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ABSTRACT

Regression test selection (RTS) aims to reduce regression
testing time by only re-running the tests affected by code
changes. Prior research on RTS can be broadly split into dy-
namic and static techniques. A recently developed dynamic
RTS technique called Ekstazi is gaining some adoption in
practice, and its evaluation shows that selecting tests at a
coarser, class-level granularity provides better results than
selecting tests at a finer, method-level granularity. As dy-
namic RTS is gaining adoption, it is timely to also evaluate
static RTS techniques, some of which were proposed over
three decades ago but not extensively evaluated on modern
software projects.

This paper presents the first extensive study that evalu-
ates the performance benefits of static RTS techniques and
their safety; a technique is safe if it selects to run all tests
that may be affected by code changes. We implemented
two static RTS techniques, one class-level and one method-
level, and compare several variants of these techniques.
We also compare these static RTS techniques against Ek-
stazi, a state-of-the-art, class-level, dynamic RTS technique.
The experimental results on 985 revisions of 22 open-source
projects show that the class-level static RTS technique is
comparable to Ekstazi, with similar performance benefits,
but at the risk of being unsafe sometimes. In contrast, the
method-level static RTS technique performs rather poorly.

CCS Concepts

•Software and its engineering → Software evolution;
Automated static analysis; •Software defect analysis →
Software testing and debugging;
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1. INTRODUCTION
Modern software projects evolve rapidly as developers add

new features, fix bugs, or perform refactorings. To ensure
that project evolution does not break existing functionality,
developers commonly perform regression testing. However,
frequent re-running of full regression test suites can be ex-
tremely time consuming. Some test suites require weeks
to run [32], but waiting even a few minutes for test re-
sults can be detrimental to developers’ workflow. In ad-
dition to reducing developers’ productivity, slow regression
testing can consume a lot of computing resources. For ex-
ample, engineers at Google have observed a quadratic in-
crease in their total test-running times [10, 15, 16], show-
ing that regression testing is challenging, even for a com-
pany with a lot of computing resources. As a result, a large
body of research has been dedicated to reducing the costs
of regression testing, using approaches such as regression
test selection [13, 20, 27, 28, 31, 41, 45], regression test-suite
reduction [18, 34, 35, 47, 48], regression test-case prioritiza-
tion [9, 19, 32, 43, 44], and test parallelization [6]. Yoo and
Harman provide a thorough survey of regression testing ap-
proaches [42].

Regression test selection (RTS) is the most widely used
approach to speeding up regression testing [10]. RTS aims
to reduce regression testing efforts by only re-running the
tests affected by code changes. An RTS technique is safe if
it selects all tests whose behavior may be affected by code
changes; not running any of those tests may cause developers
to miss regressions. Prior research on RTS can be broadly
split into dynamic and static techniques.
A typical dynamic RTS technique requires two types of

information: (1) changes between two code revisions, and
(2) test dependencies dynamically computed while running
the tests on the old code revision. Given these inputs, the
technique analyzes how the code changes interact with the
dependencies to determine a subset of tests that may reach
(and thus get affected by) the code changes. Dynamic and
safe RTS has been drawing attention in the literature since
at least 1993 [30, 42], with some newer techniques such as
DejaVOO [27], FaultTracer [45], and Ekstazi [13]. Different
dynamic RTS techniques differ in precision1 and analysis
overhead. Techniques that collect finer-granularity depen-
dencies may be more precise, selecting fewer tests to be

1Safe techniques always select all tests affected by code
changes but could also select some non-affected tests.
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run, but can incur higher analysis overhead; in contrast,
techniques that collect coarser-granularity test dependencies
may be less precise but can have lower analysis overhead.

The state-of-the-art dynamic RTS technique, Ekstazi [11–
13], tracks changes and dependencies at the granularity level
of files; for Java code, these files include bytecode classes.
Ekstazi computes (1) classes which changed between revi-
sions and (2) classes that each test class required while run-
ning on the old code revision. Ekstazi selects to run on
the new code revision only tests that depend on at least
one of the changed classes. Prior experiments with Ekstazi
showed that using coarse-granularity test dependencies (at
the class level) can substantially save the end-to-end testing
time (that includes time to analyze changes, run selected
tests, and update dependencies) [13]. Due to this, several
open-source projects (e.g., Apache Camel [1], Apache Com-
mons Math [2], and Apache CXF [3]) have already incorpo-
rated Ekstazi into their build systems [13].

Despite the recent advances in dynamic RTS, its reliance
on dependencies collected dynamically could limit its appli-
cation in practice, making it important and timely to re-
consider static RTS. First, when performing RTS, dynamic
test dependencies for the old revision may not always be
available, e.g., on the first application of RTS to the project
(the project may have earlier revisions). Second, dynamic
test dependencies for large projects may be time-consuming
to collect. Third, for real-time systems, dynamic RTS may
not be applicable, because code instrumentation for obtain-
ing dependencies may cause timeouts or interrupt normal
test run. Finally, for programs with non-determinism (e.g.,
due to randomness or concurrency), dependencies collected
dynamically may not cover all possible traces, leading to
dynamic RTS being unsafe.

In contrast to dynamic RTS, which collects test depen-
dencies dynamically, static RTS [5,8, 22,33] uses static pro-
gram analysis to infer, ideally, an over-approximation of the
test dependencies to enable safe test selection. However, al-
though static RTS techniques for object-oriented languages
have been proposed over three decades ago [8, 22], to our
knowledge, these techniques have not been studied exten-
sively on modern, real-world projects. In particular, it is
not clear a priori which granularity level would be better
for static RTS, although (i) the most recent work [13] on
dynamic RTS shows that class level provides better results
than method level [45] and (ii) due to the growing and rela-
tively larger scale of modern software systems, other recent
state-of-the-art dynamic RTS techniques [12, 13, 28, 45] use
coarser granularity (e.g., classes and methods) rather than
finer granularity (e.g., statements or CFG edges) [20,30,31],
which are more expensive to collect.

To investigate the safety, precision, and overhead of static
RTS, we implemented one class-level static RTS technique
and one method-level static RTS technique. The class-level
static RTS technique (ClassSRTS) is our implementation of
the previously proposed class firewall [22] technique; it finds
class-level dependencies by reasoning about inheritance and
reference relationships in a class dependency graph. ClassS-
RTS selects to re-run any test class that transitively de-
pends on any changed class in the dependency graph. The
method-level static RTS technique (MethSRTS) utilizes call-
graph analysis [5, 17, 39]; it constructs a call graph with
all test methods as entry points and selects to re-run test
classes that can transitively reach any changed class through

a traversal of the call graph. Our ClassSRTS and MethSRTS
implementations are based on the ASM bytecode manipu-
lation and analysis framework [4] and the T.J. Watson Li-
braries for Analysis (WALA) [40], respectively.

We evaluated these two static RTS techniques on 985
revisions of 22 open-source Java projects. We considered
two variants of ClassSRTS and eight variants of MethSRTS,
and we compared them against Ekstazi. The results show
that ClassSRTS has comparable performance as Ekstazi, but
ClassSRTS is occasionally unsafe. In contrast, MethSRTS
performs rather poorly: it does not provide performance
benefits and is more frequently unsafe. The latter result was
somewhat surprising as one may expect finer-grain analysis
at the method level to be safer and more precise (but po-
tentially slower) than the coarser-grain analysis at the class
level. In conclusion, we recommend that researchers con-
tinue improving static RTS techniques at the coarser gran-
ularity, which already shows promising results (at least at
the level of classes if not modules or projects).

2. BACKGROUND
We introduce the two static RTS techniques based on pro-

gram analysis at different granularity levels: ClassSRTS per-
forms class-level analysis [22] (Section 2.1), and MethSRTS
performs method-level analysis [5,17,29,33,39] (Section 2.2).
Although they perform analyses at different levels, we im-
plemented both techniques to report selected test classes to
aid comparison. In the rest of the paper, when we refer to
a test, we mean a test class. Recent surveys on regression
testing [42] and change-impact analysis [24,26] provide more
details about static and dynamic RTS.

2.1 Class-Level Static RTS (ClassSRTS)
Leung et al. [25] first introduced the notion of firewall

to assist testers in focusing on code modules that may be
affected by program changes. Kung et al. [22] further in-
troduced class firewall to account for the characteristics of
object-oriented languages, e.g., inheritance. Given a set of
changed classes, a class firewall computes the set of classes
that may be affected by the changes, conceptually building
a “firewall” around the changed classes. The original class
firewall technique was proposed for the object-relation graph
in C++ [22], and Orso et al. [27] generalized it to the inter-
type relation graph (IRG) to additionally consider interfaces
in Java. Subsequently, we use types to denote classes and
interfaces. To the best of our knowledge, using the IRG and
the class firewall is the only proposed technique to perform
class-level static RTS in Java.

An IRG represents the use and inheritance relations be-
tween types in a program, as defined by Orso et al. [27]:

Definition 2.1 (intertype relation graph). An
intertype relation graph, IRG, of a given program is a triple
〈N,EI , EU 〉 where:
• N is the set of nodes representing all types in the program;
• EI ⊆ N × N is the set of inheritance edges; there exists

an edge 〈n1, n2〉 ∈ EI if type n1 inherits from n2, and
a class implementing an interface is in the inheritance
relation;

• EU ⊆ N × N is the set of use edges; there exists an
edge 〈n1, n2〉 ∈ EU if type n1 directly references n2, and
aggregations and associations are in the use relations.
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Based on this definition of IRG, the class firewall is defined
as the types that can (transitively) reach some changed type
through use or inheritance edges:

Definition 2.2 (Class Firewall). The class firewall
corresponding to a given set of changed types τ ⊆ N is com-
puted over the IRG 〈N,EI , EU 〉 using the transitive closure
of the dependence relation D = (EI ∪EU )

−1; firewall(τ) =
τ ◦D∗, where −1 denotes the inverse relation, ∗ denotes the
reflexive and transitive closure, and ◦ is the relational prod-
uct.

ClassSRTS takes as input the two program revisions and
the regression test suite T that consists of the tests for the
new revision. The output is the subset of tests Ts ⊆ T that
may be affected by the changes. ClassSRTS first builds an
IRG, computes the changed types between two program re-
visions, and adds the transitive closure of each changed type
to the class firewall. Finally, ClassSRTS returns all tests
in the class firewall as the selected test set Ts. Note that
ClassSRTS need not include supertypes of the changed types
(but must include all subtypes) in the transitive closure be-
cause a test cannot be affected statically by the changes even
if the test reaches supertype(s) of the changed types unless
the test also reaches a changed type or (one of) its subtypes.

2.2 Method-Level Static RTS (MethSRTS)
A program call graph (CG) represents invocation rela-

tionships among program methods [39]. Intuitively, starting
from each root method (e.g., the main method), the call-
graph construction finds all methods that can be (transi-
tively) invoked from the root method. A call graph is defined
as follows:

Definition 2.3 (Call Graph). A call graph CG of a
given program is a pair 〈N,E〉, where:
• N is the set of all methods in the program under analysis;
• E ⊆ N ×N are the method invocation edges.

MethSRTS takes as input the two program revisions and
the regression test suite. The output is Ts, the subset of
tests that may be affected by the changes. A test is affected
if any of its test methods is affected. (Our experiments show
that MethSRTS is rather slow, not because it selects to run
test classes instead of test methods, but because the analysis
itself is slow.) Further, changes are computed at the class
level rather than the method level because recent work [13]
demonstrated that class-level changes do not require com-
plex modeling of changes due to dynamic dispatch (e.g., us-
ing lookup changes [29, 33]), and can be extremely fast to
compute. MethSRTS first builds a call graph for the old
revision using as root methods all public methods (e.g., in-
cluding the“@Before”and“@After”methods) in the test suite.
Then, MethSRTS iterates over each test to check if any of
its methods may be affected by the changed types τ , i.e., if
it can (transitively) reach methods in τ . Finally, MethSRTS
returns the selected set of tests.

2.3 Example
Although MethSRTS performs analysis at the method

level, a finer level of granularity than ClassSRTS, it does
not necessarily deliver more precise RTS. To illustrate both
techniques, consider the example in Figure 1. The class L is
in a library, while classes C1 and C2 are in the code under
test. T1, T2, and T3 are three tests. Suppose C2 is modified
(marked in gray). A typical dynamic RTS technique (e.g.,

1 //library code
2 class L {
3 void m1() {}
4 }
5
6 //source code
7 class C1 extends L {
8 void m1(){C2.m3()}
9 void m2(){}

10 }

11 class C2 {

12 static void m3(){}

13 }

1 //test code
2 class T1 {
3 void t1() {
4 L l = new L();
5 l.m1();
6 }
7 }
8 class T2 {
9 void t2() {

10 L l = new C1();
11 l.m1();
12 }
13 class T3 {
14 void t3() {
15 C1 c = new C1();
16 c.m2();
17 }
18 }

Figure 1: Example code
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Figure 2: Example IRG and call graph

Ekstazi), will select to re-run only T2, the only test that
executes the modified C2. We discuss the RTS results for
ClassSRTS and MethSRTS.
ClassSRTS: Figure 2(a) shows the IRG for the example.
Edges labeled “u” and “i” are use and inheritance edges,
respectively. The class firewall (enclosed in the dashed area)
consists of all classes that can potentially reach the modified
class, C2. Tests T2 and T3 are in the class firewall and thus
selected. Note that T3 is selected due to the imprecision
of the class-level analysis: although T3 uses C1, it does not
invoke any method of C2.
MethSRTS: Figure 2(b) shows the call graph for the ex-
ample. The method C2.m3 in the modified class C2 is marked
in gray. From the call graph, tests T1 and T2 can potentially
reach C2.m3 and are thus selected. Although MethSRTS can
be more precise than ClassSRTS in determining that T3 can-
not invoke C2.m3, MethSRTS incurs another imprecision—
even advanced call-graph analyses cannot precisely deter-
mine receiver object types in all cases. For example, T1

invokes m1 with the static receiver type L; a naive call-graph
analysis (e.g., CHA) will treat all subclasses of L as potential
runtime receiver types. Therefore, MethSRTS may impre-
cisely select T1 that could potentially invoke C1.m1 because
C1 extends L. In contrast, ClassSRTS does not have this is-
sue; any possible runtime object type has to be referenced
by the test to instantiate it.

2.4 Analysis Scope
Modern software projects use external libraries exten-

sively which can slow down static analysis in general and
MethSRTS in particular. For example, in one revision pair
of the project invokebinder (p1, Table 5), we found that us-
ing RTA call-graph analysis takes 370.8% of RetestAll time
when third-party libraries are excluded from the analysis,
but it becomes 81304.2% of RetestAll time when libraries

585



are included—orders of magnitude difference! Therefore, we
consider the impacts of excluding third-party libraries for
ClassSRTS and MethSRTS as follows.

Theorem 2.1. Excluding third-party libraries cannot in-
troduce a new type of safety issue for ClassSRTS.

Proof. Excluding third-party libraries removes all types
in the library from the IRG. If the exclusion induced a safety
issue, there must be a path from a test T to a changed type C

that contains a library type L; otherwise, the exclusion will
not impact the selection results. This implies a path from
T to L and a path from from L to C. However, third-party
libraries are built before the code under test, and therefore
L cannot statically inherit from or use C

2. Therefore, the
path from L to C does not exist. Contradiction.

Theorem 2.2. Excluding third-party libraries can intro-
duce a new type of safety issue for MethSRTS.

Proof. As shown in Figure 2, by including library code
MethSRTS can select the truly affected test T2. However,
if the library is excluded, Line 11 in Figure 2(b) will be
ignored by the call-graph analysis because the static receiver
type is L. Then, T2 only reaches C1.C1() that does not invoke
any methods from the code under test. Thus, T2 does not
reach any method in the modified class C2, and would not
be selected. Therefore, excluding third-party libraries can
introduce a new type of safety issue for MethSRTS.

As a result, we exclude libraries for ClassSRTS (making
the analysis run faster while selecting the same set of tests),
but we evaluate MethSRTS both with and without library
exclusion to investigate the cost/safety tradeoff.

3. IMPLEMENTATION
In this section, we describe the implementation details

of our ClassSRTS and MethSRTS techniques. Details of
Ekstazi, the dynamic RTS tool used in our evaluation, can
be found elsewhere [12,13].
Change computation: Finding syntactically changed
source files can be done easily using the diff utility or
version-control systems, but syntactic changes (e.g., simple
reformatting) may not translate to bytecode changes [13].
Therefore, we compute changes at the bytecode level, lever-
aging the comparison utility from Ekstazi. More specifically,
given two program revisions, the comparison first detects the
bytecode files that differ between the revisions, and then in-
vokes the Ekstazi API to compute smart checksums [13] (by
removing debug-related information) of those bytecode files
to further filter out the files where only debug-related in-
formation changed. Using the Ekstazi change computation
also enables a fairer evaluation and comparison of tools.
Graph construction: For ClassSRTS, we used the ASM
bytecode manipulation framework (version 5.0) [4] to con-
struct the IRG. Our tool uses ASM to parse the bytecode of
each (changed) classfile, traversing all the fields, methods,
signatures, and annotations to collect all types that are ref-
erenced/used by the type in the classfile. It also collects all

2Note that even when there are callbacks from the library
code, the static reference to the receiver type of the callback
is usually referenced by some class from the code under test
to pass to the library code; also note that the safety issues of
static RTS caused by reflection (shown in Section 4.3) exist
even with library code analysis.

types that the type in the classfile extends/implements. Im-
portantly, it incrementally updates the IRG computed from
a prior revision by analyzing only the classfiles that changed.

For MethSRTS, we used the call-graph analyses from the
IBM WALA framework [40]. We evaluated four widely used
call-graph anlayses: CHA (Class Hierarchy Analysis), RTA
(Rapid Type Analysis), 0-CFA (Control-Flow Analysis), and
0-1-CFA, in the ascending order of precision [17, 39]. The
analyses effectively differ in how they approximate the run-
time types of receiver objects, e.g., CHA does not approx-
imate the runtime types at all, while 0-CFA uses one set
of types to approximate the runtime types. In general, a
more precise call-graph analysis may incur a higher over-
head. Furthermore, WALA also allows excluding the library
code from the analysis to speed it up. Therefore, we studied
these four analyses both with and without library exclusion
to investigate the cost/safety trade-offs for MethSRTS. We
used 0-CFA with library exclusion as the default MethSRTS
variant because (1) it is recommended by the WALA tu-
torial [40] for general call-graph analysis applications, and
(2) our results show it to perform well among all the eight
variants for the specific application of call-graph analysis to
RTS. Both tools construct the appropriate graph (IRG or
call graph) on the old program revision and serialize the
constructed graph to the disk for the new revision.
Graph traversal: Given an appropriate graph (IRG or
call graph), and a set of changed nodes, each tool needs to
find the tests that can reach the changed nodes. Our tools
always traverse the graph representing the old revision. For
ClassSRTS, we evaluate two modes, offline and online, that
traverse the (old) graph at different points. The offline mode
computes transitive closure of the entire graph in advance
(before the new revision and the changes are known), and
produces a mapping from test to dependencies; the time to
compute the closure is not counted in the end-to-end time.
The selection then simply checks what test has some changes
among its dependencies. The online mode computes only
nodes transitively reachable from the changes once it knows
what those changes are; the time to compute reachability
is counted in the end-to-end time. Both modes also incre-
mentally update the old graph to produce a new graph for
the next revision; the time to perform the update is not
counted for offline, while it is counted for online. For Meth-
SRTS, all eight variants use the online mode. We did not
try the offline mode for MethSRTS because (1) MethSRTS
performs poorly in terms of safety and precision and is not
worth further cost analysis, and (2) MethSRTS selects many
more tests than Ekstazi/ClassSRTS so its offline mode can
be predicted to be inferior to both others. To implement
graph traversals, we use JGraphT [21].

4. EVALUATION AND RESULTS
We present our experimental setup and the results of eval-

uating static RTS techniques in terms of number of selected
tests, time overhead, precision, and safety. We evaluate two
variants of ClassSRTS and eight variants of MethSRTS, and
we compare them against two baselines: RetestAll (which
just runs all tests) and Ekstazi. Finally, we present some
examples of the safety and precision issues of static RTS.

4.1 Experimental Setup
To evaluate static RTS, we use 22 open-source projects,

listed in Table 1. We chose these projects among single-
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Table 1: Projects used in study
ID Project Name SHA kLOC Revs Tests T[s]
p1 invokebinder 8611721 2.0 66 2.2 1.7
p2 logback-encoder 4fe0f4a 3.2 43 18.7 3.4
p3 compile-testing 8d5229e 3.0 30 7.6 3.7
p4 commons-cli 3ba638a 5.9 50 23.0 3.8
p5 commons-dbutils 1429538 5.4 33 23.2 4.1
p6 commons-fileupload 1460343 4.3 54 12.0 4.8
p7 commons-validator bcb1ec4 11.9 19 61.0 4.8
p8 asterisk-java 08dda72 34.5 59 38.1 6.1
p9 commons-codec 50a1d17 17.0 63 47.5 6.5
p10 commons-compress ec07514 32.5 12 89.4 9.4
p11 commons-email 1607174 6.5 23 17.0 12.3
p12 commons-collections 1543740 54.3 66 149.6 19.9
p13 commons-lang bcb33ec 69.0 61 133.8 21.6
p14 commons-imaging b1fdec9 37.1 87 58.9 28.9
p15 commons-dbcp 1587107 18.7 31 27.2 68.9
p16 b.HikariCP 19e0c5d 9.4 49 21.0 80.2
p17 commons-io 1686461 27.7 49 93.9 91.4
p18 addthis.stream-lib 4dc3705 8.3 5 24.0 104.8
p19 commons-math 79c4719 185.4 57 450.2 109.3
p20 OpenTripPlanner aa21c92 79.3 20 135.8 277.9
p21 commons-pool2 1622091 12.8 51 19.5 294.6
p22 jankotek.mapdb eac22b7 67.9 57 144.2 515.9

Average 32.3 44.8 80.2 75.8

module Maven projects with JUnit 4 tests from (1) the orig-
inal Ekstazi paper [13], (2) one of our previous studies [23],
and (3) popular GitHub Java projects with longer-running
tests (which we deliberately chose because they are more
likely to benefit from RTS). Table 1 shows basic statistics
for the projects: SHA is the initial revision of the project
on which our experiments started, kLOC is the number of
thousands of lines of code in the project, Revs is the number
of revision pairs used in our evaluation, Tests is the num-
ber of tests in the project, and T[s] is the time in seconds
to run all the tests in each project. kLOC, Tests, and T[s]
are averages across all revisions that we used.

We used Ekstazi off-the-shelf to compare with static RTS
techniques. To select the revisions, we followed the method-
ology from the original Ekstazi paper [13]. For each project,
we started with the 100 revisions immediately preceding
SHA and then chose the subset of those 100 revisions
(1) that compiled, (2) for which mvn test ran successfully,
and (3) for which Ekstazi ran successfully with mvn ek-

stazi:ekstazi. Starting from the oldest revision in our list,
we ran each RTS technique on the successive pairs of revi-
sions, simulating what an end user would have experienced
when using an RTS tool. We measure the number of tests se-
lected by each technique, the time taken to run the selected
tests, and the time taken by RTS techniques to perform the
selection. The end-to-end time includes the time to collect
dependencies, analyze what tests to run, and to actually run
the selected tests for the online variants of Ekstazi and the
static RTS techniques. For all the offline variants, the time
to collect dependencies is not included. We ran all experi-
ments on a 3.40 GHz Intel Xeon E3-1240 V2 machine with
16GB of RAM, running Ubuntu Linux 14.04.4 LTS and Or-
acle Java 64-Bit Server version 1.8.0 91.

4.2 Research Questions
Our study aims to answer these research questions:

• RQ1: How do static RTS techniques compare among
themselves and with RetestAll and dynamic RTS in terms
of the number of tests selected to run?

• RQ2: How do static RTS techniques compare among
themselves and with RetestAll and dynamic RTS in terms
of runtime?

• RQ3: How do static RTS techniques compare with a safe
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Figure 3: Percentage of tests selected

class-level dynamic RTS in terms of precision and safety?
• RQ4: How do different variants of the MethSRTS influ-

ence the cost/safety trade-offs?

4.2.1 RQ1: Tests Selected

Figure 3 shows the percentage of tests selected by static
and dynamic RTS relative to RetestAll (the black line in
the middle of each boxplot is the mean). On average,
Ekstazi, ClassSRTS, and MethSRTS select to run 20.6%,
29.4%, and 43.8% of all tests, respectively. As expected,
ClassSRTS and MethSRTS both tend to select a higher per-
centage of tests than Ekstazi. We further discuss exactly
how precise and safe ClassSRTS and MethSRTS are with
respect to Ekstazi in Section 4.2.3. Surprisingly, the coarser-
granularity ClassSRTS technique selects fewer tests than the
finer-granularity MethSRTS technique. One reason was dis-
cussed in Section 2.3, and more concrete cases are analyzed
in Section 4.3. Overall, although inferior to the state-of-the-
art dynamic RTS in terms of the number of tests selected,
static RTS still selects only a fraction of all tests.

4.2.2 RQ2: Time Overhead

While the number of selected tests is an important internal
metric in RTS, the time taken for testing is the relevant
external metric because a developer using RTS perceives it
based on this time. We measure time from the point of view
of a developer who commits/pushes some code changes and
then waits for test results before proceeding with other tasks.
Specifically, we follow the original Ekstazi experiments [13]
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Table 2: Summary of end-to-end testing time relative to RetestAll
Ekstazi Ekstazi ClassSRTS ClassSRTS MethSRTS
(offline) (online) (offline) (online)

Project min max avg min max avg min max avg min max avg min max avg
p1 92.4 132.7 115.5 88.1 147.3 126.2 72.4 113.8 102.9 75.7 130.9 114.8 215.1 520.8 390.5
p2 82.9 122.3 105.4 85.4 146.2 121.6 64.4 114.0 90.9 65.8 127.3 99.5 190.7 270.9 220.6
p3 74.9 122.6 103.0 76.4 139.0 113.9 65.0 109.6 91.8 64.3 124.5 97.8 130.7 284.4 227.7
p4 92.4 119.4 106.7 97.0 131.2 114.3 83.0 117.7 99.3 83.0 125.0 102.2 167.1 250.3 202.5
p5 81.2 112.8 101.4 87.2 129.1 106.2 73.7 116.7 94.5 80.7 116.9 97.7 156.9 282.9 231.7
p6 73.6 124.0 93.4 70.2 148.3 98.3 61.3 114.6 85.7 62.0 125.3 87.6 123.0 230.1 175.9
p7 71.5 107.0 88.9 75.3 114.4 95.0 62.2 97.9 77.5 61.2 106.2 82.9 131.9 15688.0 9305.2
p8 31.6 109.6 44.4 31.7 117.2 49.0 25.5 104.5 42.9 24.8 330.2 54.1 85.2 458.6 352.8
p9 41.7 93.2 56.4 45.4 96.0 58.2 35.6 80.7 49.6 36.0 91.9 51.3 92.6 258.3 166.9
p10 43.6 91.3 54.1 46.1 108.9 57.9 34.7 105.0 64.2 35.6 110.2 65.3 98.2 253.1 165.8
p11 29.5 99.4 49.9 28.3 103.2 50.1 24.4 105.9 44.8 23.5 105.6 47.1 51.7 155.6 86.5
p12 28.4 101.8 44.0 26.6 109.8 45.5 25.7 102.4 51.3 25.5 252.4 55.8 61.3 4675.5 2670.4
p13 29.4 74.7 44.7 30.6 83.0 47.6 25.2 99.2 55.6 25.9 103.5 57.1 58.7 444.2 316.8
p14 20.4 104.2 46.1 23.1 111.9 48.9 19.0 107.2 54.5 19.3 107.4 55.7 39.3 136.2 81.7
p15 6.5 104.7 26.4 6.7 107.5 27.0 5.6 104.9 26.0 5.6 103.4 26.1 12.4 123.8 57.3
p16 35.1 99.8 94.5 10.9 105.3 97.0 2.8 98.1 68.4 3.0 98.8 66.9 7.8 120.5 80.0
p17 4.1 96.6 19.9 4.1 109.6 21.3 3.4 94.9 22.0 3.4 96.4 22.3 9.7 113.4 46.2
p18 31.6 45.1 35.3 31.9 46.1 36.1 29.9 43.6 34.7 30.4 44.5 34.6 103.6 109.5 107.4
p19 10.9 69.4 17.8 11.3 96.7 20.6 9.6 97.5 19.4 9.7 98.0 19.9 21.9 187.1 112.1
p20 47.8 90.9 67.1 47.9 100.7 71.0 47.0 99.3 85.9 47.1 100.5 86.2 85.8 149.7 112.5
p21 1.1 101.5 52.4 1.1 101.8 52.5 0.9 100.7 59.8 0.8 100.8 59.7 2.2 102.6 68.2
p22 0.9 102.4 41.1 0.9 104.3 42.0 0.8 87.5 52.7 0.7 89.3 53.2 1.6 177.6 117.4
Average 42.3 101.2 64.0 42.1 111.7 68.2 35.1 100.7 62.5 35.6 122.2 65.3 84.0 1136.0 695.3

Table 3: Safety and precision violations of static RTS compared to Ekstazi
Safety Violation % Precision Violation %

ClassSRTS MethSRTS ClassSRTS MethSRTS
Project revs min max avg revs min max avg revs min max avg revs min max avg
p1 0.0 n/a n/a n/a 13.6 33.3 100.0 48.1 4.5 33.3 66.7 50.0 6.1 33.3 66.7 45.8
p2 0.0 n/a n/a n/a 76.7 11.1 100.0 40.6 9.3 6.7 75.0 42.3 67.4 15.4 80.0 57.5
p3 0.0 n/a n/a n/a 43.3 11.1 100.0 41.9 20.0 20.0 33.3 27.5 0.0 n/a n/a n/a
p4 0.0 n/a n/a n/a 4.0 16.7 16.7 16.7 16.0 5.9 90.9 61.7 42.0 4.3 80.0 36.4
p5 0.0 n/a n/a n/a 30.3 3.2 10.0 6.8 30.3 4.8 100.0 51.1 66.7 33.3 100.0 78.6
p6 0.0 n/a n/a n/a 0.0 n/a n/a n/a 22.2 14.3 16.7 16.3 29.6 50.0 58.3 57.8
p7 0.0 n/a n/a n/a 0.0 n/a n/a n/a 36.8 3.6 25.0 16.0 79.0 1.6 96.3 75.6
p8 0.0 n/a n/a n/a 0.0 n/a n/a n/a 16.9 42.9 100.0 72.9 13.6 81.6 97.4 92.8
p9 0.0 n/a n/a n/a 1.6 6.7 6.7 6.7 6.3 25.0 40.7 28.9 44.4 48.4 93.3 87.5
p10 0.0 n/a n/a n/a 8.3 50.0 50.0 50.0 41.7 28.3 64.8 53.9 50.0 71.9 100.0 78.9
p11 0.0 n/a n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a 26.1 20.0 71.4 42.3
p12 0.0 n/a n/a n/a 6.1 0.8 100.0 25.9 39.4 0.8 98.0 50.0 63.6 7.0 99.3 85.3
p13 0.0 n/a n/a n/a 16.4 5.9 15.4 11.3 49.2 6.7 96.3 54.9 83.6 55.6 97.0 80.2
p14 0.0 n/a n/a n/a 5.8 2.8 46.1 20.6 39.1 14.0 98.0 62.4 72.4 4.4 97.3 68.3
p15 0.0 n/a n/a n/a 0.0 n/a n/a n/a 16.1 7.1 40.0 26.2 41.9 3.6 91.7 65.8
p16 2.0 100.0 100.0 100.0 0.0 n/a n/a n/a 77.5 5.6 100.0 13.1 93.9 9.5 100.0 20.9
p17 0.0 n/a n/a n/a 12.2 2.7 24.2 8.4 14.3 20.0 56.8 33.3 75.5 4.1 95.0 76.0
p18 0.0 n/a n/a n/a 0.0 n/a n/a n/a 80.0 50.0 50.0 50.0 100.0 87.0 95.7 93.9
p19 1.8 50.0 50.0 50.0 5.3 2.3 7.0 3.9 17.5 35.5 100.0 61.2 79.0 50.2 100.0 92.6
p20 0.0 n/a n/a n/a 5.0 55.8 55.8 55.8 75.0 63.0 100.0 91.0 25.0 20.9 94.1 70.6
p21 0.0 n/a n/a n/a 0.0 n/a n/a n/a 51.0 15.4 92.3 31.9 68.6 15.4 88.9 55.0
p22 0.0 n/a n/a n/a 5.3 0.7 13.5 6.5 63.2 7.9 100.0 50.1 96.5 7.9 100.0 65.7
Average 0.2 6.8 6.8 6.8 10.6 9.2 29.3 15.6 33.0 18.7 70.2 42.9 55.7 28.4 86.5 64.9

and compare static and dynamic RTS in terms of the end-to-
end time that includes time to (1) analyze what tests should
be run, (2) run those tests, and (3) collect dependencies for
future RTS3. For any RTS technique to be beneficial, this
end-to-end time must be less than RetestAll time.

Table 2 summarizes the end-to-end times for static and
dynamic RTS relative to RetestAll. Columns Ekstazi
(offline), Ekstazi (online), ClassSRTS (offline),
ClassSRTS (online), and MethSRTS represent the time
for Ekstazi in offline and online modes, ClassSRTS in offline
and online modes, and MethSRTS, respectively. The differ-
ence between the offline and online modes of ClassSRTS is
explained in Section 3. For Ekstazi, the online mode collects
test dependencies during test runs on the new revision, while
the offline mode collects them in a separate phase (hence,
the results of test runs can be obtained faster, but the over-
all machine time used is higher) [13]. For each technique, we
show the minimum, maximum, and average time relative to
RetestAll. The last row shows the average for each column.

3Note that the dependency collection time is not counted in
the end-to-end time of the offline mode.

The results show that ClassSRTS and Ekstazi both pro-
vide benefits over RetestAll (with the average end-to-
end time across all projects being 62.5% to 68.2% of the
RetestAll time). Comparing ClassSRTS and Ekstazi, we
find them to be fairly similar in the respective modes. Based
on the average time, ClassSRTS slightly outperforms Ekstazi
(62.5% to 64.0% in the fastest, offline modes), but we do note
that Ekstazi is implemented as a plugin for the Maven build
system [12], while our implementation for ClassSRTS is not
yet available as a Maven plugin. Therefore, Ekstazi analysis
involves some overhead from Maven. (Both ClassSRTS and
Ekstazi actually run tests through Maven.) In brief, we find
ClassSRTS and Ekstazi to be equally good based on these
experiments. In the future, we plan to perform a deeper
comparison, especially to determine how much the ClassS-
RTS analysis performed to select tests is faster than the
dynamic analysis that Ekstazi uses, because Ekstazi tends
to select fewer tests to run than ClassSRTS, as seen in Sec-
tion 4.2.1. For both ClassSRTS and Ekstazi, comparing the
offline and online modes shows that they do not differ much,
which means that the end-to-end time is, on average, dom-
inated by the time taken to run the selected tests, rather
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than by the times to either analyze what tests to run in the
case of ClassSRTS or to compute test dependencies in the
case of Ekstazi. Finally, we observe that MethSRTS is sub-
stantially slower, not only much worse than the other RTS
techniques but even worse than RetestAll. Overall, we find
that static and dynamic RTS at the class-level have compa-
rable performance, while MethSRTS is effectively useless.

We also point out that RTS techniques provide more ben-
efits for projects with longer-running tests. Counting the
number of projects in which some mode on average performs
worse than RetestAll (i.e., the avg is over 100%), we see that
ClassSRTS performs worse in two projects, while Ekstazi
performs worse in five projects. However, most of those
projects have shorter-running tests, with all five of these
projects having tests that run in less than 5 sec. For such
projects, one can simply use RetestAll and not attempt any
RTS. In fact, we could have even removed from our evalua-
tion such projects with short-running tests, but we preferred
to keep them to highlight that RTS is not appropriate in all
cases. An important point is that RTS techniques should be
not only as fast as possible but also as safe as possible—any
RTS technique can be simply made faster by not selecting
to run some tests, but then it risks missing regressions.

4.2.3 RQ3: Safety and Precision

We compare the safety and precision of ClassSRTS and
MethSRTS with respect to Ekstazi, because Ekstazi is a
fairly safe and precise dynamic RTS technique [13]. Recall
that a safe RTS technique selects to run all tests that could
change their behavior due to the code changes between two
revisions, and a precise RTS technique selects to run only
the tests that could change their behavior.

Table 3 shows a summary of safety and precision viola-
tions, computed as follows. Let E be the set of tests selected
by Ekstazi and T be the set of tests selected by another
technique on some revision. Safety, respectively precision,
violations are computed4 as |E \ T |/|E ∪ T |, respectively
|T \ E|/|E ∪ T |, to measure how much a technique is less
safe, respectively precise, than Ekstazi; lower percentages
are better. For each of the four combinations (of two types
of violations and two static RTS techniques), we tabulate
four metrics: revs is the percentage of all revisions in which
the technique was unsafe/imprecise (i.e., the percentage was
not 0), and min, max, and avg are the minimum, maximum,
and average, respectively, percentages of tests missed (for
safety) or selected extra (for precision). Intuitively, avg cap-
tures how bad the safety/precision violations are when they
happen in a project. We use “n/a”when there were no safe-
ty/precision violations for the project. The last row shows
the average for each column; we treat “n/a” as 0 when com-
puting the overall averages.

Table 3 shows several interesting results. One surprising
result for us is that ClassSRTS was rarely unsafe. Only
2 projects had safety violations, averaging 0.2% across all
revisions of all projects evaluated. (Some example safety vi-
olations are discussed in Section 4.3.) Moreover, we found
that MethSRTS is both less safe and less precise than ClassS-
RTS, i.e., method-level static RTS is much less effective than
class-level static RTS. On average, across all 22 projects, the

4We consider the union of tests selected by both Ekstazi
and the technique to avoid division by zero in cases where
Ekstazi does not select any test but a static RTS technique
selects some tests.

percentages of revisions in which ClassSRTS incurs safety vi-
olations and precision violations are 0.2% and 33.0%, respec-
tively. For MethSRTS, these percentages increase to 10.6%
and 55.7%, respectively (10.4 and 22.7 percentage points
more unsafe and imprecise, respectively, than ClassSRTS).
ClassSRTS is also more effective than MethSRTS in terms
of number of projects with safety violations: 2 projects for
ClassSRTS vs. 14 projects for MethSRTS. (The number of
projects with a precision violation is the same, 21, for both
techniques.) Comparing the min, max, and avg values shows
the same trend, i.e., when there is a safety or precision vio-
lation, MethSRTS is more unsafe or imprecise.

4.2.4 RQ4: MethSRTS Variants

Impacts of call-graph analyses: Table 4 summarizes
the results comparing different call-graph analyses for Meth-
SRTS. For each analysis, columns 2–5 present the average
percentage of tests selected for all revisions in each project,
while columns 6–9/10–13/14–17 present the safety/preci-
sion/overhead information. From the table, we observe three
things. First, in general, more precise call-graph analyses
tend to select fewer tests. For example, on average, CHA
selects 48.8% of tests, while 0-1-CFA selects 43.4% of tests.
This is because some changed nodes may be reachable from
tests in imprecise call graphs but not reachable in precise
call graphs. Second, there is no clear trend for safety issues
because the precision of call-graph analyses does not directly
impact the soundness of the constructed call graphs; instead,
the safety issues are usually due to reflection and library ex-
clusion. Third, although 0-1-CFA has a much higher time
overhead, it has similar precision with 0-CFA while being the
most unsafe of all the four variants. 0-1-CFA is very expen-
sive because it spends a lot of time to approximate possible
runtime types of the receiver object for each method invoca-
tion [39]. Comparing 0-CFA and 0-1-CFA, 0-CFA has much
fewer safety issues and lower overhead; comparing CHA and
RTA, RTA has much fewer safety issues and lower overhead.
Therefore, 0-CFA (also suggested by WALA developers) and
RTA seem to be the most suitable for MethSRTS.
Impacts of library exclusion: To study the impacts
of analyzing library code, for each project, we ran WALA
with and without library exclusion on only one randomly
selected revision pair. We do not run for all revisions, be-
cause analysis without library exclusion is quite slow. We
set a timeout of 3 hours for each revision pair. The re-
sults are shown in Table 5, where “DNF” means that the
run timed out. (Note that the corresponding times in ta-
bles 5 and 4 do not match because Table 5 is for only one
revision pair for each project.) 0-CFA and 0-1-CFA timed
out for all projects without library exclusion, so we do not
show them. Additionally, the analyses failed due to memory
constraints for three projects (p16, p18, and p20); we do not
show these rows. From the results in Table 5, we observe two
things. First, without library exclusion, the more expensive
and precise RTA analysis does not pay off—RTA selects the
same number of tests as the less expensive CHA in all cases,
for projects where neither analyses timed out. Second, the
analysis overhead relative to RetestAll is much higher with-
out library exclusion than with library exclusion. For ex-
ample, for commons-math (p19), CHA overhead is 2527.9%
without library exclusion but 527.3% with library exclusion.
This happens because, without library exclusion, a total of
33,770 classes need to be analyzed for this project, making
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Table 4: Impacts of different call-graph analyses on MethSRTS
Tests Selected % Safety Violation % Precision Violation % Time %

Project CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA CHA RTA 0CFA 01CFA
p1 74.8 74.0 70.7 70.7 48.1 48.1 48.1 48.1 45.0 44.4 45.8 45.8 777.8 493.7 390.5 387.2
p2 27.8 21.9 21.9 21.9 40.5 40.6 40.6 40.6 61.0 57.5 57.5 57.5 515.2 280.6 220.6 222.1
p3 39.7 32.7 29.4 29.4 75.0 47.5 41.9 41.9 19.7 30.0 n/a n/a 571.2 571.5 227.7 237.6
p4 44.7 40.8 39.0 38.7 16.7 16.7 16.7 15.0 39.8 35.8 36.4 36.1 441.8 257.5 202.5 203.3
p5 68.9 68.8 59.8 59.8 n/a n/a 6.8 6.8 75.0 75.1 78.6 78.6 484.9 346.4 231.7 247.6
p6 35.8 34.0 34.0 34.0 n/a n/a n/a n/a 60.3 57.8 57.8 57.8 263.5 193.3 175.9 176.0
p7 52.4 50.6 58.1 58.1 n/a n/a n/a n/a 72.2 71.2 75.6 75.6 661.0 659.8 9305.2 121213.1
p8 25.4 23.7 15.5 10.3 n/a n/a n/a 71.4 94.8 94.5 92.8 93.0 470.5 403.8 352.8 427.5
p9 21.6 21.6 15.8 15.8 n/a n/a 6.7 5.0 90.0 90.0 87.5 87.5 435.9 231.5 166.9 167.1
p10 35.8 35.8 35.8 35.8 50.0 50.0 50.0 50.0 78.9 78.9 78.9 78.9 378.5 237.0 165.8 169.6
p11 15.3 15.3 15.1 14.6 n/a n/a n/a 11.1 42.9 42.9 42.3 42.3 143.2 100.6 86.5 86.3
p12 61.0 61.0 59.0 59.0 50.8 50.8 25.9 25.9 85.4 85.4 85.3 85.3 496.5 395.1 2670.4 416.1
p13 61.2 61.2 51.3 51.1 13.9 13.9 11.3 11.6 82.5 82.5 80.2 79.8 880.1 713.6 316.8 235.6
p14 40.9 40.9 40.0 40.0 20.6 20.6 20.6 20.6 68.7 68.7 68.3 68.3 109.5 88.1 81.7 82.4
p15 36.6 36.6 36.6 36.6 n/a n/a n/a n/a 65.8 65.8 65.8 65.8 69.1 61.1 57.3 59.0
p16 98.1 100.0 96.5 93.0 94.1 n/a n/a 12.5 24.4 24.3 20.9 23.4 121.8 125.6 80.0 79.4
p17 37.7 37.2 18.2 18.2 n/a n/a 8.4 8.4 86.1 85.5 76.0 76.0 113.5 85.8 46.2 47.3
p18 95.8 95.8 95.8 95.8 n/a n/a n/a n/a 93.9 93.9 93.9 93.9 134.1 131.0 107.4 106.3
p19 36.0 35.8 28.9 28.9 n/a n/a 3.9 3.9 94.4 94.4 92.6 92.5 356.3 267.2 112.1 107.7
p20 31.4 31.4 17.5 17.5 n/a n/a 55.8 58.1 89.2 89.2 70.6 70.6 158.2 194.1 112.5 128.6
p21 61.4 61.4 57.1 57.1 n/a n/a n/a n/a 58.6 58.6 55.0 55.0 73.3 70.7 68.2 67.8
p22 71.7 71.4 67.8 67.8 7.1 6.5 6.5 6.5 66.0 65.8 65.7 65.7 118.1 112.0 117.4 107.1
Average 48.8 47.8 43.8 43.4 18.9 13.4 15.6 19.9 67.9 67.8 64.9 65.0 353.4 273.6 695.3 5680.7

Table 5: Impacts of library exclusion on MethSRTS (only one revision pair, not all pairs, per project)
Tests Selected % Safety Violation % Precision Violation % Time %

exclusion no exclusion exclusion no exclusion exclusion no exclusion exclusion no exclusion
Project CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA CHA RTA
p1 100.0 100.0 100.0 100.0 n/a n/a n/a n/a n/a n/a n/a n/a 450.0 370.8 5550.0 81304.2
p2 0.0 0.0 100.0 100.0 n/a n/a n/a n/a n/a n/a 100.0 100.0 478.1 237.5 5475.0 97087.5
p3 33.3 0.0 66.7 66.7 50.0 100.0 n/a n/a n/a n/a n/a n/a 678.1 609.4 5271.9 73028.1
p4 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 4.3 4.3 4.3 4.3 627.0 316.2 6573.0 71027.0
p5 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 81.8 81.8 81.8 81.8 474.5 333.3 4452.9 53649.0
p6 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 50.0 50.0 50.0 50.0 402.1 261.7 3542.6 47459.6
p7 44.3 44.3 44.3 44.3 n/a n/a n/a n/a 96.3 96.3 96.3 96.3 600.0 585.5 4960.0 65352.7
p8 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 97.4 97.4 97.4 97.4 566.1 496.6 3819.1 54051.5
p9 97.8 97.8 97.8 97.8 n/a n/a n/a n/a 88.9 88.9 88.9 88.9 501.9 226.0 4018.3 34651.0
p10 1.2 1.2 1.2 1.2 n/a n/a n/a n/a n/a n/a n/a n/a 437.1 243.8 3788.6 34364.8
p11 41.2 41.2 41.2 41.2 n/a n/a n/a n/a 42.9 42.9 42.9 42.9 204.6 122.9 1681.7 20593.1
p12 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 64.8 64.8 64.8 64.8 678.4 553.8 3670.8 32296.5
p13 98.5 98.5 98.5 DNF n/a n/a n/a DNF 48.1 48.1 48.1 DNF 958.1 752.1 6385.5 DNF
p14 13.5 13.5 13.5 13.5 n/a n/a n/a n/a 71.4 71.4 71.4 71.4 80.8 61.5 595.3 7551.1
p15 96.3 96.3 96.3 96.3 n/a n/a n/a n/a n/a n/a n/a n/a 157.4 136.1 507.0 5935.8
p17 97.7 97.7 97.7 97.7 n/a n/a n/a n/a 67.4 67.4 67.4 67.4 181.8 151.7 758.8 6142.2
p19 100.0 100.0 100.0 DNF n/a n/a n/a DNF 94.2 94.2 94.2 DNF 527.3 422.4 2527.9 DNF
p21 100.0 100.0 100.0 100.0 n/a n/a n/a n/a 44.4 44.4 44.4 44.4 108.1 104.0 181.7 1106.3
p22 58.0 58.0 58.0 58.0 n/a n/a n/a n/a 50.0 50.0 50.0 50.0 140.8 130.3 586.5 4919.1
Average 72.7 71.0 79.8 77.5 2.6 5.3 n/a n/a 47.5 47.5 52.7 50.6 434.3 321.9 3386.7 36343.1

CHA very time consuming. The analysis time for RTA is
even higher without library exclusion. In the same project,
the analysis for RTA times out. RTA has such a high over-
head because it spends significant time to compute the sets
for approximating potential runtime types of the receiver
object for every method invocation [39]. Overall, these re-
sults demonstrate that call-graph analyses without library
exclusion are not practical for static RTS due to the high
cost and precision issues. In fact, method-level static RTS
unfortunately appears impractical in all configurations.

4.3 Qualitative Analysis
We discuss concrete cases of safety and precision violations

where a static RTS technique does not select some test(s)
that Ekstazi selects or selects some test(s) that Ekstazi does
not select. An unsafe RTS technique is bad in a non-obvious
way because it can be deceivingly fast but risk missing re-
gressions; our analysis of safety violations identifies some
cases where static RTS techniques were unsafe during our
experiments. In contrast, an imprecise RTS technique is bad
in an obvious way because the imprecision is reflected in the
end-to-end time. These examples illustrate current limita-
tions of static analysis for RTS and can provide insight into
how to improve them in the future.

abstract class AbstractRungeKuttaFieldStepInterpolatorTest: 

private <T extends RealFieldElement<T>> RungeKuttaFieldStepInterpolator<T> setUpInterpolator 

(…) {  

  RungeKuttaFieldStepInterpolator<T> i = createInterpolator(f, t1 > t0, new 

FEODE<T>(eqn).getMapper());  

  FieldButcherArrayProvider<T> p = createButcherArrayProvider(f, i);  

  …} 

private <T extends RealFieldElement<T>> FieldButcherArrayProvider<T> 

createButcherArrayProvider(Field<T> f, RungeKuttaFieldStepInterpolator p){  

  FieldButcherArrayProvider<T> integrator = null;  

  ...  

  String ipolName = p.getClass().getName();  

  String integ = ipolName.replaceAll("StepInterpolator", "Integrator");  

  integ = clz.getConstructor(...).newInstance(f, f.getOne());  

  ... }  

protected <T extends RealFieldElement<T>> void doInterpolationAtBounds(Field<T> f, double 

epsilon) {  

  RungeKuttaFieldStepInterpolator<T> ipol= setUpInterpolator(f, new SinCos<T>(f), 0.0, new 

double[] { 0.0, 1.0 }, 0.125);  

   …}

u

class ClassicalRungKuttaFieldStepInterpolatorTest extends 

AbstractRungeKuttaFieldStepInterpolatorTest: 

… 

@Test public void interpolationAtBounds() {  

  doInterpolationAtBounds(Decimal64Field.getInstance(), 1.0e-15);}  

…

u

u

class 

ClassicalRungKuttaFieldIntegrator 

extends AbstractFieldInterpolator: 

…

abstract class 

AbstractFieldIntegrator: 

…
i

u

u

i

use

inheritance

Figure 4: ClassSRTS safety violation due to reflec-
tion

Safety Violations of Static RTS.
Safety violations due to reflection: In commons-

math, between revisions 2773215 and c246b37, ClassSRTS
and MethSRTS miss to select nine tests that Ekstazi se-
lects. The relevant change is to the abstract class Ab-
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call edge

public class JavaSourcesSubjectFactoryTest  

public void invokesMultipleProcesors_asIterable() {  

…  

  ASSERT.about(javaSource()).that(JavaFileObjects.forResource(“HelloWorld.java")) 

.processedWith(Arrays.asList(noopProcessor1, noopProcessor2)).compilesWithoutError();  

…}

final class CompilationClause implements CompileTester  

public SuccessfulCompilationClause compilesWithoutError()

final class Compilation 

static Result compile(Iterable<? extends Processor> 

processors, Iterable<? extends JavaFileObject> sources) 

Figure 5: Safety violation due to third-party library
exclusion (MethSRTS)

stractFieldIntegrator, extended by several *FieldIntegra-
tor classes (e.g., ClassicalRungeKuttaFieldIntegrator) that
are definitely affected by the change. All techniques do
select multiple tests, such as ClassicalRungeKuttaField-

IntegratorTest. The nine additional tests that only
Ekstazi selects are in *FieldStepInterpolatorTest classes
(e.g., ClassicalRungeKuttaFieldStepInterpolatorTest) that
extend AbstractRungeKuttaFieldStepInterpolatorTest. As
shown in Figure 4, ClassicalRungeKuttaFieldStepInterpola-
torTest invokes the method doInterpolationAtBounds in Ab-

stractRungeKuttaFieldStepInterpolatorTest that invokes se-
tUpInterpolator, which in turn invokes createButcherAr-

rayProvider in the same class. The latter method (shown
in the red dashed box area) gets *FieldStepInterpolator in-
stances, replaces the string "StepInterpolator" with "Inte-

grator" in the class name, and uses reflection to create the
new *FieldIntegrator instance. In this case, ClassSRTS and
MethSRTS are unsafe because they do not detect the po-
tential use edge (red dashed arrow in the figure) due to re-
flection, and thus they miss to select the related tests. In
contrast, Ekstazi tracks the precise class dependencies dy-
namically, even in the presence of reflection, and detects that
the *FieldStepInterpolatorTest instances depend on the cor-
responding *FieldIntegrator instances.
Safety violation due to library exclusion: In compile-

testing, between revisions 8d5229e and 40c141b, both Ekstazi
and ClassSRTS select the same two tests, but MethSRTS
with library exclusion is unsafe and selects no test. The
relevant code change is to the class Compilation. As shown
in Figure 5, test JavaSourcesSubjectFactoryTest can reach
method compile in the changed class Compilation (marked
in gray). The underlined statement in JavaSourcesSubject-

FactoryTest invokes methods on ASSERT, a class in the third-
party library truth. When third-party libraries are excluded
from the call-graph analysis, MethSRTS does not analyze
the underlined statement and fails to select the test.

Precision Violations of Static RTS.
Imprecision due to class-level analysis: In asterisk-

java, between revisions 166f293 and d6bfce1, Ekstazi se-
lects four tests, while ClassSRTS selects four additional
tests due to the imprecision of analyzing at the class level.
The setup method of AsteriskAgentImplTest calls new Aster-

iskServerImpl(). The method onManagerEvent in the class
AsteriskServerImpl contains checks for the type of event,
e.g., if (event instanceof AgentCalledEvent). Therefore,
ClassSRTS finds a transitive static dependency of Asterisk-
AgentImplTest on AgentCalledEvent, which changed between
the mentioned revisions. However, the actual run of As-

teriskAgentImplTest never invokes onManagerEvent in Aster-

iskServerImpl (the relevant conditional is never executed),
and Ekstazi correctly does not track this dependency.

class ManagerConnectionImplTest:  

@Test public void testRegisterUserEventClass() {  

  ManagerReader mgrR;  

  mgrR = createMock(ManagerReader.class);  

  mc = new MockedManagerConnectionImpl(mgrR,   mW, mS);  

  mc.registerUserEventClass(...);  

  assertEquals("...", 1, mc.createReaderCalls);  

} 

class MockedManagerConnectionImpl 

extends ManagerConnectionImpl:  

public int createReaderCalls = 0;  

public MockedManagerConnectionImpl(mR, mW, 

mS){  

  this.mR = mR; this.mW = mW; this.mS = mS; }  

@Override protected ManagerReader 

createReader(…){  

  createReaderCalls++; return mR; } 

class ManagerConnectionImpl:  

private ManagerReader reader;  

protected ManagerReader createReader(...) {  

  return new ManagerReaderImpl(...); }  

public void registerUserEventClass(...) {  

  if (reader == null) { reader = createReader(...); }  

} 

class ManagerReaderImpl: 

private final EventBuilder eventBuilder;  

public ManagerReaderImpl(...) {  

  this.eventBuilder = new EventBuilderImpl();  

  ...  

} 

class EventBuilderImpl: 

…

u

i

u

u

X
u

i

use

inheritance

Figure 6: ClassSRTS precision violation due to dy-
namic dispatch

Imprecision due to dynamic dispatch: For the same
asterisk-java revisions, Figure 6 shows simplified code for
a case where ClassSRTS finds a false transitive dependency
of the test ManagerConnectionImplTest on the changed class
EventBuilderImpl (marked in gray) due to dynamic dis-
patch. ManagerConnectionImplTest uses MockedManagerCon-

nectionImpl that extends ManagerConnectionImpl and over-
rides createReader. ManagerConnectionImpl uses class Man-

agerReaderImpl which in turn uses the changed class Event-

BuilderImpl. Therefore, ClassSRTS finds that ManagerCon-

nectionImplTest depends on the changed class. However,
during the test run, when ManagerConnectionImplTest invokes
ManagerConnectionImpl.registerUserEventClass to check how
many times the createReader is called, the overriding method
createReader in MockedManagerConnectionImpl is executed in-
stead of createReader in the parent class. Therefore, the use
edge from ManagerConnectionImpl.createReader to Manager-

ReaderImpl is never executed and should not be considered
(marked using a red cross), i.e., the edge exists statically
but not dynamically as ManagerConnectionImpl.createReader

is never executed. In brief, ClassSRTS has this imprecision
due to dynamic dispatch.

Compared with ClassSRTS, MethSRTS is even less precise
in identifying potential targets for dynamic dispatch. For
example, between revisions 1460430 and 1475836 of commons-

fileupload, while Ekstazi and ClassSRTS select 6 and 7
tests, respectively, MethSRTS selects all 12 tests. A sim-
plified call graph for the test FileItemHeadersTest is shown
in Figure 7. FileItemHeadersTest invokes assertEquals from
the JUnit library, which in turn transitively invokes the
method printString in the library class FormatSpecifier.
When resolving the call site in the library method that in-
vokes toString on a receiver of the declared type Object, even
the most advanced 0-1-CFA cannot precisely determine the
runtime type of the receiver. Therefore, all classes over-
riding Object.toString are potential targets. In this case,
the invocation targets include DiskFileItem.toString which
transitively invokes a method in the changed class Streams

(marked in gray). This example, similar to the one in Sec-
tion 2.3, shows how ClassSRTS is more precise because any
possible runtime object type has to be referenced by the test
to instantiate it.

4.4 Threats to Validity
Internal: Our static RTS prototypes and scripts for run-
ning experiments may contain bugs. (We thank an anony-
mous reviewer for pointing out one bug!) To mitigate risks,
we use well-known libraries, e.g., ASM and WALA. We also
wrote unit tests to check basic functionality, and we im-
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call edge

transitive call edge

X

public class FileItemHeadersTest  

public void testFileItemHeaders()

public class DiskFileItem  

public String toString()

final class Streams 

public static String checkFileName(String fileName) 

org.junit.Assert 

static void assertEquals(Object expected, Object actual) 

java.util.Formatter$FormatSpecifier 

private void printString(Object arg, Locale l) throws IOException { 

…print(arg.toString());…  

}

Figure 7: MethSRTS precision violation due to dy-
namic dispatch

plemented some sanity checks for numbers generated from
scripts, e.g., we check that the offline and online variants of
both ClassSRTS and Ekstazi select the same tests.
External: The projects in our study are a subset of all
software and may not be representative, so our results may
not generalize. To address this, we used 985 revisions from
22 open-source projects varying in size, application domain,
number of tests, and test-suite running time. However, all
our projects are single-module Maven projects. The results
could differ for bigger, multi-module Maven projects, but we
expect that these results could show RTS to be even better
as we generally find RTS to be more effective for projects
with longer-running tests.
Construct: We chose Ekstazi as the ground truth against
which to evaluate static RTS techniques. Ekstazi is a state-
of-the-art, publicly available tool for dynamic RTS, but may
still not represent the ground truth for all RTS.

5. RELATED WORK
RTS [13,20,22,27,28,31,33,45] can reduce regression test-

ing efforts and has been extensively studied for more than
three decades. Recent studies [7, 14] show that developers
often perform manual RTS even when their test-suite size is
small, but our focus is on automated RTS. Most recently, the
Ekstazi dynamic RTS technique [13] was extensively evalu-
ated and is being adopted in open-source software. To the
best of our knowledge, though, there was no prior such evalu-
ation of static RTS techniques for modern software projects.
Dynamic RTS: Rothermel and Harrold [30, 31] investi-
gated RTS for C programs. They dynamically collected cov-
erage on the old revision to perform RTS using a control-flow
graph (CFG) analysis. Harrold et al. [20] further extended
this work to handle Java features and incomplete programs.
Because CFG analysis can be very time consuming for large
software, Orso et al. [27] proposed a two-phase analysis, a
partitioning phase to filter out non-affected classes from an
IRG and a selection phase that performs CFG analysis only
on the classes kept by the first phase. They also evaluated a
class-level RTS technique (called“HighLevel”), but it did not
compute transitive dependencies on the use edges; moreover,
it computed dependencies on the supertypes of the changed
types and not only on the subtypes.

To improve the efficiency of dynamic RTS, a number of
techniques at coarser-granularity levels (e.g., method- or
class-level) rather than the finer-granularity CFG level were
proposed. Ren et al. [28] and Zhang et al. [45, 46] ap-
plied change-impact analysis at the method-level, based on
call graphs techniques, to improve RTS. Recently, Gligoric

et al. [13] proposed Ekstazi, a dynamic RTS technique at
the class/file level. Although Ekstazi performs coarser-level
analysis and may select more tests than prior work, it was
demonstrated to have a sufficiently lower end-to-end testing
time to be adopted by some open-source projects. While
these dynamic RTS techniques can be safe, they require dy-
namic test coverage information which may be absent, costly
to collect, or require prohibitive instrumentation (e.g., for
non-deterministic or real-time code). Therefore, our work
studies static RTS techniques.
Static RTS: Kung et al. [22] first proposed static RTS
based on class firewall, i.e., the statically computed set of
classes that may be affected by a change. Ryder and Tip [33]
proposed a call-graph-based static change-impact analysis
technique and evaluated only one call-graph analysis (0-
CFA) on 20 revisions of one project [29]. Badri et al. [5]
further extended call-graph-based change-impact analysis
with a CFG analysis to enable more precise impact anal-
ysis, but they did not evaluate it on RTS. Skoglund and
Runeson [36, 37] performed a case study of class firewall,
but they used dynamic coverage information together with
class firewall to perform RTS, whereas we apply the class
firewall purely statically. Although the literature contains
many static RTS techniques, extensive studies of these tech-
niques are lacking. In particular, prior to our study, eval-
uations on modern open-source projects were lacking, so it
was not clear how static and dynamic RTS techniques com-
pare in terms of safety, precision, and overhead. The static
RTS techniques presented in this paper are representative
of all prior work on class-firewall-based analyses [22] and
call-graph-based analyses [33].

6. CONCLUSIONS
Regression testing is an important but costly software en-

gineering task. To speed up regression testing, researchers
have proposed many techniques for regression test selection
(RTS). Dynamic RTS is showing promising results, with the
Ekstazi tool being adopted in practice. This success of dy-
namic RTS provides motivation to (re-)evaluate static RTS,
because static RTS could be more beneficial than dynamic
RTS for systems with long-running tests, non-determinism,
or real-time constraints. We evaluate several variants of
class- and method-level static RTS. The results show that
class-level static RTS is comparable to class-level dynamic
RTS Ekstazi, but method-level static RTS is rather poor.

The key message of this paper is that static RTS at the
class level shows promising results, and researchers should
continue to improve static RTS. The promising results will
also hopefully motivate development of robust static RTS
tools that can be adopted in practice. The method-level
analysis is currently not useful for RTS but may still be use-
ful for other tasks, e.g., debugging regression failures [38].
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