
Incremental State-Space Exploration for Programs with
Dynamically Allocated Data

Steven Lauterburg Ahmed Sobeih Darko Marinov Mahesh Viswanathan
Department of Computer Science, University of Illinois, Urbana, IL 61801, USA

{slauter2, sobeih, marinov, vmahesh}@cs.uiuc.edu

ABSTRACT
We present a novel technique that speeds up state-space
exploration (SSE) for evolving programs with dynamically
allocated data. SSE is the essence of explicit-state model
checking and an increasingly popular method for automating
test generation. Traditional, non-incremental SSE takes one
version of a program and systematically explores the states
reachable during the program’s executions to find property
violations. Incremental SSE considers several versions that
arise during program evolution: reusing the results of SSE
for one version can speed up SSE for the next version, since
state spaces of consecutive program versions can have sig-
nificant similarities. We have implemented our technique in
two model checkers: Java PathFinder and the J-Sim state-
space explorer. The experimental results on 24 program
evolutions and exploration changes show that for non-initial
runs our technique speeds up SSE in 22 cases from 6.43%
to 68.62% (with median of 42.29%) and slows down SSE in
only two cases for -4.71% and -4.81%.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging; D.2.4 [Software En-
gineering]: Program Verification

General Terms: Performance, Verification

Keywords: State-space exploration, incremental computa-
tion, model checking, Java PathFinder, JPF, J-Sim

1. INTRODUCTION
The widespread use of software in devices and safety crit-

ical applications makes software reliability as crucial as soft-
ware functionality. Testing and model checking are im-
portant approaches that help the development of reliable
software by automatically identifying potential errors. The
main engine of a model checker is the state-space explorer
(SSE) [5], which operates on the program semantics, mod-
eled as a transition system with vertices being states of the
program and edges or transitions being the steps that the
program takes. The SSE is a simple graph search algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

running on the transition system; it starts from the initial
state and searches for reachable states that violate the cor-
rectness requirements, while pruning the search when a pre-
viously visited state is encountered.

Traditional SSE takes a program and systematically ex-
plores its state space, so a lot of research has focused on
speeding up SSE for one version of a given program. How-
ever, software evolves over time, due to bug fixes, code op-
timizations, or functionality extensions. In the context of
testing, the usual approach to address evolving software is
regression testing that checks whether a newer version of
software still passes the tests that a previous version passed.
Researchers developed numerous approaches to improve ba-
sic regression testing, e.g., (safe) test selection [15, 16, 50],
test prioritization [14, 23, 35], impact analysis [2, 22, 33], or
building unit tests from system tests [13, 29, 36].

In the context of model checking, the importance of de-
veloping algorithms for evolving software was recognized by
Sistla more than 10 years ago [37]. Starting from the seminal
work of Sokolsky and Smolka [41], there have been some re-
cent techniques proposed for incremental model checking [6,
18,24]. However, the existing incremental techniques mostly
focus on control-intensive properties and programs that ma-
nipulate dynamically allocated data are not handled well.
Our focus is on checking data-intensive properties, espe-
cially for object-oriented programs. In this domain, SSE
has three characteristics: (1) program states can be large
(and checking data properties typically requires the entire
concrete state and not an abstraction); (2) operations, i.e.,
methods, are enabled in almost every state; and (3) execu-
tion of operations can take a relatively large time.

We present a technique for incremental SSE that can
speed up checking of evolving (object-oriented) programs
and data-intensive properties. Specifically, this paper makes
the following contributions.

Technique: We present ISSE, a technique for incremen-
tal SSE that targets explicit-state model checkers for real
code, e.g., BogorVM [34], CMC [27], JPF [47], SpecEx-
plorer [46], or Zing [1]. In these tools, execution of transi-
tions can be expensive [8, 9]: the tool can take a lot of time
to execute the code that transitions the program from one
state to another (and additionally to check the safety prop-
erty in the new state). Our specific goal is thus to reduce
execution time. We have observed that for many program
changes, large portions of the program’s state space remain
unchanged after the code change. ISSE exploits this ob-
servation to speed up SSE by saving the state-space graph
from one exploration and examining this graph to determine

whether a certain execution is needed during the next ex-
ploration (after a program change). A key design decision
of ISSE is to use re-execution to restore states; although
execution may be slow, it is still faster than saving to disk
and loading from disk entire states when the states are large
and the exploration needs to restore almost all of them. We
analytically model ISSE and analyze the conditions—cost
of execution vs. cost of lookup and the frequency of “hits”
during lookup—under which ISSE does or does not speed up
traditional, non-incremental SSE. Explorations of programs
with dynamically allocated data often satisfy the conditions
under which ISSE provides speed up, but ISSE can in prin-
ciple be used for other kinds of explorations.

Implementation: We implemented ISSE in two tools:
Java PathFinder (JPF) [25, 47], which is a general-purpose
model checker for Java programs, and the J-Sim state-space
explorer [40], which is specialized for the J-Sim simulation
models of network protocols [45]. Our goal is to evaluate
ISSE in tools with different design decisions and for different
kinds of evolving programs.

Evaluation: We evaluated our implementations using 11
subject programs for JPF and 3 network protocols for J-
Sim. Our experiments consider various code changes due to
program evolution (e.g., fixing bugs or adding functional-
ity) and various exploration changes for the same code (e.g.,
increasing depth of exploration or increasing number of in-
put values). While it is easy to change exploration for a
given code, we had to collect a set of program evolutions
to evaluate ISSE for code changes. The existing program
evolutions used in research on (regression) testing [11] are
not suitable as they have only individual tests that do not
involve state-space exploration. We performed experiments
on 24 code changes or exploration changes. The experi-
mental results show that for non-initial runs, ISSE speeds
up non-incremental SSE in 22 cases, from 6.43% to 68.62%
(with median of 42.29%). Additionally, ISSE does not have
a large overhead, and for the 2 cases where it slows down
non-incremental SSE, the slowdowns are -4.71% and -4.81%.

2. EXAMPLE
We next show an example usage scenario where our incre-

mental state-space exploration (ISSE) provides a speedup
over a traditional, non-incremental state-space exploration
(SSE). Our example evolves code that implements a sim-
ple file system based on Daisy [32], originally proposed by
Qadeer as a sample subject for model checking and testing
research. This code was analyzed with various tools such
as BogorVM [34], Java PathExplorer [17], JPF [47], and
SpecExplorer [46]. We use a simplified version of the code
provided by Darga and Boyapati [10]. This implementation,
called filesystem, has 4 classes with about 170 lines of C-like
Java code and uses simple data structures to implement key
entities of a file system.

The previous analyses of this subject considered one given
version of the code [8,10]. Our example considers a scenario
involving (two) consecutive versions of the code, but before
describing this scenario, we present how to perform state-
space exploration for one version. Figure 1 shows declara-
tions for four methods used in our exploration of filesys-

tem. These methods create and remove directories and files.
A traditional test for this code would have a sequence of
method calls, e.g., first create an empty file system, then
create or remove some directories or files, and finally check

class FileSystem {
int mkdir(FileHandle dir, byte[] name, FileHandle fh) { ... }
int rmdir(FileHandle dir, byte[] name) { ... }

int creat(FileHandle dir, byte[] name, FileHandle fh) { ... }
int unlink(FileHandle dir, byte[] name) { ... }

... // other methods, e.g., read/write from/to files
}

Figure 1: Simple Interface for a Part of File System

// L bounds length of method sequences
// M bounds values of method parameters

void main(int L, int M) {
FileSystem fs = new FileSystem(); // empty file system

FileHandle[] handles = ... // create M handles
byte[][] names = ... // create M names

for (int i = 0; i < L; i++) {
int m = Verify.getInt(0, MAX_METHOD_ID); // choose method
FileHandle dir = handles[Verify.getInt(0, M)];

byte[] name = names[Verify.getInt(0, M)];
FileHandle fh = handles[Verify.getInt(0, M)];

int r; // result
switch (m) {
case 0: r = mkdir(dir, name, fh); break;

case 1: r = rmdir(dir, name); break;
case 2: r = creat(dir, name, fh); break;

case 3: r = unlink(dir, name); break;
... // other methods, e.g., read/write from/to files

}
... // check correctness for state "fs" and result "r"

}

}

Figure 2: Exploration of Method Sequences in JPF

that these directories or files indeed do or do not exist. In-
stead of testing individual sequences, we use a state-space
exploration tool to check all sequences within given bounds.

Figure 2 shows driver code suitable for exploring method
sequences in JPF [21, 47, 48]. The inputs bound the length
of sequences, L, and the values for method parameters, M,
i.e., the number of various file handles and names. (Most
of our experiments use only one bound, with L=M.) The
JPF library method Verify.getInt(int lo, int hi) creates
a non-deterministic choice and instructs JPF to explore all
possible values between lo and hi. Given such a driver, JPF
explores all executions up to the given bounds and reports
those executions that violate encoded correctness properties.
An important point is that JPF compares states that result
from different sequences: if two sequences lead to the same
state of the file system, JPF prunes one of those sequences
from the exploration.

We obtained several versions of filesystem code as fol-
lows. We first deleted the method body from mkdir (leaving
only its specification in the comments) and asked six under-
graduate and graduate students to implement the method.
This method is non-trivial as it needs to allocate blocks and
inodes for a new directory and to perform several checks
(the disk should not be full, there should be available in-
odes, the directory name should not already exist, etc.). We
then used our driver to check the code and reported the bugs
to the authors so that they can correct their code. We next
checked the new versions of the code until either the authors
provided a correct version or we used our existing correct
version. A representative example consists of two versions:
the first version did not check whether a directory name al-
ready exists in the given directory (so it could incorrectly
create duplicate names), and the second version corrected
this error about duplicate names (by adding a check).

We compared the performance of basic JPF using tradi-
tional, non-incremental SSE and JPF with our technique

ISSE for incremental state-space exploration. For the ex-
ample with duplicate names, JPF took the following times
(with the bounds L=M=5) for the initial version (with the er-
ror): 1728.21s without ISSE and 1752.10s with ISSE. In this
run, ISSE was slower (but less than 2%) since it prepared
the additional information to speedup the next exploration.
Indeed, JPF took the following times (with the same bound
of 5) for the second version (without the error): 1047.94s
without ISSE and 447.31s with ISSE. In this case, ISSE was
more than twice as fast, significantly paying off the small
initial slowdown.

3. TECHNIQUE
The main idea behind ISSE is to reduce the time neces-

sary for state-space exploration by avoiding the execution of
selected transitions (and related computations) that are not
necessary for a given exploration. ISSE identifies unneces-
sary transitions using the information captured during prior
exploration, along with a list of code changes made since the
prior exploration.

We first present a traditional, non-incremental SSE al-
gorithm to introduce the notation. We then present our
modifications that transform the algorithm into incremental
state-space exploration, ISSE. We next discuss the correct-
ness of ISSE and finally present a brief analytical discussion
of ISSE’s performance, focusing on the conditions necessary
for ISSE to outperform non-incremental SSE.

3.1 Non-Incremental State-Space Exploration
Figure 3 shows the pseudo-code for a non-incremental SSE

algorithm [5]. The two major data structures it uses are
ToExplore (which stores the states from which no transition
has yet been explored) and V isited (which stores the states,
more precisely hash codes of the states, that have already
been visited). Figure 3 presents a stateful search that avoids
visiting a state s1 if another state s2, with the same hash
code, has already been visited before.

Initially, ToExplore contains only the initial state (line
2), and V isited contains the hash code of this state (line 3).
As long as ToExplore is not empty (line 4), SSE chooses a
state from ToExplore and assigns it to the current state s

(line 5). For each state s being explored, SSE determines
the transitions that are enabled for that state by invoking
genEnabledTransitions (line 6).

For each transition t, SSE generates the successor state
(s′) by calling the genNextState function (line 8) to execute
the transition. SSE then post-processes s′, computing its
hash code (line 10) and checking whether it violates any
specified correctness property (line 11). If s′ violates a prop-
erty, the exploration prints a message and optionally termi-
nates (line 12). As long as the depth of s′ is less than the
specified maximum depth MAX_DEPTH, and s′ has not been vis-
ited before (i.e., its hash code is not in V isited), SSE adds
s′ to ToExplore (line 16) for later exploration and adds its
hash code to V isited (line 15) to mark it has been visited.

Based on checks for the state s′ (lines 13 and 14), we
distinguish three disjoint types of transitions: (1) tree tran-
sitions generate a state s′ that has depth less than MAX_DEPTH

and that has not been already visited; (2) non-tree transi-
tions generate a state s′ that has depth less than MAX_DEPTH

but that has been already visited; (3) deepest transitions
generate a state s′ that has depth equal to MAX_DEPTH (note
that the depth cannot ever be greater than MAX_DEPTH).

0: procedure SSE()
1: sinit.depth = 0
2: ToExplore = {sinit}
3: V isited = {computeHashCode(sinit)}
4: while (|ToExplore| > 0) do

5: s = choose state from ToExplore
6: transitions = genEnabledTransitions(s)
7: for each transition t in transitions do

8: s′ = genNextState(s, t)
9: s′.depth = s.depth + 1

10: s′.hashcode = computeHashCode(s′)
11: valid = checkProperty(s′)
12: if (not valid) then print(ERROR)
13: if (s′.depth < MAX_DEPTH &&

14: s′.hashcode /∈ V isited) then

15: V isited = V isited ∪ {s′.hashcode}
16: ToExplore = ToExplore ∪ {s′}

Figure 3: Non-Incremental Exploration

Depending on the data structure used for ToExplore,
SSE can use different search strategies, including breadth-
first, depth-first, and various heuristic-based search strate-
gies. Our technique for incremental state-space exploration
works for all those search strategies.

3.2 Incremental State-Space Exploration
As stated above, ISSE aims to avoid the execution of un-

necessary transitions (and related computations) based on
information from a prior exploration and a specification of
what has changed in the code being explored. We have
identified three primary sources for reduction: (1) execu-
tion for unmodified non-tree transitions, (2) execution for
unmodified deepest transitions, and (3) post-processing for
unmodified tree transitions.

Figure 4 shows the pseudo-code of ISSE, our procedure
for incremental state-space exploration. Although similar
to SSE, ISSE has some key differences that allow select
executions and/or their post-processing steps to be avoided.

ISSE first loads a state-space graph from an input file and
stores it in the IN data structure (line 1). For each tran-
sition t, ISSE makes use of two decision variables, execute

and postProcess, to determine what needs to be performed
for the transition. If execute is false, ISSE does not ex-
ecute the transition nor its post-processing. If execute is
true (line 20), ISSE executes the transition, which gen-
erates a new state s′ (line 21). Then, if postProcess is
also true (line 23), ISSE performs post processing for the
transition: (i) computes the hash code of s′ (line 24), and
(ii) checks whether s′ violates any specified properties (line
27). If postProcess is false, these two steps are not done.

Regardless of whether a transition is actually executed
or post-processed, information regarding that transition is
added to the OUT data structure. Essentially, this data
structure is a condensed representation of the current state-
space graph. OUT stores information about each of the vis-
ited states that do not violate a property in checkProperty.
Specifically, for each executed transition t that changes the
system state from s to s′, OUT stores a triple 〈h, E, h′〉,
where h is the hash code of s, h′ is the hash code of s′, and
E encodes the transition t (typically encodes the selected
method, called m in Figure 2, and the parameters of the
method call). Upon completion of the exploration, ISSE

writes the OUT data structure to an output file (line 35).
The settings of execute and postProcess are determined

as follows. Initially, both are set to true (lines 9 and 10).
ISSE then checks whether the transition t represents an

unmodified event (line 11). If not, execute and postProcess

remain true since the transition has to be executed and the
new state post-processed. If the transition does represent an
unmodified event, potential savings may be gained depend-
ing on whether or not information about this state-transition
pair exists in IN . ISSE searches for the hash code of the
current state s and the transition t in IN (line 12). If it
does not exist, then execute and postProcess remain true

since no information is known.
If the information does exist from the previous explo-

ration, ISSE checks if the state depth is about to become
equal to MAX_DEPTH (line 14). If so (i.e., this is a deepest tran-
sition), execute is set to false because there is no need to
execute this (deepest) transition: it would generate a state
s′ that satisfies the property and s′ would not be added to
ToExplore. If this is not a deepest transition, ISSE checks
if the hash code of s′ exists in V isited (line 16). If so (i.e.,
this is a non-tree transition), execute is also set to false for
the same reason as in the former check.

Finally, if the transition is neither deepest nor non-tree,
it must be a tree transition. In this case, only postProcess

is set to false (line 19). Since the hash code of s′ is in
IN (line 13), we know that s′ does not violate a property
(because IN does not store the hash codes of states that
violate a property, as explained above). Hence, we can save
the time for post processing this state, both to compute its
hash code and to check whether it violates a property. It is
important to note that ISSE does not stop exploration for
a tree transition (even when it does not need to post-process
it) because there can be changed states reachable from s′.

3.3 Correctness of Incremental SSE
We first consider the correctness of a special case of our

technique, namely when there is no hashing, or in other
words when the function computeHashCode (line 10 of Fig-
ure 3 and line 24 of Figure 4) is the identity function. In
this case, the SSE algorithm (Figure 3) is guaranteed to dis-
cover any buggy execution with at most MAX_DEPTH number
of transitions. The ISSE algorithm (Figure 4) can be easily
shown to also discover any incorrect executions of length at
most MAX_DEPTH and to correctly compute the OUT graph,
as long as states and transitions identifiers can be matched
across runs.

In the presence of hashing, there are a few subtle issues
to consider. First, the traditional SSE is itself only sound
but no longer complete: any faulty execution discovered by
it is indeed a bug, but it can no longer guarantee the ab-
sence of bugs in all executions of length at most MAX_DEPTH.
The reason for this is that the algorithm may visit a state
s2 whose hash code is the same as a previously visited state
s1 (line 14 of Figure 3), and therefore decide to not explore
further any executions from s2. Since the non-incremental
algorithm is not complete in the presence of hashing, our
incremental algorithm is also not complete for the same rea-
sons. However, ISSE has another potential source of in-
completeness. Suppose state s1 is explored in the previous
run, and its hash code and transitions are output in the
state-space graph. Assume that due to new/modified tran-
sitions a state s2 is visited before s1 in the new version, and
the hash code of s2 is the same as that of s1. In this case,
the incremental algorithm will (incorrectly) deduce that the
state s2 was visited in the previous run (conditional in line
13 of Figure 4). The algorithm will use the hash code of the

0: procedure ISSE()
1: IN = readPriorExplorationGraph()

2: sinit.depth = 0
3: ToExplore = {sinit}

4: V isited = {computeHashCode(sinit)}
5: while (|ToExplore| > 0) do

6: s = choose state from ToExplore
7: transitions = genEnabledTransitions(s)
8: for each transition t in transitions do

9: execute = true // transition modified or not found
10: postProcess = true
11: if (isNonModifiedTransition(t)) then

12: nextHash = get(IN, s.hashcode, t)
13: if (nextHash 6= NOTFOUND) then

14: if (s.depth + 1 = MAX_DEPTH) then

15: execute = false; // deepest transition

16: else if (nextHash ∈ V isited) then

17: execute = false; // non-tree trans.
18: else

19: postProcess = false; // tree trans.
20: if (execute) then

21: s′ = genNextState(s, t)
22: s′.depth = s.depth + 1
23: if (postProcess) then

24: s′.hashcode = computeHashCode(s′)
25: valid = checkProperty(s′);
26: if (not valid) then print(ERROR)
27: else

28: s′.hashcode = nextHash
29: if (s′.depth < MAX_DEPTH &&
30: s′.hashcode /∈ V isited) then

31: V isited = V isited ∪ {s′.hashcode}
32: ToExplore = ToExplore ∪ {s′}

33: nextHash = s′.hashcode
34: add(OUT, s.hashcode, t, nextHash)
35: writeCurrentExplorationGraph(OUT)

Figure 4: Incremental State-Space Exploration

states reached from s1 to store in V isited and output to the
new state-space graph. As a consequence, the incremental
algorithm may not execute certain paths that would be ex-
plored by the non-incremental algorithm. Despite these lim-
itations, the incremental algorithm is guaranteed to be sound
for safety/reachability properties, i.e., every erroneous trace
discovered is indeed a bug in the system. This is because
every tree transition is actually executed, even if old hash
code is used when computing the graph. Since the discovery
of errors is often the goal of state-space exploration (as wit-
nessed by the widespread use of hashing in non-incremental
algorithms despite its incompleteness), we expect that these
theoretical limitations will not affect the usefulness of our
technique in practice.

ISSE has additional requirements on the program states,
their hash codes, and transition identifiers between consec-
utive runs. ISSE requires that the state layout of two pro-
gram versions does not change, e.g., the new version cannot
add or remove fields to the existing classes. Moreover, ISSE

requires that the hash code for a program state is the same
for repeated runs and that the transition identifiers are the
same for repeated runs. The hash code will indeed be the
same for state-space explorers that compute the hash code
solely from the state, which is the case for both JPF and
J-Sim; these tools as well as many others for object-oriented
programs actually compute hash code based on state lin-
earization [3, 20, 47] such that the hash code is the same for
all states that are isomorphic, i.e., differ only in the identity
of the objects but have the same linked structure and the
same values for primitive fields. The transition identifiers
are encoded with the method identifiers and choices made
for method parameters (return values of Verify.getInt calls

in drivers such as that shown in Figure 2), and the user in-
structs the tool on how the new program has changed. (In
our current implementations, the user has to select which
methods changed, although that can be automatically in-
ferred by comparing the two versions [2,22,28,33].) In sum-
mary, while there are cases where ISSE cannot reuse previ-
ous graph, the user can always choose to run SSE or ISSE

without reading the previous graph.

3.4 Performance Analysis
We next analytically derive the conditions under which

ISSE does or does not provide speedup over the traditional
SSE. The key is to consider various outcomes for the deci-
sion variables execute and postProcess at lines 22 and 25 in
ISSE, which determine whether ISSE executes a transition
and its associated post-processing:

• If both execute and postProcess are true, ISSE exe-
cutes both the transition and its post-processing. This
is a modified transition or a new state with respect to
the prior exploration, but the transition can be of any
type for the current exploration.

• If execute is true and postProcess is false, ISSE ex-
ecutes the transition but not its post-processing. This
is a tree transition for the current exploration which
was also executed in the prior exploration.

• If execute is false, ISSE executes neither the transi-
tion nor its post-processing. This is either a deepest
or non-tree transition for the current exploration which
was also executed in the prior exploration.

To estimate the running time of the algorithms, our sim-
plified analysis uses the following six variables: X is the
average time to execute a transition, P is the average time
of post-processing, O is the overhead of incremental explo-
ration (including file reads and writes, lookups into IN , and
building of OUT), m is the frequency of (enabled) modified
transitions (where the condition in line 11 is false), f is the
frequency of (unmodified) transitions found in IN (where
the condition in line 13 is true), and t is the frequency of
tree transitions in the current exploration among the transi-
tions found in the prior exploration (so line 19 is executed).
The approximate running time of each transition in ISSE is
O + (1 − m)ftX + (m + (1 − m)(1 − f))(X + P), whereas
the approximate running time for non-incremental SSE is
X + P as it always both executes the transition and its
post-processing. Hence, the expected saving from ISSE is

1 −
O + (1 − m)ftX + (m + (1 − m)(1 − f))(X + P)

X + P
.

A more detailed analysis is available in the accompanying
technical report [38].

Intuitively, ISSE is faster than non-incremental SSE when
(1) the overhead of incremental exploration is small com-
pared to the execution and post-processing (O < X + P)
and (2) there is reuse from the prior exploration: (2.1) the
frequency of modified transitions (m) is small, (2.2) the fre-
quency of found transitions is large (so 1 − f is small), and
(2.3) those found transitions are mostly non-tree and deep-
est for the current exploration (so t is also small). The worst
case for ISSE is when everything changes, i.e., m = 1. Our
experiments show that the overhead of ISSE even in this

case does not significantly slow down ISSE over the non-
incremental SSE. The key reason is that the execution and
post-processing times are significant for our subject programs
with complex data. This is why we view our technique suit-
able for programs with dynamically allocated data: while
the ISSE algorithm itself can work correctly in many cases,
we do not expect it to provide a speedup when the execu-
tion and post-processing times are small (and, in particular,
smaller than the lookup into the IN data structure).

4. EVALUATION
We performed an experimental evaluation of ISSE. We

implemented ISSE in two model checkers: Java PathFinder
(JPF) [47] and the J-Sim state-space explorer [39,40]. Both
implementations follow the pseudo-code shown in Figure 4.

We first describe the subject programs that we use in our
study. We then present the results using our JPF imple-
mentation. We finally present the results using our J-Sim
implementation.

The main research question is how our incremental state-
space exploration, ISSE, decreases or increases the explo-
ration time compared with the traditional, non-incremental
exploration. We also compare the memory requirements for
ISSE and the non-incremental exploration.

4.1 Subjects
Our experiments use 11 programs for JPF and 3 simula-

tion models of network protocols for J-Sim, taken from a
variety of sources. Note that we took one version of each
subject, but evaluating ISSE requires several versions. For
most subject, we had several undergraduate and graduate
students implement more versions, and for some subjects,
we created versions by seeding errors.

The following nine subjects are simple data structures:
binheap implements priority queues with binomial heaps [48];
bst implements a set using binary search trees [49]; deque im-
plements a double-ended queue using doubly-linked lists [8];
fibheap is an implementation of priority queues using Fi-
bonacci heaps [48]; heaparray is an array-based implementa-
tion of priority queues [3,49]; queue is an object queue imple-
mented using two stacks [10]; stack is an object stack [10];
treemap implements maps using red-black trees based on
Java collection 1.4 [3,48,49]; ubstack is an array-based imple-
mentation of a stack bounded in size, storing integers with-
out repetition [7, 30, 42]. The tenth subject is filesystem,
based on the Daisy code [10, 32] as described in Section 2.
These ten subjects are all small, ranging from 1 class (for
heaparray and ubstack) to 4 classes (for filesystem) and from
27 (for stack) to 301 (for treemap) non-comment, non-blank
lines of code.

The eleventh subject for JPF is aodv, which implements
the Ad-Hoc On-Demand Distance Vector (AODV) [31] rout-
ing protocol for wireless ad hoc networks, also used for the
J-Sim state-space explorer. The remaining two subjects for
J-Sim are dirdiff, which is the directed diffusion proto-
col [19] for wireless sensor networks, and arq, which is the
stop-and-wait Automatic Repeat reQuest (ARQ) [44] pro-
tocol. AODV and directed diffusion are reasonably complex
network protocols whose J-Sim simulation models (not in-
cluding the J-Sim library) have about 1,200 and 1,400 lines
of code, respectively. ARQ is a simple protocol whose sim-
ulation model has about 170 lines of code. We defer the
descriptions of the three network protocols to Section 4.3.

For each subject, we use previously written drivers [8]
similar to Figure 2. These drivers exercise the main mutator
methods. For data structures, the drivers add and remove
elements. For filesystem, the driver creates and removes
directories, creates and removes files, and writes to and reads
from files. For the three network protocols, each driver [39,
40] determines the events that are enabled in each state (e.g.,
packet delivery, packet loss, timeout, node reboot, etc.) and
executes them for various parameters.

4.2 Java PathFinder
JPF is a general purpose model checker for Java byte-

code, implemented as a backtrackable Java Virtual Machine
(JVM) running on top of a regular, host JVM. We have im-
plemented our ISSE technique in JPF version 4 [25]. We
first present results of a limit study on all 11 subjects. We
then present results for several program evolution patterns.
We finally present results for several patterns of changing
exploration for the same program.

We performed all JPF experiments on a Pentium 4 3.4GHz
workstation running under RedHat Enterprise Linux 4. We
used Sun’s JVM 1.5.0 07, limiting each run to 1.8GB of
memory and 1 hour of elapsed time.

4.2.1 Limit Study
To better understand the speedups possible using ISSE,

we performed a limit study on all 11 subject programs. Fig-
ure 5 shows the results. For all experiments in this study,
the exploration depth and the number of values for oper-
ations are the same (i.e., L=M from Figure 2). For each
subject, we chose the largest bound for which we could run
an exhaustive, breadth-first exploration of the state-space
using 1.8GB of memory and 1 hour of elapsed time. We
tabulate the exploration time for non-incremental SSE and
our incremental ISSE and the speedup (or slowdown when
the percentage is negative) obtained using ISSE. The version
column indicates the type of exploration.

Initial corresponds to the first exploration that always
completely explores all transitions. Due to the cost of col-
lecting information about the exploration and saving it to
a file, ISSE always takes slightly more time than the tra-
ditional non-incremental exploration. The slowdowns range
from -0.42% (for aodv) to -7.13% (for stack.)

Best corresponds to the best case, an exploration where
no transitions have changed. Although this is not a realistic
scenario, it represents the upper limit of performance im-
provement for the given subject and bound. A best case ex-
ploration requires only tree transitions to be executed. The
savings of ISSE over non-incremental SSE for the best case
range from 20.41% to 96.34%, with a median of 74.02%.

Worst corresponds to the worst case, a scenario where all
of the subjects operations were flagged as modified (though
we don’t actually modify any code for these experiments).
In this scenario, all transitions must once again be executed,
so it illustrates the overhead associated with ISSE. The ad-
ditional cost of ISSE over non-incremental SSE for the worst
case ranges from 0.78% to 14.07%, with a median of 5.89%.

We also evaluated the impact that using ISSE has on
memory usage. Using Sun’s jstat monitoring tool [43], we
identified the peak usage of garbage-collected heap in the
JVM while running our experiments. This measurement
represents the most relevant portion of memory used during
state-space exploration.

Experiment Time (sec) Memory
Subject Ver. SSE ISSE Savings Savings

aodv initial 300.47 301.72 -0.42% -8.54%
(L=M=9) best 300.47 103.06 65.70% -9.89%

worst 300.47 306.44 -1.99% -14.78%
binheap initial 461.33 479.28 -3.89% -12.41%

(L=M=8) best 461.33 47.65 89.67% -49.63%
worst 461.33 480.04 -4.06% -50.17%

bst initial 1081.21 1124.62 -4.01% -26.05%
(L=M=11) best 1081.21 185.77 82.82% -62.73%

worst 1081.21 1179.61 -9.10% -66.47%
deque initial 56.73 59.24 -4.42% -24.67%

(L=M=8) best 56.73 13.82 75.64% -30.81%
worst 56.73 62.00 -9.29% -52.41%

fibheap initial 416.26 435.42 -4.60% -13.48%
(L=M=8) best 416.26 108.15 74.02% -27.74%

worst 416.26 453.56 -8.96% -29.70%
filesystem initial 1024.04 1043.75 -1.92% -120.72%
(L=M=5) best 1024.04 37.44 96.34% -246.28%

worst 1024.04 1032.03 -0.78% -237.30%
heaparray initial 105.29 108.78 -3.31% -14.93%
(L=M=8) best 105.29 83.80 20.41% -27.25%

worst 105.29 111.49 -5.89% -28.83%
queue initial 88.34 93.54 -5.89% -1.66%

(L=M=7) best 88.34 27.58 68.78% -14.33%
worst 88.34 99.68 -12.84% -16.06%

stack initial 65.13 69.77 -7.13% -0.33%
(L=M=7) best 65.13 24.71 62.06% -11.83%

worst 65.13 74.29 -14.07% -15.31%
treemap initial 254.41 258.20 -1.49% -36.21%

(L=M=12) best 254.41 27.05 89.37% -79.66%
worst 254.41 266.16 -4.62% -78.78%

ubstack initial 149.88 154.14 -2.84% -14.96%
(L=M=8) best 149.88 114.72 23.46% -30.77%

worst 149.88 156.70 -4.55% -30.09%

Figure 5: Limit Study in JPF

Figure 5 shows that using ISSE in place of non-incremental
exploration resulted in increased memory usage (as indi-
cated by negative memory savings percentages). The in-
crease ranges from 0.33% (for the initial version of stack)
to 246.28% (for the best case version of filesystem). These
increases are largely due to the space needed for the IN and
OUT data structures used by the ISSE algorithm (Figure 3).

4.2.2 Code Changes
To evaluate the savings that ISSE can provide in succes-

sive explorations, we had to obtain multiple versions for sev-
eral subjects. Figure 6 shows the results. Each sequence
corresponds to versions of the same subject, starting with
errors, followed by a corrected (or more correct) version.
For all subjects but aodvA and filesystemA, we obtained the
initial versions (Ver. 1) by deleting a method body from a
correct version and asking several undergraduate and grad-
uate students to implement the method. If the resulting
method contained errors, we asked the student to provide
another version with the errors corrected. For aodvA and
filesystemA, we seeded the initial version with errors. As
with the limit study, we consider the case where both the
exploration depth and the number of values for operations
are the same (L=M). The savings of exploration time with
ISSE over non-incremental exploration for non-initial runs
(Ver. 2 and 3) range from -4.71% to 62.46%, with a median
of 56.99%.

Note that ISSE is always slightly slower than SSE in the
initial exploration (Ver. 1) as ISSE needs to collect the ad-
ditional information for the next exploration. ISSE is also
slightly slower for Ver. 2 in one case, heaparrayA. The reason
is that the change in code from Ver. 1 to Ver. 2 makes a big

Experiment Time (sec)
Subject L=M Ver. SSE ISSE Savings

aodvA 9 1 302.24 302.46 -0.07%
2 302.85 113.68 62.46%
3 302.54 113.64 62.44%

binheapA 8 1 416.90 428.02 -2.67%
2 404.78 249.13 38.45%

binheapB 8 1 437.29 447.60 -2.36%
2 407.88 251.73 38.28%

binheapC 8 1 537.06 543.85 -1.26%
2 487.22 331.34 31.99%

bstA 11 1 1782.46 2238.98 -25.61%
2 1140.94 807.23 29.25%

bstB 11 1 1094.29 1132.47 -3.49%
2 1099.22 731.57 33.45%

filesystemA 5 1 1083.80 1085.16 -0.13%
2 1064.53 419.03 60.64%
3 1040.02 409.41 60.63%

filesystemB 5 1 1073.13 1066.63 0.61%
2 1052.57 452.68 56.99%

filesystemC 5 1 1728.21 1752.10 -1.38%
2 1047.94 447.31 57.32%

filesystemD 5 1 1053.24 1064.40 -1.06%
2 1045.59 446.91 57.26%

heaparrayA 8 1 67.36 70.69 -4.94%
2 131.73 137.93 -4.71%

Figure 6: Code Change Sequences in JPF

change in the state-space graph. (A small change in code
can result in a large change in the state-space graph, but
a large change in code can still result in a small change in
the state-space graph.) In Ver. 1, the code has an error that
leads to premature expansion of the array used to represent
the heap data structure. Correcting this error in Ver. 2 re-
sulted in a great number of “new” states (i.e., states that did
not exist in the initial exploration), and all transitions lead-
ing from these new states must be executed in their entirety.
(In terms of the pseudo-code from Figure 4, it means that
in line 12, nextHash gets value NOTFOUND.) It is important to
point out, however, that the impact associated with ISSE is
limited to only -4.71%.

4.2.3 Exploration Changes
In addition to evaluating code changes, we also considered

possible changes to the exploration itself. Figure 7 shows the
results for three scenarios.

Adding a new method – aodvF Ver. 1 is an AODV imple-
mentation without a reboot operation being exercised in the
driver. This operation has been added in aodvF Ver. 2. (The
code of the protocol itself is not changed, but the driver is
changed.) The savings of ISSE over non-incremental explo-
ration for Ver. 2 is 8.53%.

Adding a new value – binheapF exercises the same code in
both runs, but run 1 uses L=M=7 bounds for exploration
depth L and argument values for method calls M , whereas
run 2 uses L=7 and M=8, i.e., the number of different argu-
ment values has been increased to 8. As a result of reusing
the exploration performed with the first 7 values, the savings
of ISSE over non-incremental for run 2 is 35.08%.

Increasing the exploration depth – binheapG exercises the
same code in both runs 1 and 2, but run 1 uses L=M=7,
whereas run 2 uses L=8 and M=7, i.e., the exploration
depth is increased to 8. Although a large number of new
transitions need to be executed at depth 8, using ISSE in-
stead of non-incremental SSE still reduced the run 2 explo-
ration time by 6.43%. Similarly, aodvG exercises the same
code in both runs 1 and 2, but run 1 uses L=M=9, whereas

Experiment Time (sec)
Subject L,M Ver. SSE ISSE Savings

aodvF 9,9 1 48.05 48.66 -1.27%
2 301.35 275.64 8.53%

aodvG 9,9 1 301.33 303.42 -0.69%
10,9 1091.20 915.39 16.11%

binheapF 7,7 1 25.19 25.82 -2.50%
7,8 54.85 35.61 35.08%

binheapG 7,7 1 25.20 25.87 -2.66%
8,7 178.79 167.30 6.43%

Figure 7: Exploration Change Sequences in JPF

run 2 uses L=10 and M=9, i.e., the exploration depth is
increased to 10. Using ISSE instead of non-incremental SSE
reduces the exploration time for run 2 by 16.11%.

4.3 J-Sim State-Space Explorer
J-Sim [45] is a component-based network simulator writ-

ten entirely in Java. The J-Sim state-space explorer [39,40]
is a J-Sim component that dynamically checks whether a
given J-Sim simulation model of a network protocol satis-
fies certain assertions (i.e., safety properties). The J-Sim
simulation models are themselves also written in Java. A
traditional network simulator executes only one path of the
model (typically to measure performance). In contrast, the
J-Sim state-space explorer takes control of the model execu-
tion and explores the (entire) state space created by execut-
ing the model along several execution paths, with the goal
to find an execution (if any) that violates an assertion.

We implemented ISSE in the J-Sim state-space explorer
and evaluated it for the simulation models of three network
protocols described in the rest of this text. We consider
several versions of simulation models for each protocol, ob-
tained by seeding errors or removing methods. Our J-Sim
experiments build the OUT data structure (from Figure 4)
and write it to a file only for the first version, and load the
information (for unmodified transitions) from the file to the
IN data structure for each subsequent version. All experi-
ments in this section use the breadth-first search strategy.

4.3.1 AODV in J-Sim
Ad-Hoc On-Demand Distance Vector (AODV) [31] is a

routing protocol for wireless ad hoc networks. In AODV,
each network node maintains a routing table. For a node n,
a routing table entry (RTE) to a destination node d contains
several fields, including a next hop address (address of the
node to which n forwards data packets destined for d), a
hop count (number of hops needed to reach d from n), and
a destination sequence number (a measure of the freshness
of the route information). For n to establish a valid RTE to
d, n has to initiate a route discovery process that involves
broadcasting a route request (RREQ) packet and receiving
at least one route reply (RREP) packet from either d itself or
another node. Each valid RTE is associated with a lifetime.
Periodically, an RTE timeout event is triggered invalidating
(but not deleting) all the RTEs that have not been used
(e.g., to send/forward packets to d) for a time interval that
is greater than the lifetime. Invalidating an RTE involves
incrementing the destination sequence number and setting
the hop count to ∞. Received RREQ packets are kept,
for a specific time duration, in a broadcast ID cache for
duplicate detection and suppression. The safety property
that we check is the routing loop-free property: a node must

Experiment Time (sec) Memory
Subject Ver. SSE ISSE Savings Savings

aodv 1 121.74 133.24 -9.45% -4.67%
(MAX_DEPTH=9) 2 123.98 38.91 68.62% -14.81%

3 123.65 38.94 68.51% -14.81%
arq 1 22.35 24.30 -8.72% -38.15%

(MAX_DEPTH=35) 2 30.13 31.58 -4.81% -30.31%

Figure 8: Code Change Sequences in J-Sim

not occur at two points on a path between two other nodes
(as otherwise packets would loop until timeout).

There are six types of events that can be enabled from a
state: T0 initiates a route discovery process, T1 is a broad-
cast ID cache timeout, T2 is an RTE timeout, T3 delivers a
packet from the network to a node, T4 loses a packet, and T5

reboots a node. To evaluate ISSE, we consider a hypotheti-
cal scenario where a user tries to implement T2 correctly. In
Ver. 1, the user implements T2 by deleting an RTE instead
of invalidating it, but realizes that this can cause a routing
loop [40]. In Ver. 2, the user changes T2 to invalidate RTE
but forgets to increment the destination sequence number,
which can again cause a routing loop [40]. In Ver. 3, the
user figures out the correct implementation, which incre-
ments the destination sequence number when invalidating
the RTE. While mistakes as in Ver. 1 and 2 have been made
while implementing AODV, we actually started from the
correct implementation (Ver. 3) and seeded errors.

Figure 8 shows the results. For Ver. 1, ISSE is slower than
non-incremental exploration because ISSE adds transitions
information to OUT and writes it to a file. The overhead
is indicated by a negative number and is only 9.45%. How-
ever, for Ver. 2 and 3, ISSE is faster than non-incremental
exploration, on average 68.56%. This large speedup is due
to a small number of enabled transitions being modified
(m=0.01) and a large number of non-modified transitions
being found in the prior exploration (f=0.94). Also, in
Ver. 2 and 3, the proportion of tree transitions is small at
6.98% (and it approximates t, the frequency of tree transi-
tions found in the prior exploration), while the proportion
of non-tree and deepest transitions is 20.55% and 72.47%,
respectively. Moreover, we discovered that the costs of exe-
cuting transitions, computing hash codes, and checking the
safety property are considerably high taking together more
than 78% of the average total time in the non-incremental
exploration of Ver. 3. All these are favorable conditions for
ISSE to provide a speedup in state-space exploration time
(Section 3.4).

The number of transitions executed for Ver. 3 (not shown
in Figure 8 but available in the technical report [38]) in non-
incremental is 460,150 whereas that in ISSE is 62,074; i.e.,
ISSE reduces the number of transitions by 86% (or roughly
7x). The reason why ISSE reduces the exploration time only
68.51% (or roughly 3x) is that (1) some operations (e.g.,
inserting or searching a hash code in V isited and inserting a
state in ToExplore) take almost equal times in both the non-
incremental and ISSE techniques, and (2) the average time
of executing a tree transition (141.35µs) is more than the
average time of executing a non-tree or deepest transition
(109.09µs and 94.59µs, respectively).

Memory usage increased when using ISSE instead of non-
incremental exploration, as expected. However, the over-
head was less than 15% for each of the three AODV versions.

Experiment Time (sec) Memory
Subject Ver. SSE ISSE Savings Savings

dirdiffA 1 20.37 21.94 -7.71% -3.90%
(MAX_DEPTH=10) 2 30.23 16.46 45.55% -8.10%

dirdiffB 3 18.93 20.53 -8.45% -4.05%
(MAX_DEPTH=10) 4 27.73 15.09 45.58% -8.09%

dirdiffC 5 18.29 19.34 -5.74% -2.99%
(MAX_DEPTH=10) 6 30.39 18.53 39.03% -7.17%

dirdiffD 7 16.49 17.63 -6.91% -3.11%
(MAX_DEPTH=10) 8 27.71 17.56 36.63% -7.06%
Ver. 1 has events T0, T1, T3, T4, and T5. Ver. 2 adds T2.

Ver. 3 has events T0, T1, T4, and T5. Ver. 4 adds T2.

Ver. 5 has events T0, T1, T2, T3, and T4. Ver. 6 adds T5.

Ver. 7 has events T0, T1, T2, and T4. Ver. 8 adds T5.

Figure 9: Exploration Change Sequences in J-Sim

4.3.2 Directed Diffusion in J-Sim
Directed diffusion [19] is a protocol for information dis-

semination in wireless sensor networks. The implementation
details of the J-Sim simulation model of directed diffusion
are available elsewhere [38]. Importantly, there are six types
of events T0, . . . , T5 that can be enabled from a state. These
events are conceptually similar to the AODV events.

While for AODV we evaluated ISSE in a scenario where
the implementation of an existing event is modified from
one version to another (as done in Section 4.2.2), for directed
diffusion we evaluated ISSE in four different examples where
the implementation of a new event is added from one version
to another (as done in Section 4.2.3). Figure 9 lists the
four cases. The overheads incurred by ISSE in the “initial”
versions range from 5.74% to 8.45%. The time savings of
ISSE over non-incremental range from 36.63% to 45.58%.
The reasons for the savings are similar as for AODV: m is
relatively small, ranging from 0.13 to 0.29, and f is relatively
large, ranging from 0.75 to 0.76. ISSE increased memory
usage for all eight explorations but only up to 8.10%.

4.3.3 Stop-and-wait ARQ in J-Sim
Stop-and-wait ARQ is a simple protocol for acknowledg-

ing messages: the sender sends a single data packet, sets
a retransmission timer, and then waits for a positive ac-
knowledgment (ACK) from the receiver. A 1-bit sequence
number is included in the header of each data packet and
each ACK packet to enable matching packets and acknowl-
edgments. Upon receiving an ACK, the sender checks the
sequence number in the ACK to determine whether to send
a new data packet or a retransmission. The safety property
is that the receiver does not miss any data packet that the
sender believes to have been received by the receiver.

There are five types of events that can be enabled from
a state: T0 delivers a data packet, T1 delivers an ACK
packet, T2 causes retransmission timer timeout, T3 loses a
data packet, T4 loses an ACK packet. As for AODV, we seed
faults to create versions. In Ver. 1, the implementation of
T1 does not check the sequence number in the ACK before
sending a data packet, which can cause a violation of the
safety property (as described elsewhere [39]). In Ver. 2, the
implementation of T1 is correct.

As shown in Figure 8, ISSE is not able to provide a
speedup for ARQ. We discovered that this is due to a rela-
tively large value of m=0.25 and an extremely small value
of f=0.02; the latter is caused by a large number of new
states that did not appear in the prior exploration and thus
information about the transitions from those states is not in

IN (from Figure 4). In fact, more than 98% of the 318,216
transitions executed in non-incremental are also executed in
ISSE for Ver. 2. Furthermore, the costs of executing transi-
tions, computing hash codes, and checking the safety prop-
erty are not high taking together less than 51% of the av-
erage total time in the non-incremental. Finally, the overall
frequency of tree transitions is relatively large at 25%. All
these are unfavorable conditions, so ISSE increases explo-
ration time over non-incremental SSE. ISSE also increases
memory requirement by 38.15% and 30.31% for Ver. 1 and
2, respectively.

5. RELATED WORK
There is a large body of work closely related to the goal

of this paper, namely, analyzing the correctness of evolv-
ing software. We first review the work done in the context
of model checking. We then discuss the work done in the
context of software testing.

Starting from the initial work Sokolsky and Smolka [41],
several techniques for incremental model checking have been
proposed. The techniques address checking rich proper-
ties expressed in modal mu-calculus [41] and Monadic Sec-
ond Order Logic [24] for non-recursive abstract models and
checking safety properties of recursive software [6,18]. How-
ever, all of these techniques focus on control-intensive prop-
erties. The technique proposed in this paper focuses on data
intensive properties where large concrete states need to be
maintained to check properties, and changes are typically
made to methods and functions that are enabled in almost
every state.

Another related project on incremental computation for
model checking is on incremental heap canonicalization [26].
However, this project considers incremental computation be-
tween a pre-state and a post-state of one transition in state-
space exploration (SSE) and not incremental computation
between two consecutive SSEs. Finally, there is also some
recent work on incremental conformance testing [12] where
the goal is to generate a complete test suite for a new modi-
fied version based on the test suite for the previous version.
It relies on performing state-space exploration on the spec-
ification, and it makes very different assumptions on the
software evolution (e.g., that changes in the specification
reflect the changes made to the implementation) than the
assumptions considered here.

The term incremental model checking is also used in the
context of bounded model checking [4] that performs check-
ing within a user-specified bound (e.g., bound on the length
of the execution). However, the focus in such checking is on
incrementally increasing the bound and not incrementally
evolving code as in ISSE.

The main approach to address evolving software in the
context of testing is regression testing: it effectively checks
that a newer version of software still passes the tests that
an older version of the same software passed. Researchers
have developed numerous methods to improve the basic re-
gression testing.

Regression test selection [15, 16, 50] chooses to run only
some of the tests on the new version, thus speeding up the
testing process by not running all tests. A key challenge is
to have safe selection, i.e., guarantee that tests that are not
selected could not reveal errors. To enable safe selection,
several techniques for test selection record not only whether
a test passed or failed but also some additional information

from previous runs (e.g., code coverage). Our work on ISSE
is partly motivated by such test selection techniques, but
ISSE records the entire state-space graph.

Test prioritization [14,23,35] reorders (all or only selected)
tests in order to reveal errors faster, thus reducing the time
that a developer has to wait to find failing tests for pro-
gram changes. We could also consider prioritization in the
context of ISSE: if a previous exploration led to a property
violation for some execution sequence, then we could first
execute that same sequence (and its neighborhood) in the
subsequent exploration.

Impact analysis [2,22,33] finds (statically or dynamically)
which code changes could affect which tests, thus aiding test
selection or debugging by pointing out which changes could
(not) lead to failing tests. We could leverage impact analysis
to improve how ISSE determines what transitions are mod-
ified and need to be executed: ISSE currently uses method-
level granularity and re-executes a transition if it involves
a changed method. However, even when the code of some
method changed, many execution paths may not be affected,
and thus the re-execution is not necessary for all possible in-
put states.

Automatically decomposing system tests (often used in
regression testing) into unit tests [13, 29, 36] also helps in
speeding up regression testing: when a programmer changes
some program unit, it is not necessary to rerun an entire,
potentially time-consuming system test, but it suffices to re-
run a focused, rapid unit test. While this approach is useful
in regression testing, it does not appear to have a direct ap-
plication in ISSE since executions in ISSE are already fairly
short and mostly exercise one program unit.

6. CONCLUSIONS
We presented ISSE, a technique for incremental state-

space exploration that can speed up the traditional, non-
incremental state-space exploration for program evolutions
or exploration changes. While traditional exploration takes
one program version and systematically explores the states
reachable during program’s executions to find property vi-
olations, incremental exploration considers several program
versions: reusing the results of exploration from one version
can speed up exploration for the next version, since the state
spaces of consecutive program versions can have significant
overlap. We implemented ISSE in both JPF and the J-Sim
state-space explorer. The experimental results on 11 pro-
grams with dynamically allocated data (done in JPF) and 3
network protocols (done in J-Sim) show that ISSE in most
cases speeds up the exploration, up to 68.62% (or over 3x),
while in a few cases slows it down, up to 14.07%. In the
future, we plan to investigate other techniques (e.g., storing
dependency between transitions instead of entire state-space
graphs or caching computation across different explorations)
that could speed up successive explorations.

Acknowledgments. The authors would like to thank the
late Prof. Jennifer Hou for her encouragement and mentor-
ing over the past few years, including this project. We thank
Marcelo d’Amorim for discussions about this work, and Mi-
los Gligoric, Tihomir Gvero, Shan Lu, Aleksandar Milice-
vic, Sasa Misailovic, and Chen Xu for writing code versions
used in the evaluation. This work was partially supported by
NSF grants CCF-0448178, CNS-0615372, and CNS-0613665,
a Vodafone fellowship, and a gift from Microsoft Research.

7. REFERENCES
[1] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and

Y. Xie. Zing: A model checker for concurrent software. In
CAV 2004.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient
and precise dynamic impact analysis using execute-after
sequences. In ICSE 2005.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In ISSTA
2002.

[4] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In TACAS 2004.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, MA, 1999.

[6] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A.
Edwards. Incremental algorithms for inter-procedural
analysis of safety properties. In CAV 2005.

[7] C. Csallner and Y. Smaragdakis. JCrasher: An automatic
robustness tester for Java. Software - Practice and
Experience, 34:1025–1050, 2004.

[8] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta
execution for efficient state-space exploration of
object-oriented programs. In ISSTA 2007.

[9] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized
execution of deterministic blocks in Java PathFinder. In
ICFEM 2006.

[10] P. T. Darga and C. Boyapati. Efficient software model
checking of data structure properties. In OOPSLA 2006.

[11] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

[12] K. El-Fakih, N. Yevtushenko, and G. v. Bochmann.
FSM-based incremental conformance testing methods.
IEEE Trans. on Soft. Eng., 30(7):425–436, 2004.

[13] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil.
Carving differential unit test cases from system test cases.
In FSE 2006.

[14] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans.
on Soft. Eng., 28(2):159–182, 2002.

[15] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test
selection techniques. ACM Transactions on Software
Engineering and Methodology, 10(2):184–208, 2001.

[16] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and
A. Gujarathi. Regression test selection for Java software. In
OOPSLA 2001.

[17] K. Havelund and G. Rosu. An overview of the runtime
verification tool Java PathExplorer. Formal Methods in
System Design, 24(2):189–215, 2004.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A.
Sanvido. Extreme model checking. In International
Symposium on Verification: Theory and Practice, 2003.

[19] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In MobiCom 2000.

[20] R. Iosif. Exploiting heap symmetries in explicit-state model
checking of software. In ASE, page 254, Washington, DC,
USA, 2001. IEEE Computer Society.

[21] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
TACAS 2003.

[22] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE 2003.

[23] Z. Li, M. Harman, and R. M. Hierons. Search algorithms
for regression test case prioritization. IEEE Trans. on Soft.
Eng., 33(4):225–237, 2007.

[24] J. Makowsky and E. Rawe. Incremental model checking for
fixed point properties on decomposable structures. In
MFCS 1995.

[25] P. C. Mehlitz, W. Visser, and J. Penix. The JPF runtime
verification system. Online manual.
http://javapathfinder.sourceforge.net/JPF.pdf.

[26] M. Musuvathi and D. L. Dill. An incremental heap
canonicalization algorithm. In SPIN 2005.

[27] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A pragmatic approach to model checking real
code. In OSDI 2002.

[28] A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging field data for impact analysis and regression
testing. In ESEC/FSE 2003.

[29] A. Orso and B. Kennedy. Selective capture and replay of
program executions. In WODA 2005.

[30] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005.

[31] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. In WMCSA 1999.

[32] S. Qadeer. Daisy File System. Joint CAV/ISSTA Special
Event on Specification, Verification, and Testing of
Concurrent Software. 2004.

[33] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of Java
programs. In OOPSLA 2004.

[34] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible
and highly-modular software model checking framework. In
ESEC/FSE 2003.

[35] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE Trans.
on Soft. Eng., 27(10):929–948, 2001.

[36] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.
Automatic test factoring for Java. In ASE 2005.

[37] P. Sistla. Hybrid and incremental model-checking
techniques. ACM Comput. Surv., 28(4es):125, 1996.

[38] A. Sobeih and S. Lauterburg. Incremental state-space
exploration in J-Sim. Technical Report
UIUCDCS-R-2007-2898, Department of Computer Science,
UIUC, Urbana, IL, Sept. 2007.

[39] A. Sobeih, M. Viswanathan, and J. C. Hou. Check and
Simulate: A case for incorporating model checking in
network simulation. In MEMOCODE 2004.

[40] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou.
Finding bugs in network protocols using simulation code
and protocol-specific heuristics. In ICFEM 2005.

[41] O. Sokolsky and S. A. Smolka. Incremental model checking
in the modal mu-calculus. In CAV 1994.

[42] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generation. In
XP/Agile Universe Conference, 2002.

[43] Sun Microsystems. jstat: Java Virtual Machine Statistics
Monitoring Tool. http://java.sun.com/j2se/1.5.0/docs/
tooldocs/share/jstat.html.

[44] A. S. Tanenbaum. Computer Networks. Prentice-Hall
International Inc., 1996.

[45] H.-Y. Tyan. Design, Realization and Evaluation of a
Component-based Compositional Software Architecture for
Network Simulation. Ph.D., Department of Electrical
Engineering, The Ohio State University, 2002.

[46] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann.
Online testing with model programs. In ESEC/FSE 2005.

[47] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software
Engineering, 10(2):203–232, April 2003.

[48] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input
generation for Java containers using state matching. In
ISSTA 2006.

[49] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In TACAS 2005.

[50] J. Zheng, B. Robinson, L. Williams, and K. Smiley.
Applying regression test selection for COTS-based
applications. In ICSE 2006.

