
InstantCheck: Checking the Determinism of Parallel
Programs Using On-the-fly Incremental Hashing∗

Adrian Nistor
University of Illinois at

Urbana-Champaign, USA
nistor1@illinois.edu

Darko Marinov
University of Illinois at

Urbana-Champaign, USA
marinov@illinois.edu

Josep Torrellas
University of Illinois at

Urbana-Champaign, USA
torrella@illinois.edu

ABSTRACT
Developing multithreaded programs in shared-memory systems is
difficult. One key reason is the nondeterminism of thread inter-
action, which may result in one code input producing different
outputs in different runs. Unfortunately, enforcing determinism
by construction typically comes at a performance, hardware, or
programmability cost. An alternative is to check during testing
whether code is deterministic.

This paper presents InstantCheck, a novel technique that checks
determinism with a very small runtime overhead while requiring
only a minor hardware extension. During code testing, Instant-
Check can check whether the code under test ends up in a deter-
ministic state in various runs. The idea is to compute a 64-bit hash
of the memory state and compare the hashes of different test runs
that have the same input. If two runs have different hashes, Instant-
Check reports state nondeterminism. For efficient operation, In-
stantCheck uses on-the-fly incremental hashing in hardware. The
hash is kept in a per-core 64-bit register, which trivially supports
virtualization, migration, and context switching.

We use InstantCheck to understand the determinism properties
of 17 popular applications, including Sphinx3, PBZip2, PARSEC,
and SPLASH-2. InstantCheck incurs a negligible average runtime
overhead of 0.3% over native testing runs. We also show how using
InstantCheck programmers can find bugs and discuss other appli-
cations of fast memory-state hashing. While using InstantCheck,
we found a real bug in the widely used PARSEC benchmark.

1. INTRODUCTION
Parallel programming in shared-memory systems is a challeng-

ing task. Often, code is written with threads that race over synchro-
nization or data variables, changing the memory state with non-
commutative updates. In some cases, a piece of code can produce,
for the same input memory state, different resulting memory states
in different runs with different thread interleavings. Such code,
which we refer to as Externally nondeterministic (or nondetermin-
istic for short), is hard to debug, test, maintain, and reuse.

Determinism is increasingly recognized as an important prop-
erty for a large body of parallel code [3,6,9,10,12,41,44]. Most of
the recent work [3, 6, 12, 41, 44] achieves external determinism by
requiring a more restrictive property, namely fixing or strictly lim-
iting the order(s) of inter-thread communications — an environ-
ment we refer to as having Internal determinism. Unfortunately,
enforcing internal determinism usually comes at a performance,

∗This work was supported in part by the National Science Foun-
dation under grants CCF 09-16893, CCF 07-46856, and CNS 07-
20593; and Intel and Microsoft under the Universal Parallel Com-
puting Research Center (UPCRC).

hardware, or programmability cost. For example, it may be at-
tained by using a non-standard hardware architecture [12] or run-
time system [3, 41] that forces a fixed communication order, by
limiting the types of thread synchronization primitives allowed in
the code [44], or by annotating the code and limiting the con-
structs allowed [6], possibly hindering general-purpose program-
ming. Burnim and Sen [9, 10] propose checking of determinism
which focuses on selected data structures in a program and by de-
fault checks neither internal nor external determinism.

Efficient checking of external determinism: Instead of enforc-
ing internal determinism, we propose InstantCheck, a novel tech-
nique for checking external determinism during testing of paral-
lel code. For such testing, developers typically run the code many
times for the same input, using random, stress, or systematic testing
to cover different thread interleavings [8,35,36,42,45,48]. During
these testing runs, the code is being checked for several correct-
ness properties such as crashes, assertion violations, semantic bugs,
deadlocks, data races, etc. InstantCheck piggybacks on the testing
already done for parallel code and simply adds several very fast
checks for external determinism.

InstantCheck checks whether different runs with the same in-
put state produce deterministic output state. To efficiently compare
states, InstantCheck distills the memory state into a 64-bit hash
and compares the hashes for different test runs. If hashes differ
for two runs, InstantCheck reports nondeterminism. InstantCheck
uses hashes because they are efficient to compute and yet extremely
accurate: false positives (i.e., two memory states are the same but
their hashes differ) are not possible, and false negatives (i.e., two
memory states differ but their hashes are the same) are statistically
rare — for a 64-bit hash, the probability is 1 in 264.

We propose two schemes for computing hashes. (1) Our main
contribution is InstantCheckInc

1, a scheme that uses incremental
hashing [2] to compute hashes on-the-fly as the code writes to mem-
ory. We present two versions of this scheme: a hardware-supported
version, HW-InstantCheckInc, which has a very low runtime over-
head, and a software-only version, SW-InstantCheckInc, which re-
quires no new hardware. (2) We also present another, software-only
scheme, SW-InstantCheckTr , that does not compute hashes on-the-
fly but rather traverses the entire memory state.

InstantCheck does not suffer the performance or programmabil-
ity penalties associated with enforcing internal determinism. In
fact, InstantCheck does not require the code to be internally deter-
ministic: in different runs, the code may have different inter-thread
communication, different intermediate states, or even (benign) data
races, as long as the runs end up with the same state.

1The name “InstantCheck” signifies that the incremental scheme
makes the memory state hash instantly available for comparison
and determinism checking whenever needed.

global G

local L

....

LOCK

G += L

UN__LOCK

....

(a) code fragment

G = 2 + 7

G = 9 + 3

final: G == 12

initial G == 2

L
0
 == 7 L

1
 == 3

TID 0 TID 1

(b) one run

G = 5 + 7

G = 2 + 3

final: G == 12

initial G == 2

L
0
 == 7 L

1
 == 3

TID 0 TID 1

(c) another run

Figure 1: Example of external determinism. The final state is deterministic, even though the intermediate steps are not.
(a) Code with a global variable G updated using a local variable L of each thread. (b) Run of code with thread 0 first
updating G. (c) Run of code with thread 1 first updating G.

Minor hardware requirement: HW-InstantCheckInc imple-
ments on-the-fly incremental hashing in hardware, using a per-core
64-bit register and a hashing module. This minimal hardware triv-
ially supports virtualization, migration, and context switching, and
scales with the number of cores. Incremental hashing enables a
high-performance hardware implementation because: (1) the oper-
ations on the hashing register are core-local and (2) the local op-
erations on each hashing register can be performed in parallel and
out-of-order. The hardware extension proposed for HW-Instant-
CheckInc can be also used for several other software development
tasks such as detecting software bugs, separating benign data races,
improving the efficiency of testing, and reducing the cost of deter-
ministic replay.

Evaluation: We use InstantCheck to understand the determin-
ism properties of 17 applications: sphinx3 [26], pbzip2 [17], and
applications from PARSEC [4] and SPLASH-2 [50]. These ap-
plications are challenging for determinism checking because they
were not written for determinism but for high-performance, and
they use a variety of thread communication constructs, global vari-
ables, benign races, and floating point (FP) operations. Instant-
Check shows that 14 of the 17 applications are externally determin-
istic when allowing for FP imprecision and some small nondeter-
ministic data structures. In contrast, most of this code is not inter-
nally deterministic and thus cannot be checked by the techniques
based on internal determinism [6, 44] and does not need to have
internal determinism enforced [3,12,41]. HW-InstantCheckInc in-
curs a negligible average runtime overhead of 0.3% over native test-
ing runs. While the goal of our experiments was to characterize de-
terminism and not look for new bugs, we still found a concurrency
bug in the widely used PARSEC benchmark [4]. The PARSEC au-
thor corrected the bug after we reported it.

2. INSTANTCHECK

2.1 The Idea and Example
InstantCheck is based on the following observation: if execution

leaves a program in a deterministic state, then the program is exter-
nally deterministic, regardless of how the program executed inter-
nally. During testing, as parallel code is run many times for one in-
put [8,35,36,42,45,48], InstantCheck adds several very fast checks
to detect if different runs lead to deterministic states. These addi-
tional checks are done simultaneously with the checks for regular
correctness properties and do not require additional test runs. In-
stantCheck summarizes the memory state (heap and static data) in

a 64-bit hash, which HW-InstantCheckInc computes very quickly
using a minor hardware extension (Section 3), while SW-Instant-
CheckInc and SW-InstantCheckTr compute without hardware sup-
port but slower (Section 4). For all schemes, InstantCheck uses
software to compare the computed hashes and to control sources
of input nondeterminism (Section 5). If two runs produce different
hashes, InstantCheck found some nondeterminism in the code. If
many runs produce the same hash, the code is deterministic within
the coverage of the test.

Figure 1(a) shows an example that illustrates the difference be-
tween internal and external determinism. This code fragment is
a simplified version of code appearing in several PARSEC and
SPLASH-2 applications. The shared, global variable G is updated
using the local variable L of each thread. Figure 1(b) shows the run
where G is updated first by thread 0 and then by thread 1, while
Figure 1(c) shows the run where G is updated first by thread 1 and
then by thread 0. The final states are the same, with G being 12.
Thus, any other code using G after the run ends sees the code in
Figure 1(a) as deterministic. However, note that the code executes
internally nondeterministically: the two runs in figures 1(b) and
1(c) update G in different orders, the intermediate values of G dif-
fer (9 or 5), and the final value (12), although the same, is written
by different threads (0 or 1). InstantCheck successfully ignores this
internal nondeterminism and correctly reports the code as being ex-
ternally deterministic (within the test coverage). Note that if G and
L are floating point variables, different order of additions could
result in different results; Section 5 discusses how InstantCheck
handles this and other sources of bit-by-bit nondeterminism.

2.2 Capturing State using Incremental Hashing
The key to HW-InstantCheckInc’s efficiency is to compute the

memory state hashes incrementally, updating the hash value each
time a memory location is modified. Thus, HW-InstantCheckInc

avoids the cost of traversing the shared memory (heap and the static
data) each time it needs to compute the hash. Bellare and Mic-
ciancio [2] introduced incrementally computable hash and formally
proved it has the same good properties in terms of low hash colli-
sion as non-incrementally computable hashes. We describe here
how HW-InstantCheckInc uses incremental hashing to capture the
memory state, and how HW-InstantCheckInc computes such a hash
in a multicore system using core-local operations.

If a program memory state S has values v1, v2, . . ., vm at ad-
dresses a1, a2, . . ., am, then we define its State Hash as SH(S) =
h(a1, v1)⊕h(a2, v2)⊕ . . .⊕h(am, vm), where h(a, v) is the hash

TH
0
 = TH

0
 h(G , 2)

 h(G , 9)

TH
0
 = 0

TID 0 TID 1

TH
1
 = 0

TH
1
 = TH

1
 h(G , 9)

 h(G , 12)

G == 2

G = 2 + 7

–

+
G = 9 + 3

–

+

 SH

= TH
0
 TH

1
 =

 = h(G , 2) h(G , 12)– +

+

(a) Hashing the run from Figure 1(b)

G = 5 + 7

TH
0
 = TH

0
 h(G , 5)

 h(G , 12)

–

+

TH
0
 = 0

TID 0 TID 1

TH
1
 = 0

G == 2

G = 2 + 3

TH
1
 = TH

1
 h(G , 2)

 h(G , 5)

–

+

 SH

= TH
0
 TH

1
 =

 = h(G , 2) h(G , 12)– +

+

(b) Hashing the run from Figure 1(c)

Figure 2: Capturing program state with incremental hashing. (a) Hashing operations corresponding to the run in
Figure 1(b). (b) Hashing operations corresponding to the run in Figure 1(c).

of the address and value of one memory location (e.g., computed
by CRC), and ⊕ is a 64-bit modulo addition. The hash includes
addresses such that a different permutation of the same values does
not have the same State Hash. State Hash can be computed incre-
mentally, as the program executes, rather than traversing all mem-
ory locations whenever the memory hash is needed. This is because
modulo addition is commutative and associative, and modulo sub-
traction can be used to cancel the effect of modulo addition. For
example, suppose that during execution, one memory state S with
a value v at an address a is updated to S′ by writing a new value
v′ to the address a. Then the hash of S′ can be generated simply
as SH(S′) = SH(S) ª h(a, v) ⊕ h(a, v′), where ª is modulo
subtraction.

Figures 2(a) and 2(b) show how HW-InstantCheckInc hashes the
memory state of the runs in figures 1(b) and 1(c), respectively. In
the figure, TH0 and TH1 are Thread Hashes for threads 0 and 1,
respectively. SH is the State Hash for the memory state, and h is a
regular hash function (e.g., CRC) used to hash individual memory
locations. For example, h(G, 2) hashes the address of variable G
and its value 2.

When the execution starts, HW-InstantCheckInc sets SH , TH0,
and TH1 to zero. For each write to a memory location, HW-In-
stantCheckInc subtracts/adds h of the old/new value from/to the
Thread Hash. For example, consider Figure 2(a) when thread 0
writes value 9 to variable G, which was previously 2. HW-Instant-
CheckInc subtracts h(G, 2) from TH0 and adds h(G, 9). These
are core-local operations; each core can see the old value at a given
memory location because in a typical cache-coherent machine, a
write access first brings the cache line with the current values into
the processor’s cache and only then updates the cache line. When
the State Hash needs to be computed, HW-InstantCheckInc com-
putes in software SH as the modulo sum of TH0 and TH1. In this
example, SH = TH0 ⊕ TH1 = ªh(G, 2) ⊕ h(G, 12) for both
different executions in figures 2(a) and 2(b). SH reflects the final
state (G == 12) because the input is fixed (G == 2). It is interest-
ing to observe that the per-thread hashes THthID can have different

values for different runs even when SH has the same value; effec-
tively, this case corresponds to internal nondeterminism that results
in external determinism.

Incremental hashing has a highly efficient hardware implemen-
tation. Each processor computes locally the Thread Hash THthID ,
and only when the State Hash is needed, all the THthID are com-
bined into SH (Figure 2). The THthID Thread Hashes are com-
puted in hardware because they are updated frequently. SH is com-
puted in software; although it is a global operation, it is extremely
rare (e.g., 10 – 10000 times in a program run) relative to the total
program execution. Furthermore, State Hash is typically computed
at barriers, and thus summing up the Thread Hashes overlaps with
waiting at the barrier.

Note that state comparison and hashing need not compare the
entire memory state, but rather the programmer can select to ig-
nore some memory locations. Incremental hashing allows HW-In-
stantCheckInc to easily remove some memory locations from the
hash computation. To do so, HW-InstantCheckInc simply adds
the hashed initial value of each ignored memory location and sub-
tracts the hashed current value. For example, in Figure 2, HW-
InstantCheckInc can ignore variable G by simply doing: SH =
SH ⊕ h(G, 2)ª h(G, 12). This deletes the value of G from SH .
Deleting (potentially nondeterministic) variables allows automatic
checking of determinism for the rest of the program state.

2.3 Bug Detection with InstantCheck
InstantCheck can detect bugs whenever a code that the program-

mer expects to be deterministic causes nondeterministic behavior.
This covers a large number of very different bug types, includ-
ing semantic bugs, atomicity violations [13, 28, 52], order viola-
tions [27, 29], and data races [31, 38, 45]. InstantCheck detects all
these different types of bugs because it detects the nondeterministic
effects of the bug and not particular characteristics that vary from
one bug type to another. In contrast, existing testing techniques
typically target only one of these bug types.

Detecting bugs with InstantCheck works as follows. Instant-
Check checks determinism at each program barrier and at run end.

Data VPNP__addr

V__addr

L1 cache

Hash

FP

Round

–

+

CNTR

64 bit

Thread Hash register

Memory – State Hashing Module (MHM)

L1 cache

controller

Write

Buffer

WR Data__new

RD

Data__old

(a) basic

MHM

+

64 bit

Thread Hash

register

Data__old

Data__new

V__addr

–

+

–

+

–

+

–

+

(b) highly-parallel

Figure 3: High-level design of the Memory-State Hashing Module (MHM): (a) basic and (b) highly-parallel designs.

This is done automatically by intercepting pthread barrier calls
(Section 5). Barriers are natural and intuitive points for a deter-
ministic program to be in a deterministic state as shown by previ-
ous work [9,12,44] and our experiments (Section 7), since barriers
usually delineate program phases. The programmer may also spec-
ify additional program points where she expects her program to
be in a deterministic state (e.g., the end of some loop iterations or
hand-coded barriers). With HW-InstantCheckInc, she can afford
to check determinism at as many points as desired with no fear of
slowing down multiple testing runs.

InstantCheck only finds the presence of a bug but does not lo-
calize where in the code the bug is. Based on our experience with
InstantCheck (both debugging the InstantCheck implementation it-
self and using it to understand nondeterminism in applications), we
found the following tool-supported methodology to be very helpful
in bug localization. When InstantCheck detects a nondeterministic
program point, the programmer knows the region of code between
the last deterministic point and the first nondeterministic point. If
the programmer expects this region to be deterministic (according
to the algorithm), then the programmer needs to debug the execu-
tion of that region to localize the bug.

We developed a simple prototype tool to help in this debugging.
The tool re-executes the program for the two runs that differ. Dur-
ing these two re-executions, the tool stores the entire memory states
(rather than just state hashes) at the point where InstantCheck found
nondeterminism. The tool then compares the two states created by
the two runs and detects the memory addresses that differ. The tool
maps each of these addresses back to the source code line that al-
located the address and to the offset of the address from the start of
the allocation block (e.g., array index or struct field). (In our cur-
rent prototype, we manually instrument the allocation sites in the
source code to dynamically track (1) which memory address is al-
located at what code line and (2) the type of the allocated memory,
but this instrumentation can be automated.) The tool finally reports
the allocation sites and offsets to the programmer. The programmer
now knows the part of memory that behaved nondeterministically,
in addition to the region of code where the nondeterminism man-

ifested, and can use a favorite debugging technique (e.g., break-
points, watchpoints, printf, etc.) to see why those parts of memory
behaved nondeterministically in that region of code.

3. HARDWARE SYSTEM

3.1 Hardware Support
For incremental hashing, HW-InstantCheckInc uses a Memory-

State Hashing Module (MHM) that is part of the L1 cache con-
troller of each core. Figure 3(a) shows a high-level design of the
MHM. All MHM operations are local to each core, with no inter-
core communication or synchronization.

The main part of the design includes a hash unit (computing the
function h discussed in Section 2.2), a modulo add/subtract unit,
and a 64-bit Thread Hash (TH) register that accumulates the hashed
writes performed by the thread. When the write buffer updates the
L1 cache with a new value (Data__new) for a variable at virtual
address V__addr, the MHM reads the old value (Data__old) in the
cache and computes TH = TH ª hash(V __addr , Data__old)
⊕ hash(V __addr, Data__new). Therefore, we feed V __addr,
Data__old, and Data__new to the MHM. Obtaining Data__old
does not incur an additional cache miss in write-allocate caches
(ubiquitous in current general purpose processors), because either
the data is already in the cache or will be brought any way to ser-
vice the write. To obtain V __addr, we proceed as follows. When
a write instruction retires from the ROB, as the data and its phys-
ical address (P__addr) are saved in the write buffer structure, the
hardware also saves the virtual page number (VPN) of the address
(Figure 3(a)). With VPN and the page offset from P__addr, the
hardware can later compute V __addr when the write is pushed into
the L1 cache.

As described in Section 5, we may want to round-off the float-
ing point (FP) values before hashing. The goal is to eliminate the
small differences in FP values that appear in different runs due
to FP precision limitations. Consequently, the MHM has an FP
round-off unit in front of the hash unit, and the Data__old and
Data__new wires are routed through it. If the write-buffer entry

currently pushed into the L1 was generated by an FP store instruc-
tion (Section 5), the CNTR input in the FP round-off unit enables
the rounding-off hardware.

In a design for expert numerical programmers, other CNTR in-
puts can select what type of rounding operation is performed, to-
gether with some programmer-settable parameters for the rounding
operation. Specifically, we propose to give programmers two al-
ternatives: zero-out the least-significant M bits of the mantissa, or
take the floor to the number with only N decimal digits. The first
alternative is used when the programmer wants to discard small
relative differences between program outputs; the second when she
wants to discard small absolute differences. Implementation-wise,
the first alternative is simpler, since it involves logically AND-ing
the mantissa with a mask. The second alternative is similar to an
x86 rounding instruction and is used in systematic testing [48].

The HW-InstantCheckInc hardware trivially supports virtualiza-
tion, migration, and context switching (just save and restore a regis-
ter), and it is highly scalable. Each core has its own MHM module,
which computes locally the hash in the TH register without any
inter-core communication. When the overall State Hash is desired,
software computes it by simply modulo adding the TH registers
(Section 2.2); this is a global but very infrequent operation (about
10 – 10000 times in a program run). Typically, InstantCheck checks
for determinism at barriers and thus the gathering of TH values
overlaps with the barrier communication.

3.2 Flexible Implementation Choices
The MHM can be implemented in different ways depending on

whether the goal is to optimize for speed or area. The key insight is
that incremental hashing uses modulo addition, which is both com-
mutative and associative, for both the same and different addresses.
This means that the hashing operations accumulated into the TH
register can occur in any order. Moreover, they can be performed
in parallel in different clusters, where partial results are accumu-
lated in local cluster registers and only later on merged into the TH
register. There are no limits to how many operations can occur in
parallel, so each individual operation can be as slow or as fast as
required by speed and area constraints.

As an example, while Figure 3(a) shows a design optimized for
area, Figure 3(b) shows one optimized for performance through
parallelism. In this design, the MHM has several clusters, and each
pair (Data, V__addr), where Data is Data__old or Data__new,
is sent to any one cluster. The pairs containing Data__old and
Data__new can even go to different clusters. Each cluster com-
putes a partial sum of hashes. These results are later summed up in
the TH register.

Moreover, the writes in the write buffer can be drained and sent
to the MHM in any order. Similarly, Data__old does not need to
be sent to the MHM right before Data__new, as long as Data__old
was captured correctly. For example, Data__old could be sent much
earlier than Data__new, or even after it. Such flexibility enables the
use of the design that is easiest to implement.

3.3 MHM Software Interface
MHM interfaces to the software through the assembly instruc-

tions of Figure 4. The start__hashing and stop__hashing instruc-
tions enable and disable the MHM hashing operation. They allow
for code, such as an analysis tool, to be run in the checked thread’s
address space without interfering with the determinism checking.

The save__hash and restore__hash instructions save and restore
the TH register to and from memory. This enables virtualization,
and threads can be context-switched or migrated between cores. In-
deed, multiple programs may be tested for determinism simultane-

Instruction Description

start/stop__hashing Start/stop hashing the values of the
memory writes

save/restore__hash addr Save/restore the TH register to/from
memory location addr

minus__hash addr Subtract the hash of the current value
of the memory at addr from TH

plus__hash addr val
Add to TH the hash of val as if val
would be the current value at memory
location addr

start/stop__FP__rounding Start/stop rounding-off FP values be-
fore hashing

Figure 4: MHM software interface.

ously on the same multiprocessor. The OS or VM monitor simply
saves and restores a thread’s TH register at thread switching points,
just like it does for any other register. There is no additional over-
head for virtualization, context switching, or migration.

The minus__hash instruction subtracts from the TH register the
hash of the current value at a memory address. The plus__hash in-
struction adds a given value to the TH register. Combined, these
operations eliminate the effect of an address from the hash value.
As described in Section 2.2, this enables the programmer to explic-
itly exclude the effect of some nondeterministic variables.

The start__FP__rounding and stop__FP__rounding instructions
specify whether FP values should be rounded-off before hashing.
By rounding, the hashes are unaffected by the small differences in
FP values that appear in different runs due to FP precision limita-
tions. We allow the programmer to specify this behavior because
different programmers have different requirements. Moreover, ex-
pert numerical programmers may be given the choice of selecting
what type of rounding-off operation to perform — zero-out M man-
tissa bits or take the floor to the number with only N decimal digits
— and even providing the values for the M and N parameters.

4. HASHING IN SOFTWARE
HW-InstantCheckInc performs in hardware the most expensive

operation for incremental hashing, namely computation of Thread
Hash values. We next present SW-InstantCheckInc, which com-
putes Thread Hash values in software. We then present SW-Instant-
CheckTr , which computes state hashes in software by traversing
the memory state. We finally present hashing for I/O.

4.1 Incremental Hashing in Software
SW-InstantCheckInc is a software-only version of HW-Instant-

CheckInc. SW-InstantCheckInc instruments the code under test to
add hashing operations for each store instruction. These operations
read the old value for the destination location to subtract its hash
and add the hash of the new value being stored, as illustrated in
Figure 2. The instrumentation is straightforward with one caveat
about atomicity. If the instrumented operations are executed atomi-
cally with the store (to ensure that the proper old value is read), the
execution overhead could be high. If the instrumented operations
are not executed atomically with the store, then in the presence
of write-write races in the code under test, a stale old value could
be read. This stale value could affect the hash computation and
report nondeterminism even if the code is deterministic. The pro-
grammer has to decide whether to pay a higher overhead penalty or
to accept potential false alarms; HW-InstantCheckInc is not only
faster than SW-InstantCheckInc but also does not burden the pro-
grammer with this decision because HW-InstantCheckInc atomi-

cally accesses old and new values in the L1 cache (Section 3.1).
Our implementation of SW-InstantCheckInc used for experimental
evaluation (Section 7) serializes program execution and achieves
atomicity without using locks.

4.2 Non-Incremental Hashing in Software
The SW-InstantCheckTr scheme computes the state hash by tra-

versing the entire static data and heap. To traverse the state, SW-
InstantCheckTr needs to know which addresses were dynamically
allocated (malloced but not freed) and which addresses store float
and double values (to perform rounding as described in Section 5).
Note that SW-InstantCheckInc updates the hash for each store in-
struction, and, therefore, it does not need to traverse the state and
can decide what values are FP based on the instruction and not nec-
essarily based on the address.

To track the FP values inside dynamically allocated memory
in C/C++, SW-InstantCheckTr annotates each allocation site with
type information. This type information encodes for each allocated
byte whether it is a start of float, double, or some other type, and
for structs and arrays it encodes recursively the types of their ele-
ments and the length. In our current SW-InstantCheckTr prototype,
we add these annotations manually. Two challenges complicate au-
tomation of this annotation task: (1) application-specific functions
that wrap malloc/free, which is a coding practice used to enhance
error checking and modularity [16]; and (2) starting the usage of
allocated memory several bytes after the first allocated byte to im-
prove cache behavior. HW-InstantCheckInc is not only faster than
SW-InstantCheckTr but also more automated as it does not require
these annotations.

During execution, SW-InstantCheckTr maintains a table of al-
located blocks with their type information. SW-InstantCheckTr

adds a new entry to the table for each malloc and removes an entry
for each free (or application-specific wrappers). Compared to the
native execution, SW-InstantCheckTr has the overhead for main-
taining this table of allocated blocks and the overhead for travers-
ing the state, which requires lookups into the table of allocated
blocks and also incurs cache misses as it sweeps through the en-
tire memory. We do not use our SW-InstantCheckTr prototype for
performance comparison with HW-InstantCheckInc (Section 7.3)
because we did not optimize our SW-InstantCheckTr prototype; in-
stead, we compare HW-InstantCheckInc against an ideal, traversal-
based hashing that ignores most of the overhead of SW-Instant-
CheckTr . The results show that HW-InstantCheckInc is still much
faster than such an ideal, traversal-based hashing. We do use our
SW-InstantCheckTr prototype to confirm the determinism results
from our HW-InstantCheckInc implementation.

4.3 I/O
InstantCheck focuses on memory state determinism, but for com-

pleteness we discuss I/O determinism. We implement in software
a limited version for checking the determinism of outputs. The ob-
vious approach is to compute a hash on the total output stream. A
full implementation would do this at a point in the libc library or
the OS kernel where the partial outputs from various threads can
no longer be reordered in buffers. In our current implementation,
we changed the write function from libc to hash the actually written
bytes before the return from the function, which fully captures only
the behavior of properly-synchronized outputs.

5. CONTROLLING SOURCES OF
NONDETERMINISM

Various InstantCheck versions compute state hashes in hardware
or software, but InstantCheck always compares these hashes in

software and also controls sources of nondeterminism in software.
By default, InstantCheck computes the hash of the entire state, and
if any bit of two states differs, the hashes differ, and InstantCheck
reports nondeterminism. To ensure that any nondeterminism can
only come from different thread interleavings, InstantCheck auto-
matically controls other nondeterminism sources such as dynamic
memory allocation, nondeterministic library calls, and FP roundoff.

Dynamic memory allocation can produce nondeterministic states
since calls to malloc can return different addresses in different runs.
However, most of the time, the user would want to ignore this non-
determinism. InstantCheck automatically handles this, effectively
treating addresses returned by malloc as program input and cap-
turing it as done for deterministic replay [33, 48]. More precisely,
InstantCheck logs the addresses returned by the dynamic allocator
in the previous runs and repeatedly returns the same addresses for
future runs. InstantCheck automatically intercepts the calls to the
dynamic memory allocator and does not require the programmer to
change the code. When InstantCheck intercepts an allocation call,
it also sets the values inside the allocated region to zero (as calloc
does). This ensures that the initial state of that memory is fixed: all
zeroes. In contrast, if the memory contained uninitialized values,
it could have corrupted the hash and resulted in false positives for
reported nondeterminism.

Nondeterministic library calls such as gettimeofday or rand re-
turn different values each time they are called. Thus, on multiple
runs, they will return different results. InstantCheck, as most sys-
tems [21, 33, 48], treats the results of these calls as input, and en-
sures that the calls return the same values for successive runs. As
any other input, the results of these calls can be varied in tests, to
increase coverage.

Floating point (FP) operations can lead to different results in
parallel code when non-associative FP operations are executed in
different orders in different runs. For example, the runs from fig-
ures 1(b) and 1(c) can produce different values for G if G and L
are FP variables. Since some users may consider such changes
nondeterministic, while others may want to ignore them, Instant-
Check allows the user to specify whether to compare FP numbers
bit-by-bit or to ignore some differences. If the user chooses to ig-
nore differences, InstantCheck rounds the FP values as described in
Section 3.1. By default, InstantCheck rounds to the closest 0.001,
as typically done in systematic testing [49]. The MHM module
needs to know which writes are to FP values. In the current imple-
mentation, InstantCheck uses the LLVM compiler [23] to mark the
FP writes. Since this process is done by the compiler, it is fully au-
tomated for the user. In theory, this approach could miss some FP
values, e.g., in some unions. However, although our experiments
use code with unions, we never encountered such a case.

Auxiliary structures that are used during computation but are not
considered result may be left in nondeterministic states. For exam-
ple, a list of free “task nodes” in SPLASH-2’s cholesky may have
the nodes linked in any order and containing some old values. From
the programmer’s functional view, the nodes are free and their val-
ues do not matter. However, the memory state is different, and
InstantCheck correctly detects this as nondeterminism. Silently ig-
noring such nondeterminism could be dangerous, because the pro-
grammers may mistakenly rely on the supposedly deterministic be-
havior of the code. For advanced users, InstantCheck allows ex-
plicitly specifying nondeterministic structures. InstantCheck then
automatically deletes such structures from the hash using the tech-
nique described in Section 2.2.

Software bugs can cause a supposedly deterministic program to
have nondeterministic behavior. This enables InstantCheck to de-
tect different types of bugs, as described in Section 2.3. In fact,

during our experiments, we found a real bug in the widely used
PARSEC benchmark. We found this bug while investigating the
nondeterminism that InstantCheck reported in a part of code we
expected to be deterministic.

Truly nondeterministic algorithms such as heuristic search or op-
timization algorithms (e.g., simulated annealing) can give different
results for different runs. InstantCheck correctly detects such code
as nondeterministic, for example a simulated annealing implemen-
tation from PARSEC [4]. An interesting case we analyze in Sec-
tion 7 is a Monte Carlo simulation from PARSEC which one would
expect to be nondeterministic. However, this particular code is de-
terministic, because each thread has a local random number gen-
erator; the nondeterminism is manifested only when the random
seeds change and is not due to parallel execution.

6. OTHER APPLICATIONS OF THE
HARDWARE PRIMITIVE

Fast comparison of memory states is a powerful primitive. In
addition to checking for determinism, it can benefit several other
applications such as filtering out benign data races, systematic test-
ing, and deterministic replay.

6.1 Filtering Out Benign Data Races
Data races are common and difficult to expose concurrency bugs.

Their detection has been researched for years with several recent
techniques proposed from both the software and hardware commu-
nity [14, 18, 31, 37, 40]. Most techniques report even benign races,
which result in deterministic output. Narayanasamy et al. [38] re-
port that 90% of races are benign and show how to filter out benign
races by comparing the memory states produced when flipping the
race. Their approach could benefit from the use of InstantCheck,
which provides a fast state comparison. Note that using Instant-
Check to detect races, as described in Section 2.3, already filters
out benign races because of the state comparison that InstantCheck
performs.

6.2 Systematic Testing
Systematic testing [36, 48] is a testing technique that systemat-

ically executes different thread interleavings of a given program,
while checking for bugs. For example, CHESS [36] systemati-
cally explores all interleavings with a small number of preemptive
thread context switches. CHESS is a popular testing tool used on
a daily basis at Microsoft. In a comparison to stress testing [36],
CHESS found and was able to reproduce 25 bugs that stress testing
did not find or could not reproduce for many months. Unfortu-
nately, the search space of systematic testing grows exponentially
with the number of possible context switches. One way to com-
bat that search-space explosion is to identify equivalent states and
prune the search. Comparing entire states in software is expensive,
and so CHESS does not perform it. Instead, it only compares the
happens-before relationship [22] which is an approximation that
can miss equivalent states. For example, the two runs in Figure 1
lead to the same state but have different happens-before. Using In-
stantCheck to check state equality (instead of happens-before) can
speed up systematic testing of C/C++ code (as it enables better state
pruning) and make it more precise (as it detects different states even
when the synchronization order is the same).

6.3 Deterministic Replay
Deterministic replay [19,33,53] faithfully re-executes a program

run, e.g., for debugging. The classic approach is to save a detailed
execution log for later replay. Recent techniques [1, 24, 25, 43]

achieve low runtime overhead by saving only a partial log. During
replay, they search many executions that obey the log to see which
one recreates the bug manifested in the original execution. Using
InstantCheck to check state equality can assist these techniques to
detect when they reproduce the entire state, not only the bug. This
enables the programmer to inspect all the variables of the program
as they were in the original run. Additionally, the state hash can be
a part of the partial log saved by the system, which allows early de-
tection of a replay that does not obey the log. InstantCheck makes
this feasible as it adds small runtime overhead to both the original
execution and replay.

7. EVALUATION

7.1 Experimental Setup
We model HW-InstantCheckInc’s lightweight hardware support

using Pin [30]. We also implement SW-InstantCheckInc’s instru-
mentation using Pin. We implement SW-InstantCheckTr’s mainte-
nance of the table of allocated blocks (with their type information)
and the state traversal in C++.

We evaluate InstantCheck using a testing technique which seri-
alizes thread execution, i.e., a thread scheduler runs one thread at
a time and switches between threads at synchronizations. This ap-
proach is used by the latest tools from Microsoft Research (PCT [8],
CHESS [36]) because it exposes the parallel execution complexity
much better and much faster than stress testing with a truly paral-
lel execution [8, 36]. In our evaluation, the thread to run is chosen
randomly. This random thread scheduler is not a part of Instant-
Check: in real usage, this scheduler would be replaced by the tool
that the programmer already uses for testing. For example, if the
programmer uses stress testing, there would be no scheduler at all,
while if the programmer uses PCT or CHESS, the scheduler would
be replaced by PCT or CHESS.

We use InstantCheck to understand the determinism properties of
17 applications: the sphinx3 [26] speech recognition software, the
pbzip2 [17] open source file compressor, and applications from
PARSEC [4] and SPLASH-2 [50] suites. These applications are
challenging for determinism checking because (1) they were not
written for determinism but for high performance, and (2) they
have a variety of thread communication constructs, global vari-
ables, benign races, and FP operations. All tests use 8 threads
with the following inputs: sphinx3 uses the pittsburgh utterance,
pbzip2 compresses one of our log files, the PARSEC applications
use simmedium input, and the SPLASH-2 applications use the de-
fault input. We use the newer pbzip2 version 1.0.5 that does not
contain the bug reported in [55]. For evaluation purposes, we test
30 runs per application and interpret all results within the test cov-
erage provided by these 30 runs. However, as shown in Section 7.2,
nondeterminism is often detected after just 2 or 3 runs, and in real
usage of InstantCheck, the programmer can stop as soon as nonde-
terminism is detected.

7.2 Determinism Checking with InstantCheck

7.2.1 Characterizing Determinism
Table 1 shows the determinism characteristics detected with In-

stantCheck. We group the applications into four types of deter-
minism as shown in the table which separates groups by horizontal
lines. Column 4 shows if the application has floating-point opera-
tions or not. Columns 5, 7, 9, and 12 show if the application is bit-
by-bit deterministic, deterministic with FP rounding, deterministic
if ignoring some small structures, or nondeterministic. Column 6
shows the first test run when the applications are detected as bit-by-

Det Det First Impact of First Isolating # Dyn Checking Det.
Type Application Source FP? as is ? NDet. FP rounding NDet Run Small Structs Points at the

Run on Det. after FP on Det. Det NDet End
blackscholes parsec Y Y – Det → Det – – 101 0 Y
fft splash2 Y Y – Det → Det – – 13 0 Y

bit lu splash2 Y Y – Det → Det – – 68 0 Y
by radix splash2 N Y – Det → Det – – 12 0 Y
bit streamcluster parsec Y Y – Det → Det – – 12928 74 ? Y

swaptions parsec Y Y – Det → Det – – 2501 0 Y
volrend splash2 N Y – Det → Det – – 6 0 Y
fluidanimate parsec Y N 2 NDet → Det – – 41 0 Y

FP ocean splash2 Y N 3 NDet → Det – – 871 0 Y
prec waterNS splash2 Y N 3 NDet → Det – – 21 0 Y

waterSP splash2 Y N 2 NDet → Det – – 21 0 Y

small cholesky splash2 Y N 3 NDet → NDet 3 NDet → Det 4 0 Y
struct pbzip2 openSrc N N 2 NDet → NDet 2 NDet → Det 1 0 Y

sphinx3 alpBench Y N 2 NDet → NDet 2 NDet → Det 4265 0 Y
barnes splash2 Y N 2 NDet → NDet 2 – 2 16 N

NDet canneal parsec N N 2 NDet → NDet 2 – 0 64 N
radiosity splash2 N N 2 NDet → NDet 2 – 0 19 N

Table 1: Determinism characteristics. As with any dynamic testing tool, the results are valid within the test coverage.
? denotes the 74 nondeterministic barriers in streamcluster caused by the bug that we detected using InstantCheck;
when the bug is fixed, these 74 barriers also become deterministic.

bit nondeterministic, and column 8 shows the first test run when the
applications are nondeterministic even after applying FP rounding.
These numbers are a measure of how fast the programmer finds out
that the application is nondeterministic. Columns 10 and 11 show
the number of determinism checks in the application. There is a
check at every pthreads barrier call, the end of the program, and,
for blackscholes and swaptions, at the end of a loop iteration
in a simulation pass. We do not check at hand-coded barriers, al-
though such barriers can be as good points as pthreads barriers to
expect determinism.

The first seven applications are bit-by-bit deterministic. Five of
them use FP operations but are not affected by FP precision limi-
tations because the parallelism does not trigger FP non-associative
operations, illustrated in Figure 1(a). volrend has a benign data
race in a hand-coded barrier, but InstantCheck correctly realizes
that volrend is deterministic. swaptions is a Monte Carlo sim-
ulation, so one might expect it to be nondeterministic. However,
swaptions uses thread-local random number generators that have
no shared state. Thus, given the same seed, each thread generates a
deterministic sequence of random numbers for itself, independent
of the other threads or the thread interleavings.
streamcluster is an interesting case, because the original code

we used (version 2.1) has a bug (a non-benign data race that creates
an order violation) of which we were not aware before applying In-
stantCheck.2 We found this bug only when investigating the nonde-
terminism reported by InstantCheck. For the simmedium input, the
nondeterminism manifests at 74 dynamic barriers during the exe-
cution, after which it gets masked away and does not manifest at
the end of the program. The nondeterminism created by this bug
is not benign, because for small inputs (e.g., simdev), the nonde-
terminism propagates to the program’s end and results in different
outputs. This shows that checking determinism at as many points
as possible during execution not only increases confidence in the
program behavior but also catches bugs that for some inputs do not
show up at the program end.

The next four applications (fluidanimate, ocean, waterNS,

2After we reported the bug to the PARSEC author, he corrected it
and informed us that the same bug had been previously reported
internally. Our report was independent of the internal report.

waterSP) are not bit-by-bit deterministic but they are determinis-
tic modulo the FP precision limitations. Without InstantCheck’s
ability to ignore the small FP differences, these applications would
appear to be highly nondeterministic, as illustrated for example in
Figure 5(b).

Three applications (cholesky, pbzip2, sphinx3) are deter-
ministic when ignoring small data structures. cholesky has three
sources of nondeterminism: FP precision limitations, a nondeter-
ministic custom memory allocator, and one nondeterministic data
structure. We assume that the programmer wants to ignore the non-
determinism of the custom allocator, and we simply call malloc
from inside the custom allocator. The nondeterministic data struc-
ture (in the field freeTask) is a per-thread singly linked list for free
tasks. It is bit-by-bit nondeterministic because the order in which
the tasks are linked, and the size of the list, differ from run to run.
If we eliminate this linked list structure from the hash (as described
in Section 2.2), cholesky turns out to be deterministic.
pbzip2 has very high internal nondeterminism (many consumer

threads race for jobs created by a producer), but pbzip2 ends in a
deterministic state if ignoring a pointer field in some result-task
structures created by the consumers. The pointer field in these
structures points to memory allocated nondeterministically by the
consumers. The nondeterministic memory itself is deallocated dur-
ing execution and thus no longer part of the program state, but
the nondeterministic dangling pointers remain part of the program
state. If we eliminate these pointers from the hash (Section 2.2), the
program becomes externally deterministic. In addition, we hash in
software the output stream that pbzip2 writes to file, as described
in Section 4.3. This stream is deterministic.
sphinx3 is deterministic if ignoring about 4% of the memory

state. The memory ignored is allocated at 15 out of the total 230
allocation sites in the code, which makes nondeterministic memory
easy to identify and mark for deletion from the hash.

Three applications (barnes, canneal, radiosity) end up in
nondeterministic states with many differences. Some nondetermin-
istic code can be rewritten to be deterministic. If the algorithm
permits, it is indeed better to implement deterministic code for eas-
ier development, testing, maintenance, and reuse. For example, a
Java version of barnes was made deterministic in DPJ [6].

Columns 10 and 11 list the number of dynamic points for which
the program has deterministic/nondeterministic behavior: end of
the program, barriers and, for blackscholes and swaptions,
end of a loop iteration. These numbers confirm that even pro-
grams that were not written for determinism go through determin-
istic states, with no need (and no penalty) for enforcing internal
determinism. Having many determinism points increases program-
mer’s confidence in the code’s behavior just like having a determin-
istic code is more reassuring than having a nondeterministic code.
For example, the bug in streamcluster is detected only by 74 in-
ternal barriers, and checking at the remaining 12928 barriers would
not catch the problem.

7.2.2 Fast Detection of Nondeterminism
We next discuss how quickly InstantCheck finds that an appli-

cation is nondeterministic. Column 6 shows the first run when In-
stantCheck found bit-by-bit nondeterminism. In this set of experi-
ments, it was the second or third run. This shows that the program-
mer finds out very quickly if the application is nondeterministic,
which speeds up the testing process and increases programmer’s
productivity. It also means that InstantCheck does not require ex-
tra test runs over what programmers already test, since most testing
strategies for parallel code run the code 10s to 1000s of times [8,35]
for one given input, not just 2 or 3 times.

Since our experiments use a random scheduler, the numbers in
Column 6 could change for a different seed for the scheduler, so
it is important to consider not only the concrete numbers but their
distribution across test runs. (This is a reason why we use 30 test
runs for experiments even when nondeterminism is found in just
2 or 3 runs.) Figure 5 shows some of the nondeterminism distri-
butions we observe in our experiments (the rest are omitted for
brevity but are similar). These distributions show the number of
different states observed when InstantCheck checks for determin-
ism. For example, distribution D_5 in Figure 5(c) means that, when
running InstantCheck for sphinx3, there are 156 checking points
(i.e., dynamic barriers) with the following behavior in the 30 test
runs: 16 runs produce one state, 11 runs produce another state,
and 3 runs produce yet another state. The same program has other
groups of barriers with different distributions. A distribution of 29
and 1 would mean that 29 states are the same and only one differs,
while a distribution of 30 means determinism for all 30 runs. As
the distributions show, in practice, the probability of detecting non-
determinism is very high, and thus the nondeterminism detection in
the second or third run as described earlier was not just by chance.

7.3 Negligible Overhead
We evaluate the performance of four configurations (Figure 6):

(1) Native is the native application without checks for determinism,
(2) HW-InstantCheckInc is Native using HW-InstantCheckInc to
check for determinism, (3) SW-InstantCheckInc-Ideal is the lower
bound for Native using SW-InstantCheckInc to check for deter-
minism, and (4) SW-InstantCheckTr-Ideal is the lower bound for
the software-only traversal version, SW-InstantCheckTr . For the
software-only versions we compute ideal lower bounds to show
how fast highly-tuned implementations could get. We believe this
makes the comparison with HW-InstantCheckInc more fair than it
would be by using our current prototypes of software-only versions,
because these prototypes are not optimized for speed.

We use the instruction count as performance metric. For all con-
figurations, we do not count the instructions of the randomizing
thread scheduler. As explained in Section 7.1, the thread sched-
uler is not part of InstantCheck and in real usage, the scheduler
would be replaced by the tool already used by the programmer

��� ��� ��� ��� ��� ���

	

�

�	

��

�	

��

�	

��
���

���

���

���

���

���

��

���

�

���

��

���

(a) streamcluster
��� ��� ��� ��� ��� ���

	

�

�	

��

�	

��

�	

��
�

���

�

���

�

���

�

���

�

���

�

���

(b) waterNS

��� ��� ��� ��� ��� ���

	

�

�	

��

�	

��

�	

��
����

���

��	

���

��	

���

�	�

���

��	

���

�	

���

(c) sphinx3
��� ��� ��� ���

�

�

��

��

��

��

��

��
��

���

�

���

�

���

�

���

(d) radiosity

Figure 5: Distribution of nondeterminism points.

(e.g., PCT [8], CHESS [36], or stress test runner). We assume
that our minor hardware addition has no significant impact on pro-
cessor cycle time. HW-InstantCheckInc does not incur additional
cache misses in write-allocate caches (Section 3.1), but may in-
crease read-port contention. We do not evaluate this contention,
but believe the implementation choices described in Section 3.2
enable flexibility in scheduling most of the reads that may cause
contention. We consider the cost for hashing one byte in software
to be 5 instructions [20], and ignore the other costs for software-
only versions (Section 4).

Figure 6 shows the number of instructions for all configurations,
normalized to 1 for Native. HW-InstantCheckInc incurs only a
0.3% overhead on average over the native runs, while the overhead
for software versions ranges from 2% to 438X, with an average of
3X for SW-InstantCheckInc-Ideal and 5X for SW-InstantCheckTr-
Ideal. HW-InstantCheckInc’s overhead is due to zeroing-out mem-
ory locations to prevent hash corruption (Section 5). For sphinx3,
if the programmer wants to ignore the 4% of the memory state
which is nondeterministic, both HW-InstantCheckInc and SW-In-
stantCheckInc delete this memory from the hash as described in
Section 5. This operation creates 4.5X overhead for HW-Instant-
CheckInc and 55X overhead for SW-InstantCheckInc-Ideal, which
is still less than 438X for SW-InstantCheckTr-Ideal. HW-Instant-
CheckInc’s small overhead enables programmers to have determin-
ism checking always-on to increase confidence in the developed
software. In the absence of hardware support, programmers can use
the software versions to check determinism when and as needed.

Figure 6 shows that, for some applications, one software version
is clearly much faster than the other. For example, SW-Instant-
CheckInc-Ideal is much faster than SW-InstantCheckTr-Ideal for
ocean, sphinx3, and streamcluster, but SW-InstantCheckTr-
Ideal is faster for barnes, fft, and lu. SW-InstantCheckInc-Ideal
is faster than SW-InstantCheckTr-Ideal when the number of writes
between determinism checking points is small compared to the size
of the program state, and thus updating the hash incrementally is
cheaper than computing it by traversal. SW-InstantCheckTr-Ideal
is faster when there are many writes between determinism checking
points, and thus traversing the entire state is relatively cheap.

������
��	
����

�

�

�	����
����	����

������
�	
����

�������
�������

�������
������

�
�����	
��
������

����������
�������
������

������	��
�� !

�

�

�

�

�

�

�

�

	

����

�������������������

��������������������������

���������

���������������� !���������

���������

"
#
$
�
!�
%
&�
�
�
�!
"
�
�
%
�
�
��
�
%
!#

�
�
'
�
�
�

13 12 43816 213 8 30

SPLASH2 PARSEC

Figure 6: Number of instructions executed, normalized to Native. GEOM is the geometric mean.

LOCK(gl->KinetiSumLock);

if(ProcId == 3)

{ // BUG

 SUM[dir] = S;

}

else

{ // CORRECT

 SUM[dir] += S;

}

UNLOCK(gl->KinetiSumLock);

(a)

kineti.C : KINETI()

LOCK(gl->InterfVirLock);

if(ProcID==3){ // BUG

double tmp=*VIR;

UNLOCK(gl->InterfVirLock);

LOCK(gl->InterfVirLock);

*VIR = tmp + LVIR/2.0;

}else{ // CORRECT

*VIR = *VIR + LVIR/2.0;

}

UNLOCK(gl->InterfVirLock);

(b)

interf.C : INTERF()

if(MyNum == 3 && justOnce==3)

{ // BUG

; // no pause

}

else

{ // CORRECT

WAITPAUSE(n->done);

}

(c)

radix.C : slave_sort()

��� ��� ��� ��� ��� ��� ��� ��� ���

�

�

��

��

��

��

��

�� �
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

	
���� 	
����� �
���

Figure 7: Seeded bugs. (a) semantic bug in waterNS (b) atomicity violation
in waterSP (c) order violation in radix. We seed the bug only for thread 3.
For radix, we also have only one dynamic occurrence (justOnce==3), since
otherwise the program crashes.

Figure 8: Distribution of nondeterminism points.

7.4 Bug Detection
InstantCheck focuses on determinism checking and not bug de-

tection, but several projects [6, 9, 44] discuss how nondeterminism
is related to bugs. Our own experience with the real bug that we
found in streamcluster using InstantCheck (Section 7.2) en-
courages us to further investigate this aspect. We seed three bugs
(semantic, atomicity violation, and order violation) in the applica-
tions from Section 7.2 as shown in Figure 7. The bugs do not cause
program crashes but create incorrect results. To simulate rarely oc-
curring bugs, we insert the buggy code path in only one thread,
which decreases the number of buggy instructions executed. These
bugs are of very different types (Section 2.3) and cannot be all de-
tected by a technique that focuses on one particular bug type. For
example, the semantic bug in waterNS would be very difficult to
detect without an explicit verification of the numerical results at the
end of the program. As another example, the atomicity violation in
waterSP can be caught by an atomicity detector, but such tools can
have fairly large runtime overheads and may require programmer
annotations or extensive training runs [28].

The original applications are deterministic (under certain condi-
tions, Table 1), and we want to find out if the bugs create nonde-
terminism that InstantCheck can detect. Table 2 shows the results.

InstantCheck detects all three bugs with negligible overhead and
without user annotations or training runs. InstantCheck also lo-
calizes the nondeterminism between two barriers, which helps in
debugging (Section 2.3).

(Formerly) Bug # Dynamic Checking First
Deterministic Type Points NDet.
Application Det NDet Run

waterNS semantic 12 9 3
waterSP atomicity violation 9 12 3
radix order violation 7 5 6

Table 2: Bug detection results for 30 runs.

The last column of Table 2 shows the first run when the nonde-
terminism created by the bug is detected in our experiments. The
bugs in waterNS and waterSP are detected very fast, in the third
run. This fast detection is not just by chance, as confirmed by the
scattered distributions for waterNS and waterSP in Figure 8. For
radix, the bug is detected in the sixth run. Looking at the distri-
bution for radix in Figure 8, we see that it is indeed less scattered
than the ones for waterNS and waterSP.

8. RELATED WORK
Checking determinism properties can be performed dynami-

cally or statically. DPJ [6] and SingleTrack [44] ensure internal
determinism by imposing and checking (statically and dynamically,
respectively) a particular programming style. Unlike DPJ and Sin-
gleTrack, InstantCheck does not impose any restrictions on how the
code is written, as long as it results in a deterministic state. Any de-
terministic code written in DPJ or SingleTrack style is also detected
as deterministic by InstantCheck. However, code that is detected as
deterministic by InstantCheck may not be possible to express using
DPJ or SingleTrack.

Burnim and Sen [9, 10] proposed dynamic checking of seman-
tic determinism, which requires that selected data structures in the
program behave in a certain, similar way across different runs. An
example is that a set data structure always contains equal elements,
although the order may change. The same approach was previ-
ously used in testing sequential code [51], where different runs
come from executing different test sequences rather than the same
sequence for different thread interleavings. Checking semantic de-
terminism can handle arbitrary code, unlike DPJ and SingleTrack,
but it can have high runtime overhead if large or many data struc-
tures are compared, and by default it checks neither internal nor ex-
ternal determinism because it requires explicitly specifying which
locations to compare. External determinism by default compares
entire states but allows explicitly specifying which locations to ig-
nore. InstantCheck checks external determinism for entire program
states with just 0.3% overhead with HW-InstantCheckInc.

Enforcing internally deterministic runs can be done each time
code is executed, even for nondeterministic code, by approaches
such as CoreDet [3], DMP [12], and Kendo [41]. Enforcing de-
terminism at runtime does not impose a particular programming
style but requires extensive hardware support [12], incurs signifi-
cant overhead [3], or works only for race-free programs [41]. Un-
like these proposals, InstantCheck has a minor hardware addition,
small overhead, and is not affected by races. Also, InstantCheck
checks if code is deterministic rather than making nondeterministic
code execute deterministically.

Deterministic replay is a more researched area than determin-
istic execution. The classical approach [19,33,53] is to save a very
precise execution log and use it to replay the exact thread inter-
leaving as in the original run. Four recent proposals [1, 24, 25, 43]
save only an imprecise log and use this log to replay a thread inter-
leaving that is similar but not necessarily identical to the original
execution. This is conceptually similar to having an externally de-
terministic program that has internal nondeterminism. Unlike these
proposals, InstantCheck uses hashing to check program determin-
ism and does not use an execution log to deterministically replay
an original execution.

Incremental hashing is a powerful primitive that was used for
several applications [15,34,39,46]. In the architecture community,
incremental hashing was used in the context of secure processors to
avoid computing from scratch the node hashes of a hash tree [15]
or to capture the set of memory reads and writes [46]. These are
totally different applications of incremental hashing than the one of
InstantCheck. In the software community, incremental hashing was
used to speed up explicit-state model checking [34, 39]. Unlike In-
stantCheck, one technique [39] computes the hash of the state of the
Promela model being checked and not the state of C/C++ parallel
programs. The other technique [34] handles C/C++ programs but
requires distinguishing pointers from primitive values to traverse
the entire state in breadth-first order to detect isomorphic states that
have the same relative shape of the heap even if the actual positions
of objects differ.

Non-incremental hashing is also used for various tasks in soft-
ware reliability. For example, PCC [7] and Light64 [40] compute
hashes of calling chains and history of read values, respectively.
In contrast, InstantCheck computes the hash of memory states and
does so incrementally [2].

9. DISCUSSION
We believe hardware support for programmability should be ex-

tremely lightweight. Hardware-based hashing is one instance of
such hardware: it is a powerful, versatile and extremely lightweight
primitive that can improve a variety of programmability tasks. It is
not unlike hardware Bloom filters [5], which were used for a variety
of performance and programmability functions [11, 19, 32, 47, 54].

This paper uses hashing to capture the state of a computation.
It uses on-the-fly incremental hashing to summarize the addresses
and values written to memory. It demonstrates or outlines five
uses of such hashing: checking for determinism, detecting soft-
ware bugs, filtering out benign data races, speeding up systematic
testing, and assisting deterministic replay.

Our previous work on Light64 [40] uses hardware hashing to
capture the history of a computation. Light64 hashes loaded values
and detects data races. PCC [7] uses (software) hashing to capture
the context of a computation — it computes hashes of calling chains
in serial Java programs — which can be also applied to several
testing and debugging tasks.

Beyond this, we believe that hardware hashing has a largely-
unexplored, broad design space of possibilities. Other information
can be hashed, such as branch outcomes, and different hashing op-
erations can be devised. Given all these possibilities, and the mini-
mal hardware overhead required to support hashing, we hope to see
many uses of this primitive for performance or programmability.

10. CONCLUSIONS
Showing that a program is externally deterministic has substan-

tial benefits for software development and debugging. A determin-
istic program offers a higher reassurance of its correctness, will
not produce unexpected outputs in a future run, and is much like-
lier to be reused. In this paper, we have presented InstantCheck,
a novel technique that checks determinism with a very small run-
time overhead. InstantCheck checks if the memory state produced
by multiple runs of a parallel code is deterministic. On-the-fly in-
cremental hashing enables a minimal and highly efficient hardware
implementation: (1) the operations on the hashing register are core-
local, and (2) the local operations on each hashing register can be
performed in parallel and out-of-order. The hardware support can
be used as a primitive for several other development and debugging
tasks. Our use of InstantCheck showed that 14 out of 17 appli-
cations (sphinx3, pbzip2, PARSEC, and SPLASH-2) are deter-
ministic when allowing for FP imprecision and small data structure
differences. InstantCheck incurs a negligible average runtime over-
head of 0.3% over native testing runs. Finally, InstantCheck helped
us find a bug in the widely used PARSEC benchmark.

11. REFERENCES
[1] G. Altekar and I. Stoica. ODR: Output-deterministic replay

for multicore debugging. In SOSP, 2009.
[2] M. Bellare and D. Micciancio. A new paradigm for

collision-free hashing: Incrementality at reduced cost. In
Eurocrypt, 1997.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: A compiler and runtime system for
deterministic multithreaded execution. In ASPLOS, 2010.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In PACT, 2008.

[5] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), 1970.

[6] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and
M. Vakilian. A type and effect sytem for deterministic
parallel Java. In OOPSLA, 2009.

[7] M. D. Bond and K. S. McKinley. Probabilistic calling
context. In OOPSLA, 2007.

[8] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of
finding bugs. In ASPLOS, 2010.

[9] J. Burnim and K. Sen. Asserting and checking determinism
for multithreaded programs. In ESEC/SIGSOFT FSE, 2009.

[10] J. Burnim and K. Sen. DETERMIN: Inferring likely
deterministic specifications of multithreaded programs. In
ICSE, 2010.

[11] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk enforcement of sequential consistency. In ISCA, 2007.

[12] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
Deterministic shared memory multiprocessing. In ASPLOS,
2009.

[13] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In POPL,
2004.

[14] C. Flanagan and S. N. Freund. FastTrack: Efficient and
precise dynamic race detection. In PLDI, 2009.

[15] B. Gassend, G. E. Suh, D. E. Clarke, M. van Dijk, and
S. Devadas. Caches and hash trees for efficient memory
integrity. In HPCA, 2003.

[16] R. Ghiya, D. M. Lavery, and D. C. Sehr. On the importance
of points-to analysis and other memory disambiguation
methods for C programs. In PLDI, 2001.

[17] J. Gilchrist. PBZip2 v1.0.5. http://compression.ca/pbzip2.
[18] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rötteler.

Using hardware transactional memory for data race
detection. In IPDPS, 2009.

[19] D. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In ISCA, 2008.

[20] B. Jenkins. A survey of hash functions.
http://www.burtleburtle.net/bob/hash/doobs.html.

[21] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX, 2005.

[22] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7),
1978.

[23] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO,
2004.

[24] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira.
Offline symbolic analysis for multi-processor execution
replay. In MICRO, 2009.

[25] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy,
P. M. Chen, and J. Flinn. Respec: Efficient online
multiprocessor replay via speculation and external
determinism. In ASPLOS, 2010.

[26] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes.
The ALPBench benchmark suite for complex multimedia
applications. In IISWC, 2005.

[27] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
A comprehensive study on real world concurrency bug
characteristics. In ASPLOS, 2008.

[28] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access interleaving invariants. In
ASPLOS, 2006.

[29] B. Lucia and L. Ceze. Finding concurrency bugs with
context-aware communication graphs. In MICRO, 2009.

[30] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin:

Building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[31] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
Effective sampling for lightweight data-race detection. In
PLDI, 2009.

[32] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. G.
Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In ISCA, 2007.

[33] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:
A software-hardware interface for practical deterministic
multiprocessor replay. In ASPLOS, 2009.

[34] M. Musuvathi and D. L. Dill. An incremental heap
canonicalization algorithm. In SPIN, 2005.

[35] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI, 2007.

[36] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and reproducing heisenbugs in
concurrent programs. In OSDI, 2008.

[37] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace:
Signature-based data race detection. In ISCA, 2009.

[38] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful
data races using replay analysis. In PLDI, 2007.

[39] V. Y. Nguyen and T. C. Ruys. Incremental hashing for Spin.
In SPIN, 2008.

[40] A. Nistor, D. Marinov, and J. Torrellas. Light64: Lightweight
hardware support for data race detection during systematic
testing of parallel programs. In MICRO, 2009.

[41] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In
ASPLOS, 2009.

[42] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing atomicity
violation bugs from their hiding places. In ASPLOS, 2009.

[43] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. PRES: Probabilistic replay with execution
sketching on multiprocessors. In SOSP, 2009.

[44] C. Sadowski, S. N. Freund, and C. Flanagan. SingleTrack: A
dynamic determinism checker for multithreaded programs.
In ESOP, 2009.

[45] K. Sen. Race directed random testing of concurrent
programs. In PLDI, 2008.

[46] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient memory integrity verification and
encryption for secure processors. In MICRO, 2003.

[47] J. Tuck, W. Ahn, L. Ceze, and J. Torrellas. SoftSig:
Software-exposed hardware signatures for code analysis and
optimization. In ASPLOS, 2008.

[48] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. Automated Software Engineering
Journal, 10(2), 2003.

[49] W. Visser and P. Mehlitz. Model checking programs with
Java PathFinder. In ASE Tutorial, 2006.

[50] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In ISCA, 1995.

[51] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. In ASE, 2004.

[52] M. Xu, R. Bodík, and M. D. Hill. A serializability violation
detector for shared-memory server programs. In PLDI, 2005.

[53] M. Xu, M. D. Hill, and R. Bodík. A regulated transitive
reduction (RTR) for longer memory race recording. In
ASPLOS, 2006.

[54] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling
hardware transactional memory from caches. In HPCA,
2007.

[55] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe
concurrency bugs through an effect-oriented approach. In
ASPLOS, 2010.

