, int tref, int wtref) {

10 /∗ ... similar to forkNative ... ∗/
11 }

12 @MJI public static void methodEntry

13 (MJIEnv env, int cref, int mref, int tref) {

14 JVMUpdater.methodEntry

15 (env.getStringObject(mref),

16 JPF_dyn_ThreadData.remap(env, tref));

17 }

18 @MJI public static void methodExit

19 (MJIEnv env, int cref, int tref) {

20 JVMUpdater.methodExit

21 (JPF_dyn_ThreadData.remap(env, tref));

22 }

23 @MJI public static void fieldRefGet(MJIEnv env,

24 int cref, int oref, int vref, int fref, int tref) {

25 JVMUpdater.fieldRefGet

26 (oref, vref, env.getStringObject(fref),

27 JPF_dyn_ThreadData.remap(env, tref));

28 }

29 }

1 public class JVMUpdater {

2 private static Map<Object,ObjectData> objectsData =

3 new WeakHashMap<Object,ObjectData>();

4 public static void fork

5 (JVMThreadData childThreadData,

6 JVMThreadData parentThreadData) {

7 /∗ ... logic updating observationData ... ∗/
8 }

9 public static void join(JVMThreadData threadData,

10 JVMThreadData waitingThreadData) {

11 /∗ ... logic updating observationData ... ∗/
12 }

13 public static void methodEntry

14 (String methodName, JVMThreadData threadData) {

15 /∗ ... logic updating observationData ... ∗/
16 }

17 public static void methodExit

18 (JVMThreadData threadData) {

19 /∗ ... logic updating observationData ... ∗/
20 }

21 public static void fieldRefGet(int owner, int val,

22 String fname, JVMThreadData threadData) {

23 /∗ ... logic updating observationData and objectsData ... ∗/
24 }

25 }

Figure 4: Changed classes for Updater.

1 public class ThreadData {

2 public int counter;

3 private int threadId;

4 public ThreadData(int threadId) {

5 this.threadId = threadId;

6 this.counter = 0;

7 }

8 public static ThreadData current() {

9 return localData.get();

10 }

11 public static synchronized ThreadData forThread

12 (Thread thread) {

13 ThreadData td = threadData.get(thread);

14 if (td == null) {

15 td = new ThreadData(nextThreadId++);

16 threadData.put(thread, td);

17 initialValueNative(td);

18 }

19 return td;

20 }

21 native public static void initialValueNative

22 (ThreadData td);

23 private static int nextThreadId = 0;

24 private static Map<Thread, ThreadData> threadData =

25 new WeakHashMap<Thread, ThreadData>();

26 private static ThreadLocal<ThreadData> localData =

27 new ThreadLocal<ThreadData>() {

28 protected ThreadData initialValue() {

29 return forThread(Thread.currentThread());

30 }

31 };

32 }

1 public class JPF_dyn_ThreadData extends NativePeer {

2 private static Map<Integer, JVMThreadData> map =

3 new HashMap<Integer, JVMThreadData>();

4 public static JVMThreadData remap

5 (MJIEnv env, int tdref) {

6 int tdId = env.getIntField(tdref, "threadId");

7 JVMThreadData td = map.get(tdId);

8 td.counter = env.getIntField(tdref, "counter");

9 return td;

10 }

11 @MJI public static void initialValueNative

12 (MJIEnv env, int rcls, int tdref) {

13 int threadId = env.getIntField(tdref, "threadId");

14 JVMThreadData td = new JVMThreadData(threadId);

15 map.put(threadId, td);

16 ThreadDataSummarizer.register(td);

17 }

18 }

1 public class JVMThreadData {

2 public int counter;

3 private int threadId;

4 private ObservationData observationData;

5 public JVMThreadData(int threadId) {

6 this.threadId = threadId;

7 this.counter = 0;

8 this.observationData = new ObservationData();

9 }

10 public ObservationData getObservationData() {

11 return observationData;

12 }

13 public int getThreadId() {

14 return threadId;

15 }

16 }

Figure 5: Changed classes for ThreadData.

of the instrumentation, and our key point is to keep the code-
injection logic unchanged.

The JPF core is a virtual machine running on a host JVM. By
default, JPF explores all choice points in a SUT state space, but
other uses can be configured. Havelund and Roşu [4] first sug-
gested that a stateless model checker could generate traces for
programs running inside runtime monitoring environments, which
is similar to our use of JPF for controlling thread schedules.



Program Time (s) Time overhead vs. JVM Memory (MB) Mem. ovh.

JVM JVM+i JPF JPF+i JVM+i JPF JPF+i JPF JPF+i JPF+i

collections 0.58 3.55 24.98 135.76 6.18 43.43 236.06 212.00 831.10 3.92
elevator 0.10 1.07 8.07 12.34 11.23 84.81 129.78 150.00 150.00 1.00
jcurzez1 0.20 3.57 155.94 244.91 17.86 780.07 1225.18 224.60 290.00 1.29
jcurzez2 0.19 3.75 161.45 258.28 20.23 870.84 1393.11 237.40 343.50 1.45
tsp2 0.23 9.29 32807.90 92943.21 39.96 141109.24 399755.76 4323.00 6905.00 1.60

Table 1: Time and memory overhead of instrumented code on JVM and JPF for five original benchmarks [3].

The jpf-nhandler [6] extension to JPF allows configuring selected
SUT methods to be executed at the JVM level. By default, jpf-
nhandler re-instantiates at the JVM level all objects passed as pa-
rameters to the selected methods, which can be costly and fails for
some objects, e.g., Thread instances. However, jpf-nhandler can
be configured to maintain looser correspondences between JPF
and JVM objects, and to persist objects created at the JVM level.
Hence, our division of analysis-related state and logic between
JPF and JVM could also be implemented through jpf-nhandler.
A previous effort related to jpf-nhandler was mixed execution of
code at the JPF and JVM levels [2], but no previous work reports
executing (unchanged) instrumented code in JPF.

Tools that enable control of thread schedules by instrumenting
Java bytecode go back over a decade [7]. We did not pursue this
approach as we wanted to avoid integrating instrumentation for
controlling threads with the existing instrumented code.

5. LESSONS LEARNED AND FUTURE WORK
Using both instrumentation and JPF may initially be perceived
as an “overkill” because one can implement an analysis using only
instrumentation or only JPF. However, our goal was to enable
control of thread schedules for an existing, instrumentation-based
tool. Overall, the changes we made to enable running instru-
mented SUTs inside JPF were few but subtle. We believe our
approach is applicable to similar instrumentation-based tools and
offers a way to increase their sophistication (e.g., to control non-
deterministic choices such as thread schedules) with little effort.
The main obstacle is to decouple the logic that queries SUT ob-
jects from the logic that updates the analysis-related state.

As it turned out, the logic updating the SUT metadata in the
tool we considered depended almost exclusively on the type of
event and a few pieces of event context, e.g., the thread in which
the event took place and the identity of the callee object. This
allowed method calls from instrumented code to be straightfor-
wardly proxied via MJI to the JVM level. Event-processing logic
that is entangled with sophisticated queries of SUT state would
have required more effort to port. Observation data, i.e., the SUT
metadata updated by the logic, is ideally kept completely at the
JVM level for reasons of performance and noninterference with
JPF-based analysis. Because the instrumentation produces code
that directly accesses a field (namely, counter), we could not
fully migrate all SUT metadata outside the reach of JPF. This is
a strong argument for only injecting method calls into a SUT.

In summary, we carried out the following tasks to run instru-
mented SUT code in JPF: (1) Introduce JVM-level versions of
classes called by injected code. (2) Transfer as much state as pos-
sible from JPF-level classes to the JVM-level classes. (3) Split up
the event-processing logic that accesses SUT state and the logic
that updates metadata; place the former at the JPF level and the
latter at the JVM level. (4) Mark key JPF-level method signa-
tures with native and create MJI peer classes that proxy calls to

the JVM, synchronizing state where necessary. We believe most
of these tasks could be automated if key parameters are specified
by the user as annotations and options in property files. Hence,
future work includes developing a JPF extension, possibly on top
of jpf-nhandler, to assist in running instrumented code inside JPF.

Other future work is possible. First, our JPF+i tool stores nearly
all observation data at the JVM level, which precludes the use of
backtracking in JPF, and thus exploration of several thread sched-
ules for a single run. By checkpointing observation data at JPF
choice points, it would be possible to enable backtracking. Second,
minimizing memory requirements of JPF+i is another important
issue. For example, migrating the WeakHashMap field objectsData

from Updater to JVMUpdatermeans that map entries for garbage-
collected SUT objects are no longer dropped automatically and
leak memory. They could be dropped by adding custom JPF
listeners to remove corresponding JVM objects when their SUT
objects are garbage-collected by JPF. Third, there is a substan-
tial duplication of functionality in the analysis arising from the
instrumented code and the analysis available inside JPF. For ex-
ample, the instrumentation in JPF+i includes its own data-race
analysis, while the same functionality is already available in JPF.

The complete executable code of our running example is at http:
//mir.cs.illinois.edu/farah/artifacts/jpf_example.zip.

Acknowledgments
We thank Peter Dinges, Marcelo d’Amorim, Milos Gligoric, and
the reviewers for their comments. This work was partially sup-
ported by NSF Grant Nos. CCF-1012759 and CCF-1438982.

6. REFERENCES
[1] C. Artho. Combining Static and Dynamic Analysis to Find

Multithreading Faults Beyond Data Races. PhD thesis, ETH
Zürich, 2005.

[2] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized
execution of deterministic blocks in Java PathFinder. In
ICFEM, 2006.

[3] P. Dinges, M. Charalambides, and G. Agha. Automated
inference of atomic sets for safe concurrent execution. In
PASTE, 2013.

[4] K. Havelund and G. Roşu. An overview of the runtime
verification tool Java PathExplorer. Form. Methods Syst.

Des., 24(2):189–215, Mar. 2004.

[5] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007.

[6] N. Shafiei and F. van Breugel. Automatic handling of native
methods in Java PathFinder. In SPIN, 2014.

[7] S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. ENTCS, 70(4):142–157, 2002.

[8] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Autom. Softw. Eng.,
10(2):203–232, 2003.


