
Electronic Notes in Theoretical Computer Science 55 No. 3 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume55.html 21 pages

Checking Java Implementation of a Naming
Architecture Using TestEra

Sarfraz Khurshid and Darko Marinov

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
{khurshid,marinov}@lcs.mit.edu

Abstract

TestEra is a novel framework for automated testing of Java programs. We have
built TestEra upon Alloy, a lightweight first-order relational language, and the Al-
loy Analyzer, a fully automatic simulation and checking tool. Checking a Java
program with TestEra involves modeling the correctness criteria for the program in
Alloy and specifying abstraction and concretization translations between instances
of Alloy models and Java data structures. TestEra automatically generates all non-
isomorphic test cases within a given input size and verifies the correctness.

We present our initial evaluation of TestEra performed by checking the Java im-
plementation of a naming architecture for resource discovery in dynamic networked
environments. Our study delineates the use of TestEra in testing methods for ma-
nipulating complex data structures.

1 Introduction

Software testing is a very labor intensive and expensive problem. Studies in-
dicate that software testing consumes more than fifty percent of the cost of
software development [3]. As software becomes more pervasive and is used
more often to perform critical tasks, it will be required to have higher quality.
The percentage of development costs devoted to testing will increase signifi-
cantly unless more efficient ways to perform effective testing are found.

Generation of test data that satisfy testing requirements is a particularly
time consuming component of testing. Automating test data generation can
significantly reduce the cost of software development and maintenance.

TestEra [17] is a novel framework for automated testing of Java programs.
TestEra is built upon Alloy [15], a lightweight first-order relational language
suitable for expressing structural properties of software, and the Alloy Ana-
lyzer (AA) [12, 14], a fully automatic simulation and checking tool. The key

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume55.html�
mailto:khurshid@lcs.mit.edu�
mailto:marinov@lcs.mit.edu�

Khurshid and Marinov

idea behind TestEra is to use Alloy to model the structure of inputs and out-
puts and the correctness criteria for a Java program, without modeling the
program’s computation.

TestEra can be used to test functional correctness of sequences of method
calls. Checking with TestEra provides automatic generation of test data and
evaluation of a given correctness criteria for each output produced. In TestEra,
an abstraction model of inputs to a Java program is built in Alloy. AA is used
to automatically generate all non-isomorphic [22] instances for that model
within a given input size. A concretization is used to translate these instances
to Java inputs, which form the test cases for the given program. An abstraction
is used to translate back into Alloy the program’s output, which is then verified
by AA against the correctness criteria expressed in Alloy.

In this paper, we explore the use of TestEra by applying it to the Java
implementation of the Intentional Naming System (INS) [1, 21], a recently
proposed naming architecture for resource discovery and service location in
dynamic networked environments. We perform several analyses on the INS
implementation and illustrate the use of TestEra in testing properties of com-
plex data structures and methods for manipulating them.

Our previous analysis [16] of INS using the Alloy Analyzer involved mod-
eling both the correctness criteria and the computation in Alloy. Modeling
computation was the most subtle aspect, because it involved manual transla-
tion of non-trivial imperative code into a declarative language. It required a
lot of careful thinking and took about a week to accomplish. Also, any changes
to the implementation necessitated manual remodeling of the computation.

TestEra presents a solution to the problems encountered in modeling com-
putation—TestEra executes the actual implementation code, exploiting Al-
loy’s suitability for expressing structural properties to automatically generate
test cases. TestEra provides a novel lightweight approach to formal meth-
ods. The abstraction and concretization translations for evaluating INS using
TestEra were constructed in a day by a researcher (the second author), who
had a limited experience with Alloy and no prior knowledge of INS code.

Our study has several significant aspects. First, it shows how to use a
simple declarative language to perform automated testing of complex Java
programs. Second, our study illustrates the role a lightweight formal method
can play in interactively correcting a flawed implementation without the need
for modeling computation. Third, our study illustrates how easy it is for sys-
tem builders to overlook subtle bugs that can be detected using fairly small
inputs. It also shows how the lack of a formal specification can cause devel-
opers to develop incorrect intuition about the behavior of their system.

The rest of this paper is organized as follows. Section 2 presents an
overview of the TestEra framework and the key notions of Alloy and AA.
Section 3 describes the fundamentals of the naming architecture of INS. In
Section 4 we apply the TestEra framework to test the Java implementation of
INS. Related work is presented in Section 5, and we conclude in Section 6.

2

Khurshid and Marinov

Alloy
instances

Alloy
output

Java
outputinput

Alloy Java
input

Alloy
Analyzer

Alloy

model
I/Otester

Java
input
Alloy

model

model
evaluation

concretization

counter
example

TestEra
Model

abstractionrun code

fail

pass

Fig. 1. TestEra Framework

2 TestEra

TestEra is a novel framework for automated testing of Java programs. We
have built TestEra upon Alloy and AA with the aim of checking Java imple-
mentations, without having to model them in Alloy.

Alloy can be used in various approaches to analyze Java programs. One
approach is to model both the inputs and the computation in Alloy and to
use AA to verify the correctness criteria, also expressed in Alloy. Our earlier
analysis [16] of INS proceeded in this fashion. We discovered that manually
modeling computation is complicated due to Alloy’s declarative nature. Fur-
ther, this translation is hard to automate due to scalability issues of AA’s
automatic analysis.

TestEra takes a different approach to analyze Java programs—model cor-
rectness in Alloy, but test the actual Java code by verifying appropriately
mapped inputs and outputs. TestEra exploits Alloy’s suitability for express-
ing structural properties and uses AA to automatically generate test cases for
the Java code.

2.1 The TestEra Framework

There are five key parts in testing a Java program with TestEra:

• Identifying a sequence σ of method calls to analyze.

• Creating an Alloy model AI of inputs to σ.

• Creating an Alloy model AI/O that expresses the correctness criteria for σ,
relating an input to σ with the output of σ.

• Defining a concretization translation a2j from an Alloy instance of AI to a
Java input for σ.

• Defining an abstraction translation j2a from a Java output to a (partial)
Alloy instance of AI/O.

Figure 1 illustrates the main components of TestEra. A TestEra model con-
sists of a combination of Alloy and Java code. Three source files are extracted

3

Khurshid and Marinov

from this model. Two of these files consist of Alloy models; one modeling the
inputs and the other modeling the correctness criteria. The third file con-
sists of Java code that translates input instances from Alloy to Java, runs the
sequence of Java methods to test, and translates Java output back to Alloy.

TestEra’s analysis has two phases:

• In the first phase, the Alloy input model is used by AA to generate all
non-isomorphic Alloy instances.

• In the second phase, each of these instances is tested in turn. It is first
translated, using concretization, into a Java input, which forms the test
case for the sequence of method calls. Next, the output produced by the
execution of this test case is translated, using abstraction, back into Alloy.
This output Alloy instance and the original Alloy input instance form the
Alloy input/output model. AA then quickly evaluates if this model satisfies
the correctness criteria. If the evaluation fails, a counterexample is reported.
If the evaluation passes, the next Alloy input instance is used for further
testing.

2.2 The Alloy Language

An Alloy model is a sequence of paragraphs. There are two kinds of para-
graphs: signatures, used to construct new types, and a variety of formula
paragraphs, used to record constraints. Before we describe these paragraphs
we give a brief description of the syntax and semantics of formulas.

2.2.1 Relational Expressions

Alloy is a strongly typed language that assumes a universe of atoms partitioned
into subsets, each of which is associated with a basic type. The standard
mathematical notion of a relation is the only datatype. The value of any
expression is always a relation, i.e., a collection of tuples of atoms. Each
element of such a tuple is atomic and belongs to some basic type (i.e., the
element cannot itself be a relation). A relation may have any arity greater
than one. Relations are typed.

Sets are expressed as unary relations. Scalars and tuples are expressed as
singleton relations.

Relations are combined with a variety of operators to form expressions.
The standard set operators—union (+), intersection (&), and difference (-)—
combine two relations of the same type, viewed as sets of tuples.

There are two product operators: dot and arrow. The dot operator is com-
position: p.q is the relation containing the tuples 〈p0, . . . , pm−1, q1, . . . , qn〉,
where p contains 〈p0, . . . , pm〉, q contains 〈qo, . . . , qn〉, and pm = q0. When p

is a unary relation (i.e., a set) and q is a binary relation, the composition p.q

is standard composition.

The arrow operator is cross product: p->q is the relation containing the
tuples 〈p0, . . . , pm, q0, . . . , qn〉 when p contains 〈p0, . . . , pm〉 and q contains

4

Khurshid and Marinov

〈q0, . . . , qn〉.
There are three unary operators: ~ (transpose), + (transitive closure), and

* (reflexive transitive closure). They can be applied only to binary relations,
and they have their standard interpretation.

2.2.2 Formulas and Declarations

Expression quantifiers turn an expression into a formula. The formula no e is
true when e denotes a relation containing no tuples. Similarly, some e, sole
e, and one e are true when e has some, at most one, and exactly one tuple,
respectively.

Formulas can also be made with relational comparison operators: subset
(written : or in), equality (=), and their negations (!:, !in, !=). So e1:e2

is true when every tuple in (the relation denoted by the expression) e1 is also
a tuple of e2.

The standard logical operators are included: && (conjunction), || (dis-
junction), => (implication), and ! (negation). A sequence of formulas within
curly braces is implicitly conjoined.

A declaration is a formula v op e consisting of a variable v, a comparison
operator op, and an arbitrary expression e. A side-condition on the variable v
might be added by embellishing the expression e with multiplicity markings.

There are two kinds of markings. A set marking is one of the keywords
set or scalar prefixing the expression; scalar adds the side condition that
the variable denotes a relation containing a single tuple, and set says it may
contain any number of tuples. The default marking is set, except when the
comparison operator is the colon (:) or negated colon (!:), and the expression
on the right is unary, in which case it is scalar.

A relation marking is one of the symbols !, ?, or + read exactly one, at
most one, and one or more respectively. These markings are applied to the
left and right of an arrow operator. Suppose a relation r is declared as

r : e1 m -> n e2

where m and n are relation markings. The markings are interpreted as imposing
a side condition on r saying that for each tuple t1 in e1, there are n tuples
t2 in e2 such that t1t2 appears in r, and for each tuple t2 in e2, there are m

tuples t1 such that t1t2 appears in r.

The declaration

partition v1,v2,... : e

is equivalent to a declaration for each of the variables v1,v2,..., with an addi-
tional constraint that the relations denoted by the variables form a partition,
i.e., share no tuple and their union is e.

Quantified formulas consist of a quantifier, a comma separated list of decla-
rations, and a formula. In addition to the universal and existential quantifiers
all and some, there is sole (at most one) and one (exactly one).

5

Khurshid and Marinov

2.2.3 Signatures, Functions, and Facts

The signature declaration introduces a basic type and a collection of fields
in it along with the types of the fields and constraints on their values. For
example,

sig Value {}

introduces Value as an uninterpreted type with no fields. A signature may
inherit fields and constraints from another signature. The construct

static sig Wildcard extends Value {}

declares Wildcard to be a subset of Value and inherit from it. The keyword
static constrains Wildcard to contain exactly one element.

A function (fun) is a formula that can be “invoked” (imported) elsewhere
and thus must be named. Given values of the arguments, this formula returns
true/false or a relational value.

A fact is a formula that takes no arguments and need not be invoked
explicitly; it is always true. Facts need not be named.

2.3 Alloy Analyzer

The Alloy Analyzer 1 (AA) [12, 14] is an automatic tool for analyzing Alloy
models. Given a formula and a scope—a bound on the number of atoms in the
universe—AA determines whether there exists a model of the formula (i.e., an
assignment of values to the sets and relations that makes the formula true)
that uses no more atoms than the scope permits, and if so, returns it.

Since first-order logic is undecidable, AA’s analysis cannot be a decision
procedure. Instead, AA limits its analysis to a finite scope that bounds the
size of the carrier sets of the basic types. A model is within a scope of k if it
assigns to each type no more than k elements. AA’s analysis [12] is based on a
translation to a boolean satisfaction problem and gains its power by exploiting
state-of-the-art SAT solvers.

AA provides two kinds of analysis: simulation in which the consistency
of a fact or function is demonstrated by generating a snapshot showing its
invocation, and checking, in which a consequence of the specification is tested
by attempting to generate a counterexample.

AA can enumerate all possible instances of an Alloy model. AA adapts
the symmetry-breaking predicates of Crawford et al. [6] to reduce the total
number of instances generated—the original boolean formula is conjugated
with additional clauses in order to produce only a few instances from each
isomorphism class [22]. TestEra exploits this functionality to automatically
generate test cases from an Alloy model of inputs to a Java program.

1 In this paper, we use the new version of Alloy [15], for which the analyzer has not been
released yet. We performed the actual analyses on models we wrote in Alloy-Alpha [13].
The models are available at http://www.mit.edu/~sarfraz/testera/.

6

http://www.mit.edu/~sarfraz/testera/�

Khurshid and Marinov

service

camera

building

NE−43

servicebuilding

NE−43
camera printer

R0

R1

query database

�����������	�	
�����������������������������	�� "!�#%$'&�(*)�+

Fig. 2. Example of a query, database, and Lookup-Name operation

3 Intentional Naming System

One proposal for service discovery in dynamic networked environments is
the Intentional Naming System (INS) [1, 21], which allows services to de-
scribe and refer to each other using intentional names. These names describe
a set of properties that the services provide rather than the network loca-
tion, e.g., “the nearest color printer that handles transparencies” rather than
“printer643.lcs.mit.edu” or “18.31.0.99”. This allows applications to specify
in their queries what service they want, not where in the network topology it
resides. Similarly, services advertise themselves using intentional names.

An intentional name is a tree of alternating levels of attributes and values.
The query in Figure 2 is an example intentional name; hollow circles identify
attributes and filled circles identify values. Attributes represent categories in
which an object can be classified. Each attribute has a corresponding value
that is the object’s classification within that category. A wildcard may be used
in place of a value to show that any value is acceptable. The query describes
an object in building NE-43 that provides a camera service. The database
stores two objects: R0 that provides a camera service in building NE-43 and
R1 that provides a printer service in the same building.

Queries made by clients are resolved by calling Lookup-Name method. In-
voking Lookup-Name on the example query and database returns R0, because
the value of attribute “service” sought by the client (i.e., camera) does not
match that provided by R1 (i.e., printer).

When a service advertises its availability to a name resolver, the service
is included in the database stored by that name resolver using the Add-Name

method. To periodically update adjacent name resolvers about new or expired
services, a name resolver extracts advertisements from its database using the
Get-Name method, and conveys them to its neighbors.

A Java implementation of the naming architecture of INS appears in [21].
About 1500 lines of Java code implement the core functionality of INS. Ap-
pendix A shows relevant parts of the Java data structures and Appendix B
gives the Java implementation of Lookup-Name provided in [21].

7

Khurshid and Marinov

sig Attribute {}
sig Value {}
sig Record {}

static sig Wildcard extends Value {}

sig AVTree {
root: Value,
vnodes: set Value,
anodes: set Attribute,
av: anodes !->+ (vnodes - root),
va: (vnodes - Wildcard) !-> anodes}

fact {all t: AVTree | with t |
vnodes = root.*(va.av)
&& some root.va}

sig Query extends AVTree {}
fact {all q: Query |

all a: q.anodes | one a.(q.av)}

sig DB extends AVTree {
records: set Record,
recs: (vnodes - root) +-> records}

fact {all d: DB | with d |
// wildcard not in database
Wildcard !in vnodes
// leaf values contain a record
all v: vnodes - dom va | some v.recs
// records at lowest possible level
all v: vnodes |

no v.recs & v.+(~av.~va).recs
// in advertisements,
// each attribute has one child
all a: anodes |

all disj v1, v2: a.av |
some rr = *(va.av).recs |

no v1.rr & v2.rr
partition Query, DB: AVTree}

Fig. 3. Alloy model of INS query and database (Phase 1)

4 TestEra’s Analysis of INS

We use TestEra to test various properties of INS methods. These properties
can be classified into the following three categories:

• essential for correctness, e.g., addition to database does not reduce results
so that the availability of new services alone does not reduce the options a
client has to acquire his desired functionality;

• sufficient for correctness, e.g., name resolution returns exactly the conform-
ing services;

• INS inventors’ claims, e.g., correspondence of wildcards to missing attributes
in name resolution.

To use TestEra to test INS, we need to identify the methods we want
to test, construct Alloy models of inputs and correctness criteria, and define
abstraction and concretization translations between instances of Alloy models
and INS Java data structures.

We focus our analysis of INS on Lookup-Name, the most important method
in the naming architecture. It takes as input a query and a database, so the
first step is to model these input data structures in Alloy.

4.1 Modeling Intentional Names in Alloy

Figure 3 shows our Alloy model of intentional names. Attribute, Value and
Record introduce these basic types. Wildcard is a special Value.

An intentional name is modeled as a rooted tree with alternating levels
of attributes and values using two relations, av and va, that represent the

8

Khurshid and Marinov

class Attribute {
String attribute; ... }

class Value {
String value; ... }

class AttributeNode {
Attribute a;
Vector children; // Vector of ValueNode
ValueNode parent;
void addValueNode(ValueNode vn); ... } // add a child

class ValueNode {
Value v;
Vector children; // Vector of AttributeNode
AttributeNode parent;
NameRecordSet routeSet; // ‘recs’ in the model
void addAttributeNode(AttributeNode an); ... } // add a child

class NameRecord { // ‘sig Record’ in the model
static int next_id = 0;
final int id;
Vector parents; ... } // Vector of ValueNode

class NameTree extends ValueNode { // ‘sig DB’ in the model
// v from ValueNode is always null
Vector nameRecords; ... } // all NameRecords in the tree

Fig. 4. Java data structures implementing a database

edges from attributes to values and values to attributes, respectively. For
each AVTree t, t.root is a special Value designated as its root, t.vnodes is
a subset of Value that is the set of all values in t, t.anodes is a subset of
Attribute that is the set of all attributes in t, t.av is a relation mapping
t.anodes to elements in t.vnodes other than t.root, and t.va is a rela-
tion mapping t.vnodes other than Wildcard to t.anodes. The multiplicity
markings on t.av require that for each non-root element v in t.vnodes, there
is exactly one element in t.anodes that is mapped to v by the relation t.av,
and each element in t.anodes is mapped to at least one non-root element
in t.vnodes. Similarly, the ! marking on t.va enforces that for each a in
t.anodes, there is exactly one v in t.vnodes - Wildcard that maps to a. The
last constraint states that all values in t.vnodes are reachable from t.root.

A Query is an AVTree that has the additional constraint that each attribute
is paired up with exactly one value.

A DB is an AVTree that introduces two new fields. For each DB db, db.records
is the set of all records in db, and db.recs is a relation that maps non-root
values in db.vnodes to records stored there. A group of constraints expresses
a valid database structure.

4.2 Abstraction and Concretization Translations

We next present abstraction and concretization translations for INS. A con-
cretization, abbreviated a2j, translates Alloy instances to Java data struc-
tures. An abstraction, abbreviated j2a, translates Java data structures to Al-

9

Khurshid and Marinov

class INSTester extends Tester {
InputsAndMapAj a2j(Instance i) { // concretization

MapAJ map = new MapAJ();
// create Java objects for the Alloy atoms from all basic types
foreach (atom in i.getSigAtoms("Attribute"))

map.put(atom, new AttributeNode(new Attribute(atom.name())));
NameTree database = new NameTree();
Atom dbRoot = i.getAtom("IDB.root");
foreach (atom in i.getSigAtoms("Value")) {

if (atom.equals(dbRoot)) map.put(atom, database);
... // similar exception for the root of the queries
else map.put(atom, new ValueNode(new Value(atom.name())));

}
foreach (atom in i.getSigAtoms("Record"))

map.put(atom, new NameRecord());
// create Java database corresponding to the Alloy database
foreach (<vAtom, aAtom> in i.getRelationMappings("IDB.va"))

map.get(vAtom).addAttributeNode(map.get(aAtom));
foreach (<aAtom, vAtom> in i.getRelationMappings("IDB.av"))

map.get(aAtom).addValueNode(map.get(vAtom));
foreach (<vAtom, rAtom> in i.getRelationMappings("IDB.recs")) {

NameRecord nr = map.get(rAtom);
map.get(vAtom).addNameRecordHere(nr);
database.addNameRecord(nr);

}
... // create Java queries corresponding to the Alloy queries
return new InputsAndMapAJ(new Object[]{database, query}, map);

}
... // j2a and testing methods

}

Fig. 5. Translation of a database from Alloy to Java

loy instances. For INS, the translations are between instances of the presented
Alloy model of intentional names and the Java data structures implementing
intentional names.

To illustrate translations, we describe the concretization of an INS database.
Figure 4 shows the relevant part of Java classes implementing a database. The
class NameTree represents a database. Each object of this class is the root of
a name tree for the database, and it also contains a set of all records in the
database. The nodes of the name tree are objects of classes ValueNode and
AttributeNode, each of which contains a Value or an Atribute. Addition-
ally, each value node that corresponds to a leaf of some advertisements stores
a set of records for those advertisements.

Figure 5 shows the relevant part for the concretization of the input database,
IDB. In the current version of TestEra, all translations between Alloy instances
and Java data structures are written in Java. In the pseudo-code, we use
foreach instead of Java for loops that iterate over collections, and we omit
downcasting. We also use a pattern matching abbreviation <a,b> to denote
a Java object p representing a pair whose elements can be accessed using
p.first() and p.second().

10

Khurshid and Marinov

The example concretization operates in two stages. In the first stage, a2j
creates for each atom in the Alloy instance, a corresponding object of the Java
classes and stores this correspondence (in map). The only non-trivial part
in the example is that the value corresponding to the root of the database
is mapped to a NameTree, whereas all the other values are mapped to a
ValueNode. In the second stage, a2j establishes the relationships between
the Java objects created in the first stage and builds the data structures. In
our running example, a2j only links the value and attribute nodes using the
existing methods from their corresponding classes.

Translations use the class MapAJ to store bi-directional mapping between
Alloy atoms and Java objects. This class behaves like java.util.HashMap;
e.g., map.get(atom) returns the Java object corresponding to atom. (Abstrac-
tions use method map.getAtom(object,sig) that returns the Alloy atom cor-
responding to (Java) object if there is such an atom in the mapping; if there
is no atom, getAtom creates a new atom for the signature sig, adds it to the
mapping, and returns it.)

4.3 Testing Properties

INS inventors did not formally specify the correctness criteria for database
operations. However, they stated partial correctness properties, including
claims about the functionality of the system. In this section we show a range
of analyses that TestEra can perform.

Recall that a TestEra model provides three source files: an Alloy model
of inputs, an Alloy model of correctness, and Java code for abstraction and
concretization translations and the sequence of method calls to test. The
analyses below use identical abstraction and concretization translations and
the base Alloy models for inputs, but the correctness models in Alloy depend
on the sequence of method calls to test. We also demonstrate how TestEra
can be used to generate “interesting” inputs.

4.3.1 Wildcard Claim

The published description of Lookup-Name claims [1]:

This algorithm uses the assumption that omitted attributes correspond to
wildcards; this is true for both the queries and advertisements.

More formally, for all databases db, and all queries q, it should be that
Lookup-Name(db,q) = Lookup-Name(db,q’), where q’ is the same as q ex-
cept that any wildcarded attributes in q do not appear in q’. The first prop-
erty we test using TestEra is to evaluate this claim.

Figure 6, together with Figure 3, provides our Alloy model for generating
inputs to test the claim about wildcards. We model three inputs. IDB models
the input database, IQuery models a query, and IQueryNoWC is the same as
IQuery with its wildcarded attributes removed.

11

Khurshid and Marinov

static sig IDB extends DB {}

static sig IQuery extends Query {}
fact {Wildcard in IQuery.vnodes}

static sig IQueryNoWC extends Query {}
fact {all q: IQueryNoWC | with q |

vnodes = IQuery.vnodes - Wildcard // wildcard value removed
anodes = IQuery.anodes - // wildcarded attribute removed

Wildcard.~(IQuery.av)
av = IQuery.av - Attribute -> Wildcard // edge to wildcard removed
va = IQuery.va - // edge to wildcarded attribute

Value -> Wildcard.~(IQuery.av)} // removed

Fig. 6. Generating inputs for wildcard claim (Phase 1)

In phase 1 of TestEra’s analysis, AA is used to produce all such non-
isomorphic inputs. Each input produces a test case that invokes two calls
to Lookup-Name, one on IDB and IQuery, and the other one on IDB and
IQueryNoWC, with all inputs mapped in Java.

The following model expresses the correctness condition for the claim:

sig LookupQuery extends Record {}
sig LookupQueryNoWC extends Record {}
fact WildcardClaim {LookupQuery = LookupQueryNoWC}

where LookupQuery is assigned the value Lookup-Name(IDBJ,IQueryJ)A and
LookupQueryNoWC the value Lookup-Name(IDBJ,IQueryNoWCJ)A; the super-
scripts J and A indicate applications of the concretization and abstraction
translations, respectively. The correctness criteria WildcardClaim is simply
to test the values for equality.

We use a scope of 3 Attributes, 3 Values, and 2 Records in phase 1,
and AA automatically generates 12 tests in 9 seconds. The testing in phase
2 completes in 6 seconds and the INS implementation passes 10 tests. One of
the failed tests is illustrated in Figure 7 and provides a counterexample to the
INS’s inventors claim.

It is conceivable that while making the claim about wildcards, INS’s in-
ventors considered only the case when query has attributes that exist in the
database and values that have matching values in the database. It is easy to
include this precondition on inputs with the following fact:

fact IQueryMatchesIDB {
// attributes in query are in database
IQuery.anodes in IDB.anodes
// non-wildcard values in query are in database
IQuery.vnodes - Wildcard in IDB.vnodes
// (a,v) edges to non-wildcard values in query are in database
all a: IQuery.anodes - Wildcard.~(IQuery.anodes) |

a.(IQuery.av) in a.(IDB.av)
// (v,a) edges in query are in database
all v: IQuery.vnodes | v.(IQuery.va) in v.(IDB.va)}

12

Khurshid and Marinov

������������	
����������������

������������	
���������������� �!�

R0

A0

*

A1

V0

IQuery IDatabase IQueryNoWC

A0

V0

A1

V0

������������	
����������������
������������	
���������������� �!�

A1

V1

V0

A0

A1

R0

IDatabase

V1

*

A0

A1

V1

IQuery IQueryNoWC

Fig. 7. TestEra counterexamples to WildcardClaim, without (left figure) and with
(right figure) precondition that IQuery uses attributes and values that are in IDB

We add this fact to the input model shown in Figure 6 and use TestEra
to test the wildcard claim in this special case. TestEra takes 10 seconds to
produce 16 test cases using 2 Attributes, 4 Values, and 2 Records in phase
1. The phase 2 analysis of this model takes 6 seconds, and TestEra refutes the
wildcard claim with the special precondition, reporting that only 6 tests pass.
Figure 7 shows one of the counterexamples. In general, removing wildcarded
attributes from a query can both increase or decrease the number of services
returned by Lookup-Name, whereas the inventors of INS assumed it would
have no effect.

4.3.2 Monotonicity of Addition

Next we show a slightly different use of TestEra. We evaluate a partial cor-
rectness property of INS that involves the operations Lookup-Name, Add-Name,
and Get-Name. For a query q and an advertisement a, INS does not specify
how to evaluate whether a service r advertising a provides the properties de-
sired by an application querying for q. A fair assumption is that a conforms
to q if Lookup-Name(db,q) = r, where db is the database containing only the
advertisement a made by r. We use this assumption as a basis to test whether
Lookup-Name returns exactly those services whose advertisements conform to
the query.

For input generation, we model only one database and one query:

static sig IDB extends DB {}
static sig IQuery extends Query {}

Together with Figure 3, this forms the phase 1 model for TestEra’s analysis.
For each record r in IDB, we extract the relevant advertised name a and create
a new database db that consists of only the advertisement a and the record
r. Then we check whether Lookup-Name(db,IQueryJ)A = r. We collect all
records r for which the previous equality holds to form a set Conf of services
in IDB whose advertisements conform to IQuery. Conf is then compared for

13

Khurshid and Marinov

R1 R0

A0

V1

A1

V0

IDatabase

A0

V1

A1

V0

IQuery

������������	
������������
� ������������� � �"! �

Fig. 8. TestEra counterexample to PartialCorrectness

equality with the result of Lookup-Name(IDBJ,IQueryJ)A, using the Alloy
fact PartialCorrectness:

sig LookupQuery extends Record {}
sig Conf extends Record {}
fact PartialCorrectness {LookupQuery = Conf}

Using a scope of 2 Attributes, 4 Values, and 2 Records in phase 1 of
TestEra, AA produces 160 test cases in 14 seconds. It takes 9 seconds to
evaluate these test cases in phase 2, and TestEra reports that 10 of them
produce counterexamples. Figure 8 shows one of the counterexamples.

This counterexample points out two defects in the design of Lookup-Name.
First, there is no consistent notion of conformance. Second, simply adding new
services to the system can reduce results produced by Lookup-Name, i.e., addi-
tion is not monotonic in INS—a property that is essential for the correctness
of any such naming scheme.

4.3.3 Conformance

Both properties of Lookup-Name tested above involved, in phase 2 of TestEra,
a simple Alloy fact that tested two sets for equality—something that can
be simply verified in Java. We next test a property for which the phase 2
analysis of TestEra is more involved and illustrates the benefits of using Alloy
for expressing correctness criteria.

Having established that INS does not originally have a consistent notion of
conformance between a query and an advertisement, we define this notion for
INS. We regard an advertisement to conform to a query if the query is a sub-
tree of the advertisement, i.e., the advertisement mentions all the attributes
and values that make up the query in the correct order. With this definition of
conformance, we test if INS inventors’ implementation of Lookup-Name returns
exactly the conforming records.

The phase 1 model for testing conformance is the same as the phase 1
model for testing monotonicity of addition. Figure 9 shows the phase 2 model
for conformance. Notice that this model has no explicit facts other than the
correctness condition, since the inputs already satisfy their constraints.

LookupQuery is assigned the value Lookup-Name(IDBJ,IQueryJ)A. Using

14

Khurshid and Marinov

sig Attribute {}
sig Value {}
sig Record {}

static sig Wildcard extends Value {}

sig AVTree {
root: Value,
vnodes: set Value,
anodes: set Attribute,
av: anodes !->+ (vnodes - Root),
va: (vnodes - Wildcard) !-> anodes}

sig Query extends AVTree {}

sig DB extends AVTree {
records: set Record,
recs: (vnodes - root) +-> records}

static sig IDB extends DB {}
static sig IQuery extends Query {}

sig LookupQuery extends Record {}

fun Conforms(db: DB, q: Query,
r: Record) {

with db |
some r’ = r.~recs.*(~av.~va) {
// all (v,a) edges in query
// also in advertisement
all a: q.anodes |

a.~(q.va) = a.~va && a in r’.~av
// the same for (a,v) edges

all v: q.vnodes - Wildcard |
v.~(q.av) = v.~av && v in r’}}

fact CorrectLookup {
// soundness and completeness
all db: DB | all q: Query |

all r: db.records |
Conforms(db,q,r) <=>
r in LookupQuery}

Fig. 9. Lookup-Name input/output model (Phase 2)

a scope of 3 Attributes, 3 Values, and 2 Records in phase 1 of TestEra, AA
produces 16 test cases in 8 seconds. Phase 2 analysis takes 6 seconds and
reports that only 10 pass. This is not surprising, since we are testing the
original implementation of Lookup-Name for correctness against our definition
of conformance. Nonetheless, doing so illustrates the diverse kinds of analyses
allowed by TestEra.

We use the flaws in Lookup-Name identified thus far to correct its im-
plementation with respect to the sub-tree definition of conformance given in
Conforms. The test cases generated for evaluating CorrectLookup above are
re-used to test this modified implementation. Phase 2 analysis of TestEra
concludes in 6 seconds and results in no counterexamples.

4.4 Summary of results

Table 1 summarizes the tests performed on INS using TestEra: published
wildcard claim, published wildcard claim with query in database, monotonicity
of addition, correctness of the original Lookup-Name, and correctness of the
modified Lookup-Name. All properties that are refuted do not require large
inputs. The exhaustive (up to isomorphism) testing performed by TestEra
uncovers subtle bugs that can be found using small inputs but went undetected
for over a year of use of INS.

All the times shown in Table 1 include the time to boot up the Alloy
Analyzer (about 4 sec). It is simple to perform TestEra’s analysis by just
starting up AA once to amortize this constant overhead. In this study we
have not done so, because it does not add any insights into TestEra’s analysis.

15

Khurshid and Marinov

Input size Phase 1 Phase 2

Property tested Val Att Rec # Tests Time # Tests passed Time

Wildcard 3 3 2 12 9 10 (83%) 6

Wildcard-in 4 2 2 16 10 6 (37%) 6

Monotonocity 4 2 2 160 14 150 (93%) 9

Original 3 3 2 16 8 10 (62%) 6

Corrected 3 3 2 16 8 16 (100%) 6

Table 1
Summary of TestEra’s analyses. (All times are in seconds.)

Recall that AA compiles Alloy models into boolean formulas and uses
off-the-shelf SAT solvers to generate instances (counterexamples). Hence, it
comes as no surprise that phase 2 analysis of TestEra takes lesser time than
phase 1—in phase 2, a correctness condition is verified for a given valuation
of relations in the Alloy model, whereas in phase 1, a valuation is generated;
cf. verifying that a given solution makes a boolean formula true as opposed
to finding a solution.

5 Related Work

There is a large body of research on specification-based testing. An early
paper by Goodenough and Gerhart [8] demonstrates its importance.

Horcher [11] presents a technique for software testing based on Z [23] spec-
ifications. This technique provides automated test execution and result eval-
uation. However, concrete input test data need to be selected manually from
an automatically generated set of test classes.

The UMLTest tool [19] automatically generates tests from UML [20] state-
charts and enabled transitions, but requires all variables to be boolean, among
other limiting assumptions it makes about the UML input file. Applied to a C
implementation of a cruise control, it detects several faults created by hand.

Chang et al. [4] present a technique for deriving test conditions—a set of
boolean conditions on values of parameters—from Assertion Definition Lan-
guage (ADL) specifications. These test conditions are used to guide test se-
lection and to measure comprehensiveness of existing test suites.

Our previous analysis [16] of INS with Alloy involved modeling both the
data structures and computation in Alloy. Modeling computation was the
most subtle aspect of that model since it is hard to model recursion, control
flow, and sequencing of operations in Alloy.

There has been a lot of recent interest in applying model checking to
software. The Bandera project [5] provides automated support for reducing a

16

Khurshid and Marinov

program’s state space through program slicing and data abstraction. It allows
users to analyze properties of Java programs by modeling them into the input
language of one of several existing model checkers like SPIN [10] and SMV [18].

JavaPathFinder [9] and JCAT [7] transliterate Java programs to Promela
programs. They handle a significant portion of Java including dynamic object
allocation, object references, exception processing, and inheritance.

In the SLAM [2] project, sequential C programs are abstracted into boolean
programs, and symbolic execution is used to map abstract counterexamples to
concrete executions. The model checking algorithm of SLAM uses context-free
grammar reachability to handle recursive procedure calls.

Most of the work on applying model checking to software has focused
on analyzing event sequences, and when data structures were analyzed, the
purpose was to simplify the resulting models, not to provide the user feedback
about the data structures themselves. In contrast, TestEra focuses on testing
complex properties of data structures.

6 Conclusions

TestEra provides a novel framework for automated testing of Java programs.
Checking a Java program using TestEra requires modeling the input/output
data structures and correctness criteria in Alloy, as well as writing abstrac-
tion and concretization translations, but does not require modeling the actual
computation.

Writing translations for TestEra is much simpler than manually modeling
computation in Alloy, because Alloy has no built-in support for advanced
programming constructs. For INS, the translations were developed in a day by
the second author, who had no prior knowledge of INS code and only a limited
experience with Alloy. In comparison, INS computation had been modeled in
Alloy in about a week by the first author, who at the time had a similar
experience with INS and Alloy. Note also that the concretization translation
is required even when the computation is manually modeled, in order to verify
the counterexamples produced by AA with respect to the implementation.

Automatically modeling computation in Alloy is feasible, but the approach
does not seem to scale at present. We instead plan to investigate approaches
that automate writing of abstraction and concretization translations. As the
first step, we are considering to introduce a special purpose language for writ-
ing the translations.

Non-isomorphic inputs to a Java program may be generated by writing
an application-specific Java program. However, defining a model of inputs in
Alloy and the concretization translation is much simpler.

TestEra’s analysis of INS produced counterexamples to each property re-
futed in just a few seconds. This compares favorably with our previous anal-
ysis of INS where both the inputs and computation were modeled in Alloy.
Additionally, TestEra produces counterexamples both in the form of Alloy

17

Khurshid and Marinov

instances, which can be graphically viewed using AA’s graphical component,
and Java inputs. This makes it easier to debug the code.

In this paper, we presented the initial evaluation of TestEra by using it to
check the Java implementation of the Intentional Naming System, a recently
proposed naming architecture for resource discovery and service location in
dynamic networked environments. We performed a wide range of analyses that
illustrate the use of TestEra in testing properties of complex data structures
and methods for manipulating them. Based on the encouraging results from
this evaluation, we believe that TestEra can be efficiently used in testing other
Java data structures. We plan to apply TestEra to more Java programs to
determine how practical and scalable our approach is.

Acknowledgements

We would like to thank Daniel Jackson, Viktor Kunčak, Martin Rinard, Radu
Rugină, Alexandru Sălcianu, Ilya Shlyakhter, and Manu Sridharan for help-
ful discussions and feedback. This work was funded in part by ITR grant
#0086154 from the National Science Foundation.

References

[1] Adjie-Winoto, W., E. Schwartz, H. Balakrishnan and J. Lilley, The design
and implementation of an intentional naming system, in: Proc. 17th ACM
Symposium on Operating Systems, Kiawah Island, 1999.

[2] Ball, T. and S. Rajamani, Automatically validating temporal safety properties
of interfaces, in: Proc. 8th International SPIN Workshop on Model Checking of
Software, 2001.

[3] Beizer, B., “Software Testing Techniques,” International Thomson Computer
Press, 1990.

[4] Chang, J., D. Richardson and S. Sankar, Structural specification-based testing
with ADL, in: Proc. Third International Symposium on Software Testing and
Analysis, 1996.

[5] Corbett, J., M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach and
H. Zheng, Bandera: Extracting finite-state models from Java source code, in:
Proc. 22nd International Conference on Software Engineering, 2000.

[6] Crawford, J., M. Ginsberg, E. Luks and A. Roy, Symmetry-breaking predicates
for search problems, in: Proc. Fifth International Conference on Principles of
Knowledge Representation and Reasoning, 1996.

[7] Demartini, C., R. Iosif and R. Sisto, A deadlock detection tool for concurrent
Java programs, Software - Practice and Experience (1999).

18

Khurshid and Marinov

[8] Goodenough, J. and S. Gerhart, Toward a theory of test data selection, IEEE
Transactions on Software Engineering (1975).

[9] Havelund, K. and T. Pressburger, Model checking Java programs using Java
PathFinder, International Journal on Software Tools for Technology Transfer
(1999).

[10] Holzmann, G. J., The model checker SPIN, IEEE Transactions on Software
Engineering 23 (1997).

[11] Horcher, H.-M., Improving software tests using Z specifications, in: Proc. 9th
International Conference of Z Users, The Z Formal Specification Notation,
1995.

[12] Jackson, D., Automating first-order relational logic, in: Proc. ACM SIGSOFT
Eighth International Symposium on Foundations of Software Engineering, San
Diego, CA, 2000.

[13] Jackson, D., Alloy: A lightweight object modeling notation, ACM Transactions
on Software Engineering and Methodology (2001), to appear.

[14] Jackson, D., I. Schechter and I. Shlyakhter, ALCOA: The Alloy constraint
analyzer, in: Proc. International Conference on Software Engineering, Limerick,
Ireland, 2000.

[15] Jackson, D., I. Shlyakhter and M. Sridharan, A micromodularity mechanism,
in: Proc. 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Vienna, Austria, 2001, to appear.

[16] Khurshid, S. and D. Jackson, Exploring the design of an intentional
naming scheme with an automatic constraint analyzer, in: Proc. 15th IEEE
International Conference on Automated Software Engineering, Grenoble,
France, 2000.

[17] Marinov, D. and S. Khurshid, TestEra: A novel framework for automated testing
of Java programs (2001), submitted for publication.

[18] McMillan, K., “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.

[19] Offutt, J. and A. Abdurazik, Generating tests from UML specifications, in: Proc.
Second International Conference on the Unified Modeling Language, 1999.

[20] Rumbaugh, J., I. Jacobson and G. Booch, “The Unified Modeling Language
Reference Manual,” Addison Wesley Object Technology Series, 1998.

[21] Schwartz, E., “Design and Implementation of Intentional Names,” Master’s
thesis, MIT Laboratory for Computer Science, Cambridge, MA (1999).

[22] Shlyakhter, I., Generating effective symmetry-breaking predicates for search
problems, in: Proc. Workshop on Theory and Applications of Satisfiability
Testing, 2001.

[23] Spivey, J. M., “The Z notation: A Reference Manual,” Prentice Hall, 1992,
second edition.

19

Khurshid and Marinov

A Concrete Data Types for INS [21]

class Attribute {
String attribute;
... }

class Value {
String value;
boolean wildcard;
// Representation Invariant:
// wildcard == true -> String == null
// wildcard != true -> String != null
... }

class AttributeNode {
Attribute a;
Vector children; // Vector of ValueNode
ValueNode parent;
void addValueNode(ValueNode vn); // add a child
... }

class ValueNode {
Value v;
Vector children; // Vector of AttributeNode
AttributeNode parent;
NameRecordSet routeSet; // ‘recs’ in the model
void addAttributeNode(AttributeNode an); // add a child
void addNameRecordHere(NameRecord r); // add a record to the set
... }

class NameRecord { // ‘sig Record’ in the model
static int next_id = 0;
final int id;
Vector parents; // Vector of ValueNode
... }

class NameRecordSet {
// if true, NameRecordSet contains all NameRecord objs
boolean allRouteEntries;
Vector routeEntries; // Vector of NameRecord
// Representation Invariant:
// if (allRouteEntries == true) routeEntries.isEmpty() = true;
// routeEntries is sorted in ascending order of NameRecord.id
... }

class NameTree extends ValueNode { // ‘sig DB’ in the model
// v from ValueNode is always null
Vector nameRecords; // Vector of NameRecord

// (all NameRecords in the tree)
void addNameRecord(NameRecord r); // add a record to the tree
... }

class AVelement {
Attribute a;
Value v;
Vector children; // Vector of AVelement
void addAVelement(AVelement c); // add a child
... }

class NameSpecifier extends AVelement { // ‘sig Query’ in the model
// all variables inherited from AVelement, a and v not used
... }

20

Khurshid and Marinov

B Lookup-Name implementation [21]

class NameTree extends ValueNode{
NameRecord[] lookup(NameSpecifier s){

NameRecordSet rs = super.lookup((AVPair)s);
return (rs.toArray());

} ...}
class ValueNode {

NameRecordSet lookup(AVPair n){
NameRecordSet S;
// Start with S = the set of all possible route entries
S = new NameRecordSet();
S.addAllRouteEntries();
// for each attribute-value pair p = (na,nv) in n
for (Enumeration e1 = n.getAVPairs(); e1.hasMoreElements();) {

AVPair p = (AVPair)e1.nextElement();
Attribute na = p.getAttribute();
Value nv = p.getValue();
// Ta = the child of T (this) such that name(Ta) = name(na)
AttributeNode Ta;
try {

Ta = findAttributeNode(na);
} catch (ElementNotFound ex) {

continue;
}
ValueNode Tv;
if (nv.isWildcard()) {

// Wildcard matching.
NameRecordSet Sprime = new NameRecordSet();
for (Enumeration e2 = Ta.getValueNodes();

e2.hasMoreElements();
) {

Tv = (ValueNode)e2.nextElement();
Sprime.unionWith(Tv.routeSet);

}
S.intersectWith(Sprime);

} else {
// Normal matching.
try {

Tv = Ta.findValueNode(nv);
} catch (ElementNotFound ex) {

return(new NameRecordSet());
}
if (Tv.isLeaf() || p.isLeaf()) {

S.intersectWith(Tv.routeSet);
} else {

S.intersectWith(Tv.lookup(p));
}

}
}
S.unionWith(routeSet);
return(S);

} ...}

21

