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Abstract. SAT solvers have been ranked primarily by the time they
take to find a solution or show that none exists. And indeed, for many
problems that are reduced to SAT, finding a single solution is what mat-
ters. As a result, much less attention has been paid to the problem of
efficiently generating all solutions.

This paper explains why such functionality is useful. We outline an
approach to automatic test case generation in which an invariant is ex-
pressed in a simple relational logic and translated to a propositional
formula. Solutions found by a SAT solver are lifted back to the rela-
tional domain and reified as test cases. In unit testing of object-oriented
programs, for example, the invariant constrains the representation of an
object; the test cases are then objects on which to invoke a method under
test. Experimental results demonstrate that, despite the lack of attention
to this problem, current SAT solvers still provide a feasible solution.

In this context, symmetry breaking plays a significant, but different
role from its conventional one. Rather than reducing the time to find-
ing the first solution, it reduces the number of solutions generated, and
improves the quality of the test suite.

1 Introduction

Advances in SAT technology have enabled applications of SAT solvers in a vari-
ety of domains, e.g., AI planning [15], hardware verification [7], software design
analysis [16], and code analysis [27]. These applications typically use a solver to
find one solution, e.g., one plan that achieves a desired goal or one counterex-
ample that violates a correctness property. Hence, most modern SAT solvers are
optimized for finding one solution, or showing that no solution exists. That is
also how the SAT competitions [1] rank solvers.

We have developed an unconventional application of SAT solvers, for software
testing [20]. Our application requires a solver, such as mChaff [21] or relsat [4],
that can enumerate all solutions. We find it surprising that the currently avail-
able versions of most modern SAT solvers, including zChaff [21], BerkMin [12],
Limmat [6], and Jerusat [22], do not support solution enumeration at all1, let
1 Support in zChaff is under development and available in an internal version. Support

in BerkMin is planned for the next version. There is no plan to add support to
Jerusat. (Personal communication with the authors of the solvers.)



alone optimize it. We hope that our application can motivate research in solution
enumeration.

Software testing is the most widely used technique for finding bugs in pro-
grams. It is conceptually simple: just create a test suite, i.e., a set of test inputs,
run them against the program, and check if each output is correct. However,
testing is typically a labor intensive process, involving mostly manual generation
of test inputs, and accounts for about half the total cost of software develop-
ment and maintenance [5]. Moreover, inputs for modern programs often have
complex structural constraints, which makes manual generation of high quality
test suites impractical. Automating testing would not only reduce the cost of
producing software but also increase the reliability of modern software.

We have developed the TestEra framework [20] for automated specification-
based testing [5] of Java programs. To test a method, the user provides a spec-
ification that consists of a precondition (which describes allowed inputs to the
method) and a postcondition (which describes the expected outputs). TestEra
uses the precondition to automatically generate a test suite of all test inputs up
to a given scope; a test input is within a scope of k if at most k objects of any
given class appear in it. TestEra executes the method on each input, and uses
the postcondition as a test oracle to check the correctness of each output.

TestEra specifications are first-order logic formulas. As an enabling technol-
ogy, TestEra uses the Alloy toolset. Alloy [13] is a first-order declarative language
based on sets and relations. The Alloy Analyzer [14] is an automatic tool that
finds instances of Alloy specifications, i.e., assignments of values to the sets and
relations in the specification such that its formulas evaluate to true. The analyzer
finds an instance by: 1) translating Alloy specification into boolean satisfiability
formula, 2) using an off-the-shelf SAT solver to find a solution to the formula,
and 3) translating the solution back into sets and relations. The analyzer can
enumerate all instances (within a given scope) using a SAT solver that supports
enumeration, e.g., mChaff or relsat. The analyzer generates complete assign-
ments: if the underlying SAT solver generates a solution with “don’t care” bits,
the analyzer grounds these bits out.

TestEra translates Alloy instances into test inputs that consist of Java ob-
jects; notice that the grounding out of “don’t care” bits is necessary to build Java
objects with fields that are properly initialized. Some inputs are isomorphic, i.e.,
they only differ in the identity of their objects. For example, consider a singly
linked list of nodes that contain elements; two lists that have the same elements
(or more precisely, isomorphic elements) in the same order are isomorphic irre-
spective of the node identities. It is desirable to consider only non-isomorphic
inputs; it reduces the time to test the program, without reducing the possi-
bility to detect bugs, because isomorphic test inputs form a “revealing subdo-
main” [28], i.e., produce identical results. The analyzer has automatic symmetry
breaking [23] that eliminates many isomorphic inputs; we discuss this further in
Section 3.1.

We initially used TestEra to check several Java programs. TestEra exposed
bugs in a naming architecture for dynamic networks [17] and a part of an earlier



version of the Alloy Analyzer [20]; these bugs have now been corrected. We have
also used TestEra to systematically check methods on Java data structures, such
as from the Java Collection Framework [26]. More recently, we have applied
TestEra to test a C++ implementation of a fault-tree solver [11].

It is worth emphasizing that our application requires solutions that make
complete assignments to primary (independent) variables. The main requirement
of TestEra is efficient generation of all these solutions. Since storage of solutions
has not (yet) been an issue, generating an implicit representation or a “cover”
is not necessary. Moreover, testing necessitates generation of actual solutions
and not just their representation. However, a solver that produces only prime
implicants can be used as an intermediate step in generating all solutions.

In previous work [20], we presented TestEra as an application of SAT solvers
in software testing. This paper makes the following new contributions:

– We describe a compelling application of SAT solvers that suggests that so-
lution enumeration is an important feature that merits research in its own
right. To the best of our knowledge, this is the first such application in
software testing.

– We provide a set of formulas that can be used to compare different solvers
in their enumeration. Our formulas fall into the (satisfiable) “industrial”
benchmarks category for SAT competitions [1] and are available online at:

http://mulsaw.lcs.mit.edu/alloy/sat03/index.html

We also provide the expected number of solutions, which can help in testing
a solver’s solution enumeration.

– We provide a performance comparison between mChaff and relsat in enu-
merating a variety of benchmark data structures.

– We show how TestEra users can completely break symmetries, so that each
solution of a boolean formula corresponds to a non-isomorphic test input.

2 Test generation for modern software

Structurally complex data abounds in modern software. A textbook example
is a data structure such as red-black trees [9] that implement balanced binary
search trees. Another example is intentional names used in the intentional nam-
ing systems [2] for dynamic networks; an intentional name describes properties
of a service by a hierarchical arrangement of attributes and values, which enables
clients to access services by describing the desired functionality without a priori
knowing service locations. Fault trees used in fault tree analysis systems [11] are
also complex structures; a fault tree models system failure by relating it to failure
of basic events in the system, and a fault tree analyzer computes the likelihood
of system failure in the input fault tree over a given period of time. What makes
such data complex is not only organization but also their structural constraints.
For example, for red-black trees, one such constraint is that the number of black
nodes along any path from root to a leaf is the same.
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Fig. 1. Basic TestEra framework

Automating generation of input data is the key issue in automating sys-
tematic testing of software with structurally complex data. Generation at the
representation level by a random assignment of values to object fields is infeasi-
ble since the ratio of the number of valid structures and the number of candidate
structures tends to zero. A random assignment is very likely to violate (at least)
one of the constraints. Generation at an abstract level using a construction se-
quence (e.g., building a red-black tree with 3 nodes by inserting sequentially
3 elements into an empty tree) is also inefficient: systematic generation of all
inputs within a given input size can result in a very large number of construc-
tion sequences, most of which generate isomorphic structures. For example, to
build all red-black trees with 10 nodes, this approach may require 10! or about
3.6× 106 sequences, whereas there are only 240 non-isomorphic red-black trees
with 10 nodes.

3 TestEra

The TestEra framework [20] provides a novel SAT-based approach for systematic
generation of complex structures and automates specification-based testing [5]
of Java programs.

Figure 1 illustrates the main components of the TestEra framework. Given a
method precondition or an input specification (which describes the constraints
that define valid method inputs) in Alloy, TestEra uses the Alloy Analyzer to
generate all instances that satisfy the precondition. TestEra automatically con-
cretizes these instances to create Java objects that form the test inputs for
the method under test. TestEra executes the method on each input and au-
tomatically abstracts each output to an Alloy instance. TestEra then uses the
analyzer to check if the input/output pair satisfy the constraints represented
by the postcondition or the input/output specification (which describes the ex-
pected outputs). If the postcondition constraints are violated, TestEra reports
a concrete counterexample, i.e., an input/output pair that is a witness to the



violation. TestEra can graphically display the counterexample, e.g., as a heap
snapshot, using the visualization facility of the analyzer.

To perform translations (concretizations and abstractions) between Alloy
instances that the analyzer generates and Java objects that are inputs to, or
outputs of, the method, TestEra automatically generates a test driver for a
given method and relevant classes.

3.1 Symmetry breaking

The analyzer adapts symmetry-breaking predicates [10] to reduce the total num-
ber of instances generated: the original boolean formula that corresponds to the
Alloy specification is conjoined with additional clauses in order to generate only
a few instances from each isomorphism class [23]. There is a trade-off, however:
the more clauses that the analyzer generates, the more symmetries it breaks.
But the larger boolean formula can become so large so that solving takes sig-
nificantly more time, despite the fact that there are fewer instances. The goal
of symmetry breaking in the analyzer was to make the analysis faster and not
to generate exactly non-isomorphic instances. Therefore, with default symmetry
breaking, it can significantly reduce the number of instances, but it is not always
optimal, i.e., it may generate more than one instance from some isomorphism
classes. (A discussion of algorithms for constructing symmetry-breaking clauses,
such as the algorithm implemented in the Alloy Analyzer [23] or a more recent
approach [3] is beyond the scope of this paper.)

The analyzer has special support for total orders: for each set {a1, . . . , an}
of n elements that is declared to have a total order, the analyzer generates only
one order {〈a1, a2〉, 〈a2, a3〉, . . . , 〈an−1, an〉}, out of n! (isomorphic) orders. This
support has previously been used for faster analysis. We show in Section 4.3 how
TestEra and Alloy users can also use total orders to constrain specifications so
that the analyzer generates exactly one instance from each isomorphism class.
Conceptually, the idea is to add constraints to ensure that the analyzer generates,
from each isomorphism class, only the instance that is the smallest with respect
to the total orders on the sets whose elements appear in the instance.

4 Non-isomorphic generation

We next give a simple example that we use throughout this section to explain
the fundamental aspects of TestEra’s SAT-based generation of non-isomorphic
inputs. Consider the following Java code that declares a binary tree and its
removeRoot method, which removes the root node of its input tree and arranges
any remaining nodes as a tree:

package testera.example;

class BinaryTree {

Node root; // root node

int size; // number of nodes in the tree



static class Node {

Node left; // left child

Node right; // right child

}

void removeRoot() { ... }

}

Each object of the class BinaryTree represents a binary tree; objects of the in-
ner class Node represent nodes of the trees. The method removeRoot has one
input (i.e., the implicit this argument), which is a BinaryTree. Let us consider
systematic input generation to test this method.

4.1 Specification

For the classes declared in the Java code above, TestEra produces the following
Alloy specification:

module testera/example/BinaryTree

sig BinaryTree {

root: option Node,

size: Integer

}

sig Node {

left: option Node,

right: option Node

}

The declaration module names the specification. The keyword sig introduces a
signature representing a set of indivisible atoms. We use Alloy atoms to model
objects of the corresponding classes. Each signature can have field declarations
that introduce relations between atoms. By default, fields are total functions;
size is a total function from BinaryTree to Integer, where Integer is a predefined
signature. The modifier option is used for partial functions (and the modifier set
for general relations); e.g., root is a partial function from BinaryTree to Node.
Partiality is used to model null: when the Java field root of some object b has
the value null, i.e., points to no object, then the function root does not map the
atom corresponding to b to any other atom.

The method removeRoot has only the implicit this argument, which is a
BinaryTree. We consider a simple specification for this method: both precondi-
tion and postcondition require only that this satisfy the representation invariant
(also known as a “class invariant”) [19] for BinaryTree. For BinaryTree, the in-
variant requires that the graph of nodes reachable from root indeed be a tree
(i.e., have no cycles) and that the size be correct; in Alloy, it can be written as
follows:



fun repOk(t: BinaryTree) {

all n: t.root.*(left + right) {

n !in n.^(left + right) // no directed cycle

sole n.~(left + right) // at most one parent

no n.left & n.right } // distinct children

t.size = #(t.root.*(left + right)) } // size is consistent

The Alloy function repOk records constraints that can be invoked elsewhere in
the specification. This function has an argument t, which is a BinaryTree. The
function body contains two formulas, implicitly conjoined. The first formula con-
strains t to be a valid binary tree. The expression left + right denotes the union
of relations left and right; the prefix operator ‘*’ is reflexive transitive closure,
and the dot operator ‘.’ is relational composition. The expression root.*(left

+ right) denotes the set of all nodes reachable from root. The quantifier all de-
notes universal quantification: the formula all n: S { F } holds iff the formula
F holds for n bound to each element in the set S. The operators ‘^’, ‘~’, and ‘&’
denote transitive closure, transpose, and intersection, respectively. The formulas
sole S and no S hold iff the set S has “at most one” and “no” elements, respec-
tively. If all nodes n are not reachable from itself, have at most one parent, and
have distinct children, then the underlying graph is indeed a tree. The second
formula constrains the size field of t to match the size of the tree; ‘#’ denotes
set cardinality.

4.2 Instance generation

The Alloy command run repOk for N but 1 BinaryTree instructs the analyzer
to find an instance for this specification, i.e., a valuation of signatures (sets)
and relations that makes the function repOk evaluate to true. The parameter N
needs to be replaced with a specific constant that determines the scope, i.e., the
maximum number of atoms in each signature, except those mentioned in the
but clause. In our example, N determines the maximum number of Nodes, and
the instance has only one BinaryTree. Note that one instance has one tree (with
several nodes) corresponding to this argument. Enumerating all instances using
the Alloy Analyzer generates all trees with up to the given number of nodes.

The following two assignments of sets of atoms and tuples to signatures and
relations in the specification represent binary tree instances for N=3:

Instance 1:

BinaryTree = { BT0 }, Node = { N0, N1, N2 }

root = { (BT0, N1) }, size = { (BT0, 3) }

left = { (N1, N0) }, right = { (N1, N2) }

Instance 2:

BinaryTree = { BT0 }, Node = { N0, N1, N2 }

root = { (BT0, N0) }, size = { (BT0, 3) }

left = { (N0, N1) }, right = { (N0, N2) }



These instances are isomorphic since we can generate the second instance from
the first one by applying to it the permutation that swaps atoms N0 and N1 (i.e.,
(N0 -> N1, N1 -> N0, N2 -> N2)).

In the sequel, we focus on enumerating instances for test input generation.
To compare different ways of enumeration, we consider test inputs of size ex-
actly N . For illustration, consider N = 5 in our running example. There are 14
non-isomorphic trees with five nodes [24]. If we use the analyzer without any
symmetry breaking, the analyzer generates 1680 instances/trees, i.e., for each of
the 14 isomorphism classes, the analyzer generates all 120 distinct trees corre-
sponding to the 5! permutations/labelings of the five nodes. If we use the analyzer
with symmetry breaking [23], we can tune how many symmetries to break. With
the default symmetry breaking parameter values, the analyzer generates 17 trees
with five nodes. If we set these parameter values to break all symmetries, the
analyzer generates exactly 14 trees. Notice, however, that doing so can make
generation significantly slower since the goal of symmetry breaking in the an-
alyzer was to make analysis faster but not to generate exactly non-isomorphic
instances.

4.3 Complete symmetry-breaking using total order

We next describe an approach that uses total orders to efficiently break all sym-
metries in our example. Unlike the built-in symmetry breaking of the analyzer,
this approach provides domain specific symmetry breaking and in particular,
requires the user to manually add symmetry-breaking predicates.

The analyzer’s standard library of models provides a polymorphic signature
Ord[t]. Each instantiation of Ord with some set (Alloy signature) t imposes a
total order on the elements in t. In consequence, these elements are not indistin-
guishable any more, and the analyzer does not break any symmetries on that set.
However, the analyzer considers only one total order, instead of (#t)! possible
total orders.

In addition to the definition of total order, the analyzer’s standard library
also provides several Alloy functions for totally-ordered sets. We use two of those
functions in the following fact:

fact BreakSymmetries {

all b: BinaryTree {

all n: b.root.*(left + right) {

// uses library function to instantiate Ord[Node]

n.left.*(left + right) in OrdPrevs(n)

n.right.*(left + right) in OrdNexts(n) } } }

The functions OrdPrevs and OrdNexts return the sets of all elements that are
smaller and larger than the given element. A fact is a formula that expresses
(additional) constraints on the instances. The fact BreakSymmetries requires that
all trees in the instance (the example instances have only one tree) have nodes
in an in-order [9]: the nodes in the left (right) subtree of the node n are smaller
(larger) than n with respect to the Ord[Node] order. Note that the comparisons



are for node identities, not for the values in the nodes. (For simplicity of illus-
tration, our example does not even have values.)

We add the above fact to the specification for binary trees, effectively elim-
inating isomorphic instances. Indeed, the analyzer now generates exactly 14
non-isomorphic trees but it does so faster than using automatically generated
symmetry-breaking predicates. In general, the user can break all symmetries by:
1) declaring that each set has a total order and 2) defining a traversal that lin-
earizes the whole instance. The combination of the linearization and the total
orders gives a lexicographic order that is used to compare instances. This pro-
cess enforces generation to produce the canonical structure for each isomorphism
class, but it requires the user to manually add symmetry-breaking predicates;
this is straightforward to do for data structures, but it can become difficult for
large complex specifications.

5 Results

We next present some performance results for solution enumeration obtained
with mChaff [21]; we also compare performance of mChaff with that of relsat [4].
To discount the time it takes to write solutions to a file, we slightly modified the
standard distributions of mChaff and relsat to disable solution reporting so that
the solvers only report the total number of solutions found for each formula. The
experiments were performed on a 1.8 GHz Pentium 4 processor with 2 GB of
RAM.

5.1 Benchmarks

Table 1 presents the results of mChaff for a set of benchmark formulas that
represent structural invariants. Each benchmark is named after the class for
which data structures are generated; the structures also contain objects from
other classes.

BinaryTree is our running example. LinkedList is the implementation of
linked lists in the Java Collections Framework, a part of the standard Java
libraries. This implementation uses doubly-linked, circular lists that have a size

field and a header node as a sentinel node [9]. (Linked lists also provide methods
that allow them to be used as stacks and queues.) TreeMap implements the Map

interface using red-black trees [9]. This implementation uses binary trees with
parent fields. Each node has a key and a value. HashSet implements the Set

interface, backed by a hash table [9]; this implementation builds collision lists for
buckets with the same hash code. HeapArray is an array-based implementation
of a heap (or a priority queue) [9].

5.2 Performance of mChaff

Table 1 shows results for several input sizes for each benchmark. All scope pa-
rameters are set exactly to the given size; e.g., all lists have exactly the given



manual symmetry breaking automatic symmetry breaking

benchmark size #prim #vars #clauses #sols time #vars #clauses #sols time

6 86 2120 6686 132 1.05 2333 7018 357 1.50
7 114 3165 10375 429 6.46 3439 10786 1866 7.45

BinaryTree 8 146 4504 15216 1430 40.46 4831 15682 10286 64.40
9 182 7775 29618 4862 548.69 8141 30103 60616 1049.93

6 146 2017 6597 203 0.38 2520 7419 5975 3.46
7 191 2834 9834 877 1.04 3559 11021 52392 68.71

LinkedList 8 242 3837 14007 4140 4.76 4432 14939 734296 4637.99
9 299 5852 24411 21147 36.52 6629 25630 — —

6 203 5203 15162 20 9.10 5542 15668 322 10.85
7 263 7578 22095 35 110.42 8076 22842 1160 69.09

TreeMap 8 331 10578 30896 64 254.13 11265 31930 4185 583.62
9 407 16111 51115 122 741.55 17017 52482 16180 3873.99

6 285 5254 19079 462 6.06 5798 19865 693 7.04
7 373 7540 28881 1716 31.52 8270 29918 3172 30.04

HashSet 8 473 10392 41430 6435 151.42 11102 42342 15011 167.30
9 585 15380 63308 24310 511.51 16277 64441 73519 1587.72

5 56 544 1178 1919 0.55
6 72 704 1611 13139 5.10

HeapArray 7 90 884 2128 117562 62.62
8 110 1084 2735 1005075 1171.64

Table 1. mChaff performance. All times are in seconds (of total elapsed wall-clock
time). For sizes larger than presented, enumeration of solutions for automatically con-
structed symmetry-breaking predicates takes longer than 1 hour.

number of nodes and the elements come from a set with the given size. For each
size, we use mChaff to enumerate solutions for two CNF formulas:

– one with symmetry-breaking predicates generated fully automatically (using
the default values of the Alloy Analyzer);

– one with symmetry-breaking predicates added entirely manually to Alloy
specifications (as described in Section 4.3).

We tabulate the number of primary variables, the total number of variables, the
number of clauses, the number of solutions, and the time it takes to generate
all solutions. The time shows the total elapsed time from the start of mChaff
with an input being a formula file to the end of generation of all solutions
(without writing them in a file). It is worth noting that the time to generate
solutions often accounts for more than one-half of the time TestEra takes to test
a benchmark data structure implementation [20]; thus, improving efficiency of
solution enumeration can significantly improve TestEra’s performance.

For BinaryTree, LinkedList, TreeMap, and HashSet, the numbers of non-isomor-
phic structures are given in the Sloane’s On-Line Encyclopedia of Integer Se-
quences [24]. For all sizes, formulas with manually added symmetry-breaking
predicates have as many solutions as the given number of structures, which shows



that these predicates eliminate all symmetries. For HeapArray, no symmetry-
breaking is required: two array-based heaps are isomorphic iff they are identical,
since they consist only of integers (i.e., array indices and heap elements) that are
not permutable. In TestEra, it is very desirable to generate only non-isomorphic
inputs since without breaking isomorphisms it would be impractical to system-
atically test on all inputs. The factor by which the total number of solutions (in-
cluding isomorphic solutions) is more than the total number of non-isomorphic
solutions, is exponential in the input size. For example, for TreeMap and size nine,
there are more than 44 million total solutions.

In all cases, formulas with automatic symmetry breaking (using default pa-
rameter values) have more solutions than formulas with manual symmetry break-
ing. Also, in most cases it takes longer to generate the solutions for formulas
with automatic symmetry breaking; a simple reason for this is that enumerating
a larger number of solutions usually takes a larger amount of time. This is not
always the case, however: for HashSet and TreeMap of size seven, it takes less time
to enumerate more solutions. This illustrates the general trade-off in (automatic)
symmetry breaking: adding more symmetry-breaking predicates can reduce the
number of (isomorphic) solutions, but it makes the boolean formula larger, which
can increase the enumeration time. Note that having more variables and clauses
(more symmetry-breaking predicates) does not necessarily imply breaking more
symmetries. For example, in all examples but HeapArray, manual approach gen-
erates fewer variables and clauses than the automatic approach, yet manual
break more symmetries. The reason for this is that manual approach breaks
independent symmetries whereas the automatic approach can break dependent
symmetries. In other words, a manual predicate rules out more isomorphic in-
stances per literal of the predicate, so it is “denser”. For details, see [23]. The
Alloy Analyzer allows users to tune symmetry breaking; we have experimented
with different parameter values and the analyzer’s default values seem to achieve
a sweet spot for our benchmarks.

Note that we do not present numbers for LinkedList of size nine with auto-
matic symmetry breaking; for this formula mChaff runs out of memory (2 GB).
This suggests that the scheme for clause learning in mChaff [21] may need to
be modified when enumerating all solutions. If there is no effective pruning or
simplification of clauses added in order to exclude the already found solutions,
complete solution enumeration can become infeasible. For all other benchmark
formulas, mChaff is able to enumerate all solutions, even when there are more
than a million of them. Test inputs that correspond to these solutions, for the
sizes from the table, are sufficient to achieve complete code and branch cover-
age [5] for methods in the respective Java classes.

5.3 Performance comparison of mChaff with relsat

Table 2 presents the performance comparison of mChaff with relsat in enumerat-
ing all solutions for benchmark formulas with manually added symmetry break-
ing constraints. Enumeration by mChaff seems to be more efficient than that of
relsat for the benchmark data structures. The results indicate that the techniques



benchmark size # sols mChaff time relsat time

6 132 1.05 4.81
BinaryTree 7 429 6.46 36.28

8 1430 40.46 268.22

6 203 0.38 1.21
LinkedList 7 877 1.04 9.08

8 4140 4.76 78.40

6 20 9.10 19.22
TreeMap 7 35 110.42 128.27

8 64 254.13 665.50

6 462 6.06 52.49
HashSet 7 1716 31.52 475.00

8 6435 151.42 4100.99

5 1919 0.55 6.71
HeapArray 6 13139 5.10 77.12

7 117562 62.62 1073.49

Table 2. Performance comparison of mChaff with relsat in solution enumeration for
benchmark formulas with manually added symmetry breaking predicates. All times are
in seconds (of total elapsed wall-clock time).

introduced by mChaff for finding the first solution, such as efficient unit prop-
agation, fare reasonably well for solution enumeration. For these benchmarks,
it happens that mChaff’s default enumeration does not generate any solutions
with “don’t care” bits. However, we believe mChaff’s enumeration technique of
obtaining partial solutions with don’t-care variables (such that any completion
of the solution satisfies the CNF) would also be useful for complete enumera-
tion as grounding out partial solutions with “don’t care” bits takes time linear
in the number of new solutions generated. Perhaps this technique would also
outperform relsat’s technique of always producing complete solutions.

5.4 Binary decision diagrams

We also conducted some very preliminary experiments using Binary Decision
Diagrams (BDDs) in place of SAT solvers. Intuitively, BDDs seem attractive
because they make it easier to read off all solutions, once a BDD for a formula
has been obtained. Of course, the construction of a BDD itself may be infeasible
and can take a long time (and exponential space). We experimented with the
CUDD [25] BDD package. We constructed BDDs bottom-up, using automatic
variable reordering via sifting [8], from the boolean DAGs from which the CNFs
were produced. For all benchmarks, the BDD approach scaled poorly; for non-
trivial sizes (over five), the BDD construction led to unmanageably large BDDs
(over a million nodes) and did not finish within the alloted time limit of 10 min-
utes. These results are preliminary and we believe BDD experts can fine tune
the performance of BDDs to provide efficient enumeration.



6 Conclusions and discussion

We have developed an unconventional application of SAT solvers, for software
testing. Our application requires a solver that can enumerate all satisfying as-
signments; each assignment provides a (non-isomorphic) input for the program.
In this context, symmetry breaking plays a significant, but different role from
its conventional one: rather than reducing the time to finding the first solution,
it reduces the number of solutions generated, and improves the quality of the
suite of test inputs. The experimental results indicate that it is feasible to use
a SAT solver to systematically generate a high quality test suite comprising of
structurally complex inputs that would be hard to generate manually.

We envision various other applications of solution enumeration. One natural
application is in checking certain classes of logic formulas. For example, consider
the formula ∀x ∈ D.P (x) ⇒ Q(x), where D is some (finite) domain, and P
and Q are arbitrary predicates. We can simply use a solver to enumerate all
x that satisfy P (x) and then for each such x check that Q(x) holds. Alterna-
tively, we can check the validity of the implication (without requiring solution
enumeration) by using a solver to directly check satisfiability of the negation:
P (x)∧¬Q(x). Usually, the latter approach is preferred because it “opens” Q for
the sophisticated optimizations that SAT solvers perform. However, when Q is
a very large formula (or a formula that cannot be easily constructed explicitly),
the approach with solution enumeration can work better.

Conceptually, TestEra checks that the code under test satisfies the formula
∀i ∈ I. pre(i) ⇒ (∀o ∈ O. code(i, o) ⇒ post(i, o)), where pre is precondition,
I is input domain, O is output domain, code(i, o) denotes execution on input i
that results in output o, and post is postcondition. It is possible in some cases to
translate (Java) code into a formula code and look for a counter-example using
a SAT solver (see e.g. [7, 18, 27]). These translation-based approaches typically
build a formula, namely pre ⇒ (code ⇒ post), which is much bigger than the
formula that TestEra builds, namely pre. Therefore, TestEra works better for
larger code that does not have many inputs, whereas the traditional approach
works better for smaller code that has many possible inputs. Notice that the
traditional approach can use any SAT solver, but TestEra requires a solver that
can enumerate solutions.

A desirable feature for solvers that can enumerate solutions is to allow users
to control the order of enumeration. For example, for testing databases, we would
like to get “similar” test cases one after the other so that we can restore the state
by using “deltas” and built-in support for rollback, instead of always building the
state from scratch. For checking programs, it is desirable to have a solver generate
all solutions in the neighborhood (as defined by a given metric) of a particular
solution; this would enable testing, for example the entire neighborhood of an
execution that gets “close” to a bug.

For testing programs on input sizes for which there exist a very large number
of inputs, it is desirable to have a solver that can generate solutions in a random
order and thus generate a high quality input sample. Another effective approach
for testing on such input sizes is to define a stronger notion of isomorphism,



taking into account the domain of application or even the implementation code,
and then to enumerate inputs (which are now potentially fewer in number than
before). Thus even though it may seem that a solver that specializes on enu-
meration still must suffer due to the large number of satisfying instances (for a
given size), developing such solvers is practically useful.

We hope that our work provides motivation for exploring efficient solution
enumeration in modern SAT solvers.
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