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ABSTRACT

Successful software evolves as developers add more features,
respond to requirements changes, and fix faults. Regression
testing is widely used for ensuring the validity of evolving
software. As regression test suites grow over time, it be-
comes expensive to execute them. The problem is exacer-
bated when test suites contain multithreaded tests. These
tests are generally long running as they explore many differ-
ent thread schedules searching for concurrency faults such as
dataraces, atomicity violations, and deadlocks. While many
techniques have been proposed for regression test prioritiza-
tion, selection, and minimization for sequential tests, there
is not much work for multithreaded code.

We present a novel technique, called Change-Aware Pre-
emption Prioritization (CAPP), that uses information about
the changes in software evolution to prioritize the explo-
ration of schedules in a multithreaded regression test. We
have implemented CAPP in two frameworks for system-
atic exploration of multithreaded Java code. We evaluated
CAPP on the detection of 15 faults in multithreaded Java
programs, including large open-source programs. The re-
sults show that CAPP can substantially reduce the explo-
ration required to detect multithreaded regression faults.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Verification, Reliability, Experimentation

Keywords

Prioritization, Testing, Multithreaded

1. INTRODUCTION
The advent of multicore processors is ushering in a new

era in computing. To exploit performance from the mul-
tiple cores, software developers now need to write parallel
code. The currently dominant paradigm for parallel code is
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that of shared data, where multiple threads of computation
communicate by reading and writing shared data objects.
For example, Java provides support for threads in the lan-
guage and libraries, with shared data residing on the heap.
However, multithreaded code is notoriously hard to get right
and is often afflicted by hard to detect faults like dataraces,
atomicity violations, and deadlocks.

Ensuring the reliability of multithreaded code has been
an active area of research with several promising recent re-
sults [8, 10, 15, 21, 25]. Most of these tools execute multi-
threaded tests to check for the presence of faults. Since
multithreaded code can have different behavior for different
thread schedules, these tools conceptually explore the code
for a large number of schedules, and as a result they tend
to be fairly time consuming. Moreover, most existing tools
are change-unaware: they check only one version of code at
a time, and do not exploit the fact that code evolves.

Regression testing is the most widely practiced method for
ensuring the validity of evolving software. Regression test-
ing involves re-executing the tests for a program when its
code changes to ensure that the changes have not introduced
a fault that causes test failures. As programs evolve and
grow, their test suites also grow, and over time it becomes
expensive to re-execute all the tests. The problem is exacer-
bated when test suites contain multithreaded tests that are
generally long running. While many techniques have been
proposed to alleviate this problem for sequential tests [39],
there is much less work for multithreaded code [16,38].

Yoo and Harman [39] present a detailed survey of re-
gression testing techniques that minimize (e.g., [19]), se-
lect (e.g., [17,37]), or prioritize (e.g., [14,20,40]) test suites.
Test selection determines which tests to rerun after chang-
ing code, and test prioritization determines in what order to
run tests to find faults faster. The techniques for sequential
code showed good results in practice (e.g., [33]) but unfor-
tunately cannot be applied directly for multithreaded code.
Specifically, those techniques do not target exploration of
schedules within one test.

There is some recent work on targeting program changes
in systematic testing for multithreaded code [16, 38]. The
proposed techniques reuse results from exploration of one
program version to speed up exploration of the next pro-
gram version (or a code mutant). These techniques in effect
perform selection, pruning from exploration the schedules
that are unaffected by the code changes, which is comple-
mentary to prioritization. In general, prioritization could
be used in conjunction with selection to prioritize already
selected parts of the exploration.
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1 public void filterWrite(NextFilter nextFilter,
2 IoSession session,
3 WriteRequest writeRequest)
4 throws Exception {
5 ...
6 flushWithoutFuture();
7 ...
8 }
9 public void flushWithoutFuture() {

10 Queue<Object> bufferQueue = getMessageQueue();
11 for (;;) {
12 Object encodedMessage = bufferQueue.poll();
13 if (encodedMessage == null) {
14 break;
15 }
16 // Flush only when the buffer has remaining.
17 if (!(encodedMessage instanceof IoBuffer) ||
18 ((IoBuffer) encodedMessage).hasRemaining()) {
19 SocketAddress destination = writeRequest.getDestination();
20 WriteRequest writeRequest = new EncodedWriteRequest(

encodedMessage, null, destination);
21 nextFilter.filterWrite(session, writeRequest);
22 }
23 }
24 }

Figure 1: Code snippet from Mina revision 912148

This paper makes the following contributions:
Technique: We propose a new technique, called Change-

Aware Preemption Prioritization (CAPP), that uses infor-
mation about the changes in software evolution to prioritize
the exploration of schedules in a multithreaded regression
test. The goal of CAPP is to find a fault faster if one exists.
Our technique decides in what order to explore thread sched-
ules based on how test exploration dynamically encounters
changed code.

Heuristics: CAPP is a general technique that can be
instantiated with different definitions of code changes and
scheduling choices to prioritize. We present 14 heuristics
that consider changes at the level of source-code lines/state-
ments, methods, classes, or fields affected by the change, and
consider prioritizing scheduling choices based on whether all
or only some executing threads are executing changed code.

Implementation: We have implemented CAPP in two
frameworks for systematic exploration of multithreaded Java
code. Java PathFinder (JPF) [22, 36] is a widely used tool
for checking Java code. JPF performs a stateful search, with
checkpointing and restoration of program state to explore
thread schedules, and with state comparison to prune the
search. ReEx is a tool that we implemented following the
ideas from CHESS [25]. ReEx performs a stateless search,
with re-execution to establish a program state to explore
thread schedules, and with no state comparison.

Evaluation: We evaluated CAPP and its heuristics on
the detection of 15 faults in multithreaded Java code, in-
cluding some large open-source programs. Our evaluation
addresses the following research questions:

RQ1: How much reduction in exploration cost does CAPP
provide over change-unaware techniques?

RQ2: How do the heuristics compare with each other?

RQ3: How do the results compare across stateful/stateless
exploration?

RQ4: How do the results compare across default/random-
ized search order?

1 public void filterWrite(NextFilter nextFilter,
2 IoSession session,
3 WriteRequest writeRequest)
4 throws Exception {
5 ...

6 Queue<Object> bufferQueue = getMessageQueue();

7 while (!bufferQueue.isEmpty()) {

8 Object encodedMessage = bufferQueue.poll();

9 // Flush only when the buffer has remaining.

10 if (!(encodedMessage instanceof IoBuffer) ||

11 ((IoBuffer) encodedMessage).hasRemaining()) {

12 future = new DefaultWriteFuture(session);

13 nextFilter.filterWrite(session, writeRequest);

14 }

15 }

16 ...
17 }

Figure 2: Code snippet from Mina revision 912149

1 class FilterWriteThread extends Thread {
2 ...
3 int result = 0;
4 ...
5 public void run() {
6 try {
7 pc.filterWrite(nextFilter, session, writeRequest);
8 ...
9 } catch (Exception e) {

10 e.printStackTrace();
11 result = 1;
12 }
13 }
14 }
15

16 @Test
17 public void testFilterWriteThreadSafety() {
18 ...
19 FilterWriteThread fwThread1 = new FilterWriteThread(...);
20 FilterWriteThread fwThread2 = new FilterWriteThread(...);
21 fwThread1.start(); fwThread2.start();
22 fwThread1.join(); fwThread2.join();
23 assertEquals(0, fwThread1.result);
24 assertEquals(0, fwThread2.result);
25 }

Figure 3: Multithreaded regression test for Mina

In short, the results show that CAPP can substantially re-
duce the exploration cost required to detect multithreaded
regression faults, and there are interesting variations in cost
among heuristics, stateful/stateless search, and default/ran-
domized search order.

2. EXAMPLE
We illustrate how CAPP works through an example of a

real code evolution of Apache Mina [1]. Figures 1 and 2 show
code snippets from two consecutive revisions of Mina. In the
newer revision, 912149, developers inlined the invocation of
the method flushWithoutFuture into the method filterWrite

and further changed the loop condition to use the predicate
!bufferQueue.isEmpty(). While performing these changes,
the developers also removed the null check for encodedMes-

sage (lines 13-15 in Figure 1).
These changes in fact introduce a fault caused by an atom-

icity violation: if a preemption occurs after a thread has
checked !bufferQueue.isEmpty() and before it calls buffer-

Queue.poll(), another thread could remove elements from



the bufferQueue, and encodedMessage could be assigned null,
which will result in a NullPointerException. This issue was
reported in Mina’s issue tracking system (DIRMINA-803 [1])
and corrected since then.

Figure 3 shows a multithreaded test that exercises the
changed code. This test creates two threads that call the
faulty filterWrite method. Suppose that a Mina developer
were to run this test after making the change to revision
912149. The sooner the test reveals the fault, the easier it
is for the developer to debug [30].

However, this test reveals the fault in only a small number
of its many possible schedules. Ideally, the test should be
explored for all (non-equivalent) schedules to guarantee de-
tection of the NullPointerException, but exploring all sched-
ules can be very expensive. Even using advanced testing
techniques to reduce the number of schedules, such as itera-
tive context bounding from CHESS [25], requires executing
many different schedules. Specifically, in this example, us-
ing the basic change-unaware, iterative context bounding
exploration (with a bound of 2) requires exploring 58 sched-
ules before the fault is revealed. In contrast, using CAPP
requires exploring as few as 5 schedules before the fault is
revealed, which is substantially faster.

CAPP can reduce the exploration required to reveal a
fault by inferring the impact of code changes and prioritiz-
ing the exploration of schedules that perform preemptions
at Impacted Code Points (ICPs). CAPP uses different kinds
of ICPs based on changed code lines/statements, methods,
and classes, and the impact of these changes onto fields.
Section 3.1 describes in detail how CAPP infers different
kinds of ICPs. For example, in Mina revision 912149, CAPP
marks as changed the highlighted lines in Figure 2. By an-
alyzing these changed lines, CAPP infers that the method
filterWrite and the class it belongs to are impacted by the
changes. Moreover, while no fields are being directly ac-
cessed within the changed lines, CAPP analyzes the methods
being invoked directly from the changed lines (in this case
the methods isEmpty and poll), and infers that the fields head
and tail in the Queue class are also impacted by the change.
Using ICPs like these, CAPP prioritizes the exploration of
the multithreaded test to focus on changes and thus reveal
the fault with substantially lesser exploration.

CAPP can use various heuristics to identify and prioritize
change-impacted preemptions based on the set of collected
ICPs. Section 3 describes in detail the 14 different heuristics
that we propose. These heuristics are expected but not guar-
anteed to reveal the faults faster than the change-unaware
exploration. Section 4 presents our empirical evaluation.
For example, the heuristic Line On-stack All, which pri-
oritizes the exploration of schedules that encounter states
where all enabled threads are executing changed-impacted
lines (such as lines 6-15 in Figure 2), revealed the fault in
just 5 schedules in this test. As another example, the heuris-
tic Field Some, which prioritizes the exploration of sched-
ules that encounter states where some enabled threads are
accessing change-impacted fields (such as head and tail),
revealed the fault in 19 schedules.

3. TECHNIQUE
Change-Aware Preemption Prioritization consists of two

main parts: static collection of a set of Impacted Code
Points (ICPs) and dynamic prioritization of the exploration
of schedules that perform preemptions at the collected ICPs.

We first present collection of ICPs and then present the al-
gorithm for prioritization of schedules.

3.1 Collecting Impacted Code Points
Collecting ICPs is similar to change-impact analysis [26,

27, 33]. However, the goal of collecting ICPs is to identify
points that are more likely to affect fault-revealing schedules
and hence should be prioritized earlier. Note that we do not
ensure that the collected ICPs capture the sound or com-
plete impact of changes: CAPP can identify fewer points
than really impacted (because CAPP performs prioritiza-
tion and not selection/pruning, the unidentified points will
still be explored, but later), and CAPP can identify more
points than really impacted (because those points may be
helpful in finding an appropriate schedule). Intuitively, our
focus is on capturing the impact of changes on the commu-
nication among threads, i.e., the schedule-relevant points in
the code. Since concurrency faults are related to synchro-
nization orders and shared-memory accesses, CAPP collects
not only directly changed code elements but also their im-
pact on synchronized regions (blocks/methods) and fields
(of shared objects).

An ICP is defined as a 4-tuple 〈C,M,L, F 〉, where C is
a class name, M is a method name, L is a line number,
and F is a field name. An element of the tuple may be
⊥ to denote a “don’t care” value. For example, the ICP
〈org.apache.mina. . .ProtocolCodecFilter, filterWrite(), 325,
⊥〉 denotes that line 325, which is in the method filter-

Write() of the class org.apache.mina. . .ProtocolCodecFilter,
is impacted by the changes. As another example, the ICP
〈java.util.concurrent.ConcurrentLinkedQueue, ⊥, ⊥, head〉
denotes that the field head of the java.util.concurrent.-

ConcurrentLinkedQueue class is impacted by the changes.
Our CAPP implementation utilizes a multi-step process to

collect the set of ICPs. First, a diff utility (specifically, the
Eclipse JDK structure diff [34]) is used to collect a set of lines
that have been changed. This results in a set of ICPs where
only the third element, i.e., the line, is specified. Then four
analyses are performed on the abstract syntax tree (AST)
of the changed code to fill in the missing elements of the
partial ICPs and add additional ICPs.

First, any partial ICPs with changed lines that affect a
synchronized region (e.g., adding/removing the synchronized
keyword to/from methods, changing the scope of a synchro-

nized block, etc.) are expanded to include the entire region
(method/block). For example, if line 325 in filterWrite()

were to belong to some synchronized block from lines 320 to
330, additional ICPs are added for all those lines.

Second, for each partial ICP, the method and class that
contain the changed lines are identified and filled into the
partial ICP. This is straightforward except for some special
cases such as inner or anonymous classes.

Third, for any field accesses (reads or writes) within im-
pacted lines, additional ICPs are added that specify change-
impacted fields. For example, if the changed code has an
access o.f for some object o of type C, an ICP 〈C, ⊥, ⊥, f〉
is added. Note that this ICP includes no (changed) lines.
Indeed, it encodes that any access to the field is potentially
relevant and not only the accesses within the changed code.

Fourth, additional change-impacted field ICPs are col-
lected by determining the read- and write-sets [29] of all
methods that are directly invoked from the impacted lines,
and using fields from these sets. In case of dynamic dis-



patch, our implementation does not compute any precise
call graph but simply approximates the set of callees using
the statically declared type of the receiver objects.

3.2 Algorithm
CAPP uses the statically collected ICPs to dynamically

prioritize the exploration of a multithreaded regression test.
Figure 4 shows the pseudo-code of the algorithm used to
perform the prioritized exploration. The algorithm takes
as inputs the test to be explored and a set of ICPs. The
algorithm also has two parameters—prioritization mode and
ICP match mode—that identify which heuristic to use (or
none if BASIC). The possible values for these modes are listed
at the top and are explained later in this section.

The algorithm uses the Tran pair to represent a transition
that consists of a State and a Thread that can be executed
in that state. The main data structures of the algorithm are
toExplore and nextToExplore, which are both sets of tran-
sitions, to be explored either in the current iteration or in
the next iteration, respectively. Typically these structures
would be stacks (for the depth-first search strategy), queues
(for the breadth-first search strategy), or priority queues (for
search strategies like iterative context bounding that use
other prioritization in addition to CAPP). Our algorithm is
orthogonal to the search strategy and does not presume any
particular strategy. The algorithm also works for both state-
ful exploration (where explored tracks the explored states)
and stateless exploration. For example, our ReEx tool ap-
plies the iterative context bounding prioritization strategy
from CHESS [25].

The algorithm starts by initializing the data structures.
The toExplore set is initialized with the enabled transitions
of the initial state of the test, and the nextToExplore set
is initialized to the empty set. The main exploration loop
starts after the initialization and continues as long as toEx-

plore is not empty. In each iteration of the main loop, a
transition is selected and removed from the toExplore set.
The state of the selected transition is reestablished (e.g., by
restoring the state in JPF or re-executing the code in ReEx),
and the thread of the transition is executed on the state to
obtain the next state, s’. The algorithm then obtains the
transitions that are enabled in s’. At this point, a selection
criteria can be used to remove some enabled transitions from
the enabled set.

The core part of the algorithm is the call to the func-
tion partitionPrioritized in line 33. This function parti-
tions the enabled transitions into those that CAPP prior-
itizes for the current iteration and those it postpones for
the next iteration, which it adds to toExplore and nextTo-

Explore, respectively. The partitioning is configured by the
prioritization mode and the ICP match mode, described in
Section 3.2.1. At the end of the main exploration loop, the
algorithm checks whether the toExplore set is empty; if so,
the transitions from the nextToExplore set are moved into
the toExplore set to begin the next iteration of the CAPP
exploration. This is repeated until the entire state space has
been explored. However, it would be also possible to stop
the loop after one or more iterations, which would result in
selection rather than prioritization of schedules.

3.2.1 Modes

The algorithm takes two parameters, for the prioritization
mode and for the ICP match mode. The prioritization mode

1 // Parameters
2 enum PrioritizationMode { BASIC, ALL, SOME }
3 enum ICPMatchMode { CLASS, CLASS ON STACK,
4 METHOD, METHOD ON STACK,
5 LINE, LINE ON STACK, FIELD }
6 PrioritizationMode pMode;
7 ICPMatchMode mMode;
8 // Exploration state
9 class Tran { State state; Thread thread; }

10 Set〈Tran〉 toExplore; Set〈Tran〉 nextToExplore; Set〈State〉 explored;
11 // Inputs
12 Test test; Set〈ICP〉 impactedCodePoints;
13 PassOrFail explore() {
14 initializeExploration(test);
15 return performExploration();
16 }
17 void initializeExploration() {
18 State sinit = initial state for test;
19 toExplore = {Tran(sinit, t) | t ∈ enabledThreads(sinit)};
20 nextToExplore = explored = {};
21 }
22 PassOrFail performExploration() {
23 while (toExplore 6= {}) {
24 Tran current = pickOne(toExplore);
25 toExplore = toExplore − { current };
26 restore current.state;
27 State s’ = execute current.thread on current.state;
28 if (s’ /∈ explored) {
29 if (s’ is errorState) return FAIL;
30 Set〈Tran〉 enabled = {Tran(s’, t’) | t’ ∈ enabledThreads(s’)};
31 enabled = enabled − trans that satisfy some pruning condition

such as partial order reduction;
32 Set〈Tran〉 prioritized
33 = partitionPrioritized(enabled, current.thread);
34 toExplore = toExplore ∪ prioritized;
35 nextToExplore = nextToExplore ∪ ( enabled − prioritized );
36 if (STATEFUL) explored = explored ∪ { s’ };
37 }
38 if (toExplore == {}) {
39 toExplore = nextToExplore;
40 nextToExplore = {};
41 }
42 }
43 return PASS;
44 }
45 Set〈Tran〉 partitionPrioritized(Set〈Tran〉 trans, Thread current) {
46 if (pMode == BASIC) // prioritization not performed
47 return trans;
48 if (∄ t ∈ trans : t.thread == current) // preemption not possible
49 return trans;
50 Set〈Tran〉 impacted = matchICPs(trans);
51 if (pMode == ALL)
52 if (impacted == trans) return trans;
53 else return { pickOne(trans − impacted) };
54 else // (pMode == SOME)
55 if (impacted 6= {}) return trans;
56 else return { t ∈ trans | t.thread == current };
57 }
58 Set〈Tran〉 matchICPs(Set〈Tran〉 trans) {
59 Set〈Tran〉 matches = {};
60 for (tran ∈ trans) {
61 Instruction pc = tran.thread.pc;
62 StackTrace st = tran.thread.stackTrace;
63 for (icp ∈ impactedCodePoints) {
64 if ((mMode == CLASS ∧ pc.cls == icp.cls)
65 ∨ (mMode == CLASS ON STACK ∧ icp.cls ∈ st)
66 ∨ (mMode == METHOD ∧ pc.〈cls, meth〉 == icp.〈cls, meth〉)
67 ∨ (mMode == METHOD ON STACK ∧ pc.〈cls, meth〉 ∈ st)
68 ∨ (mMode == LINE ∧ pc.〈cls, meth, ln〉 == icp.〈cls, meth, ln〉)
69 ∨ (mMode == LINE ON STACK ∧ pc.〈cls, meth, ln〉 ∈ st)
70 ∨ (mMode == FIELD ∧ pc.instr is fieldInstr
71 ∧ pc.〈cls, fld〉 == icp.〈cls, fld〉))
72 matches = matches ∪ { tran };
73 }
74 }
75 return matches;
76 }

Figure 4: Exploration Prioritization Algorithm



can be BASIC (no prioritization), ALL, or SOME. It stipulates
the conditions under which enabled transitions are kept for
the current iteration (or postponed for the next iteration):

ALL (A) keeps all of the transitions if they are all execut-
ing a change-impacted point in the code (as deter-
mined by the ICPs). Otherwise, if one or more transi-
tions are not executing a change-impacted point, only
one of them is kept. The intuition behind this mode
is to prioritize preemptions only among threads that
are executing change-impacted code, and to ignore the
threads that are not executing change-impacted code
until they reach such code (or become disabled).

SOME (S) keeps all of the transitions if there exists at least
one transition in the set that is executing a change-
impacted point in the code. Otherwise, if no transition
is executing a change-impacted point, only the transi-
tion of the currently executing thread is kept. The
intuition behind this mode is to prioritize preemptions
between threads that are executing change-impacted
code and other threads that are not.

Note that both modes perform prioritization only if a pre-
emption is possible, as shown in lines 48-49. If a preemp-
tion is not possible, all the enabled transitions are returned.
Also note that the prioritization mode relies on the ICP
match mode to decide which transitions/threads are execut-
ing change-impacted code.

There are seven ICP match modes that determine whether
a transition is executing changed-impacted code, based on
the impactedCodePoints set of collected ICPs. The match
modes compare the program counter (i.e., the currently ex-
ecuting line/statement that belongs to some method in some
class) and potentially stack trace (which has several program
counters based on the call chain) of a transition/thread be-
ing executed with the collected ICPs:

CLASS (C) checks if the class of the program counter matches
the class of an ICP.

CLASS_ON_STACK (CO) checks if the stack trace contains a
class specified in an ICP.

METHOD (M) checks if the method of the program counter
matches a method specified in an ICP.

METHOD_ON_STACK (MO) checks if the stack trace contains a
method specified in an ICP.

LINE (L) checks if the line matches a line specified in an
ICP.

LINE_ON_STACK (LO) checks if the stack trace contains a line
specified in an ICP.

FIELD (F) checks if a field being accessed at a program
counter (if any) matches a field specified in an ICP.

The combination of two (non-BASIC) prioritization modes
and seven ICP match modes results in 14 different heuristics
with which Change-Aware Preemption Prioritization can be
instantiated. We refer to the heuristics using the respective
ICP match mode and prioritization mode. For example, LS
is the Line Some heuristic that uses the LINE match mode
and the SOME prioritization mode, and COA is the Class On-
stack All heuristic that uses the CLASS_ON_STACK match mode
and the ALL prioritization mode.

4. EVALUATION
The motivation behind CAPP is to reduce the exploration

required to detect multithreaded regression faults. We de-
signed and performed experiments to determine whether
CAPP heuristics can indeed reduce the exploration cost to
detect such faults. We also compare the heuristics and an-
alyze their effectiveness across stateful/stateless exploration
and default/randomized search orders. The evaluation was
conducted in the context of 15 multithreaded faults from
a set of Java programs. We next present the implementa-
tions of CAPP that we use in the experiments, the artifacts
on which we performed the experiments, the experimental
setup, analysis of the results, and threats to validity.

4.1 Implementations
We implemented CAPP, along with all its heuristics, in

two frameworks for systematic exploration of multithreaded
Java programs, Java PathFinder (JPF) and ReEx. JPF is a
widely used, stateful model checker for Java programs [36].
We implemented CAPP in JPF by customizing the existing
SimplePrioritySearch to prioritize the search using CAPP.
ReEx is a stateless exploration framework for Java programs
that we developed using bytecode instrumentation. We de-
veloped a custom SchedulingStrategy in ReEx to control the
search order using CAPP. The basic search strategy in JPF
is (unbounded) depth first, while in ReEx it is the iterative
context bounded from CHESS (with bound of 2) [25].

4.2 Artifacts
We conducted our experiments on 15 multithreaded faults

in Java programs. Table 1 provides more information about
each of the faults and the programs in which those faults
were detected. For each of the faults, we collected two ver-
sions of the program, a correct version without the fault and
a buggy version with the fault. For each of the faults, we
also collected a multithreaded test that passed on the cor-
rect version and failed on the buggy version. For many of
the programs such a test was included in the test suite. In
cases where such a test was not available, we created the
appropriate test based on the information gained from the
corresponding bug report. Further, some of the tests pro-
vided with the programs could be configured with the num-
ber of threads to be used. In such instances, we used a small
number of threads that revealed the fault. This is in line
with standard practice; developers are usually encouraged
to write simple unit tests that check a particular property.
It is also the rationale behind techniques like CHESS [25]
which detects faults with the smallest number of possible
preemptions.

The statistics shown in Table 1 are for the buggy version
of the programs on which the experiments were conducted.
The correct versions were only used to obtain the initial diffs
from which the ICPs for the buggy version were computed.
The first 8 programs and their faults were obtained from
the Software Infrastructure Repository (SIR) [11]. Each of
these programs had one fault. We asked two graduate stu-
dents to fix these faults to obtain the correct versions. The
remaining 7 faults were obtained from various open-source
Java projects. The correct and buggy versions for these
faults were obtained from the respective project’s source
repository. The programs vary in size from 52 to 54,872
lines of code, and the size of the changes between the buggy
and fixed versions ranges from 2 to 201 ICPs. The table



Table 1: Subject Regression Faults and Programs Statistics
Source Error #Threads #Classes #Methods SLOC #ICP

Airline [35] Assertion violation 6 2 18 136 6
Allocation [35] Assertion violation 3 3 22 209 5
BoundedBuffer [35] Deadlock 9 5 10 110 2
BubbleSort [35] Assertion violation 4 3 15 89 4
Deadlock [35] Deadlock 3 4 4 52 3
ReadersWriters [35] Deadlock 5 6 19 154 2
ReplWorkers [35] Deadlock 3 14 45 432 2
RAXextended [35] Assertion violation 6 11 23 166 2
Groovy [32] Deadlock 3 607 6399 54872 60
Lang [2] Assertion violation 3 215 4422 48369 3
Mina [1] Assertion violation 3 341 3188 34804 36
Pool1 [3] Assertion violation 3 51 688 10042 148
Pool2 [4] Assertion violation 3 35 371 4473 201
Pool3 [5] Deadlock 2 51 706 10802 29
Pool4 unreported fault Deadlock 3 51 705 10783 47

also shows the type of error that was detected in each pro-
gram. The assertion violations detected were all caused by
dataraces or atomicity violations.

4.3 Setup
We conducted two sets of experiments with each imple-

mentation of CAPP. The first set of experiments measure the
savings in terms of exploration cost that is achieved by us-
ing the CAPP heuristics compared to the basic exploration
strategy of the respective exploration framework. Note that
the basic exploration strategy naturally imposes a particular
default search order on one exploration, e.g., in JPF depth-
first strategy explores transitions enabled from a state in the
order of the thread id of the transitions. However, a previ-
ous study has shown that exploration savings attributed to
heuristics are often a function of the search order rather than
the heuristic itself [13]. To evaluate the effect of the search
order, we conducted a second set of experiments with ran-
domized search orders. For these experiments, we chose 50
random seeds and, for each seed, performed a randomized
depth-first search similar to [12] for basic and heuristic ex-
plorations. In total we performed 19,890 explorations which
required about a month of computing time to complete.

Note that not all of the artifacts could be used for both
frameworks. Specifically, Mina could not be explored using
JPF since it uses networking libraries that are currently not
modeled by JPF. Also, ReplWorkers, RAXextended, and
ReadersWriters could not be explored using ReEx since they
are reactive programs where a re-execution/schedule can po-
tentially run infinitely. ReEx currently does not support
exploring such programs.

4.4 Measures
Because the experiments were conducted on multiple com-

puters with different configurations (some experiments were
performed on compute clusters), we do not measure explo-
ration cost in real time. This is consistent with previous
studies on exploration costs [12,13,38]. Instead, we measure
the costs of exploration in terms of the number of transitions
(new states + visited states - 1) for JPF and the number of
schedules (re-executions) for ReEx.

Note that CAPP prioritization does increase somewhat
the per-transition or per-schedule real time cost compared
to no prioritization, because CAPP checks for an ICP match
(function matchICPs in Figure 4). However, for all modes
without ON_STACK, this check can be rather cheap as it only
compares the current program counter with a set of collected

ICPs. In fact, the info can be statically pre-computed and
each bytecode labeled with a boolean that indicates whether
it is an ICP or not; the dynamic match then just checks the
value of one boolean variable. For the modes with ON_STACK,
the check is more expensive as it needs to maintain a stack
of values and to compare the current program counter in-
formation with those values. Our current CAPP prototypes
do not optimize these checks but follow the pseudo-code in
Figure 4 fairly directly.

The additional cost of CAPP over no prioritization is the
static analysis for collecting ICPs. Yet again, our proto-
type does not attempt to minimize this cost, but it can be
made rather negligible compared to the cost of exploration
of numerous schedules for many multithreaded tests.

4.5 Results for Default Search Order
We next present and analyze the results of the first set of

experiments measuring the savings in exploration that can
be achieved by using various CAPP heuristics with the de-
fault search order. Tables 2 and 3 show the results. The
second columns of the tables show the number of transi-
tions/schedules required to detect the fault using the basic,
change-unaware exploration provided by JPF/ReEx. The
following columns show the speedup (if greater than 1.0) or
slowdown (if less than 1.0) obtained by the various CAPP
heuristics compared to the basic exploration. The highest
speedup achieved for the detection of each fault is high-
lighted. The last row in both tables shows the geometric
mean of the speedups achieved by the various CAPP heuris-
tics for all the faults. Recall from Section 3 that the heuristic
acronyms are built using the ICP match mode and the pri-
oritization mode that define the heuristic. For example the
Line On-stack Some (LOS) heuristic uses the LINE_ON_STACK

ICP match mode and the SOME prioritization mode. We use
the results presented in these tables to address the first three
research questions presented in Section 1.

4.5.1 RQ1: Exploration Cost

For stateful JPF exploration, the average reductions in
exploration cost range from 1.0x for COS and MOS to 2.7x
for MA, with the only average cost increases being 0.8x for
LOS. For stateless ReEx exploration, the average reductions
range from 1.5x for COS to 5.3x for LOA, with no average
cost increases. Looking at individual faults, all the heuristics
reduce cost in the detection of majority of the faults. For
stateful JPF exploration, the greatest speedup of 37.8x was
obtained by COA for detecting the RAXextended fault, and



Table 2: Default search order results for JPF
Basic CA CS COA COS MA MS MOA MOS LA LS LOA LOS FA FS

Airline 1328 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 1.3 1.0

Allocation 1573 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 0.4 1.0 0.4 4.1 1.0

BoundedBuffer 1391 1.4 1.1 1.4 1.0 1.4 1.1 1.4 1.0 1.8 1.5 0.9 1.5 1.8 1.5

BubbleSort 3880 1.2 1.0 1.2 1.0 0.9 1.1 2.6 1.0 0.9 1.1 2.6 1.0 3.2 1.1

Deadlock 81 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.5 3.5 1.8

ReadersWriters 1545 1.1 0.7 1.0 1.0 3.4 0.3 3.0 0.3 1.3 0.4 1.3 0.4 3.3 0.2

ReplWorkers 5003 0.8 1.2 7.4 1.2 7.0 1.3 6.8 1.2 7.9 4.8 7.9 4.8 2.8 4.8

RAXextended 31987 0.6 2.9 37.8 0.8 0.6 2.9 0.6 0.8 1.1 1.9 1.1 0.5 1.7 5.9

Groovy 6721 11.6 1.0 11.6 1.0 11.6 1.0 11.6 1.0 11.6 1.0 11.6 1.0 11.6 1.0

Lang 1268 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.7 1.8 1.7 1.8 1.5 1.1

Pool1 2978 6.6 2.0 2.8 1.0 7.2 2.3 2.8 1.0 1.2 2.2 1.2 1.9 1.0 0.7

Pool2 5077 6.4 1.4 3.1 1.0 8.7 4.9 3.1 1.0 29.4 6.7 35.5 1.1 1.4 2.7

Pool3 507 2.6 1.2 1.6 1.0 1.8 1.2 1.8 1.0 2.6 0.2 2.6 0.02 5.1 0.3

Pool4 9327 4.8 1.8 2.9 1.0 30.0 8.3 15.0 2.8 0.8 1.5 1.0 1.4 0.8 9.8

Geom. Mean 1.9 1.2 2.4 1.0 2.7 1.4 2.4 1.0 2.0 1.2 2.2 0.8 2.4 1.4

Table 3: Default search order results for ReEx
Basic CA CS COA COS MA MS MOA MOS LA LS LOA LOS FA FS

Airline 44312 1.0 1.0 1.0 1.0 13.4 1.0 13.5 1.0 13.4 1.0 13.5 1.0 2.2 1.0

Allocation 4101 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.6 0.4 0.6 512.6 1.0

BoundedBuffer 1329 22.2 4.5 22.2 4.5 22.2 4.5 22.2 4.5 34.1 4.5 34.1 4.5 13.3 4.5

BubbleSort 5179 1294.8 1.1 1294.8 1.1 1294.8 1.1 1294.8 1.1 1294.8 1.1 1294.8 1.1 1294.8 1.1

Deadlock 6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 0.8 1.2 0.8 1.5 2.0

Groovy 19 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 0.6 0.7

Lang 9 2.3 3.0 2.3 3.0 2.3 3.0 2.3 3.0 2.3 3.0 2.3 3.0 2.3 3.0

Mina 58 0.6 3.1 0.9 2.9 0.7 2.6 0.6 3.9 0.7 2.6 11.6 8.3 0.6 3.1

Pool1 6463 4.4 8.7 1.2 8.0 30.6 22.6 1.2 8.0 119.7 113.4 10.6 22.0 1.3 8.0

Pool2 98 0.3 1.2 0.1 1.3 0.4 1.4 0.1 1.3 16.3 3.6 12.3 1.6 2.3 8.2

Pool3 2 2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.5 1.0

Pool4 13593 6.3 15.7 2.0 1.1 17.8 31.9 121.4 16.1 1.0 15.3 1.0 0.9 1.1 199.9

Geom. Mean 3.1 1.9 2.3 1.5 5.1 2.1 3.8 1.9 5.1 2.4 5.3 1.7 4.3 3.1

the greatest slowdown of 0.02x was obtained by LOS for de-
tecting the Pool3 fault. For stateless ReEx exploration, the
greatest speedup of 1294.8x was obtained by the ALL priori-
tization mode based heuristics for detecting the BubbleSort
fault, and the greatest slowdown of 0.1x was obtained by
MOA for detecting the Pool2 fault.

The CAPP heuristics do reduce exploration costs on
average, ranging from 1.0x to 5.3x. Only 1 instance (out
of 28) increase costs on average with 0.8x.

4.5.2 RQ2: Comparison of Heuristics

For JPF, grouping the heuristics by the ICP match mode,
METHOD heuristics perform the best, followed by FIELD heuris-
tics, and only the METHOD_ON_STACK and LINE_ON_STACK heuris-
tics have average slowdowns. For ReEx, LINE heuristics per-
form the best, followed by FIELD heuristics, with the worst
being CLASS_ON_STACK heuristics. Grouping the heuristics by
prioritization mode, each ALL heuristic outperforms its cor-
responding SOME heuristic for both JPF and ReEx.

Heuristics based on the FIELD ICP match mode per-
form better than heuristics based on the other ICP match
modes. Heuristics based on the ALL prioritization mode
perform better than heuristics based on the SOME priori-
tization mode.

4.5.3 RQ3: Stateful vs Stateless Exploration

The CAPP heuristics achieve speedups for both stateful
and stateless explorations, but on average the speedups are
greater for stateless exploration. There are also a few other
differences between the performance of the heuristics across
stateful and stateless exploration. While MA (with 2.7x
speedup) is the best heuristic on average for stateful ex-
ploration, LOA (with 5.3x speedup) is the best heuristic

on average for stateless exploration. While stateful explo-
ration has two heuristics with average slowdowns (MOS and
LOS), none of the stateless heuristics have average slow-
down. Grouping the heuristics by prioritization mode, the
ALL heuristics outperform the corresponding SOME heuristics
for both stateful and stateless exploration. However, group-
ing heuristics by ICP match mode, METHOD is the best for
stateful exploration, while LINE is the best for stateless ex-
ploration. FIELD performs consistently well for both stateful
and stateless exploration.

The CAPP heuristics achieve greater reduction in ex-
ploration costs for stateless exploration. ALL and FIELD

heuristics perform well for both stateful and stateless ex-
ploration.

While the default strategy in JPF is depth-first search
(DFS), we also evaluated CAPP with the breadth-first search
(BFS) strategy. The absolute numbers of transitions re-
quired to detect the faults were orders of magnitude larger
for BFS than for DFS. However, BFS with the CAPP heuris-
tics still performed better than Basic BFS and, in fact,
achieved around twice as high average cost reduction than
achieved for DFS with CAPP over Basic DFS.

4.6 Results for Randomized Search Order
Tables 4 and 5 show the results of the second set of ex-

periments with 50 seeds that randomize the default search
order [12]. For each fault, we show box plots for the ran-
domized basic and randomized CAPP heuristic explorations,
comparing the distributions of transitions/schedules that are
explored to detect the fault. Each box plot shows the me-
dian, upper and lower quartile values, the max and min
values not outside the 1.5 times inter-quartile range from
their quartile values, and the outliers outside that range.
Note that each y-axis is normalized such that the 100 mark
is the median of the randomized basic exploration, and all



Table 4: Randomized search order results for JPF
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other values are divided by that median. We also include
a reference line (Default) that shows the number of tran-
sitions/schedules that the basic exploration with the (non-
randomized) default search order explored to detect the fault
(i.e., the values from the second column of tables 2 and 3);
when the line is missing, it is above the limit. Following the
methodology recommended by Arcuri and Briand [6], we
performed pairwise Mann-Whitney U tests and computed

Vargha and Delaney’s Â12 non-parametric effect size mea-
sure to compare the random search order result distributions
for each of the heuristics with basic. Tables 6 and 7 show
the computed p-values and Â12 values.

4.6.1 RQ4: Default vs Random Search Order

A heuristic can be considered to perform better than basic
with high confidence if its p-value is less than 0.05 and its



Table 5: Randomized search order results for ReEx
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Â12 is greater than 0.5. As noticed with the default search
order, majority of the heuristics for both stateful JPF and
stateless ReEx exploration do perform better than basic.
The best heuristics for JPF (MA) and ReEx (LOA) with
the default search order, continue to be the best for random
search order. Grouping heuristics by the ICP match mode,
METHOD_ON_STACK and LINE_ON_STACK heuristics perform well
for JPF, and LINE heuristics perform well for ReEx, which
is contrary to the default search order results. Grouping
heuristics by prioritization mode, ALL heuristics continue to
do better than SOME heuristics..

The results for random search order confirm all the
results for default search order (e.g., in terms of best
heuristics and best prioritization modes), except that the
ICP match modes that are the best for default search
order are not the best for random search order.

4.7 Threats to Validity
Internal threats We conducted our experiments using

the default settings of JPF (version 5.0pre2) and ReEx sys-
tematic exploration frameworks. During the course of our
study, we found two bugs in JPF, which we have corrected
on our local copy. To the best of our knowledge, there are no
other bugs in the frameworks that would affect our results.
However, changing the settings could affect the results.

External threats The artifacts that we perform our ex-
periments on were collected from a variety of sources and are
diverse in terms of the statistics that we show in Table 1.
The artifacts that we collected from SIR [35] have all been
used in previous experiments, and the other artifacts are
from widely used open-source projects. However, we cannot
guarantee that they form a representative sample of multi-
threaded Java programs. To mitigate the limitation of using
one particular exploration framework and search order, we
evaluated CAPP with two different exploration frameworks,



Table 6: Summary of randomized search order results for JPF
CA CS COA COS MA MS MOA MOS LA LS LOA LOS FA FS

p-value 0.0661 0.0655 0.0283 0.0607 0.0001 0.2181 0.0001 0.0161 0.0001 0.0703 0.0001 0.0351 0.0046 0.0007

Â12 0.5306 0.5307 0.5365 0.5313 0.6411 0.5205 0.6082 0.5401 0.6299 0.5302 0.6109 0.5351 0.5471 0.5563

Table 7: Summary of randomized search order results for ReEx
CA CS COA COS MA MS MOA MOS LA LS LOA LOS FA FS

p-value 0.0249 0.5653 0.0267 0.1095 0.0054 0.0947 0.0025 0.6015 0.0012 0.0012 0.0001 0.0001 0.4769 0.1770

Â12 0.5346 0.4911 0.5342 0.4752 0.5430 0.5258 0.5467 0.4920 0.5499 0.4499 0.5594 0.4296 0.4890 0.4792

with both default and randomized search orders, and with
both DFS and BFS for JPF.

Construct threats In our evaluation, we use the num-
ber of transitions (for JPF) and the number of schedules
(for ReEx) as the measures for exploration cost instead of
the real execution time. The reason for this was three fold.
First, we performed our experiments across multiple com-
puters with various hardware configurations, hence measur-
ing real execution time across computers would not be a
robust measure. Second, previous related studies [12,13,38]
also use abstract, system-independent measures, such as the
number of new states, which correlate with real time. Third,
our CAPP prototypes do not optimize for speed as our goal
was to evaluate the algorithms before focusing on the imple-
mentation.

Conclusion threats The number of random explorations
(50) that we performed for each artifact and heuristic may
not be sufficient to accurately characterize real distribution
of the random explorations.

5. RELATED WORK
Many techniques have been developed for improving re-

gression testing of sequential code. Test selection [17, 37]
techniques choose to run only a subset of tests on the new
program version. The key challenge is to perform safe selec-
tion [28], i.e., guarantee that tests that are not selected will
not reveal faults. Test prioritization [14, 20, 33, 40] reorders
(all or only selected) tests to reveal faults faster, thus reduc-
ing the time that a developer has to wait to find failing tests.
Impact analysis [26, 27, 33] finds (statically or dynamically)
which code changes could affect which tests, thus aiding test
selection or debugging by pointing out which changes could
(not) lead to failing tests. These techniques work well for
selecting/prioritizing among sequential tests, which are typ-
ically short running. However, multithreaded tests are typi-
cally long running because they are explored for many differ-
ent schedules. Hence, when a regression test suite contains
multithreaded tests, selecting/prioritizing schedules within
one test becomes an issue. While the exploration of mul-
tiple tests can be easily parallelized, efficiently parallelizing
a single exploration is very challenging (e.g., witness many
years of the PDMC workshop series). Our work prioritizes
the exploration of schedules for a single multithreaded test
to reduce the exploration required to detect a fault.

There is also a rich body of work on testing multithreaded
code but mostly with change-unaware techniques [8, 10, 15,
21,25]. Most of these techniques conceptually prioritize (or
select) schedules to be explored such that faults are found
faster (or exploration finishes faster if there are no faults),
but the prioritization does not consider code changes. We
believe that most of these techniques can be modified to be
change-aware and that it would provide faster exploration

when code evolves, but in this paper we focused on using
CHESS [25] as an example stateless technique and JPF as an
example stateful technique (with its underlying partial-order
reductions). The original work on CHESS [25] showed that
a large number of concurrent faults can be detected with a
small number of preemptions, often up to two. The follow-
up work on preemption sealing [7] employs a new scheduling
strategy that only allows preemptions around certain pro-
gram modules to enable modular testing, e.g., to speed up
testing of applications that use reliable libraries.

We know of only a few change-aware (also called incre-
mental) techniques for systematic testing. The initial work
focused on control-intensive properties in model checking [9,
18,24,31], conceptually reusing results from one run to speed
up the next run. Our ISSE technique [23] also reuses re-
sults from one run to another but for data-intensive proper-
ties of sequential, non-deterministic code. The most recent
and most related projects are on regression model checking
(RMC) [38] and improved mutation testing of multithreaded
code [16]. Both projects reuse exploration of one program
version to speed up the exploration of the next program ver-
sion. However, these projects effectively focus on selection
and attempt to only explore the states that behave differ-
ently after a change has been made. Our work differs in
that (1) CAPP focuses on prioritization, (2) CAPP does
not reuse the results from a previous exploration but only
exploits changes and their impact, and (3) our evaluation
includes real faults and not only mutants. It is likely that
exploiting previous exploration can improve CAPP even fur-
ther, and we plan to explore that in the future.

6. CONCLUSIONS AND FUTUREWORK
Multithreaded code is becoming mainstream, and test-

ing it is gaining importance. Since multithreaded code can
display different behaviors with different schedules, testing
techniques have to explore many possible schedules to detect
faults. Numerous techniques have been proposed for test-
ing multithreaded code, but most of them focus on a single
version of the program and are change-unaware. We pre-
sented Change-Aware Preemption Prioritization, the first
technique that uses change information to prioritize the ex-
ploration of a multithreaded regression test to substantially
reduce the exploration cost required to detect faults.

Encouraged by these results, we envision several lines of
future work for change-aware testing of multithreaded code.
CAPP itself can be improved by using an advanced impact
analysis to collect ICPs more precisely. Moreover, CAPP
performs only prioritization and only across schedules within
one test. The future work should consider a combination
of prioritization and selection, and it should consider tech-
niques for prioritization (and selection) across multiple mul-
tithreaded tests. Also, our current experiments consider only



one fault per code. The future techniques should be evalu-
ated in the presence of multiple faults.
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