
Trade-Os in Continuous Integration:
Assurance, Security, and Flexibility

Michael Hilton
Oregon State University, USA

mhilton@cmu.edu

Nicholas Nelson
Oregon State University, USA
nelsonni@oregonstate.edu

Timothy Tunnell
University of Illinois, USA
tunnell2@illinois.edu

Darko Marinov
University of Illinois, USA
marinov@illinois.edu

Danny Dig
Oregon State University, USA

digd@oregonstate.edu

ABSTRACT
Continuous integration (CI) systems automate the compilation,
building, and testing of software. Despite CI being a widely used
activity in software engineering, we do not know what motivates
developers to use CI, and what barriers and unmet needs they face.
Without such knowledge, developers make easily avoidable errors,
tool builders invest in the wrong direction, and researchers miss
opportunities for improving the practice of CI.

We present a qualitative study of the barriers and needs devel-
opers face when using CI. We conduct semi-structured interviews
with developers from dierent industries and development scales.
We triangulate our ndings by running two surveys. We nd that
developers face trade-os between speed and certainty (Assurance),
between better access and information security (Security), and be-
tween more conguration options and greater ease of use (Flexi-
bility). We present implications of these trade-os for developers,
tool builders, and researchers.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment; Software testing and debugging;

KEYWORDS
Continuous Integration, Automated Testing

ACM Reference Format:
Michael Hilton, Nicholas Nelson, Timothy Tunnell, DarkoMarinov, andDanny
Dig. 2017. Trade-Os in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of 2017 11th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, Paderborn, Germany, September 4–8, 2017
(ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106270

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106270

1 INTRODUCTION
Continuous integration (CI) systems automate the compilation,
building, and testing of software. CI usage is widespread throughout
the software development industry. For example, the “State of Agile”
industry survey [51], with 3,880 participants, found half of the
respondents use CI. The “State of DevOps” report [33], a survey
of over 4,600 technical professionals from around the world, nds
CI to be an indicator of “high performing IT organizations”. We
previously reported [19] that 40% of the 34,000 most popular open-
source projects on GitHub use CI, and the most popular projects
are more likely to use CI (70% of the top 500 projects).

Despite the widespread adoption of CI, there are still many unan-
swered questions about CI. In one study, Vasilescu et al. [50] show
that CI correlates with positive quality outcomes. In our previous
work [19], we examine the usage of CI among open-source projects
on GitHub, and show that projects that use CI release more fre-
quently than projects that do not. However, these studies do not
present what barriers and needs developers face when using CI, or
what trade-os developers must make when using CI.

To ll in the gaps in knowledge about developers’ use of CI,
we ask the following questions: What needs do developers have
that are unmet by their current CI system(s)? What problems have
developers experienced when conguring and using CI system(s)?
How do developers feel about using CI? Without answers to these
questions, developers can potentially nd CI more obstructive than
helpful, tool builders can implement unneeded features, and re-
searchers may not be aware of areas of CI usage that require further
examination and solutions that can further empower practitioners.

To answer these questions, we employ complementary estab-
lished research methodologies. Our primary methodology is inter-
views with 16 software developers from 14 dierent companies of
all sizes. To triangulate [15] our ndings, we deploy two surveys.
The Focused Survey samples 51 developers at Pivotal1. The Broad
Survey samples 523 participants, of which 95% are from industry,
and 70% have seven or more years of software development experi-
ence. The interviews provide the content for the surveys, and the
Focused Survey provides depth, while the Broad Survey provides
breadth. Analyzing all this data, we answer four research questions:
RQ1: What barriers do developers face when using CI? (see §4.1)
RQ2: What unmet needs do developers have with CI tools? (see §4.2)
RQ3: Why do developers use CI? (see §4.3)
RQ4: What benets do developers experience using CI? (see §4.4)

1pivotal.io

197

https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig

Based on our ndings, we identify three trade-os developers
face when using CI. Other researchers [32, 34, 53] have identied
similar trade-os in dierent domains. We name these trade-os
Assurance, Security, and Flexibility.

Assurance describes the trade-o between increasing the added
value that extra testing provides, and the extra cost of perform-
ing that testing. Rothermel et al. [34] identify this trade-o as a
motivation for test prioritization.

Security describes the trade-o between increased security mea-
sures, and the ability to access and modify the CI system as needed.
Post and Kagan [32] found a third of knowledge workers report
security restrictions hinder their ability to perform their jobs. We
observe this issue also applies to CI users.

Flexibility describes the trade-o that occurs when developers
want systems that are both powerful and highly congurable, yet
at the same time, they want those systems to be simple and easy to
use. Xu et al. [53] identify the costs of over-congurable systems
and found that these systems severely hinder usability. We also
observe the tension from this trade-o among developers using CI.

In the context of these three trade-os, we present implications
for three audiences: developers, tool builders, and researchers. For
example, developers face dicult choices about how much testing
is enough, and how to choose the right tests to run. Tool builders
should create UIs for CI users to congure their CI systems, but
these UIs should serialize congurations out to text les so that
they can be kept in version control. Researchers have much to bring
to the CI community, such as helping with fault localization and
test parallelization when using CI, and examining the security
challenges developers face when using CI.

This paper makes the following contributions:
(1) We conduct exploratory semi-structured interviews with 16
developers, then triangulate these ndings with a Focused Survey
of 51 developers at Pivotal and a Broad Survey of 523 developers
from all over the world.
(2) We provide an empirically justied set of developers’ motiva-
tions for using CI.
(3)We expose gaps between developers’ needs and existing tooling
for CI.
(4)Wepresent actionable implications that developers, tool builders,
and researchers can build on.

The interview script, code set, survey questions, and responses
can be found at http://cope.eecs.oregonstate.edu/CI_Tradeos

2 BACKGROUND
The idea of Continuous Integration (CI) was rst introduced [6]
in the context of object-oriented design: “At regular intervals, the
process of continuous integration yields executable releases that
grow in functionality at every release...” This idea was then adopted
as one of the core practices of Extreme Programming (XP) [3].

The core premise of CI, as described by Fowler [14], is that the
more often a project integrates, the better o it is. CI systems are re-
sponsible for retrieving code, collecting all dependencies, compiling
the code, and running automated tests. The system should output
“pass” or “fail” to indicate whether the CI process was successful.

We asked our interview participants to describe their CI usage
pipeline. While not all pipelines are the same, they generally share
some common elements.

Changesets are a group of changes that a developer makes to the
code. They may be a single commit, or a group of commits, but they
should be a complete change, so that after the changeset is applied,
it should not break the program.

When a CI system observes a change made by developers, this
triggers a CI event. How and when the CI is triggered is based on
how the CI is congured. One common way to trigger CI is when a
commit is pushed to a repository.

For the CI to test the code without concern for previous data or
external systems, it is important that CI runs in a clean environment.
The automated build script should be able to start with a clean
environment and build the product from scratch before executing
tests. Many developers use containers (e.g., Docker2) to implement
clean environments for builds.

An important step in the CI pipeline is conrming that the
changeset was integrated correctly into the application. One com-
mon method is a regression test suite, including unit tests and
integration tests. The CI system can also perform other analyses,
such as linting or evaluating test coverage.

The last step is to deploy the artifact. We found some develop-
ers consider deployment to be a part of CI, and others consider
continuous deployment (CD) to be a separate process.

3 METHODOLOGY
Inspired by established guidelines [24, 28, 31, 41, 48], the primary
methodologies we employ in this work are interviews with soft-
ware developers and two surveys of software developers to trian-
gulate [15] our ndings.

Interviews are a qualitative method and are eective at discover-
ing the knowledge and experiences of the participants. However,
they often have a limited sample size [41]. Surveys are a quantita-
tive technique that summarizes information over a larger sample
size and thus provides broader results. Together, they provide a
much clearer picture than either can provide alone.

We rst use interviews to elicit developers experiences and ex-
pectations when working with CI, and we build a taxonomy of
barriers, unmet needs, motivations, and experiences. We build a
survey populating the answers to each question with the results
of the interviews. We deploy this survey at Pivotal, a software and
services company, that also develops a CI system, Concourse3. To
gain an even broader understanding, we also deploy another survey
via social media. The interview script, code set, survey questions,
and the responses can be found on our companion site.

3.1 Interviews
We used semi-structured interviews “which include a mixture of
open-ended and specic questions, designed to elicit not only the in-
formation foreseen, but also unexpected types of information” [41].
We developed our interview script by performing iterative pilots.

We initially recruited participants from previous research, and
then used snowball sampling to reach more developers. We inter-
viewed 16 developers from 14 dierent companies, including large
2docker.io 3concourse.ci

198

http://cope.eecs.oregonstate.edu/CI_Tradeoffs

Trade-Os in Continuous Integration: Assurance, Security, and Flexibility ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Interview participants

Subject Exp. Domain Org. Size
S1 8 yrs. Content Platform Provider Small
S2 20 yrs. Content Platform Provider Small
S3 4 yrs. Developer Tools Large
S4 10 yrs. Framework Development Large
S5 10 yrs. Content Management Large
S6 10 yrs. Computer Security Startup Small
S7 5 yrs. Framework Development Small
S8 5 yrs. Media Platform Medium
S9 6 yrs. Language Development Medium
S10 9 yrs. CI Platform Development Medium
S11 6 yrs. Software Development Consulting Medium
S12 10 yrs. CI Platform Development Small
S13 12 yrs. Telecommunications Large
S14 5 yrs. Software Development Consulting Medium
S15 2 yrs. Infrastructure Management Medium
S16 8 yrs. Cloud Software Development Medium

software companies, CI service companies, small development com-
panies, a telecommunications company, and software consultants.
Our participants had over eight years of development experience
on average. We assigned each participant a subject number (Ta-
ble 1). They all used CI, and a variety of CI systems, including
Concourse4, Jenkins5, TravisCI6, CruiseControl.NET7, CircleCI8,
TeamCity8, XCode Bots9, Buildbot10, Wercker11, appVeyor12, and
proprietary CI systems. Each interview lasted between 30 and 60
minutes, and the participants were oered a US$50 Amazon gift
card for participating.

The interviews were based on the research questions presented
in Section 1. The following are some examples of the questions that
we asked in the interview:
• Tell me about the last time you used CI.
• What tasks prompt you to interact with your CI tools?
• Comparing projects that do use CI with those that don’t,
what dierences have you observed?
• What, if anything, would you like to change about your
current CI system?

We coded the interviews using established guidelines from the
literature [35] and followed the guidance from Campbell et al. [7]
on specic issues related to coding semi-structured interview data,
such as segmentation, codebook evolution, and coder agreement.

The rst author segmented the transcript from each interview
by units of meaning [7]. The rst two authors then collaborated on
coding the segmented interviews, using the negotiated agreement
technique to achieve agreement [7]. Negotiated agreement is a tech-
nique where both researchers code a single transcript and discuss
their disagreements in an eort to reconcile them before continuing
on. We coded the rst eight interviews together using this negoti-
ated agreement technique. Because agreement is negotiated along
the way, there is no inter-rater agreement number. After the eighth
interview, the rst and second author independently coded the re-
maining interviews. Our nal codebook contained 25 codes divided

4concourse.ci 5jenkins.io 6travis-ci.org 7cruisecontrolnet.org
8circleci.com 8jetbrains.com/teamcity 9developer.apple.com/xcode 10buildbot.net
11wercker.com 12appveyor.com

into 4 groups: demographics, systems/tools, process, and human
CI interaction. The full codeset is available on our companion site.

3.2 Survey
We created a survey with 21 questions to quantify the ndings from
our semi-structured interviews. The questions for the survey were
created to answer our research questions, focusing on what benets,
barriers, and unmet needs developers have when using CI.

The survey consisted of multiple choice questions, with a nal
open-ended text eld to allow participants to share any additional
information about CI. The answers for these multiple choice ques-
tions were populated from the answers given by interview partici-
pants. We ensured completeness by including an “other” eld where
appropriate. To prevent biasing our participants, we randomized
the order of answers in multiple-choice questions.
Focused Population We deployed our survey to a focused popula-
tion of developers at Pivotal. Pivotal embraces agile development
and also sponsors the development of Concourse CI. We sent our
survey via email to 294 developers at Pivotal, and we collected 51
responses for a response rate of 17.3%. All respondents from Pivotal
reported using CI.
Broad Population We believe there are many voices among soft-
ware developers, and we wanted to hear from as many of them as
possible. We chose our sampling method for the Broad Survey to
reach as many developers as possible. We recruited participants
by advertising our survey on social media (Facebook, Twitter, and
reddit). As with all survey approaches, we were forced to make cer-
tain concessions [5]. When recruiting participants online, we can
reach larger numbers of respondents, but in doing so, results suer
self-selection bias. To maximize participation, we followed guide-
lines from the literature [42], including keeping the survey short
and raing one US$50 Amazon gift card to survey participants.

We collected 523 complete responses, and a total of 691 survey
responses, from over 30 countries. Over 50% of our participants had
over 10 years of software development experience, and over 80%
had over 4 years experience.

4 ANALYSIS OF RESULTS
4.1 Barriers
We answer What barriers do developers face when using CI? (RQ1)

We collected a list of barriers which prevent of hinder adoption
and use of CI that our interview participants reported experiencing
when using CI. We asked our survey participants to select up to
three problems that they had experienced. If they had experienced
more than three, we asked them to choose the three most common.
B1 Troubleshooting a CI build failure. When a CI build fails,
some participants begin the process of identifying why the build
failed. Sometimes, this can be fairly straightforward. However, for
some build failures on the CI server, where the developer does
not have the same access as they have when debugging locally,
troubleshooting the failure can be quite challenging. S4 described
one such situation:

If I get lucky, I can spot the cause of the problem right from the
results from the Jenkins reports, and if not, then it becomes
more complicated.

199

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig

Table 2: Barriers developers encounter when using CI

Barrier Broad Focused
B1 Troubleshooting a CI build failure 50% 64%
B2 Overly long build times 38% 50%
B3 Automating the build process 34% 26%
B4 Lack of support for the desired workow 31% 42%
B5 Setting up a CI server or service 27% 29%
B6 Maintaining a CI server or service 27% 40%
B7 Lack of tool integration 26% 12%
B8 Security and access controls 21% 14%

One way tool makers have tried to help developers is via bet-
ter logging and storing test artifacts to make it easier to examine
failures. One participant described how they use Sauce Labs13, a
service for automated testing of web pages, in conjunction with
their CI. When a test fails on Sauce Labs, there is a recording that
the developers can watch to determine exactly how their test failed.
Another participant described how Wercker saves a container from
each CI run, so one can download the container and run the code
in the container to debug a failed test.
B2 Overly long build times. Because CI must conrm that the
current changeset is integrated correctly, it must build the code and
run automated tests. This is a blocking step for developers, because
they do not want to accept the changeset until they can be certain
that it will not break the build. If this blocking step becomes too long,
it reduces developers’ productivity. Many interview participants
reported that their build times slowly grow over time, e.g., according
to S10:

Absolutely [our build times grow over time]. Worst case sce-
nario it creeps with added dependencies, and added sloppy
tests, and too much I/O. That’s the worst case scenario for me,
when it is a slow creep.

Other participants told us they had seen build times increase
because of bugs in their build tools, problems with caching, depen-
dency issues during the build process, and adding dierent styles
of tests (e.g., acceptance tests) to the CI builds.

Figure 1: Maximum acceptable build time (minutes)

To dig a little deeper, we examined in-depth what developers
meant by overly long build times. S9 said:

My favorite way of thinking about build time is basically, you
have tea time, lunch time, or bedtime. Your builds should run
in like, 5-ish minutes, however long it takes to go get a cup
of coee, or in 40 minutes to 1.5 hours, however long it takes
to go get lunch, or in 8-ish hours, however long it takes to go
and come back the next day.

13saucelabs.com

Fowler [14] suggests most projects should try to follow the XP
guideline of a 10-minute build. When we asked our Broad Survey
participants what is the maximum acceptable time for a CI build to
take, the most common answer was also 10 minutes, as shown in
Figure 1.

Many of our interview participants reported having spent time
and eort reducing the build time for their CI process. S15 said:

[When the build takes too long to run], we start to evaluate the
tests, and what do we need to do to speed up the environment
to run through more tests in the given amount of time. ...
Mostly I feel that CI isn’t very useful if it takes too long to get
the feedback.

When we asked our survey participants, 96% of Focused Survey
participants and 78% of Broad Survey participants said they had
actively worked to reduce their build times. This shows long build
times are a common barrier faced by developers using CI.
B3 Automating the build process. CI systems automate the man-
ual process that developers previously followed when building and
testing their code. The migration of these manual processes to au-
tomated builds requires that developers commit time and resources
before the benets of CI can be realized.
B4 Lack of support for the desired workflow. Interview partici-
pants told us that CI tools are often designed with a specic work-
ow in mind. When using a tool to implement a CI process, it can
be dicult to use if one is trying to use a dierent workow than
the one for which the tool was designed. For example, when asked
how easy it is to use CI tools, S2 said:

Umm, I guess it really depends on how well you adopt their
workow. Forme that’s been themost obvious thing. ... As soon
as you want to adopt a slightly dierent branching strategy
or whatever else, it’s a complete nightmare.

B5 Maintaining a CI server or service. This barrier is similar to
N1 Easier conguration of CI servers or services; see section 4.2.
B6 Seing up a CI server or service. For our interview partic-
ipants, setting up a CI server was not a concern when writing
open-source code, as they can easily use one of several CI services
available for free to open-source projects. We found that large com-
mercial projects, while very complex, often have the resources to
hire dedicated personnel to manage their CI pipeline. However, de-
velopers on small proprietary projects do not have the resources to
aord CI as a service, nor do they have the hardware and expertise
needed to setup CI locally. S9, who develops an app available on
the Apple App Store, said:

[Setup] took too much time. All these tools are oriented to
server setups, so I think it’s very natural if you are running
them on a server, but it’s not so natural if you are running
them on your personal computer. ... this makes a lot of friction
if you want to set [CI] up on your laptop.

Additionally, in the comments section of our survey, we received
several comments on this issue, for example:

[We need] CI for small scale individual developers! We need
better options IMO.

While some of these concerns can be addressed by tool builders
creating tools targeted for smaller scale developers, more research
is needed to determine how project size impacts the usage of CI.

200

Trade-Os in Continuous Integration: Assurance, Security, and Flexibility ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 3: Developer needs unmet by CI

Need Broad Focused
N1 Easier conguration of CI servers or services 52% 32%
N2 Better tool integration 38% 17%
N3 Better container/virtualization support 37% 27%
N4 Debugging assistance 30% 30%
N5 User interfaces for modifying CI congurations 29% 20%
N6 Better notications from CI servers or services 22% 25%
N7 Better security and access controls 16% 32%

B7 Lack of tool integration. This barrier is similar to N2 Better
tool integration; see section 4.2.
B8 Security and access controls. Because CI pipelines have access
to the entire source code of a given project, security and access
controls are vitally important. For CI pipelines that exist entirely
inside of a company rewall, this may not be as much of a concern,
but for projects using CI as a service, this can be a major issue. For
developers working on company driven open-source projects, this
can also be a concern. S9 said:

depending on your project, you may have an open-source
project, but secrets living on or near your CI system.
Conguring the security and access controls is vital to protecting

those secrets. S16, who uses CI as a service, described how their
project uses a secure environment variable (SEV) to authenticate
a browser-based testing service with their CI. Maintaining the
security of SEVs is a signicant concern in their project.

Observation

Developers encounter increased complexity, increased time
costs, and new security concerns when working with CI.
Many of these issues are side-eects of implementing new CI
features such as more congurability, more rigorous testing,
and greater access to the development pipeline.

4.2 Needs
We next answerWhat unmet needs do developers have with CI tools?
(RQ2) In addition to describing problems they encounter when
using CI, our interview participants also described gaps where CI
was not meeting their needs.
N1 Easier conguration of CI servers or services. While many
CI tools oer a great deal of exibility in how they can be used, this
exibility can require a large amount of conguration even for a
simple workow. From our interviews, we nd that developers for
large software companies rely on the CI engineers to ensure that the
conguration is correct, and to help instantiate new congurations.
Open-source developers often use CI as a service, which allows for
a much simpler conguration. However, for developers trying to
congure their own CI server, this can be a substantial hurdle. S8,
who was running his own CI server, said:

The conguration and setup is costly, in time and eort, and
yeah, there is a learning curve, on how to setup Jenkins, and
setup the permissions, and the signing of certicates, and all
these things. At rst, when I didn’t know all these tools, I
would have to sort them out, and at the start, you just don’t
know...

N2 Beer tool integration. Our interview participants told us that
they would like their CI system to better integrate with other tools.
For example, S3 remarked:

It would also be cool if the CI ran more analysis on the code,
rather than just the tests. Stu like Lint, FindBugs, or it could
run bug detection tools. There are probably CIs that already
do that, but ours doesn’t.

Additionally, in our survey responses, participants added in the
“other” eld both technical problems, such as poor interoperability
between node.js and Jenkins, as well as non-technical problems,
such as “The server team will not install a CI tool for us”.
N3 Beer container/virtualization support. One core concept
in CI is that each build should be done in a clean environment, i.e.,
it should not depend on the environment containing the output
from any previous builds. Participants told us that this was very
dicult to achieve before software-based container platforms, e.g.,
Docker. However, there are still times when the build fails, and in
doing so, breaks the CI server. S15 explained:

...there will be [CI] failures, where we have to go through and
manually clean up the environment.

S3 had experienced the same issues and had resorted to building
Docker containers inside other Docker containers to ensure that
everything was cleaned up properly.
N4Debugging assistance.When asked about how they debug test
failures detected by their CI, most of our participants told us that
they get the output logs and start their search there. These output
logs can be quite large in size though, with hundreds of thousands
of lines of output, from thousands of tests. This can create quite a
challenge when trying to nd a specic failure. S7 suggested that
they would like their CI server to di the output from the previous
run and hide all the output which remained unchanged. S15, who
worked for a large company, had developed an in-house tool to do
exactly this, to help developers nd errors faster by ltering the
output to only show changes from the previous CI run.
N5 User interfaces for modifying CI congurations.Many par-
ticipants described administering their CI tools via conguration
scripts. However, participants expressed a desire to make these con-
guration les editable via a user interface, which they felt would
be easier. S3 said:

Most of the stu we are conguring could go in a UI. ... We are
not modifying heavy logic. We just go in a script and modify
some values. ... So all of the tedious stu you modify by hand
could go into a UI.

Additionally, multiple participants also added “Bad UI” as a free-
form answer to the question about problems experienced with
CI. Developers want to be able to edit their conguration les
via user interfaces, but they also want to be able to commit these
congurations to their repository. Our interview participants told
us they want to commit the congurations, because then when
they fork a repository, the CI congurations are included with the
new fork as well.
N6 Beer notications from CI servers or services. Almost all
participants had the ability to setup notications from their CI
server, but very few found them to be useful. When asked about
notications from his CI, S7 said that he will routinely receive up

201

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig

Table 4: Developers’ motivation for using CI

Motivation Broad Focused
M1 CI helps us catch bugs earlier 75% 86%
M2 CI makes us less worried about breaking our builds 72% 82%
M3 CI provides a common build environment 70% 78%
M4 CI helps us deploy more often 68% 75%
M5 CI allows faster iterations 57% 76%
M6 CI makes integration easier 57% 75%
M7 CI can enforce a specic workow 40% 51%
M8 CI allows testing across multiple platforms 29% 73%

to 20 emails from a single pull request, which he will immediately
delete. Other participants did in fact nd the notications useful,
though, including S10 who reads through them every morning, to
refresh his memory of where he left o the day before.
N7 Beer security and access controls. This need is similar to B8
Security and access controls; see section 4.1.

Observation

Developers want CI to be both a highly-congurable plat-
form, and simple to setup and maintain. This creates tension
because adding congurability increases complexity, whereas
simplication necessarily seeks to reduce complexity.

4.3 Motivations
We next answer Why do developers use CI? (RQ3) We identied
developer motivations from the interviews.
M1 CI helps catch bugs earlier. Preventing the deployment of
broken code is a major concern for developers. Finding and xing
bugs in production can be an expensive and stressful endeavor.
Kerzazi and Adams [22] reported that 50% of all post-release failures
were because of bugs. We would expect that preventing bugs from
going into production is a major concern for developers. Indeed,
many interview participants said that one of the biggest benets
of CI was that it identies bugs early on, keeping them out of the
production code. For example, S3 said:

[CI] does have a pretty big impact on [catching bugs]. It allows
us to nd issues even before they get into our main repo, ...
rather than letting bugs go unnoticed, for months, and letting
users catch them.

M2 Less worry about breaking the build. Kerzazi et al. [23] re-
ported that for one project, up to 2,300 man-hours were lost over a
six month period due to broken builds. Not surprisingly, this was
a common theme among interview participants. For instance, S3
discussed how often this happened before CI:

...and since we didn’t have CI it was a nightmare. We usually
tried to synchronize our changes, ... [but] our build used to
break two or three times a day.

S2 talked about the repercussions of breaking the build:

[When the build breaks], you gotta wait for whoever broke
it to x it. Sometimes they don’t know how, sometimes they
left for the day, sometimes they have gone on vacation for a
week. There were a lot of points at which all of us, a whole
chunk of the dev team was no longer able to be productive.

M3 Providing a common build environment. One challenge de-
velopers face is ensuring that the environment contains all depen-
dencies needed to build the software. By starting the CI process
with a clean environment, fetching all the dependencies, and then
building the code each time, developers can be assured that they
can always build their code. Several developers told us that in their
team if the code does not build on the CI server, then the build is
considered broken, regardless of how it behaves on an individual
developer’s machine. For example, S5 said:

...If it doesn’t work here (on the CI), it doesn’t matter if it
works on your machine.

M4 CI helps projects deploy more oen. Our previous work [19]
found that open-source projects that use CI deploy twice as often
as projects that do not use CI. In our interviews, developers told us
that they feel that CI helped them deploy more often. Additionally,
developers told us that CI enabled them to have shorter develop-
ment cycles than they otherwise would have, even if they did not
deploy often for business reasons. For example, S14 said:

[Every two weeks] we merge into master, and consider that
releasable. We don’t often release every sprint, because our
customer doesn’t want to. Since we are services company, not
a products company, it’s up to our customer to decide if they
want to release, but we ensure every two weeks our code is
releasable if the customer chooses to do so.

M5 CI allows faster iterations. Participants told us that running
CI for every change allows them to quickly identify when the
current changeset will break the build, or will cause problems in
some other location(s) of the codebase. Having this immediate
feedback enablesmuch faster development cycles. This speed allows
developers to make large changes quickly, without introducing a
large amount of bugs into the codebase. S15 stated:

We were able to run through up to 10 or 15 cycles a day,
running through dierent tests, to nd where we were, what
solutions needed to be where. Without being able to do that,
without that speed, and that feedback, there is no way we
could have accomplished releasing the software in the time
frame required with the quality we wanted.

M6 CI makes integration easier. Initially, CI was presented as a
way to avoid painful integrations [14]. However, while developers
do think CI makes integration easier, it is not the primary reason
that motivates developers to use CI. For many developers, they see
their VCS as the solution to dicult integrations, not the CI.
M7 Enforcing a specic workflow. Prior to CI, there was no com-
mon way for tools to enforce a specic workow (e.g., ensuring all
tests are run before accepting changes).

This is especially a concern for distributed teams, where it is
harder to overcome tooling gaps through informal communication
channels. However, with CI, not only are all the tests run on every
changeset, but everyone knows what the results are. Everyone
on the team is aware when a code breaks the tests or the builds,
without having to download the code and check the test results on
their own machine. This can help nd bugs faster and increase team
awareness, both of which are important parts of code review [2].
S16 told us that he was pretty sure that before they added CI to
their project, contributors were not running the tests routinely.

202

Trade-Os in Continuous Integration: Assurance, Security, and Flexibility ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

M8 Test across all platforms. CI allows a system to be tested on
all major platforms (Windows, Linux, and OS X), without each
environment being setup locally by each developer, e.g., S16 stated:

We are testing across more platforms now, it is not just OS X
and Linux, which is mostly what developers on projects run.
That has been useful.

Nevertheless, one survey participant responded to our open-
ended question at the end of the survey:

Simplifying CI across platforms could be easier. We currently
want to test for OS X, Linux and Windows and need to have
3 CI services.

While this is a benet already realized for some participants,
others see this as an area in which substantial improvements could
be made to CI to provide additional support.

Observation

Developers use CI to guarantee quality, consistency, and vi-
ability across dierent environments. However, adding and
maintaining automated tests causes these benets to come at
the expense of increased time and eort.

4.4 Experiences
We next answer the research questionWhat benets do developers
experience using CI? (RQ4)

Devanbu et al. [11] found that developers have strongly held be-
liefs, often based on personal experience more than research results,
and that practitioner beliefs should be given due attention. In this
section we present developers’ beliefs, gathered from interviews,
about using CI. Our results show developers are very positive about
the use of CI.

(B)
(F)

0% 25% 50% 75% 100%

More Similar Less

Figure 2: Do developers on projects with CI give
(more/similar/less) value to automated tests?
Data Sources: (B)road Survey, (F)ocused Survey

E1 Developers believe projects with CI give more value to au-
tomated tests. Several participants told us that before using CI,
although developers would write unit tests, they often would not
be run, and developers did not feel that writing tests was worth the
eort. S11 related:

Several situations I have been in, there is no CI, but there is
a test suite, and there is a vague expectation that someone is
running this test sometimes. And if you are the poor schmuck
that actually cares about tests, and you are trying to run them,
and you can’t get anything to pass, and you don’t know why,
and you are hunting around like "does anyone else actually
do this?"

However, due to the introduction of CI, developers were able to
see their tests being run for every changeset, and the whole team
becomes aware when the tests catch an error that otherwise would
have made it into the product. S16 summarized this feeling:

[CI] increases the value of tests, and makes us more likely to
write tests, to always have that check in there. [Without CI,
developers] are not always going to run the tests locally, or
you might not have the time to, if it is a larger suite.

(B)
(F)

0% 25% 50% 75% 100%

Higher Similar Lower

Figure 3: Do projects with CI have (higher/similar/lower)
test quality?
Data Sources: (B)road Survey, (F)ocused Survey

E2Developers believe projectswithCI have higher quality tests.
Interview participants told us that because projects that use CI run
their automated tests more often, and the results are visible to the
entire team, this motivates developers to write higher quality tests.

Several participants claimed that using CI resulted in higher test
coverage, which they equate with higher quality tests. For example,
S8 stated:

... We jumped the coverage from a single digit to 50% of the
code base in one year.
To conrm this, we asked the same question of survey partici-

pants. Figure 3 shows that the survey participants overwhelmingly
agree that projects with CI have higher quality tests.

(B)
(F)

0% 25% 50% 75% 100%

Higher Similar Lower

Figure 4: Do projects with CI have (higher/similar/lower)
code quality?
Data Sources: (B)road Survey, (F)ocused Survey

E3 Developers believe projects that use CI have higher code
quality. Developers believe that using CI leads to higher code
quality. By writing a good automated test suite, and running it after
every change, developers can quickly identify when they make a
change that does not behave as anticipated, or breaks some other
part of the code. S10 said:

CI for me is a very intimate part of my development process.
... I lean on it for condence in all areas. Essentially, if I don’t
have some way of measuring my test coverage, my condence
is low. ... If I don’t have at least one end-to-end test, to make
sure it runs as humans expect it to run, my condence is low.

(B)
(F)

0% 25% 50% 75% 100%

More Similar Less

Figure 5: Are developers on projects with CI
(more/similar/less) productive?
Data Sources: (B)road Survey, (F)ocused Survey

E4 Developers believe projects with CI are more productive.
According to our interview participants, CI allows developers to
focus more on being productive, and to let the CI take care of boring,
repetitive steps, which can be handled by automation. S2 said:

203

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig

It just gets so unwieldy, and trying to keep track of all those
bits and pieces that are moving around, ... [CI makes it] easier
it is for them to just focus on what they need to do.

Another reason interview participants gave for being more pro-
ductive with CI was that CI allows for faster iterations, which helps
developers be more productive. S16 said:

I think [CI] has made it easier to iterate more quickly, because
you can have more trust that you are not breaking all the
things.

Observation

Some perceived benets of CI are also benets from auto-
mated testing, test-suitemaintenance, and adherence to project
standards. However, developers attribute these benets to CI.

5 DISCUSSION
We discuss the trade-os developers face when using CI, the im-
plications of those trade-os, and the dierences between our two
surveys.

5.1 CI Trade-Os
As with any technology, developers who use CI should be aware
of the trade-os that arise when using that technology. We will
look into three trade-os that developers should be aware of when
using CI: Assurance, Security, and Flexibility.

Assurance (Speed vs Certainty): Developers must consider the
trade-o between speed and certainty. One of the benets of CI is
that it improves validation of the code (see M1, M2, and M9).

However, the certainty that code is correct comes at a price.
Building and running all these additional tests causes the CI to slow
down, which developers also considered a problem (see B2, M10).
Ensuring that their code is correctly tested, but keeping build times
manageable, is a trade-o developers must be aware of. Rothermel
et al. [34] also identify this trade-o in terms of running tests as a
motivation for test prioritization.

Security (Access vs Information Security): Information security
should be considered by all developers. Developers are concerned
about security when using CI (see B8, N7). This is important be-
cause a CI pipeline should protect the integrity of the code passing
through the pipeline, protect any sensitive information needed dur-
ing the build and test process (e.g., credentials to a database), as
well as protect the machines that are running the CI system.

However, limiting access to the CI pipeline conicts with devel-
opers’ need for better access (see B1, N4). During our interviews,
developers reported that troubleshooting CI build failures was often
dicult because they did not have the same access to code run-
ning on a CI system, as they did when running it locally on their
own machine. Providing more access may make debugging easier,
but poses challenges when trying to ensure the integrity of the CI
pipeline. Post and Kagan [32] examine this trade-o for knowledge
workers, and found security restrictions hinder a third of workers
from being able to perform their jobs.

Flexibility (Conguration vs Simplicity): Another trade-o
that developers face is between the exibility and power of highly
congurable CI systems, and the ease of use that comes from sim-
plicity. Developers wish to have more exibility in conguring and
using their CI systems (see B4, B7, N2, and N3). More exibility
increases the power of a CI system, while at the same time also
increasing its complexity.

However, the rising complexity of CI systems is also a concern
for developers (see B5, B6, N1, and N5). Developers’ needs for more
exibility directly opposes the desire for more simplicity. Xu et
al. [53] examine over-congurable systems and also found that
these systems severely hinder usability.

5.2 Implications
Each of these three trade-os leads to direct implications for devel-
opers, tool builders, and researchers.

Assurance (Speed vs Certainty)
Developers should be careful to only write tests that add value to
the project. Tests that do not provide value still consume resources
every CI build, and slow down the build process. As more tests are
written over time, build times trend upward. Teams should schedule
time for developers to maintain their test suites, where they can
perform tasks such as removing unneeded tests [40], improving the
test suite by lling in gaps in coverage, or increasing test quality.

Developers face dicult choices about the extent to which each
project should be tested, and to what extent they are willing to
slow down the build process to achieve that level of testing. Some
projects can accept speed reductions because of large, rigorous tests.
However, for other projects, it may be better to keep the test run
times faster, by only executing some of the tests. While this can
be done manually, developers should consider using advanced test
selection/minimization approaches [4, 12, 16, 20, 54].
Tool builders can support developers by creating tools that allow
developers to easily run subsets of their testing suites [54]. Helping
developers perform better test selection can trade some certainty
for speed gains.
Researchers should investigate the trade-os between speed and
certainty. Are there specic thresholds where the build duration
matters more than others? Our results suggest that developers nd
it important to keep build times under 10 minutes. Researchers
should nd ways to give the best possible feedback to developers
within 10 minutes. Another avenue for researchers is to build upon
previous work [13] using test selection and test prioritization to
make the CI process more cost eective.

Security (Access vs Information Security)
Developers should be cognizant of the security concerns that extra
access to the CI pipeline introduces. This is especially a concern
for developers inside companies where some or all of their code is
open source. One interview participant told us that they navigate
the dichotomy between security and openness by maintaining both
an internal CI server that operates behind their company rewall,
and using Travis CI externally. They cannot expose their internal
CI due to condentiality requirements, but they use external CI to

204

Trade-Os in Continuous Integration: Assurance, Security, and Flexibility ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

be taken seriously and maintain a positive relationship with the
developer community at large.
Tool Builders should provide developers with the ability to have
more access to the build pipeline, without compromising the secu-
rity of the system. One way of accomplishing this is could be to
provide ne-grained account management with dierent levels of
access, e.g., restricting less trusted accounts to view-only access of
build results, and allowing trusted accounts to have full access to
build results and management features in the CI system.
Researchers should explore the security challenges that arise
when using CI. Although CI aims at automating and simplifying
the testing and validation process, the increased infrastructure pro-
vides additional attack vectors that can be exploited. The security
implications of CI require more thorough examination by security
researchers in particular. Researchers should also examine the fea-
sibility of creating systems that allow developers to safely expose
their CI systems without compromising their security.

Flexibility (Conguration vs Simplicity)
Developers should recognize that custom development processes
bring complexity, increase maintenance costs, installation costs, etc.
They should consider adopting convention over conguration if
they want to reduce the complexity of their CI system. Developers
should strive to keep their processes as simple as possible, to avoid
adding unneeded complexity.

Developers should consider the long-term costs of highly com-
plex custom CI systems. If the CI becomes overly complex, and the
administration is not shared among a team, there is a vulnerability
to the overall long-term viability if the maintainer leaves the project.
Developers should also consider the long-term maintenance costs
when considering adding complexity to their CI pipeline.
Tool Builders must contend with developers that want expanded
UIs for managing the CI pipeline, as well as having the underly-
ing congurations be captured by version-control systems. Tool
Builders should create tools that allow for UI changes to congura-
tions, but also output those congurations in simple text les that
can be easily included in version control.
Researchers should collect empirical evidence that helps devel-
opers, who wish to reduce complexity by prioritizing convention
over conguration, to establish those conventions based on evi-
dence, not on arbitrary decisions. Researchers should develop a
series of empirically justied “best practices” for CI processes. Also,
researchers should evaluate the claims of developers who strongly
believe that CI improves test quality, and that CI makes them more
productive.

5.3 Focused (Pivotal) vs Broad Survey Results
We deployed the Focused Survey at a single company (Pivotal), and
the Broad Survey to a large population of developers using social
media. After performing both surveys, we discussed the ndings
with a manager at Pivotal, and these discussions allowed us to
develop a deeper understanding of the results.
Flaky Tests The survey deployed at Pivotal contained 4 additional
questions requested by Pivotal. One question asked developers to
report the number of CI builds failing each week due to true test

failures. Another question asked developers to estimate the num-
ber of CI builds failing due to non-deterministic (aky) tests [27].
Figure 6 shows the reported number of CI build failures because of
aky tests, as well as failures due to true test failures. There was
no signicant dierence between the two distributions (Pearson’s
Chi-squared test, p-value = 0.48), suggesting that developers ex-
perienced similar numbers of aky and true CI failures per week.
However, for the largest category, >10 fails a week, there were twice
as many aky failures as true failures.

When we discussed our ndings with the manager at Pivotal,
he indicated this was the most surprising nding. He related that
at Pivotal, they have a culture of trying to remove akiness from
tests whenever possible. That claim was supported by our survey
response, where 97.67% of Pivotal participants reported that when
they encounter a aky test, they x it. Nevertheless, our participants
reported that CI failures at Pivotal were just as likely to be caused
by aky tests as by true test failures.

True Flaky

None 3 3

1 fail 2 6

2-3 fails 11 9

4-5 fails 14 11

5-10 fails 9 6

>10 fails 4 8

Figure 6: Flaky vs True test failures reported by Pivotal de-
velopers (N=42)
Build Times Focused Survey respondents indicated that their CI
build times typically take “greater than 60 minutes”. This is in con-
trast with the “5-10 minutes” average response from respondents
in the Broad Survey. This dierence can also be observed in the ac-
ceptable build time question, in which Focused Survey respondents
selected “varies by project” most often compared to the Broad Sur-
vey respondents that selected “10 minutes” as the most commonly
acceptable build time.

Pivotal management promotes the use of CI, and its accompany-
ing automation, for as many aspects of their software development
as possible. According to the manager at Pivotal, the dierence in
responses for actual and acceptable build times can be explained
by the belief that adhering to test-driven development results in
signicantly more unit tests, but for Pivotal, the extra testing is
worth the longer CI build times. The manager also suggested that
the addition of multiple target platforms in CI builds will also nec-
essarily increase build times. Therefore, at Pivotal, while they seek
to reduce those times whenever possible, they accept longer build
times when necessary.
Maintenance Costs Focused Survey respondents reported experi-
encing “troubleshooting a CI build failure”, “overly long CI build
times”, and “maintaining a CI server or service” more often than
the Broad Survey respondents. When asked, the manager at Pivotal
indicated that they actively promote a culture of process ownership
within their development teams, so the developers are responsible
for maintaining and conguring the CI services that they use. They
also said that the CI systems they use are more powerful and com-
plex than other CI systems, resulting in a more complicated setup,
but provides more control over the build process.

205

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig

6 THREATS TO VALIDITY
Replicability Can others replicate our results? Qualitative studies
in general are very dicult to replicate. We address this threat by
conducting interviews, a focused survey at a single company, and
a large-scale survey of a broad range of developers. The interview
script, code set, survey questions, and raw data can be found on our
companion site. We cannot publish the transcripts because we told
the interview participants we would not release the transcripts.
Construct Are we asking the right questions? To answer our re-
search questions, we used semi-structured interviews [41], which
explore themes while also letting participants bring up new ideas
throughout the process. By allowing participants to have the free-
dom to bring up topics, we avoid biasing the interviews with our
preconceived ideas of CI.
Internal Did we skew the accuracy of our results with how we col-
lected and analyzed information? Interviews and surveys can be
aected by bias and inaccurate responses. These could be inten-
tional or unintentional. We gave interviewees gift cards for their
participation and oered the survey participants the chance to win
a gift card, which could bias our results. To mitigate these concerns,
we followed established guidelines in the literature [31, 39, 42] for
designing and deploying our survey. We ran iterative pilots for both
studies and the surveys, and kept the surveys as short as possible.
External Do our results generalize? By interviewing selected devel-
opers, it is not possible to understand the entire developer popu-
lation. To mitigate this, we attempted to recruit as diverse a pop-
ulation as possible, including 14 dierent companies, and a wide
variety of company size and domains. We then validate our re-
sponses using the Focused Survey with 51 responses, and the Broad
Survey with 523 responses from over 30 countries. Because Pivotal
is a company which builds CI tools, the results could be biased in
favor of CI. To mitigate this, we widely recruited participants for
the Broad Survey. However, because we recruited participants for
the Broad Survey by advertising online, our results may be aected
by self-selection bias.

7 RELATEDWORK
Continuous Integration Studies Vasilescu et al. [50] performed a
preliminary quantitative study of quality outcomes for open-source
projects using CI. Our previous work [19] presented a quantitative
study of the costs, benets, and usage of CI in open-source software.
These studies do not examine barriers or needs when using CI, nor
do they address the trade-os developers must contend with. In
contrast to these studies, we develop a deep understanding of the
the barriers and unmet needs of developers through interviews and
surveys. We also discover trade-os users face when using CI.

Debbiche et al. [10] present a case study of challenges faced by a
telecommunications company when adopting CI. They present bar-
riers from a specic company, but provide no generalized ndings
and do not address needs, experiences, or benets of CI.

Other researchers have studied ways to improve CI. Ståhl and
Bosch [44] study automated software integration, a key building
block for CI. Elbaum et al. [13] examined the use of regression test
selection techniques to increase the cost-eectiveness in CI. Vos et
al. [52] propose running CI tests even after deployment, to check
the production code. Muşlu et al. [29] ran tests continuously in

the IDE, even more often than in CI. Staples et al. [45] describe
Continuous Validation as a potential next step after CI/CD.

Other work related to CI and automated testing includes gener-
ating acceptance tests from unit tests [21], black-box test prioritiza-
tion [18], ordering of failed unit tests [17], generating automated
tests at runtime [1], and prioritizing acceptance tests [43].
Continuous Delivery Continuous Delivery (CD), the automated
deployment of software, is enabled by the use of CI. Olsson et
al. [30] performed a case study of four companies transitioning
to continuous delivery. They found some similar barriers when
transitioned to CD as we nd for CI, including automating the build
process (B3), lack of support for desired workow (B4), and lack of
tool integration (B7).

Leppänen et al. [26] conducted semi-structured interviews with
15 developers to learn more about CD. Their paper does not have
any quantitative analysis and does not claim to provide generalized
ndings. Others have studied CD and MySQL schemas [9], CD at
Facebook [37], and the tension between release speed and software
quality when doing CD [38].
Developer StudiesWe perform a study of developers to learn about
their barriers, unmet needs, motivations, and experiences. Many
other researchers have also studied developers, e.g., to learn how
DevOps handles security [49], developers’ debugging needs [25],
and how developers examine code history [8].
Automated Testing Previous work has examined the intertwined
nature of CI and automated testing. Stolberg [46] and Sumrell [47]
both provide experience reports of the eects of automating tests
during transitions to CI. Santos and Hindle [36] used Travis CI
build status as proxy for code quality.

8 CONCLUSIONS AND FUTUREWORK
Software teams use CI for many activities, including to catch errors,
make integration easier, and deploy more often. Despite the many
benets of CI, developers still encounter a wide variety of problems
with CI. We hope that this paper motivates researchers to tackle
the hard problems that developers face with CI.

For example, future work should examine the relationship be-
tween developers’ desired and actual build times when using CI.
Another area that we identied for future work is a deeper analysis
into aky tests. Flaky test identication tools could automatically
detect aky tests to help developers know if CI failures are due to
aky tests or legitimate test failures. CI is here to stay as a devel-
opment practice, and we need continuous improvement (“CI” of a
dierent kind) of CI to realize its full potential.

9 ACKNOWLEDGMENTS
We thankMartin Fowler, Brian Marick, and Joel Spolsky for promot-
ing the Broad Survey, and Matthew Kocher for all the help with the
Focused Survey at Pivotal Labs. We also thank Amin Alipour, An-
drew Begel, Souti Chattopadhyay, Mihai Codoban, Matt Hammer,
Sean McGregor, Cyrus Omar, Anita Sarma, and the anonymous
reviewers for their valuable comments on earlier versions of this
paper. This research was partially supported by NSF grants CCF-
1421503, CCF-1438982, CCF-1439957, and CCF-1553741.

206

Trade-Os in Continuous Integration: Assurance, Security, and Flexibility ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. 2011.

A Framework for Automated Testing of JavaScript Web Applications. In ICSE.
[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-

lenges of Modern Code Review. In ICSE.
[3] Kent Beck. 1999. Embracing Change with Extreme Programming. IEEE Computer

(1999).
[4] John Bible, Gregg Rothermel, and David S. Rosenblum. 2001. A Comparative

Study of Coarse- and Fine-grained Safe Regression Test-selection Techniques.
TOSEM (2001).

[5] Michael H Birnbaum. 2004. Human Research and Data Collection via the Internet.
Annual Review of Psychology (2004).

[6] Grady Booch. 1990. Object-Oriented Design with Applications. Benjamin-
Cummings Publishing Co., Inc.

[7] John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Pedersen. 2013.
Coding In-depth Semistructured Interviews: Problems of Unitization and Inter-
coder Reliability and Agreement. Sociological Methods & Research (2013).

[8] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015.
Software History Under the Lens: A Study onWhy and How Developers Examine
It. In ICSME.

[9] Michael de Jong and Arie van Deursen. 2015. Continuous Deployment and
Schema Evolution in SQL Databases. In RELENG.

[10] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. 2014. Chal-
lenges When Adopting Continuous Integration: A Case Study. In PROFES.

[11] Prem Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief & Evi-
dence in Empirical Software Engineering. In ICSE.

[12] Nima Dini, Allison Sullivan, Milos Gligoric, and Gregg Rothermel. 2016. The
Eect of Test Suite Type on Regression Test Selection. In ISSRE.

[13] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In FSE.

[14] Martin Fowler. 2006. Continuous Integration. http://martinfowler.com/articles/
continuousIntegration.html. (2006).

[15] Lisa M Given. 2008. The SAGE Encyclopedia of Qualitative Research Methods.
[16] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression

Test Selection with Dynamic File Dependencies. In ISSTA.
[17] Markus Gälli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts. 2004. Ordering

Broken Unit Tests for Focused Debugging. In ICSM.
[18] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.

2016. Comparing White-box and Black-box Test Prioritization. In ICSE.
[19] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, Costs, and Benets of Continuous Integration in Open-Source
Projects. In ASE.

[20] ShengHuang, Jun Zhu, and YuanNi. 2009. ORTS: A Tool for Optimized Regression
Testing Selection. In OOPSLA.

[21] Matthew Jorde, Sebastian Elbaum, and Matthew B. Dwyer. 2008. Increasing Test
Granularity by Aggregating Unit Tests. In ASE.

[22] Noureddine Kerzazi and Bram Adams. 2016. Botched Releases: Do We Need to
Roll Back? Empirical Study on a Commercial Web App. In SANER.

[23] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why Do Automated
Builds Break? An Empirical Study. In ICSME.

[24] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In ICSE.

[25] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
Deline, and Gina Venolia. 2013. Debugging Revisited: Toward Understanding
the Debugging Needs of Contemporary Software Developers. In ESEM.

[26] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V. Mäntylä, and Tomi Männistö. 2015. The Highways and Country Roads
to Continuous Deployment. IEEE Software (2015).

[27] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In FSE.

[28] Kıvanç Muşlu, Christian Bird, Nachiappan Nagappan, and Jacek Czerwonka. 2014.
Transition from Centralized to Decentralized Version Control Systems: A Case

Study on Reasons, Barriers, and Outcomes. In ICSE.
[29] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2015. Preventing Data Errors

with Continuous Testing. In ISSTA.
[30] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. 2012. Climbing the

"Stairway to Heaven" – A Multiple-Case Study Exploring Barriers in the Transi-
tion from Agile Development towards Continuous Deployment of Software. In
Euromicro SEAA.

[31] Shaun Phillips, Thomas Zimmermann, and Christian Bird. 2014. Understanding
and Improving Software Build Teams. In ICSE.

[32] Gerald V. Post and Albert Kagan. 2007. Evaluating Information Security Tradeos:
Restricting Access Can Interfere with User Tasks. Computers & Security (2007).

[33] Puppet and DevOps Research and Assessments (DORA). 2016. 2016 State of
DevOps Report. (2016).

[34] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In ICSM.

[35] Johnny Saldaña. 2015. The Coding Manual for Qualitative Researchers (3 ed.).
SAGE Publications.

[36] Eddie Antonio Santos and Abram Hindle. 2016. Judging a Commit by Its Cover:
Correlating Commit Message Entropy with Build Status on Travis-CI. In MSR.

[37] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous Deployment at Facebook and OANDA. In
ICSE.

[38] Gerald Schermann, Jürgen Cito, Philipp Leitner, andHarald C. Gall. 2016. Towards
Quality Gates in Continuous Delivery and Deployment. In ICPC.

[39] Irving Seidman. 2006. Interviewing as Qualitative Research: A Guide for Researchers
in Education and the Social Sciences. Teachers College Press.

[40] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-os in Test-suite Reduction. In FSE.

[41] Forrest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.). 2008. Guide to Advanced
Empirical Software Engineering.

[42] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving Developer Participation Rates in Surveys. In
CHASE.

[43] Hema Srikanth, Mikaela Cashman, and Myra B. Cohen. 2016. Test Case Prioritiza-
tion of Build Acceptance Tests for an Enterprise Cloud Application: An Industrial
Case Study. JSS (2016).

[44] Daniel Ståhl and Jan Bosch. 2014. Automated Software Integration Flows in
Industry: A Multiple-Case Study. In ICSE Companion.

[45] Mark Staples, Liming Zhu, and John Grundy. 2016. Continuous Validation for
Data Analytics Systems. In ICSE.

[46] Sean Stolberg. 2009. Enabling Agile Testing through Continuous Integration. In
AGILE.

[47] Megan Sumrell. 2007. FromWaterfall to Agile – How does a QA Team Transition?.
In AGILE.

[48] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How Do Software Engineers Understand Code Changes? – An Exploratory Study
in Industry. In FSE.

[49] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Security Practices in
DevOps. In HotSos.

[50] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-
tion in GitHub. In ESEC/FSE.

[51] VersionOne. 2016. 10th Annual State of Agile Report. (2016).
[52] Tanja Vos, Paolo Tonella, Wishnu Prasetya, Peter M. Kruse, Alessandra Bagnato,

Mark Harman, and Onn Shehory. 2014. FITTEST: A New Continuous and
Automated Testing Process for Future Internet Applications. In CSMR-WCRE.

[53] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs!: Under-
standing and Dealing with Over-Designed Conguration in System Software. In
ESEC/FSE.

[54] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. STVR (2012).

207

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Interviews
	3.2 Survey

	4 Analysis of results
	4.1 Barriers
	4.2 Needs
	4.3 Motivations
	4.4 Experiences

	5 Discussion
	5.1 CI Trade-Offs
	5.2 Implications
	5.3 Focused (Pivotal) vs Broad Survey Results

	6 Threats to Validity
	7 Related Work
	8 Conclusions and Future Work
	9 Acknowledgments
	References

