
Temporal Code Completion and Navigation
Yun Young Lee1, Sam Harwell2, Sarfraz Khurshid2, and Darko Marinov1

1 University of Illinois at Urbana-Champaign, USA 2 The University of Texas at Austin, USA
{lee467,marinov}@illinois.edu {samharwell,khurshid}@utexas.edu

Abstract—Modern IDEs make many software engineering
tasks easier by automating functionality such as code completion
and navigation. However, this functionality operates on one
version of the code at a time. We envision a new approach that
makes code completion and navigation aware of code evolution
and enables them to operate on multiple versions at a time,
without having to manually switch across these versions. We
illustrate our approach on several example scenarios. We also
describe a prototype Eclipse plugin that embodies our approach
for code completion and navigation for Java code. We believe
our approach opens a new line of research that adds a novel,
temporal dimension for treating code in IDEs in the context of
tasks that previously required manual switching across different
code versions.

I. INTRODUCTION

Modern IDEs make many software development tasks easier
by automating functionality such as code completion and
navigation. For completion, many IDEs have context-specific
assists for completing identifiers, such as type, method, or
field names, from a given prefix of the element names.
More recent advancements in code completion, such as Code
Recommenders [1] in Eclipse, can even suggest identifier
completion from a given partial name match, rank suggestions
based on usage patterns, and suggest completion for longer
code snippets. For navigation, IDEs offer functionality such
as finding a declaration of a given element (e.g., navigating
to a method declaration from a call site) or searching all
references to a given element (e.g., showing all calls to a
method). Some research prototypes additionally use dynamic
program information to improve navigation [2], [3].

While much progress has been made on code completion
and navigation, existing approaches operate on one version of
the code at a time. However, as projects evolve, developers
are constantly required to understand and seamlessly work
with code continually changing across multiple versions. IDEs
which restrict code completion and navigation to operate
only on the current version inherently restrict the ability of
developers to remain productive as code evolves, because
developers looking for information from earlier versions are
required to search through version history in a version control
system (VCS) or to manually switch to a different version and
search through its code.

For example, consider a developer, Alice, who types o.m

and invokes code completion, expecting to find a method
make() that she used a few days ago. If she does not find the
expected method name in the suggested list, she may suspect
that someone on her team has renamed or moved the method.
To find the new method name or location, she would need to
cancel the current completion and search through the version

history to find the specific change that altered the make()

method. After reviewing the past changes to determine new
name/location of the method, she would then need to come
back to the current version before typing the updated reference.
Not only has this search disrupted her development effort, but
the process is also tedious and progressively slower as the size,
duration, and number of people involved in a project increase.

We envision a new approach that provides a temporal
dimension to the familiar code completion and navigation
features of IDEs, allowing them to work with multiple versions
at a time without resorting to searches through the code history
in the VCS or manual version switching. Our approach will
locate program elements from past versions that are relevant to
the current scope and present them through code completion.
In addition, our approach will allow developers to navigate to
and within past versions of the code. This would help Alice
quickly find the intended make() method.

Fig. 1. Traditional code completion
has only current matches

Fig. 2. Proposed code completion
with historical matches (gray)

Figures 1 and 2 show two mockup completion proposal lists
for this scenario: the traditional list has only matches from the
current code version, and the proposed list includes historical
matches from older versions. Each historical completion would
show the old name, inferred new name/location in the current
version, and the version ID. For example, the make that Alice
was looking for was renamed to create in version 123;
selecting this proposal, Alice could choose to replace her typed
o.m with o.create(), or choose to inspect the diff between
versions 123 and 122 or between 123 and current version. The
method meet was moved (from the class of o) to the Point

class; selecting this proposal, Alice could choose to replace
o.m with [p].m(o), where [p] indicates that she would need
to provide an expression of type Point. If Alice is unable to
understand the changes that occurred just from the completion
proposal list, she could choose to navigate to the past version
of the object o’s class and examine the changes made to the
make method.

This paper makes the following contributions:
• Idea: We introduce the idea of a temporal dimension to

code completion and navigation.
• Examples: We discuss several motivating examples

where our approach would help developers by making

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1181



it easier to perform completion and navigation tasks that
operate on multiple versions of code.

• Prototype: We describe a prototype Eclipse plugin that
embodies our approach for temporal completion and
navigation. Our initial experience using this prototype on
a medium-scale project is positive but also points out
important challenges to be addressed in future work.

• Discussion: We discuss the key challenges to be ad-
dressed to turn our vision into a tool which supports large
projects, such as Eclipse itself.

II. MOTIVATING EXAMPLES

We expand on the example discussed in the introduction
to illustrate some common development tasks that motivate
our work. These scenarios naturally arise in large teams
working on source code where publicly-exposed members are
likely to change over time, e.g., agile development teams and
developers working on projects with incomplete API speci-
fications. These scenarios also arise on very large projects,
where it is simply impossible to keep track of all changes
made throughout the history of the full project.

Consider Alice again, searching for the method make() that
she used before but can no longer find. During her search,
if the class definition of the object o is complex or desired
functionality was moved to another class, she would have to
search the change history of the class in the VCS. If the file
containing the class definition has been modified many times,
or if the commit messages are not clear, or if the class itself
went through some renames/moves, Alice may be forced to
look through a long series of commits until she finds the one
containing the relevant change.

Alice’s task could in fact be even more complicated, e.g.,
if the make() method was deleted altogether (e.g., inlined),
or if the class of the object o’s class was in a third-party
library class contained in a *.jar file and Alice’s project
upgraded its dependency library which involved API changes.
Such changes will only exacerbate her quest to find the root
cause and a solution.

Consider next a related scenario, involving navigation. Alice
finds out that the make() method was indeed deleted and its
functionality decomposed into many separate methods. Upon
closer inspection, she discovers that make was incorrectly
implemented. She would greatly benefit from being able to
quickly find out what other methods make() used to invoke
and/or what methods invoked make(). However, with the
make() method gone, she can only see it in a plain text file
(in the current IDEs such as Eclipse or NetBeans, without
checking out the entire old code version) that she retrieved
from the VCS. She is forced to search for the definitions of
other methods by manually searching instead of being able to
automatically navigate directly to them.

III. APPROACH

The main goal of our proposed temporal code completion
and navigation is to make development tasks easier by pro-
viding the developers with evolution information of code in a
highly interactive way.

A. Code Completion

As described previously, code completion in modern IDEs
only considers the current version of the code although devel-
opers can benefit from knowing what code completions were
possible in other versions. Our temporal code completion will
have three automated steps:

Search Versions: When a developer invokes temporal code
completion in a specific context (e.g., on a variable of a certain
type), we search all the previous versions for that context
(i.e., for that type definition). We can query the VCS (or its
precomputed index) to retrieve all the relevant versions and
invoke the code completion on each version to find a match.

Infer Changes: Finding where old versions have matches
with the current version already helps developers, but showing
how the matched code changed can help even more. We
plan to integrate with tools that can infer changes, e.g., Git
can infer some file/class renames, and research tools such as
RefFinder [4] and RefactorCrawler [5] can infer refactorings
that happened between two versions of code. While those
techniques provide a solid foundation, our temporal code
completion and navigation build on top to show in context
the changes related to historical matches for completion.

Complete New Code: When a tool finds both historical
completions in old versions and how these old completions
could be translated in the new version, the tool can even offer
to automatically complete the old completions but in the new
version. For example, the tool can offer to complete an old
name that matches in an old version with the new name.

To seamlessly integrate our approach into IDEs, we will
augment the existing code completion with the historical
proposals. Current and historical proposals will be visually
discernible so as not to confuse the developers. In addition
to completing new code, we will allow the developers to
explore the past when they select a historical proposal by
showing a diff view comparing the version where a definition
was changed with the previous version where the selected
definition was last seen. If the developers want a deeper
exploration, we will allow them to navigate to the past version
of the code as described next.

B. Navigation

Seeing a diff view between two versions of code is helpful
when identifying the immediate changes. However, the diff
views in current IDEs primarily visualize the changes in a non-
interactive manner, with at best minimal interactive features
that only allow changes to be moved between versions. Our
temporal navigation will treat the past versions of source code
as a first-class entity like the current version of source code,
offering several navigation options:

Navigate in Past: Most IDEs, such as Eclipse and Net-
Beans, treat past versions of code as only plain text and
thus prohibit developers from easily navigating across the past
versions. We argue that such restriction is unnecessary and
undesirable. If the developers are made aware that a version
of code is from the past, and if the IDE enforces read-only
policy, the developers can take advantage of code navigation

1182



Fig. 3. Code completion proposal list including the historically available proposals in gray. The tooltip on the right shows the commit message for the change
corresponding to the selected proposal.

in the past versions to more closely learn about changes
that have happened. Therefore, we aim to provide navigation
functionality in the past versions of code.

Open Past Types: Just as temporal completion will allow
developers to find changed or deleted methods and fields of a
type, temporal navigation will allow developers to find and
open old versions of types, including deleted ones. Many
VCSs, such as Git, track a renamed file as deletion of a file
with the old name and addition of a new file with a new name.
In such cases, temporal navigation will also infer changes, just
as with temporal completion.

Support Past Call Graph: Most IDEs, such as Eclipse
and NetBeans, provide call reference finding functionality
that displays calls to and from a selected method, field, or
constructor. Developers would greatly benefit from being able
to view call graphs of past versions. While constructing call
graphs can be expensive, an advantage for handling past
versions of code is that code history does not change, so we
conjecture precomputing indexes and/or caching results will
allow for fast construction of precise call graphs.

IV. PROTOTYPE TOOL

We have implemented a prototype Eclipse plugin that
embodies our approach for temporal code completion and
navigation for Java development tools with Git VCS. Our
current prototype (1) augments Eclipse’s code completion with
proposals that were possible in all the previous versions of the
identifier for which the developer seeks completion and (2)
allows developers to open and navigate to declarations from
the past, including deleted types.

Temporal Completion: Figure 3 shows a screenshot taken
from our prototype run of temporal code completion on the
Antlr project for parser generators. The historical proposals
are distinguished from the current ones as they appear grayed-
out. Each historical proposal includes the author and version
ID in which the change was made. If the developer selects
the history proposal, the prototype opens a diff view (not
shown in the figure) comparing that version and the version
immediately following it, to clearly show the change at the
element definition.

Temporal Navigation: Our prototype allows developers to
search for and open any type (including deleted ones) from
any version in the past (Figure 4). A historical type is opened
in a read-only editor with a list of version IDs a developer can
choose to view. Developers can navigate within the editor or
to other historical types in the same version.

Fig. 4. Open Type in History dialog allows developers to search for types from
past revisions, including deleted ones which have a strike-through. Selecting
a type displays details about the last revision of the type.

Our initial experience using this prototype on the Antlr
Git repository, containing more than 1,500 versions, is highly
positive. In particular, our current implementation of comput-
ing method and type information (to enable temporal comple-
tion and navigation, respectively) for all the versions in this
repository takes under 20 seconds and 5 seconds, respectively,
on a modern laptop. In the future, we plan to improve the
performance and scalability of our tool, e.g., by precomputing
a database of semantic information for each version.

V. RELATED WORK

Much work has focused on improving code completion. For
example, Omar et al. [6] developed a system architecture that
allows library developers to introduce interactive interfaces,
called palettes, for library users to use for code completion
in the context of class instantiation. Developers can also
implement palettes for their own code, but palettes are highly
susceptible to changes. If the code for which palettes are
implemented is modified, the palettes will also need to be
modified. Muşlu et al. [7] introduced an Eclipse plugin called
Quick Fix Scout, that computes on behalf of developers
the consequences of Quick Fix recommendations. Quick Fix
Scout allows developers to remove compilation errors faster,
but it leverages the existing quick fix recommendations in
Eclipse which does not take into account change histories.
Perelman et al. [8] defined a language of partial expressions
that makes type-directed predictions to help developers find
method names based on the given arguments, arguments
based on the method name, or to complete binary expressions
such as assignment statements. Similarly, Duala-Ekoko and
Robillard [9] developed a tool called API Explorer that help
developers discover API methods or types that are inaccessible
from a given API type, by leveraging the structural relation-
ships between API elements. While such tools help developers

1183



use the unknown APIs, they do not help developers with the
APIs they used to know. The tools would be useful for stable
APIs, but the development process in general is inherently
dynamic where the code and APIs change constantly.

Code navigation is also an active research topic. For ex-
ample, Ko et al. [10] reported that developers engaged in
software maintenance tasks spent up to 35% of their time
navigating through the code, learning how the code works
and how to modify it to complete their tasks. We believe that
our temporal navigation will significantly reduce the time that
developers spend in manually navigating to past versions of
code. Singer et al. [11] introduced NavTracks, a code navi-
gation tool that monitors and analyzes the navigation history
of software developers as they perform their tasks, forming
associations between related files. These associations are used
to recommend potentially related files when, for example, a
developer opens a file that she knows is relevant to a bug fix.
Mäder and Egyed [12] implemented and evaluated a program
editor tool with code navigation functionality augmented with
requirements traceability, which allows developers to quickly
identify where a requirement is implemented. While improving
the speed and accuracy of development tasks, these tools still
only work on one version of the code at a time.

Code completion and navigation, like many other develop-
ment tasks, can benefit from the information about history
of code changes. LaToza et al. [13] reported that 50% of
developers find understanding the history of a piece of code
to be a difficult problem. In fact, many researchers have
extended code completion and navigation techniques with
varying interpretations of historical information. Robbes and
Lanza [14] used change-based information to improve code
completion. They collected historical information such as the
last modified or added date of a class/method, and used
it to rank proposals in their tool. The modifications they
consider, however, only pertain to the body of methods or
classes, so deleted, moved, or renamed methods or classes are
disregarded. Bruch et al. [15] introduced an intelligent code
completion system that calculates each proposal’s relevance
in a given context, by using examples found in existing
code repositories, and uses the information to filter and rank
the proposals. While the system helps developers to focus
only on relevant API elements, it disregards deleted elements
(which can no longer be relevant in the current version). Such
tools utilizing historical information can be more accurate and
useful, but they effectively compress the entire history for the
current (single) version of code. Our approach, in contrast,
will allow developers to explore any version in the history.

VI. CONCLUSION AND FUTURE WORK

We envision a novel approach for providing seamless code
completion and navigation across multiple versions of a code-
base. Realizing our vision requires addressing three key chal-
lenges. First, to support large projects with long histories, our
approach requires the ability to efficiently search large code
histories. This challenge can be addressed by precomputing
the results for historical commits and/or storing these results

on a centralized server shared by a development team. Second,
the IDE should help developers understand how program
elements have changed and should now be used, as opposed to
simply presenting which elements have changed. For example,
a method whose name they may remember could have been
renamed, moved, inlined, or even replaced by a field. Many of
these changes are refactorings, so we can leverage approaches
that infer refactorings from history. Moreover, when an IDE
supports recording the automatic refactorings initiated by
developers, we can store this information in VCS and later
use it to accurately associate historical elements with their
current use forms. Third, we need an intuitive user interface
to incorporate historical information into modern IDEs.

While our current emphasis is on temporal versions of
projects stored in VCS, we believe the user interfaces we
create naturally extend to other situations involving multiple
versions of a codebase, such as parallel branches of a project
or even live analysis of the ongoing simultaneous work on
projects with multiple developers. We believe our approach
opens a new line of research exploring ways to improve
developer productivity while working on large, real-world, and
always fluid codebases with multiple versions.

ACKNOWLEDGMENTS

We thank Johnston Jiaa for his help with prototype imple-
mentation and discussions. This work is partially supported
by the National Science Foundation under Grant Nos. CCF-
1213091, CCF-0845628, and CCF-0746856. Sam Harwell is
supported by Tunnel Vision Laboratories, LLC.

REFERENCES

[1] “Eclipse Code Recommenders,” http://eclipse.org/recommenders/.
[2] D. Rothlisberger, M. Harry, W. Binder, P. Moret, D. Ansaloni, A. Vil-

lazon, and O. Nierstrasz, “Exploiting Dynamic Information in IDEs
Improves Speed and Correctness of Software Maintenance Tasks,” TSE,
2012.

[3] M. Härry, “Augmenting Eclipse with Dynamic Information,” Master’s
thesis, University of Bern, 2010.

[4] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
Reconstruction of Complex Refactorings,” in ICSM, 2010.

[5] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
Detection of Refactorings in Evolving Components,” in ECOOP, 2006.

[6] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active Code
Completion,” in ICSE, 2012.

[7] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative
Analysis of Integrated Development Environment Recommendations,” in
OOPSLA, 2012.

[8] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-Directed
Completion of Partial Expressions,” in PLDI, 2012.

[9] E. Duala-Ekoko and M. P. Robillard, “Using Structure-based Recom-
mendations to Facilitate Discoverability in APIs,” in ECOOP, 2011.

[10] A. J. Ko, B. A. Myers, S. Member, M. J. Coblenz, and H. H. Aung,
“An Exploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks,” TSE, 2006.

[11] J. Singer, R. Elves, and M. Storey, “NavTracks: Supporting Navigation
in Software Maintenance,” in ICSM, 2005.

[12] P. Mäder and A. Egyed, “Do Software Engineers Benefit from Source
Code Navigation with Traceability? – An Experiment in Software
Change Management,” in ASE, 2011.

[13] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
A Study of Developer Work Habits,” in ICSE, 2006.

[14] R. Robbes and M. Lanza, “Improving Code Completion with Program
History,” ASE, 2010.

[15] M. Bruch, M. Monperrus, and M. Mezini, “Learning from Examples to
Improve Code Completion Systems,” in ESEC/FSE, 2009.

1184


