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Abstract—The actor programming model offers a promising
model for developing reliable parallel and distributed code.
Actors provide flexibility and scalability: local execution may be
interleaved, and distributed nodes may operate asynchronously.
The resulting nondeterminism is captured by nondeterministic
processing of messages. To automate testing, researchers have
developed several tools tailored to specific actor systems. As
actor languages and libraries continue to evolve, such tools
have to be reimplemented. Because many actor systems are
compiled to Java bytecode, we have developed Basset, a
general framework for testing actor systems compiled to Java
bytecode. We illustrate Basset by instantiating it for the Scala
programming language and for the ActorFoundry library for
Java. Our implementation builds on Java PathFinder, a widely
used model checker for Java. Experiments show that Basset
can effectively explore executions of actor programs; e.g., it
discovered a previously unknown bug in a Scala application.

I. INTRODUCTION

The growing use of multicore and networked computing
systems is increasing the importance of developing reliable
parallel and distributed code. Unfortunately, developing and
testing such code is very hard, especially using shared-
memory models of programming which often results in bugs
such as atomicity violations, dataraces, or deadlocks. An al-
ternative for writing parallel and distributed code is message
passing, where multiple autonomous agents communicate
by exchanging messages. Actors provide a programming
model for message-passing which enforces object-style data
encapsulation.

In the actor programming model [1], [2], each computa-
tion entity (called an actor) has its own thread of control,
manages its own internal state, and communicates with other
actors by explicitly sending messages. An actor program
may have different executions (even for the same input)
based on the interleaving of messages exchanged between
the actors, in much the same way as a multithreaded program
may have different executions based on the interleaving
of accesses to shared memory. Some actor-oriented pro-
gramming systems include Axum [3], Charm++ [4], Er-
lang [5], E [6], Newspeak [7], Ptolemy II [8], Revactor [9],
ThAL [10], Singularity [11], and the Asynchronous Agents
Framework used in Microsoft Visual Studio 2010 image
processing software [12].

While actor programming avoids some of the bugs
inherent in shared-memory programming, e.g., low-level
dataraces involving access to shared data, actor programs
can still have bugs: for example, there may be an unsafe
interleaving of messages to an actor, or incorrect sequential
code within an actor. In this paper, we focus on the problem
of automated testing of actor programs which have been
compiled to Java bytecode. Such programs may be written
in languages and libraries that include ActorFoundry [13],
[14], Jetlang [15], Jsasb [16], Kilim [17], SALSA [18], and
Scala [19]. Specifically, we develop Basset, a general frame-
work which can be easily customized for different actor
languages and libraries. Basset addresses the difficulty that
actor languages and libraries, as well as testing and model
checking techniques, continue to evolve as researchers and
developers explore new variants.

Systematic testing and model checking can improve pro-
gram reliability by automatically finding potential bugs. A
key element of these approaches is state-space exploration
(e.g., [20]) which searches through the possible executions
of a program. Previous research on systematic checking
of actor or distributed systems has focused on (stateless)
checking of programs in one specific system [21]–[27].
Basset is also based on state-space exploration. However,
Basset provides a general exploration framework that can
support different actor systems with only a thin adaptation
layer required for each system. The interface between the
Basset core and adaption layers is designed both to allow
direct exploration of unmodified application code and to
ensure that optimizations for exploration (such as partial
order reduction or actor state comparison, as explained
later) can be made available to multiple actor systems by
changing only the Basset core. Specifically, we consider
actor programs written in the Scala language [19] (which
compiles to Java bytecode) and those written using the
ActorFoundry [13] library for Java (which also compiles to
Java bytecode).

In order to leverage work in model checking, we built
Basset on top of Java PathFinder (JPF), a popular explicit-
state model checker for Java bytecodes [28], [29]. JPF was
developed at NASA for checking programs written directly
in the Java language. It has been used in numerous research



projects (e.g., [29]). JPF provides a specialized Java Virtual
Machine that supports state backtracking and control over
nondeterministic choices such as thread scheduling. Prior
to our work, JPF did not have any direct support for actors,
i.e., for high-level choices such as message scheduling. Note
that although we use JPF, our techniques could use other
explicit-state model checkers such as Bandera, BogorVM,
CMC, JCAT, JNuke, SpecExplorer, or Zing.

A question that arises is why build a new framework and
not use JPF to directly check programs written against actor
libraries such as Scala and ActorFoundry. Those libraries
include a complex, multi-threaded runtime system for execu-
tion of actor programs. While these runtime systems enable
efficient execution of actor programs, because of the com-
plexity and scheduling choices in the runtime system, they
make exploration of the programs impossible or inefficient.
For instance, JPF cannot even execute all the ActorFoundry
library, as the ActorFoundry uses Java networking libraries
for exchanging messages between actors [24], [25]. JPF can
execute the Scala library, but the resulting state space is
huge: for example, exploration of the states of a simple Scala
helloworld application did not complete in an hour! Even
after we simplified parts of the Scala library, JPF took over
7 minutes to check helloworld.

Our design goal for Basset is efficient exploration of
actor application code itself and not exploration of the
actor libraries. Therefore, Basset does not check the actual
library code but focuses instead on exposing potential bugs
in the application code due to message scheduling, which
is the source of non-determinism in actor-based programs.
Specifically, the adaption layer in Basset replaces the imple-
mentation of an actor library with much simpler code that
still provides the same interface to the actor application but
enables a much faster exploration. The result is a highly
efficient system to test actor code: Basset takes less than
one second to check helloworld.

This paper makes the following contributions:
• Framework: We propose the concept of a general

framework for exploration of actor programs.
• Implementation: We implement our general frame-

work in a tool called Basset which uses the Java
PathFinder model checker. We show how optimizations
can be added to Basset by incorporating two known
optimizations: dynamic partial-order reduction [20],
[21] and state comparison/hashing [20], [30].

• Instantiations: We illustrate the flexibility of Basset
by instantiating it for actor programs written in the
ActorFoundry library, or in the Scala programming
language, a popular new language used in systems such
as Twitter [31]. These instantiations provide the first
state exploration engines for the two actor systems,
which are based on very different design decisions.

• Experiments: We present several experiments with
Basset on nine actor programs. The results show that
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state

mailbox

constraints

name

Figure 1. Schematic representation of an actor

Basset can effectively explore executions of these pro-
grams. The results also illustrate that the existing opti-
mizations for dynamic partial-order reduction and state
comparison provide complementary benefits in explo-
ration of actor programs. Our use of Basset discovered a
previously unknown bug in the sample code provided
at ScalaWiki, a popular web site for Scala [32]. We
reported this bug, and the developer confirmed it; the
current, updated version of the example on ScalaWiki
is without the bug.

II. BACKGROUND

An actor is an autonomous concurrent object which inter-
acts with other actors by sending messages. By default, these
messages are asynchronous; other forms of communication,
such as remote-procedure-call style synchronous messages,
are defined in terms of asynchronous messages [1]. Each
actor has a unique actor name (its virtual address) and
a mailbox, as depicted in Figure 1. If an actor is busy,
messages sent to it are queued in its mailbox. When an actor
is done with processing a message, it checks its mail queue
for another message. In response to processing a message,
an actor may do one or more of three actions:

• Send messages: Messages may be to other actors or
to itself, provided the sender knows the name of the
recipient.

• Create new actors: Newly created actors have their
own unique names and an associated mail queue. Upon
creation, only the creator knows the name of the new
actor, but names may be communicated in messages.

• Update local state: In some actor systems, the update
is made by immediate assignment, in others the new
local state is used to process the next message.

Each actor operates asynchronously. Consequently, if two
actors send messages concurrently the order of arrival of
messages is indeterminate. Moreover, no assumption is made
about the routing of messages; therefore, two messages sent
from the same actor to the same recipient may arrive in



any order.1 Not requiring the order of messages between
two actors to be maintained by default allows greater flex-
ibility in the implementation: for example, a client may
send requests to a receptionist which then forwards it to
a stateless server. If the order of messages is not required
to be preserved, the behavior of the system would be the
same whether the receptionist forwards the requests to a
single actor, or to a one of a collection of servers. However,
message order can always be explicitly constrained; this
requires imposing additional synchronization protocols. In
some actor languages, message order between two actors
can be easily expressed in terms of constraints (see below).

While actor systems do not guarantee in-order message
delivery, they do guarantee that the messages are eventually
delivered. In a real distributed implementation, messages
may be lost, just as processors may crash or buffers may
overflow in an implementation of a sequential program. Us-
ing an abstraction that guarantees message delivery enables
us to reason about the liveness properties of actor systems.
Lossy messages can always be modeled by explicitly repre-
senting channels as actors which nondeterministically lose
messages. This is not hard to do. Although the behavior
of an actor in response to a message is deterministic, there
are a number of ways of essentially causing the behavior to
be governed by a nondeterministic coin flip. The simplest
is an actor which sends itself a message, causing the next
message to be ignored rather than forwarded. Since this
message would be shuffled with other messages, whether
some message is lost or not would be nondeterministic.

Because of the asynchrony inherent in distributed systems,
it is generally not feasible for the sender to know what the
state of a recipient will be when it receives a message. For
example, a free printer may ask a spooler for a print job,
but the spooler may be empty. In many actor languages, the
developer may specify synchronization constraints which are
used to postpone requests until the recipient is in a state
where it can process the request [33]. Actor runtimes im-
plement these constraints by reordering messages. Moreover,
actor languages typically provide higher level language con-
structs for “synchronous” or request-reply communication,
where a value is returned by actor receiving a message;
the sending actor waits until this value is received before
carrying out further computation. These constructs can be
translated into basic actor constructs [34].

Actors enable programmers to think in terms of objects
as agents, a natural view of concurrency. Because an actor
processes only one message at a time, access to an actor’s
state is serialized. Thus, actors avoid low level dataraces to
variables in its state, and avoid the potential for deadlocks. In
essence, actors raise the level of abstraction, allowing larger
computation steps to be viewed as a logical unit.

1In some variants of actors, message order between pairs of actors is
maintained.

Nevertheless, bugs may still occur in actor code: the
interleaving of messages to an actor whose ordering should
have been constrained may result in an incorrect behavior.
The use of synchronous communication or synchronization
constraints can result in a deadlock. Moreover, sequential
code within an actor can have bugs. Some sources of bugs
in actor programs are the result of the deficiencies in the
current generation of actor languages and libraries. For
example, a critical issue for actor programs is the cost of
sending messages. In many actor languages and libraries,
the cost of message passing is minimized by transferring
ownership rather than by copying data. Unfortunately, these
actor languages and libraries require the programmer to
ensure that passing messages by transferring data ownership
is correct: i.e., that the sender does not subsequently attempt
to access the data. This requirement can be a source of bugs.

Many systems support actors using languages or libraries
that generate executable Java bytecode [13], [15]–[19], [35].
This involves implementing Java classes for actor names,
mail queues, threads, and state. Moreover, constraints which
filter messages based on the state of an actor may be
specified. The commonality of these structures motivates us
to develop a unified, generic framework in which actor state
exploration can be performed and optimized.

III. EXAMPLE

To illustrate some key actor concepts and the Basset
approach to exploration of actor programs, we use a simple
example. Our example is a simplified version of a sample
actor program available on ScalaWiki [32], a popular web
site that provides several widely used resources for Scala, in-
cluding code samples contributed by some developers of the
Scala programming language. Using Basset, we discovered
a bug in this sample code. Here, we present a version of this
code implemented using Java and the ActorFoundry library,
assuming that the readers are more familiar with Java than
with Scala.

Figure 2 shows the code for our example. The main
driver code first creates two actors—a server and a client—
using the createActor method from ActorFoundry. This
method takes the class of the actor (ActorFoundry heavily
uses Java reflection) and, optionally, arguments for the class’
constructor. The method creates an actor and returns an
ActorName object that represents a handle to the actor.
(Because ActorFoundry supports distributed applications and
mobility of actor code, createActor does not return an
actual reference to the created actor.) The main driver code
then sends a message to the client to initiate the exploration.
The send method implements an asynchronous send: the
message start is sent to the client, and the main method
continues execution (in this case it terminates right away, but
the entire program keeps working as there are alive actors).

Our example Server actor simply stores and retrieves an
integer value. (The actual server from the ScalaWiki code



class Driver {
static void main(String[] args) {
ActorName server = createActor(Server.class);
ActorName client = createActor(Client.class,

server);
send(client, "start");

}
}

class Server extends Actor {
int value = 0;
@message void set(int v) {
value = v;

}
@message int get() {
return value;

}
@message void kill() {
destroy("server has finished processing");

}
}

class Client extends Actor {
ActorName server;
Client(ActorName s) { server = s; }
@message void start() {
send(server, "set", 1);
int v1 = call(server, "get");
int v2 = call(server, "get");
// assert (v1 == v2);
send(server, "kill");

}
}

Figure 2. Example code using ActorFoundry

was keeping track of an inventory of items with specified
prices and quantities.) In ActorFoundry, each actor is a
subclass of the Actor class. Each actor can process a set of
messages as denoted with the @message annotation on the
appropriate methods. In addition to storing and retrieving the
value, the Server actor can also process a kill message,
which instructs this actor to terminate itself as it invokes the
destroy method from ActorFoundry.

Our example Client actor communicates with the server.
The client first sends to the server an asynchronous message
to store the value 1. The client then sends a message to
the server to retrieve the value, using the call method for
synchronous remote procedure call. Namely, after the client
sends the get message, it blocks until it receives a reply
from the server and then stores the return value into the
appropriate variable. Note that the client retrieves the value
twice, and in our example code, compares the return values
when the assert is uncommented. (The actual code from
ScalaWiki was also retrieving the inventory of items twice
but performing two different computations on the inventory.)
The client finally terminates the server.

The cause of problems in this example is the order of mes-
sage deliveries. Actor systems, including ActorFoundry and
Scala, do not guarantee in-order delivery of the messages; in
other words, the default communication channels between
the actors are not FIFO. However, anecdotal experience
shows that assuming in-order delivery is a common cause of
programming errors in many actor programs. In our exam-
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ple, for instance, the server need not process the message
set before the first message get. Figure 3 shows some
possible executions for our example program. Specifically,
if the server interleaves processing of set between the two
get messages, it will return inconsistent values for v1 and
v2. While this execution is not very likely (e.g., we ran our
example code on the standard Scala run-time 1000 times,
and it always processed set before get), it is possible.
The program therefore has an atomicity violation. (The Scala
developers confirmed the bug that we reported for their code
from ScalaWiki.)

Given an actor program, Basset can explore (all) different
program executions due to different message orderings.
Basset starts the execution from the main driver and explores
non-deterministic choices that arise when several messages
can be delivered. Basset provides two well known opti-
mizations that can prune exploration: dynamic partial-order
reduction [20], [21] and state comparison [20], [30]. For this
example, we discuss how Basset performs a stateful search
using Basset’s customized state comparison for pruning.

Figure 4 shows the state space that Basset explores for
our example code. Each state of an actor program consists
of the state of actors (in our example, the field value in
the server and the variables v1 and v2 in the client) and a
message cloud (with all messages that have been sent but
not yet delivered and can be thus delivered in any order). In
Figure 4, a slash denotes an undefined state variable. Note
also the ret messages that represent the return values of
synchronous calls; these messages are not explicitly visible
in the code, but ActorFoundry internally sends them.

In this example, Basset explores 20 states and finds two
potential bugs. In the state labeled E (for “error”) in Figure 4,
the values of v1 and v2 differ, being 0 and 1, respectively. (If
the assert is uncommented, Basset would report a bug and
stop the exploration for that path.) Additionally, in the state
labeled F4 (for “final state 4”), Basset generates a warning
since the server actor is not alive while there are undelivered
messages for that actor. This case occurs when the server
processes kill before set, as shown in Figure 3.
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Note that Basset explores only 20 states for this example
due to a stateful search that compares states using a custom
comparison for actor programs. This comparison allows
Basset to detect that states B and D can be visited through
various executions. Without the comparison, Basset would
explore twice the executions both from B to F2 and from D

to F3, resulting in a total of 26 explored states.
As an alternative to stateful exploration, Basset also sup-

ports a dynamic partial-order reduction for actor programs.
For this example, using the partial-order reduction resulted in
a total of 18 explored states when messages were delivered
to actors in the order in which the actors were created.
We discuss state comparison and partial-order reduction in
more detail in Section IV and our experiments with these
techniques in Section VII.

IV. FRAMEWORK

This section provides an overview of Basset’s core, which
contains the common, library-independent functionality for
running actor programs and exploring different message
schedules. The goal for Basset is to provide a platform
efficient for state-space exploration but not necessarily effi-
cient for straightline execution of actor programs. This goal
affects the design decisions we made for the execution of
actors. The three main components of the Basset core handle
actor states (keeping track of created and destroyed actors,
as well as comparing states when the stateful search is used),
actor execution (managing actor threads), and message

management (scheduling and delivering messages, as well
as tracking message causality when partial-order reduction
is used). We first provide more details about these three
components, then discuss state space pruning, and finally
present Basset’s error detection facilities. The next section
briefly discusses the API that Basset exposes to library-
specific instantiations and presents the two instantiations
created for ActorFoundry and Scala.

A. Actor states
Each actor program creates several actors that compute

and exchange messages. Various actor libraries provide dif-
ferent specialized behavior for actors. The Basset core there-
fore does not create the concrete actors by itself but delegates
that task to particular instantiations. The core only maintains
generic information about actors, keeping track of all actors
created and destroyed during an execution, and the status for
each actor, which can be one of the following: executing,
waiting for a general message, or blocked waiting on a reply
for synchronous message (such as the call method shown
in Figure 2). Basset uses all this information for efficient
message scheduling (Section IV-C), during state comparison
to prune redundant execution segments (Section IV-D), and
to facilitate deadlock detection (Section IV-F).

B. Actor execution
A critical aspect of any actor system is how to execute

the actor code that processes each message. Semantically,
each actor has its own thread of control. However, efficient
implementations of actor libraries [17], [35] typically do
not assign one native thread/process per actor and do not
create a new thread whenever a new actor is created, since
these operations are expensive; instead, they employ thread
pools to reuse threads for new actors, migrate actors among
threads, and/or use more lightweight parallel constructs, such
as the Java Fork/Join Framework [36].

Since Basset aims for efficient exploration (not execution)
of actor programs, Basset uses a separate ActorThread

object/thread for each actor. Exploring all possible fine-grain
interleavings of instructions from these threads would be
very costly (see Section VII-A) and is not necessary when
actors have no shared state. Hence, Basset uses the macro-
step semantic [2], [21] for actor execution: after Basset
delivers a message to an actor, the actor executes atomically
until the next receive point (which either encounters a
synchronous call or finishes the processing of the message
and waits for a new message). The soundness of macro-
step semantics is discussed elsewhere [2]. Similarly as for
creating actors, Basset does not itself create actor threads,
but delegates that task to particular instantiations, which
provide the main control for the processing of one message.

C. Message management
At the heart of Basset are its message management and

scheduling functions. Actors communicate by exchanging



messages. Basset again delegates the creation of concrete
messages to instantiations, but it maintains a message cloud
of all messages that were sent but not yet delivered to actors.
The main loop in Basset controls the delivery schedule of
these messages. Whenever the cloud contains more than one
deliverable message, Basset non-deterministically chooses
to deliver one of these messages to its receiver actor.
Basset then systematically explores all possible program
executions that arise from the delivery of the messages
in the cloud, using either state comparison (Section IV-D)
or dynamic partial-order reduction (Section IV-E) to prune
the exploration. Currently the use of state comparison and
dynamic partial-order reduction in Basset are independent
and mutually exclusive. However, recent work [37], [38]
proposes combining the two techniques, and we intend to
explore this possibility for Basset.

It is important to point out that not all messages are deliv-
erable at all times. One reason is that an actor can terminate
itself (e.g., using destroy in ActorFoundry as shown in
Figure 2). Another reason is that most actor libraries allow
putting constraints on the messages that actors can receive.
Scala, for instance, expresses these constraints by pattern
matching on the messages [19]. If a message sent to an
actor does not match any of its patterns, the message cannot
be delivered until the behavior of the actor changes so that
its new pattern matching accepts the message.

D. State comparison

Basset can perform a stateful exploration, checking
whether a new state has been already visited previously,
effectively comparing one state against a set of states. This is
a standard operation in explicit-state model checking [20]. A
challenge for object-oriented programs (whose state include
heaps with connected objects) is that states need to be
compared for isomorphism [39]–[41]. Namely, two states
are equivalent when their heaps have the same shape among
connected objects and the same primitive values, even if they
have different object identities. Typical comparison of states
for isomorphism involves linearizing the entire states into an
integer sequence that normalizes object identities such that
isomorphic states have equal sequences [39], [40]. The JPF
tool, on top of which Basset is implemented, provides such
state comparison.

In addition to JPF’s default state comparison, Basset
provides a custom comparison that has been specialized for
the actor domain. For example, an additional challenge for
actors is that the top-level state items—actors and message
clouds—are sets. The usual linearization does not specially
treat sets but simply compares them at the concrete level at
which they are implemented (say, as arrays or lists) and thus
could find two sets with the same elements to be different
because of the order of their elements. To compare states of
actor programs, we provided in Basset a known heuristic that
first sorts set elements and then linearizes them as usual [42].

This heuristic offers more opportunity to identify equivalent
sets and states but does not guarantee all equivalent states
will be found: the sorting is done only for the elements
without following any pointers from these elements, and thus
does not handle arbitrary graph isomorphism [30].

E. Partial-order reduction

As an alternative to performing stateful exploration with
path pruning, we adapted for Basset a dynamic partial-
order reduction for actor programs proposed in dCUTE [21].
This reduction uses the happens-before relation [43] to
avoid executing message schedules that can be identified as
equivalent. The reduction identifies situations where only a
subset of the messages available for delivery need be con-
sidered when non-deterministically choosing which message
to deliver next. To facilitate the partial-order reduction, we
extend the actor and message representations to optionally
include vector clocks that track causality among message
send and receive events. Since the benefit of this partial-
order reduction is sensitive to the order in which messages
(and their receiving actors) are ordered for delivery, Basset
provides two different orderings (discussed in the experi-
ments in Section VII).

F. Error checking

Basset provides several generic checks for executions of
actor programs. As illustrated in Section III, Basset can
check for state assertions (expressed using arbitrary Java
expressions) and for undeliverable messages at the end of an
execution path (due to actors being terminated or blocked).
Basset can also detect deadlocks. An obvious deadlock
occurs when several actors are blocked, each waiting for
another (in a cycle) to return from a synchronous call.
Another type of deadlock can occur when the execution
reaches a final program state where no alive actor can
make progress. Since actors are open systems, such a final
state is not necessarily a deadlock; it may be that actors
are waiting for a new message from the environment [1],
[2], [21]. To check for deadlocks in such cases, Basset
allows the user to “close” the system by providing a model
of the environment (as another actor). Two most common
models are the one where the environment can send no new
message (so any alive actors are deadlocked) and the one
where the environment can send any new message (except
a return from a synchronous call, so alive actors are never
deadlocked unless waiting in cycle on synchronous calls).
Basset provides these two models as defaults to choose from.

V. INSTANTIATIONS

We next describe our instantiations of Basset for Ac-
torFoundry and Scala. In each case, we started from the
existing actor library and modified/simplified it with the
following goals: (1) preserve the API of the library toward
actor programs (such that we can check unmodified actor



Figure 5. UML class diagram for the adapter layers

applications); (2) simplify the library, considering that we
want fast exploration (for relatively small program states)
and not necessarily fast executions (for relatively large
program states, e.g., scaling up to thousands of actors);
and (3) connect the library into the Basset framework to
enable exploration. Our modifications removed some parts
of libraries (e.g., distribution of actors across various com-
puters, since our goal is to check the actor applications
not libraries themselves) and replaced other parts (e.g., the
Actor class in ActorFoundry, as described below). While
these modifications of libraries may appear time consuming
from their description, they were actually much easier to
perform than building the general Basset framework.

Figure 5 shows the UML class diagram for connect-
ing the two instantiations into the Basset core. The key
entities that Basset manipulates are actors, actor threads,
and messages. Basset does not directly create the objects
for all these related entities but instead uses the Abstract
Factory design pattern [44]. The core itself refers to the
CoreEntitiesFactory interface, and each instantiation
provides a concrete class that can create appropriate enti-
ties and also provides concrete classes for these entities.
The concrete instantiation classes implement the abstract
methods from the core classes, i.e., canBeDelivered and
processMsg.

A. ActorFoundry

ActorFoundry is a Java library, and it was fairly straight-
forward to connect it to Basset. While adding the four
classes shown in Figure 5, we removed certain library
operations (most notably actor migration among computers)
and mapped internal exceptions from Basset into Actor-
Foundry exceptions (e.g., sending a message for a non-
existent method). ActorFoundry does not expose messages
or actor threads in the API to actor applications, so our adap-

tation layer could name those entities arbitrarily. However,
ActorFoundry does expose actors in the API (more precisely
in the internal API used within the library), so we had to
preserve that the actor class be named Actor. Since this
class had no superclasses in the original library, we could
easily subclass it from the Basset’s actor class and then
provide both functionality required by the ActorFoundry
library and by the Basset framework.

B. Scala

The changes for Scala were somewhat more involved,
due to its compilation model (from the Scala source files
to Java class files) and the rich API that the Scala actor
library exposes to Scala applications. A key issue is that
our adaptation layer for Scala needs to subclass the actor
class from Basset and also needs to provide the actual
interface of the Scala actor. To solve this issue, we used the
Adapter design pattern [44] to translate the calls that a Scala
application makes on an actor object into the appropriate
calls to the Basset actor. Moreover, it was not possible to add
a field to the existing Scala Actor trait (a trait can be thought
of as a Java abstract class) to point to its corresponding
Basset actor, because of the way that Scala compiles trait’s
fields [19]. Therefore, we maintain this correspondence as
a map outside of the Actor trait. Each actor operation
translates calls from the Scala world into the Basset world
using this map.

VI. IMPLEMENTATION

We implemented the Basset framework on top of Java
PathFinder (JPF), an extensible, explicit-state model checker
for Java [28], [29]. We first describe the relevant parts of JPF
and then present our changes.

JPF is written in Java and provides a specialized Java
Virtual Machine (JVM) that supports state backtracking and



control over non-deterministic choices. The default non-
deterministic choices in JPF are thread scheduling and
explicit choices made in the code with the JPF library call
Verify.getInt (analogous to VS_toss in VeriSoft [45]).
The specialized JVM in JPF is an interpreter that executes
the bytecodes of the application under exploration. JPF itself
runs on top of a host, native JVM. JPF provides an interface,
called Model Java Interface (MJI), for communication be-
tween the specialized JVM and the host JVM (analogous to
the Java Native Interface for communication between Java
and C in JVMs written in C).

The key change we made to JPF is in the control of thread
scheduling. Recall that the Basset architecture puts each
actor in its own thread. The actor code itself is in Java (more
precisely, compiled to Java bytecode). Additionally, Basset
has a main controller thread that decides which actor(s)
should be executed at which point. We wrote the main
controller itself in Java so that it runs on JPF’s JVM (and
not on the host JVM). All these threads are actual JPF/Java
threads. Based on the macro-step semantics (Section IV-B),
Basset enables only one of these threads at a time.

Note that the thread switch could not be implemented
in pure Java executing on the JPF’s JVM. To ensure that
execution properly switched back and forth between actor
threads and Basset’s main controller thread, we needed
greater control over thread switches than the Java language
supports. Namely, the main loop in Basset proceeds as
follows: the main controller chooses one actor to execute
(more specifically, one message to deliver to an actor that
then starts processing the message), and when that actor
blocks (waiting to receive a message), the main controller
should execute to schedule another actor. However, once the
actor blocks, it cannot explicitly return control to the main
controller at the Java level.

So, we made two modifications to JPF. First, we extended
JPF, using the MJI interface to implement thread switches,
effectively replacing the thread scheduler in JPF. Second, we
optimized the core of Basset to eliminate the creation of JPF
backtracking points when switching back and forth between
the actor threads and the main controller thread. Since the
JPF main loop is structured around executing only one thread
in a transition, we modified the JPF core code to enable
longer transitions. This allows us to consider the selection
and delivery of a message by Basset’s controller thread and
the processing of that message by an application’s actor
thread as a single transition. To the best of our knowledge,
this is the first JPF extension that considered state transitions
with bytecodes executed by more than one thread.

VII. EXPERIMENTS

We present several experiments using the Basset frame-
work. We first briefly compare the state-space exploration of
a trivial helloworld Scala application using Basset versus
an exploration using the standard Scala library executing

on JPF. We then describe the subject programs used to
more quantitatively evaluate Basset for ActorFoundry and
Scala. We finally present experimental results comparing the
different state-space reduction options available in Basset.
All experiments were performed using Sun’s JVM 1.6.0 13-
b03 on a 3.4GHz Pentium 4 workstation running Red Hat
Enterprise Linux 5. We set the time limit to one hour, and
we show partial results in cases where the exploration did
not finish in an hour.

A. Basset versus original library

To illustrate the increased efficiency obtained by exploring
an actor program using Basset instead of directly exploring
an actor program and its library running on JPF, we ran an
experiment to compare performance of these two options.
Recall that our goal is to check actor applications, not
actor libraries. However, the libraries already exist in Java
bytecode, so it is natural to ask whether we can run them
on JPF. Specifically, instead of developing Basset, could we
have taken a Scala application with the existing Scala library
and run it directly on JPF? Our experiments show that such
direct exploration is possible but extremely slow, even after
several simplifications to the library. The reason is that the
Scala library is a complex, multi-threaded piece of code, and
exploring it on JPF results in exploring a very large number
of thread interleavings.

More concretely, we wrote in Scala a simple helloworld
application that creates one actor and prints Hello World.
Running this code with the unmodified Scala library on JPF
did not finish in an hour! We then simplified the library
by: (1) removing a timer thread, (2) disabling actor garbage
collection, and (3) reducing the size of the thread pool
that the library uses to execute actors. JPF still took over
7 minutes to explore this application. In contrast, the Scala
instantiation of Basset takes a fraction of a second for
this application. The key reasons for this speedup are that
Basset uses a simplified framework with the macro-step
semantics [2], [21] for exploration and does not interleave
executions from different threads, and it does not explore
the complex code of the Scala library on which Scala
applications typically run.

Though we did not perform a similar experiment for
ActorFoundry, we would expect similar results in that JPF
would not be able to effectively explore the original library.
In fact, the library code for ActorFoundry contains network
calls that the publicly available JPF does not even support
as they depend on native code in standard Java libraries.
Projects by Artho and Garoche [24] and Barlas and Bul-
tan [25] provide solutions for modeling some of these calls,
but the original ActorFoundry library would still have a
prohibitively large number of thread interleavings. Using the
simplified library in our Basset framework, thread interleav-
ings are manageable for exploring interesting programs.



Table I
COMPARING DIFFERENT STATE-SPACE REDUCTION TECHNIQUES IN BASSET.

ActorFoundry Scala
Experiment Resources Statistics Resources Statistics

State Time Memory # of # of Msgs # of Time Memory # of # of Msgs # of
Subject Reduction (sec) (MB) States Delivered Execs (sec) (MB) States Delivered Execs

None 16 89 769 768 168 28 110 768 767 168
JPF Comp. 9 65 188 299 9 11 82 80 144 4

fibonacci Actor Comp. 8 71 105 184 6 9 85 43 75 2
POR-high 15 106 495 494 102 13 100 147 146 32
POR-low 10 90 289 288 64 33 160 768 767 168

None 24 119 1467 1466 374 44 122 1467 1466 374
JPF Comp. 17 95 671 864 106 19 93 255 341 42

leader Actor Comp. 15 94 465 651 73 16 94 187 237 34
POR-high 21 147 911 910 188 30 165 667 666 138
POR-low 14 113 493 492 101 28 119 612 611 126

None 1888 474 113067 113066 33264 2316 419 113066 113065 33264
JPF Comp. 559 359 21450 32770 3080 73 131 1054 2729 20

mergesort Actor Comp. 197 205 6081 10909 727 25 117 270 719 4
POR-high 6 72 40 39 8 9 82 39 38 8
POR-low 11 86 212 211 54 17 105 211 210 54

None 2300 418 168646 168645 60480 3523 463 168645 168644 60480
JPF Comp. 115 199 4436 7003 720 52 249 346 893 12

pi Actor Comp. 60 156 1652 3376 120 39 240 188 554 4
POR-high 22 130 734 733 105 37 197 733 732 105
POR-low 10 86 166 165 24 15 136 165 164 24

None 3601 522 176871 176870 38245 852 373 43438 43437 11088
JPF Comp. 3601 516 83278 183734 3995 29 123 435 1196 5

quicksort Actor Comp. 2075 465 42472 105877 2021 14 104 120 309 2
POR-high 8 108 74 73 16 7 85 37 36 8
POR-low 392 260 13281 13280 2772 33 164 912 911 210

None - - - - - 640 372 22522 22521 4152
JPF Comp. - - - - - 215 207 6513 7303 1081

scalawiki Actor Comp. - - - - - 179 217 5456 6267 836
POR-high - - - - - 923 382 22522 22521 4152
POR-low - - - - - 197 264 4644 4643 836

None 4 42 27 26 6 6 77 26 25 6
JPF Comp. 6 41 24 24 5 6 75 23 23 5

server Actor Comp. 5 41 21 22 4 6 76 20 21 4
POR-high 4 42 19 18 4 7 77 26 25 6
POR-low 5 58 27 26 6 6 72 18 17 4

None 178 238 10000 9999 3614 223 245 10000 9999 3614
JPF Comp. 38 120 887 1772 140 35 126 534 1160 69

shortpath Actor Comp. 18 110 261 608 28 20 115 230 556 22
POR-high 13 89 287 286 98 16 114 287 286 98
POR-low 50 154 1690 1689 408 58 212 1690 1689 408

None 89 200 5046 5045 1152 118 234 5045 5044 1152
JPF Comp. 22 99 528 861 31 18 103 317 508 24

spinsort Actor Comp. 15 100 287 459 19 17 101 269 432 24
POR-high 37 145 1290 1289 288 43 182 1289 1288 288
POR-low 121 274 5046 5045 1152 145 181 5045 5044 1152

B. Subjects

Our Basset experiments use nine actor programs listed
in Table I. The server subject is our running example
described in Section III. Three of the subjects implement
more complex algorithms and were previously used in the
dCUTE study [21]: leader is an implementation of a
leader election algorithm; spinsort is a simple distributed
sorting algorithm, and shortpath is an implementation
of the Chandy-Misra’s shortest path algorithm [46]. The
fibonacci subject computes the n-th element in the Fi-
bonacci sequence. mergesort and quicksort are im-
plementations of distributed sorting algorithms that use

a standard divide-and-conquer strategy to carry out the
computation. pi computes an approximation of the π
number by splitting the task among a set of worker actors.
Finally, scalawiki is the original client-server application
previously available from the ScalaWiki website. Our use of
Basset exposed an atomicity violation in this code, which
has been corrected in the latest version of the example.
We did not translate the entire scalawiki from Scala into
ActorFoundry but only translated the simplified server.

All these subjects can be executed in the standard envi-
ronments for Scala or ActorFoundry. No modification to the
subjects’ code was necessary to explore them using Basset.



C. State-space reduction

As discussed in Section VI, Basset provides two mech-
anisms for reducing the exploration of state space: state
comparison and a partial-order reduction based on the
happens-before relation. In addition to the default state
comparison provided by JPF, we implemented a custom
state comparison to improve the identification of previously
visited states (Section IV-D). The abstraction we use for state
comparison allows for more aggressive pruning of redundant
message schedules, which, in turn, results in faster state-
space exploration.

Table I shows the results of experiments comparing JPF’s
standard state comparison (JPF), the custom actor state
comparison (Actor), and the dCUTE partial-order reduction
implemented in Basset (POR-high and POR-low). For ref-
erence purposes, results without state comparison or partial-
order reduction (None) have also been provided.

For each type of state-space reduction, we tabulate the
total exploration time in seconds, memory usage in MB, the
number of states identified during the entire exploration, the
total number of messages (across all execution traces) that
were delivered during the exploration, and the total number
of executions. Effectively, the number of states and messages
are the number of nodes and edges, respectively, in the state-
space graph that Basset explores for these programs. The
variations in numbers between ActorFoundry and Scala are
due to differences in how the subjects were implemented
and how the drivers establish the initial state.

Execution time typically improves as we progress through
the three types of state comparison, from None to JPF to the
Actor comparison. In all cases, the Actor comparison results
in the fastest of these explorations. Memory utilization
remains reasonable across all of the experiments, usually
varying in line with the total number of explored states.
Similar to reducing execution time, the Actor comparison
reduces the number of explored states and the number of
delivered messages. As the abstraction used by the state
comparison is refined to consider only relevant state dif-
ferences, the number of states and executions that can be
pruned increases. As a result, the number of executions is
not a particularly meaningful statistic when state comparison
is used. The pruning of exploration can greatly reduce the
number of executions that finish.

As previously mentioned in Section IV-E, the partial-order
reduction is very sensitive to the order in which it chooses
actors and messages for message delivery. To illustrate this,
we ran experiments using two different orderings: POR-low
delivers messages to actors in order in which the actors
were created (from low to high actor ids), while POR-high
delivers messages in the reverse order.

The results show that state comparison and partial-order
reduction provide different speedups, with one or the other
being better for different subjects. The differences in results

between POR-low and POR-high show that it is worthwhile
to investigate heuristics for comparing orderings of messages
and actors. We believe that Basset provides an excellent
research platform for such experiments on state-space explo-
ration of actor programs, the same way that JPF has provided
an excellent research platform for state-space exploration of
Java programs.

VIII. RELATED WORK

The work most related to Basset is on model checking
actor programs. Sen and Agha present dCUTE [21] which
checks actor programs written using a simplified actor
library, by re-executing the programs for various message
schedules. Both dCUTE and Basset use a dynamic partial-
order reduction based on the happens-before relation to
avoid exploring equivalent schedules. dCUTE combines this
partial order reduction with a mixed concrete and symbolic
execution for test generation [47]–[49]. In contrast, Basset
provides a common framework for stateful exploration of
Java-based actor libraries and handles full actor libraries
for Scala and ActorFoundry (including dynamic creation and
destruction of actors). Also, Basset is built on top of JPF and
can reuse its functionality for state-space exploration (e.g.,
heuristics for ordering exploration).

Fredlund and Svensson present McErlang [22], a stateful
model checker for actor programs written in the Erlang
programming language [5]. McErlang, which is itself written
in Erlang, modifies the concurrency system of the Erlang
run-time library. A previous model checker for Erlang,
etomcrl [23], checked Erlang programs by translating them
into µCRL and using off-the-shelf model checkers, similarly
as the very first version of JPF [50] checked Java programs
by translating them into Promela and using SPIN [51].
Again, Basset does not focus on one language/library but
provides a general framework built on an existing tool (JPF)
and additionally incorporates several existing optimizations
for exploration.

Bordini et al. present [52] a translation from AgentSpeak,
a widely used agent-oriented programming language, into
Java so that the original program could be verified using JPF.
Agents in AgentSpeak share some similarities with actors.
For instance, an agent communicates only by exchanging
messages, and it has a private mailbox to queue up mes-
sages that cannot be processed immediately, just like actors.
While their work focused on mapping AgentSpeak features
into Java constructs, so that the resulting program can be
executed in JPF, we instead focused on customizing JPF so
that different Java-based actor systems can be tailored to
Basset with a minimum effort.

Also related to Basset is work on checking distributed
systems [24], [25], [53], [54]. In particular, Artho and
Garoche [24] and Barlas and Bultan [25] provide frame-
works for executing distributed Java code in JPF. A key
problem is that such code uses network calls that JPF



does not support as they depend on native code from
the Java standard libraries. These two projects solve this
problem by instrumenting the bytecode [24] or providing
stub classes [25]. These solutions are conceptually similar to
Basset in that they replace/avoid the standard Java network
library as Basset replaces actor libraries. The solutions
would be also valuable for checking migration of actors.
However, both solutions focus on low-level communication,
whereas Basset focuses on high-level exploration of possible
behaviors for actor programs.

Partial-order reduction is an important optimization for
alleviating the state-space explosion in model checking [20],
[26], [27], [55]–[57]. It uses static or dynamic analysis
to avoid exploring certain message schedules altogether.
As discussed in Section IV-E, Basset provides a dynamic
partial-order reduction based on the happens-before relation.
It also facilitates state-space reduction through the use of
state comparison to determine when to prune exploration.
At present, the partial-order reduction and the use of state
comparison are mutually exclusive. Recent work by Yang
et al. [37] and Yi et al. [38] proposes combining these two
optimizations, which we plan to investigate in the future.

IX. CONCLUSIONS

We described Basset, a general framework for exploring
Java-based actor programs. Basset is implemented on top of
JPF, and we instantiated it for two systems: the Scala pro-
gramming language and the ActorFoundry library. Experi-
ence with Basset suggests that a general purpose framework
for automated testing of actors can be efficient and effective.
Experimental results show that using Basset to explore the
state space of actor program executions is more efficient than
directly exploring the code and its libraries. Experiments
also suggest that Basset can effectively explore executions
of actor programs, as demonstrated by the discovery of a
previously unknown bug in a sample Scala code available
from the ScalaWiki web site (the bug was fixed after the
authors confirmed our bug report).

We believe that Basset can serve as an excellent research
platform for experiments on state-space exploration of actor
programs. In the future, we expect Basset to be instantiated
for more actor systems. We plan to investigate further
capabilities and optimizations in Basset, and to use it to test
other actor applications. Basset simplifies the development
of tools for the automated testing of programs in new actor
languages and runtime libraries, while at the same time
making new techniques for testing readily available for all
actor languages and libraries.
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