
Evaluating the Effects of Compiler Optimizations

on Mutation Testing at the Compiler IR Level

Farah Hariri1, August Shi1, Hayes Converse2, Sarfraz Khurshid2, Darko Marinov1

1 Department of Computer Science

University of Illinois at Urbana-Champaign, IL 61801, USA

{hariri2,awshi2,marinov}@illinois.edu
2 Department of Electrical and Computer Engineering

The University of Texas at Austin, TX 78712, USA

{hayesconverse,khurshid}@utexas.edu

Abstract—Software testing is one of the most widely used
approaches for improving software reliability. The effectiveness
of testing depends to a large extent on the quality of test suites.
Researchers have developed various techniques to evaluate the
quality of test suites. Of these techniques, mutation testing is
generally considered to be the most advanced but also expensive.
A key result of applying mutation testing to a given test suite is
the mutation score representing the percentage of mutants killed
by the test suite. Ideally the mutation score is computed ignoring
the mutants that are semantically equivalent to the original code
under test or to one another.

In this paper, we investigate a new perspective on mutation
testing: evaluating how standard compiler optimizations affect
the cost and results of mutation testing performed at the compiler
intermediate representation. Our study targets LLVM, a popular
compiler infrastructure that supports multiple source and target
languages. Our evaluation on 18 Coreutils programs discovers
several interesting relations between the numbers of mutants
(including the numbers on equivalent and duplicated mutants)
and mutation scores on unoptimized and optimized programs.

Keywords-mutation testing; compiler optimizations; LLVM

I. INTRODUCTION

Software testing is an important activity for increasing

software reliability. Testing is conceptually simple: the code

under test is run against a test suite that consists of multiple

tests; each test provides some input and checks the actual

output against the expected output. However, testing has

several challenges in practice. One key challenge is to evaluate

the quality of test suites.

Mutation testing is widely used in research to evaluate

the quality of test suites, and it is often considered the

most powerful approach for this purpose [2], [17]. Mutation

testing proceeds in two phases. First, a number of mutants are

generated by applying mutation operators, which are program

transformations that introduce small syntactic changes, to the

original code under test. Second, the test suite is run against

the mutants to determine which are killed, i.e., which mutants

give a different output from the original code under test. (More

precisely, we are interested in strong mutant killing, based on

the observable output, rather than weak mutant killing, based

on the intermediate state of a test’s execution [2].) Finally,

the mutation score is computed as the ratio of the number of

killed mutants to the number of all generated mutants.

While the number of killed mutants depends on the test

suite, the number of generated mutants depends on the muta-

tion operators and the level at which the operators are applied.

Mutation operators have been proposed for many program-

ming languages, including Ada, C, Cobol, C#, Fortran, Java,

and SQL [2]. Mutation testing was also recently applied at

the level of compiler intermediate representation (IR) [33]–

[35] using LLVM [19], [23]. One IR usually supports multiple

source and target languages. For example, LLVM is a widely

used compiler infrastructure that supports multiple source

languages (including C/C++ via the Clang front-end [22]) and

multiple target languages (X86-32, X86-64, and ARM). When

mutation testing is implemented once at the IR level, it enables

mutation testing effectively “for free” for all source languages

supported by the IR, without having to implement a special

tool for every one of them. However, applying mutations at the

IR level means that mutation testing becomes more susceptible

to the effects of compiler optimizations.

Compiler optimizations are automatic program transforma-

tions applied with the goal of improving some measure of pro-

gram performance. Compiler optimizations have to preserve

the behavior of the code and produce semantically equivalent

programs; in contrast, mutation operators aim to produce

semantically non-equivalent programs. Some mutants cannot

be killed by any test; these mutants are semantically equiva-

lent to (albeit being syntactically different from) the original

code under test. Determining which mutants are equivalent

is undecidable in general [2], [5]. Researchers have proposed

several heuristics [1], [4], [11], [13], [15], [25], [27], [28],

[31], [32] that help in determining which mutants are more

likely equivalent or non-equivalent to the original code. Most

recently, Papadakis et al. [29] proposed a technique for finding

mutants that are definitely equivalent to the original code by

comparing the compiled versions of the original code and its

mutants; their experiments applied the mutation operators on

the source code, specifically in the C programming language.

They also use the same technique to determine what they call

duplicated mutants that are definitely equivalent to one another

but not definitely equivalent to the original code.

In this paper, we present an empirical study of the effects of

compiler optimizations on mutation testing at the compiler IR



level. Our study aims to investigate whether mutation testing

should be applied with or without compiler optimizations,

providing the user with insights about the interplay between

mutations and compiler optimizations. To that end, we ask the

following research questions:

● RQ1. How do compiler optimizations affect the number

of generated mutants?

● RQ2. How do compiler optimizations affect the number

of equivalent and duplicated mutants?

● RQ3. How do compiler optimizations affect the mutation

score?

● RQ4. How do these effects vary with the class of muta-

tion operators applied?

To address these questions, we evaluate several traditional

classes of mutation operators (proposed by Offutt et al. [26] for

selective mutation). Specifically, we implemented for LLVM

the following four classes of mutation operators:

● AOR replaces every arithmetic operator with another

arithmetic operator;

● LCR replaces every logical connector with another logical

connector;

● ROR replaces every relational operator with another re-

lational operator;

● ICR replaces every integer constant c with a different

value from the set {−1,0,1, c − 1, c + 1}.

A similar set of mutation operators is often used in mutation

tools for the C language, e.g., by Andrews et al. [3] or Jia

et al. [16]. (The Milu tool by Jia et al. [16] can also per-

form higher-order mutation, which applies multiple syntactic

changes to generate one mutant, but we focus our evaluation

on the traditional first-order mutation, which applies only one

syntactic change to generate each mutant.)

For our evaluation, we used programs from Coreutils [10].

Coreutils are the basic command-line utilities used in Unix,

e.g., mkdir, mv, or rm. Coreutils are frequently used as exper-

imental objects in studies involving C programs or LLVM [6],

[8], [18], [21]. The source distribution of Coreutils includes

not only the source code for multiple programs but also several

regression tests written for these programs. These tests are

often in the form of shell scripts that run the program for

various inputs (such as command-line arguments and input

files) and check the outputs.

We compiled Coreutils using two opposite optimization

levels: -O0 is the basic level that aims at fast compilation and

only applies minimal optimizations, and -O3 is one of the most

aggressive optimization levels that applies advanced compiler

optimizations. We also mutated each program using each of

our mutation operators, applying the compiler optimizations

both before and after mutation. We identified equivalent and

duplicated mutants by comparing the resulting binaries as done

by Papadakis et al. [29]. We determined the mutation score by

running the mutants against the companion test suites for their

programs. For evaluation, we compared the resulting number

of mutants and the mutation scores of the test suites across

the two levels of compiler optimizations.

Our findings give the following answers to our questions:

● The total number of generated mutants is higher (11.7%

overall) at the -O3 level than at the -O0 level. This is

surprising because the overall number of instructions is

lower at the -O3 level than at the -O0 level.

● The percentage of equivalent and duplicated mutants

is higher (15.9pp1 on average) at the -O3 level than

at the -O0 level. This is expected and matches prior

work [29], because -O3 applies more optimizations af-

ter applying the mutation operators. Surprisingly, after

removing equivalent and duplicated mutants, the number

of remaining (non-equivalent, non-duplicated) mutants is

lower at the -O3 level than at the -O0 level. This points

to the importance of properly controlling for equivalent

and duplicated mutants, especially at high optimization

levels. The average percentages of equivalent and dupli-

cated mutants are 7.2% and 13.2%, respectively, at the

-O3 level. (Compared to the reported averages for the

C language [29], the percentage for LLVM is similar

for equivalent mutants—7.2% vs. 7%—but lower for

duplicated mutants—13.2% vs. 21%.)

● The mutation score is persistently lower at the -O3 level

than at the -O0 level, even when removing equivalent

and duplicated mutants. This points to the importance of

properly using the mutation score to interpret the results

of mutation testing, especially at high optimization levels.

● The results are fairly similar across different mutation

operators, indicating that the general conclusions are

more likely due to the compiler optimizations than due

to the specific operators.

In brief, our study shows that it is promising to apply

mutation testing for LLVM with a very high optimization

level, but it is necessary to properly control for equivalent

and duplicated mutants and to carefully interpret the overall

mutation score.

II. ILLUSTRATIVE OVERVIEW

We use cut to illustrate our evaluation on a concrete

example and to introduce some background material. The

cut program is a standard Unix command-line utility that

selects columns or fields from the input and writes them to the

standard output. The Coreutils source distribution comes with

the source code (src/cut.c) and 65 tests specifically written

for this program. Each test runs cut for some given input

(provided as the command-line arguments and the content of

an input file), and checks that the actual output (in terms of

both the content of stdout and the return exit code of the

program run) matches the expected output. For example, one

test gives as input the command-line argument “-c4” (to select

the 4th character) and the input file with the content “123”

(with no newline byte before the end of the file). The expected

result is an empty string with a new line appended, conforming

with cut’s spec. All 65 tests can be run with one shell script.

1The unit pp, from “percentage point”, represents the difference of values
that are already expressed in percentages.



Listing 1: Unoptimized bitcode (-O0 level)

if.end:

%14 = load i32, i32* %status.addr, align 4

call void @exit(i32 %14) #8

unreachable

Listing 2: Optimized bitcode (-O3 level)

if.end:

tail call void @exit(i32 %status) #13

unreachable

Fig. 1: Example from cut showing instruction count reduction

We want to evaluate the effects of compiler optimizations on

mutation testing for cut.

A. Clang and LLVM

Our mutation tool-set first uses the Clang [22] compiler

front-end to translate src/cut.c into LLVM intermediate

representation (IR), known as bitcode. LLVM provides a rich

API for alterations of the bitcode and a large set of compiler

optimizations. We modify the Makefile build configuration

for Coreutils such that the compiler produces LLVM bitcode

files using a specific optimization level, -O0 or -O3. Note that

this step applies optimizations before applying the mutations

(and a later step will additionally apply optimizations after

applying the mutations).

B. Compiler Optimizations

Compiler optimizations are semantics-preserving transfor-

mations applied to a program with the intention of improving

the program’s performance. Each optimization is generally

intended to make the program smaller or faster. The op-

timizations are typically applied together to synergistically

combine the benefits of each optimization to provide superior

performance. While the -O0 level aims for fast compilation

and applies almost no optimizations, the -O3 level aims to

produce very efficient code and applies a large number of

optimizations [23]. Specifically, for the cut program, the -O0

level produces LLVM bitcode with 1274 instructions, while

the -O3 level produces 1110 instructions.

For example, Fig. 1 shows a snippet of the cut bitcode

before and after applying optimizations. It shows the basic

block in the usage function that returns the status code and

then exits. In the unoptimized bitcode, a load instruction

retrieves the status code before using it as an argument to the

call to exit. However, in the optimized bitcode, the tail-call

optimization [24] replaces the original call instruction with

a tail call, allowing to remove the load instruction, thereby

reducing the overall number of instructions and improving

the program performance. For cut, the total number of call

instructions at -O0 level is 133, of which none is tail. At

the -O3 level, the total number of call instructions is 120, of

which 108 are tail calls. Also, the number of load instructions

is reduced from 330 at -O0 to 166 at -O3.

C. Mutant Generation

We implemented the mutation operators as manipulations

of the LLVM IR. Specifically, we implemented two LLVM

passes. The first pass takes as input an LLVM bitcode file

and some class of mutation operators (e.g., AOR or ICR).

It then finds all bitcode instructions that can be mutated (for

AOR, all LLVM instructions that use arithmetic operators such

as add; and for ICR, all LLVM instructions that have an

integer constant), and outputs a set of possible mutations (e.g.,

replacing a specific add instruction with sub, mul, and div; or

replacing an integer constant with another integer value). The

second pass takes as input an LLVM bitcode file and a specific

mutation to apply (as computed by the first pass) and outputs

a modified LLVM bitcode file with that mutation applied. Our

tool-set invokes the second pass for each and every mutation

found by the first pass. Each mutated LLVM bitcode file is

then compiled (and linked) into an actual executable, using

the LLVM back-end at the same optimization level, either

-O0 or -O3, that was used initially by Clang, thus applying

optimizations also after applying the mutations.

D. Number of Generated Mutants

For cut, we obtained a total of 1958 mutants at the -O0

level and 2547 mutants at the -O3 level. There were more

mutants at the -O3 level although it had fewer instructions

overall than the -O0 level (1110 vs. 1274), because the -O3

level had more mutation opportunities; we define a mutation

opportunity as a part of an instruction that can be mutated, e.g.,

the opcode or one of the operands. Across the various classes

of mutation operators, we obtained the following numbers of

mutants: 100 AOR, 14 LCR, 864 ROR, and 980 ICR at the

-O0 level; and 116 AOR, 102 LCR, 1215 ROR, and 1114 ICR

at the -O3 level.

E. Mutation Score

We next ran the cut test suite on each of the mutants,

accounting for cases of “rogue” mutants that could affect the

entire testing and experimental process. Such cases include

mutants that encounter infinite loops (and could block all

experiments) or mutants that excessively write to disk. Our

tool-set includes a sophisticated runner to handle these cases.

If a mutant causes any test in the suite to fail, the mutant is

killed. Higher-quality test suites kill more mutants, and the

percentage of mutants killed is called the mutation score. The

actual value depends on the generated mutants, which in turn

depend on the compiler optimization level. Specifically, for

cut, we find that the test suite kills a total of 1091 and 1402 of

the mutants generated at the -O0 and -O3 levels, respectively.

The corresponding mutation scores are 55.7% and 55.0%,

respectively. The same test suite thus appears seemingly better

when evaluated with the mutants generated at the -O0 level

than at the -O3 level.

F. Equivalent and Duplicated Mutants

Some of the mutants that are generated, while syntactically

different in the mutated LLVM, may end up being semantically



%12 = and i8 %dash_found.0.ph430.i, 1

%tobool134.i = icmp eq i8 %12, 0

br i1 %tobool134.i, label %L1, label %L2

Fig. 2: Example from cut for duplicated mutants (-O3 level)

equivalent to the original cut program. No test can kill any

equivalent mutant, so ideally all equivalent mutants should

be removed from the set of generated mutants. However,

determining mutant equivalence is undecidable in general [2],

[5]. Our tool-set uses the recently proposed trivial compiler

equivalence [29] to perform a bit-by-bit equality comparison

between the compiled binaries for the original code and the

mutants. If a mutant binary is exactly the same as the original

binary, then the mutant is definitely equivalent; if the binaries

differ, then we cannot be sure. In the case of cut, this

technique finds 66 and 111 equivalent mutants at the -O0 and

-O3 levels, respectively.

Moreover, even if we cannot establish that some mutants are

definitely equivalent to the original code, we can find that these

mutants are equivalent to one another—following Papadakis

et al. [29], we call such mutants duplicated. We use the same

technique that compares compiled binaries of mutants to find

the mutants that are definitely duplicated but not equivalent to

the original code. For cut, this technique finds 11 duplicated

mutants (0.5% of all generated mutants) at the -O0 level and

360 (14.1% of all generated mutants) at the -O3 level.

Fig. 2 shows a snippet from cut that leads to dupli-

cated mutants. The second instruction compares whether

the boolean from the register %12 is equal to zero and

saves the result in the register %tobool134.i which is

checked in the next branch instruction. The comparison

instruction presents two mutation opportunities: one for

ROR (replacing the relational operator eq with one of

{ne,ugt,uge,ult,ule,sgt,sge,slt,sle}) and the other

for ICR (replacing 0 with one of {1,-1}). Four duplicated

mutants are generated from this instruction: replacing eq with

one of {ne,ugt,sgt} or replacing 0 with 1. (Note that

these four mutants are not equivalent to the original code but

are equivalent to one another.) Basically, checking whether a

boolean is not equal or greater than 0 (i.e., the boolean is

not false) is semantically the same as checking whether the

boolean is equal to 1 (i.e., the boolean is true).

Identifying equivalent and duplicated mutants allows us to

remove some mutants from mutation testing, which makes

mutation testing faster (because we need not run tests on those

removed mutants) and provides a more accurate mutation score

(because we can use a more precise number of generated

and killed mutants). More specifically, we should remove

all equivalent mutants, and from each equivalence class of

duplicated mutants, we should remove all mutants but one to

act as a representative of the equivalence class. We call the

set of mutants resulting from this removal the non-equivalent,

non-duplicated (NEND) mutants. Applying this to cut, we

end up with 1881 and 2076 NEND mutants at the -O0 and

-O3 levels, respectively.

G. Revisiting Mutation Score

Revisiting mutation score when considering only NEND

mutants, it turns out that the cut test suite kills 1085 and

1148 NEND mutants at the -O0 and -O3 levels, respectively.

The absolute numbers of mutants killed among NEND mutants

are lower than the absolute numbers of mutants killed among

all generated mutants. The reason is that some equivalence

classes of duplicated mutants were killed, and thus removing

those duplicated mutants also reduces the number of killed

mutants. (Note that removing equivalent mutants never reduces

the number of killed mutants, because equivalent mutants

cannot be killed.) As a result, we find that the mutation scores

are 57.6% and 55.3% for the NEND mutants at the -O0

and -O3 levels, respectively. Both of these values are higher

than the corresponding values for all generated mutants. We

conclude that using only NEND mutants gives a more accurate

evaluation of the test suite; users should prefer the -O3 level,

but they should carefully interpret the mutation score obtained

at the -O3 level. We will see that most relationships we have

mentioned in this section are not specific to cut but actually

hold for (almost) all 18 Coreutils programs that we evaluate.

III. EXPERIMENTAL SETUP

We describe the programs we use in our evaluation, the mu-

tation tool-set we built for the evaluation, and the comparison

strategy we used to identify equivalent and duplicated mutants.

A. Object Programs

Our evaluation uses programs from Coreutils, a well-studied

set of programs frequently used as benchmarks for research in

testing [6], [8], [18], [21]. Specifically, we use Coreutils ver-

sion 6.11; while not the most recent, this version is often used

in research, including studies on compiler optimizations [8].

We selected 18 programs for our evaluation. We focused on

the programs with test directories that explicitly label these

programs as test targets (to avoid accidentally killing mutants

by tests that do not target the specific program). Out of 27

such programs, our infrastructure had problems with 9, e.g.,

they had tests with non-deterministic results (known as flaky

tests [20]). In the case of a flaky test, the output is dependent

on the testing environment in addition to the test inputs, so

both the original code and its equivalent mutants can pass or

fail regardless of the chosen test. We made certain that for

all 18 selected programs, (1) all tests pass on the original

code, (2) all equivalent mutants produce the same output as

the original code, and (3) all duplicated mutants from the same

equivalence class return the same result. Each of these 18

programs comes with a number of tests, typically one or more

shell scripts that invoke the program multiple times.

B. Compiler Optimizations

In our experiments, we use LLVM 3.8.1, the latest stable

version. We selected two opposite optimization levels for our

experiments. The -O0 level provides fast compilation and

serves as the baseline for comparison. The -O3 level is one

of highest optimization levels in LLVM 3.8.1, enabling some

of the most time-intensive optimizations.



Program -O0 -O3
Total Mutation Opportunities Total Mutation Opportunities
Inst AOR LCR ROR ICR Sum Inst AOR LCR ROR ICR Sum

chmod 675 7 15 38 256 316 403 8 15 36 227 286
chown 292 3 1 16 126 146 233 3 3 16 110 132
cut 1274 25 7 96 357 485 1110 29 51 135 417 632
dd 2436 93 74 196 684 1047 2080 91 100 234 705 1130
du 1199 11 6 62 470 549 835 22 15 76 389 502
head 1744 59 7 100 604 770 994 55 17 106 477 655
join 2088 50 6 117 791 964 1958 71 33 208 749 1061
mkdir 251 1 7 12 101 121 159 1 7 9 53 70
mv 604 5 4 31 257 297 372 3 9 28 216 256
readlink 140 1 0 6 44 51 95 1 0 5 35 41
rm 322 2 1 16 162 181 200 2 4 17 113 136
rmdir 349 2 1 21 100 124 199 2 6 23 71 102
tac 871 31 1 54 205 291 581 26 8 60 180 274
tail 3030 74 27 192 1126 1419 2175 87 47 262 997 1393
test 1895 64 24 144 529 761 1711 102 43 237 642 1024
touch 606 5 9 45 242 301 413 5 16 41 219 281
tr 3116 107 25 144 1108 1384 2219 99 104 205 854 1262
wc 1172 43 20 74 346 483 842 47 28 73 319 467

Overall 22064 583 235 1364 7508 9690 16579 654 506 1771 6773 9704

TABLE I: Total number of LLVM instructions and the number of mutation opportunities (per operator class and total), at both

-O0 and -O3 levels

C. Mutation Tool-Set

We implemented both mutant generation and mutant exe-

cution. For mutant generation, we wrote LLVM passes that

first identify the points where mutation operators could be

applied and then systematically apply these operators to

modify the LLVM bitcode files (as described in Section II).

We implemented four classes of mutation operators: AOR,

LCR, ROR, and ICR (described briefly in Section I). Note

that some of the mutation operators for the source language

do not apply at the LLVM level. For example, “replace an

arithmetic-assignment operator by another operator” replaces

C-level assignment operators “+=”, “-=”, “*=”, and “/=” with

one another, but such assignment operators are de-sugared at

the LLVM level. Each of our mutation operators is applied

to generate syntactically distinct mutants. We integrated our

LLVM passes into the Makefile build configuration such that

it can generate all the mutants at the specified optimization

level. Each of the 18 programs was compiled using each of

the two selected optimization levels, producing two original

LLVM bitcode files of each program. Each LLVM bitcode file

was then subjected to all the mutation operators, generating

our set of mutants.

For mutant execution, we created a framework that sand-

boxes and parallelizes runs of each program’s companion test

suite against its set of mutants. The framework automatically

determines which mutants are killed. When a test terminates,

it is easy to determine if a mutant is killed (test failed) or not

(test passed). However, in some cases, mutants can exhibit

unexpected behavior. First, mutations can massively increase

the number of iterations of a loop by altering the guard

condition, to the point where mutants can have infinite loops.

Our framework handles such cases by time-limiting each test

to 30 seconds; mutants that ran out of time are considered

killed. Second, a mutant could write arbitrary data to the file

system (and Coreutils programs and their tests already perform

many file-system operations, which makes this case harder to

detect). Our framework handles these cases by limiting the

size of the files that a process could write. Finally, the entire

mutation testing process was very time intensive, as dozens or

hundreds of tests needed to be run on hundreds or thousands

of mutants per program, so our framework parallelized these

runs. We ran our experiments on three 24-core machines with

Scientific Linux. When all the tests completed, we were able

to assign each test suite a mutation score for each relevant set

of mutants.

D. Mutant Comparison

It is important to remove equivalent and duplicated mutants,

because they can artificially inflate or deflate the mutation

score. We compared the mutants by computing checksums,

specifically using md5sum, of the final binaries. We then

compared the checksums for each mutant to those of the

progenitor programs to identify which files have the same

content; collisions are highly unlikely using md5sum.

IV. EXPERIMENTAL RESULTS

We next discuss the results obtained in our experiments.

Table I shows some statistics for the 18 Coreutils programs,

specifically the total number of the LLVM bitcode instruc-

tions and the number of mutation opportunities for various

mutation operators at different compiler optimization levels.

The number of mutation opportunities is equal to the number

of instructions mutated by the corresponding operator for all

operators except for ICR, where it reflects the number of

integer constant occurrences (and one instruction may have

more than one integer constant operand). The last row shows

the sum of the values for each column. Overall, there are

fewer LLVM instructions at the -O3 level than at the -O0

level (16579 vs. 22064). This is expected, as the unoptimized



Program -O0 -O3
#M #E E% #D D% #NEND #M #E E% #D D% #NEND

chmod 1069 41 3.8 9 0.8 1019 952 90 9.4 131 13.7 731
chown 467 15 3.2 0 0.0 452 453 67 14.7 41 9.0 345
cut 1958 66 3.3 11 0.5 1881 2547 111 4.3 360 14.1 2076
dd 4208 131 3.1 22 0.5 4055 4721 297 6.2 797 16.8 3627
du 1723 74 4.2 11 0.6 1638 1682 146 8.6 178 10.5 1358
head 2699 110 4.0 27 1.0 2562 2513 250 9.9 306 12.1 1957
join 2902 112 3.8 24 0.8 2766 3980 340 8.5 496 12.4 3144
mkdir 368 23 6.2 3 0.8 342 253 15 5.9 15 5.9 223
mv 907 32 3.5 5 0.5 870 792 82 10.3 98 12.3 612
readlink 192 7 3.6 0 0.0 185 140 5 3.5 12 8.5 123
rm 543 12 2.2 0 0.0 531 458 28 6.1 42 9.1 388
rmdir 479 25 5.2 11 2.3 443 417 16 3.8 48 11.5 353
tac 1151 58 5.0 12 1.0 1081 1120 67 5.9 111 9.9 942
tail 4673 158 3.3 35 0.7 4480 5409 501 9.2 677 12.5 4231
test 3077 75 2.4 66 2.1 2936 4717 248 5.2 710 15.0 3759
touch 1083 52 4.8 17 1.5 1014 983 125 12.7 101 10.2 757
tr 4280 161 3.7 44 1.0 4075 4624 212 4.5 610 13.1 3802
wc 1780 68 3.8 18 1.0 1694 1729 108 6.2 237 13.7 1384

Overall 33559 1220 3.6 315 0.9 32024 37490 2708 7.2 4970 13.2 29812

TABLE II: The number of generated mutants (#M), the number (#E) and percentage (E%) of equivalent mutants, the number

(#D) and percentage (D%) of duplicated mutants, and the number of NEND mutants, at both -O0 and -O3 levels

code often simply moves data using instructions like alloca,

load, and store, while the optimized code removes such

instructions (e.g., Fig. 1 discussed in Section II-B). However,

there is overall a similar number of mutation opportunities at

the -O3 and -O0 levels (9704 vs. 9690). The optimized and

unoptimized versions of the code have a similar number of

instructions that perform the actual computations (or operate

on constant values) and to which our operators thus apply.

A. Number of Mutants

Table II shows the total number of mutants generated for

each program, the number and percentage of equivalent and

duplicated mutants, and the number of NEND mutants at both

the -O0 and -O3 levels. The last row shows the overall values,

which are (1) the sums of the numbers of respective mutants in

a given column and (2) the overall percentages of equivalent

and duplicated mutants (computed as the weighted average

across all programs).

From Table II, we see that the overall number of all

generated mutants is 11.7% higher at the -O3 level (37490

mutants) than at the -O0 level (33559 mutants). However, this

relationship between the number of mutants does not follow

for most of the individual programs. In fact, the relationship

is the opposite for all programs except for six (cut, dd, join,

tail, test, and tr); these six programs generate a far larger

number of mutants at the -O3 level, thus raising the average

and leading to the overall conclusion. The Wilcoxon paired

rank test for the numbers of all generated mutants has a p-

value of 0.76, indicating that the difference between -O0 and

-O3 levels is not statistically significant.

In brief, we obtain the following answer for RQ1: The

overall number of generated mutants is lower at the -O0 level

than at the -O3 level, but the opposite holds for most programs

and difference is not statistically significant.

B. Equivalent and Duplicated Mutants

We next analyze the number of equivalent and duplicated

mutants in more detail. Table II shows a detailed breakdown

for such mutants at both optimization levels. We can see

that the overall percentages of both equivalent and duplicated

mutants are higher at the -O3 level (7.2% and 13.2%, respec-

tively) than at the -O0 level (3.6% and 0.9%, respectively).

The comparison between these percentages is similar overall

as for almost every individual program.

The overall number of NEND mutants is 6.9% lower at

the -O3 level (29812 mutants) than at the -O0 level (32024

mutants). Moreover, the number of NEND mutants is lower at

the -O3 level than at the -O0 level for almost every program.

Only three programs (cut, join, and test) have more NEND

mutants at the -O3 level than at the -O0 level. The Wilcoxon

paired rank test shows difference between the numbers of

NEND mutants (p < 0.05). This suggests that mutation testing

can be faster at the -O3 level than at the -O0 level because

there are fewer NEND mutants to run at the -O3 level, and

the more optimized programs likely run faster as well.

In brief, we obtain the following answer for RQ2: The

relative number of both equivalent and duplicated mutants is

higher at the -O3 level than at the -O0 level; as a result,

the overall absolute number of NEND mutants is lower at the

-O3 level than at the -O0 level (despite the overall absolute

number of all generated mutants being higher at the -O3 level

than at the -O0 level).

C. Mutation Score

We next consider the mutation score, arguably the most

important metric in mutation testing. The number of mutants

is an important internal metric because it determines the time

needed to perform mutation testing, but the mutation score

is an external metric used to compare the quality of test

suites. Table III shows the mutation score values. We note

two interesting comparisons.



Program -O0 -O3
All NEND All NEND

chmod 35.7 36.9 33.7 35.7
chown 32.7 33.8 29.8 33.3
cut 55.7 57.6 55.0 55.3
dd 32.8 33.9 31.4 31.5
du 41.6 43.4 36.2 38.0
head 17.8 18.7 15.7 17.6
join 54.5 56.6 40.0 42.1
mkdir 52.9 56.4 55.3 57.8
mv 53.8 55.5 50.6 51.4
readlink 39.5 41.0 40.7 39.8
rm 42.7 43.6 35.3 37.1
rmdir 29.4 31.3 28.3 29.7
tac 41.3 43.5 37.0 38.4
tail 31.3 32.4 24.5 26.5
test 37.6 38.7 37.3 38.8
touch 39.4 41.6 38.2 41.0
tr 59.2 61.5 59.2 59.8
wc 32.4 33.8 26.7 26.0

Overall 40.4 41.9 37.0 38.5

TABLE III: The mutation score for all generated mutants and

for only NEND mutants, at both -O0 and -O3 levels

First, between the optimization levels, the corresponding

overall mutation score values are lower at the -O3 level

than at the -O0 level, both for all mutants and for only

NEND mutants. Moreover, this holds not only for the overall

values but for most individual programs, again not only for

all mutants but also for only NEND mutants. The Wilcoxon

paired rank test shows differences between the mutation score

values at -O0 and -O3 levels (p < 0.005 for all mutants, and

p < 0.001 for only NEND mutants).

In brief, we obtain the following answer for RQ3: The

mutation score values are lower at the -O3 level than at the

-O0 level both for all mutants and for only NEND mutants.

Second, between all mutants and only NEND mutants, the

mutation score value for almost every program is lower for all

mutants than the corresponding mutation score value for only

NEND mutants (Table III). For example, consider dd: at -O0,

the mutation score value for all mutants (32.8%) is lower than

the value for only NEND mutants (33.9%); and similarly, at

-O3, the value for all mutants (31.4%) is lower than the value

for only NEND mutants (31.5%). We do not compare here

the value at -O0 for all mutants and at -O3 for only NEND

mutants because those are not corresponding values.

There is no general relationship between the mutation score

values for all mutants and only NEND mutants. Consider

some mutation score value k

m
, where m is the number of

all generated mutants and k is the number of mutants killed

among those m. If we remove (only) e > 0 equivalent mutants,

we must get a higher k

m−e
. If we remove (only) d > 0

duplicated mutants, and none of them are killed, we must

get a higher k

m−d
. If all the duplicated mutants are killed,

we must get a lower k−d

m−d
. In general, we remove e equivalent

and d duplicated mutants, and the number of killed duplicated

mutants d′ is between 0 and d, so the resulting k−d
′

m−e−d
must

be between k

m−e−d
and k−d

m−e−d
; the resulting mutation score

can be higher or lower than the original mutation score.

D. Analysis Across Mutation Operators

We have discovered several relationships between the num-

bers of all mutants, equivalent and duplicated mutants, NEND

mutants, and mutation score values, compared across different

compiler optimization levels. However, the analysis so far has

been across the mutants generated by all mutation operators.

Do these relationships vary when considering mutants of each

mutation operator individually? We revisit the initial questions

while breaking down the numbers for each operator classes.

Tables IV and V show a detailed breakdown, per operator

class, of the left side of Table II and the right side of Table II,

respectively. Table VI shows the detailed breakdown per oper-

ator class of Table III. When considering the breakdown into

individual operator classes, it is important to note how to treat

duplicated mutants, because mutants can be duplicated across

different operator classes (e.g., a mutant generated using the

AOR operator can be a duplicate of a mutant generated using

the ICR operator). In these tables, we compute duplicated

mutants for each operator as if the only mutants that exist

are the mutants generated by that operator. For example,

if two mutants Ma and Mi are duplicates of each other,

but Ma is generated by the AOR operator and Mi by the

ICR operator, when considering mutants from AOR, Ma is

counted as NEND and not counted as a duplicated mutant;

likewise, when considering mutants from ICR, Mi is counted

as NEND. The sum of all the duplicated mutants we report for

each operator is lower than the number we report overall in

Table II, because many duplicated mutants when considering

all operators together may not be duplicated when considering

only one operator.

Table VII summarizes the relationships across all operators

and per each operator. Most relationships that hold for the

mutants generated by all operators together also hold when

considering only the mutants generated by each operator

individually. One exception concerns the overall number of

all generated mutants for the ICR operator: the overall number

of all generated mutants at the -O3 level is higher than the

overall number of all generated mutants at the -O0 level for all

operators except ICR. Though there are a few programs where

the number of generated mutants at -O3 for ICR is higher than

at -O0 (cut, dd, join, tail, and test), for the majority of

programs this is not the case, and these exceptions do not

have many more generated mutants at the -O3 level. The

other exceptions concern the number of NEND mutants for

the LCR operator and the ROR operator. Concerning the LCR

operator, it does not generate many equivalent nor duplicated

mutants at either optimization level. As such, since the LCR

operator generates more mutants overall at the -O3 level, it

continues to have more NEND mutants at the -O3 level as

well. Concerning the ROR operator, the difference between

the number of NEND mutants at the different optimization

levels is relatively small (12265 at -O0 vs. 12816 at -O3),

and we see that there are actually only six programs that have

more NEND mutants at the -O3 level than at the -O0 level

(cut, du, join, tail, test, and tr).



Program -O0
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND

chmod 28 0.0 0.0 28 30 0.0 0.0 30 342 0.0 0.0 342 669 6.1 1.3 619
chown 12 0.0 0.0 12 2 0.0 0.0 2 144 0.0 0.0 144 309 4.8 0.0 294
cut 100 0.0 0.0 100 14 0.0 0.0 14 864 1.0 0.0 855 980 5.8 1.1 912
dd 370 0.0 0.0 370 148 0.0 0.0 148 1764 0.0 0.0 1764 1926 6.8 1.1 1773
du 44 0.0 0.0 44 12 0.0 0.0 12 558 0.0 0.0 558 1109 6.6 0.9 1024
head 236 0.0 0.0 236 14 0.0 0.0 14 900 0.0 0.0 900 1549 7.1 1.7 1412
join 200 0.0 0.0 200 12 0.0 0.0 12 1053 0.0 0.0 1051 1637 6.7 1.4 1503
mkdir 4 0.0 0.0 4 14 0.0 0.0 14 108 0.0 0.0 108 242 9.5 1.2 216
mv 20 0.0 0.0 20 8 0.0 0.0 8 279 0.0 0.0 279 600 5.3 0.8 563
readlink 4 0.0 0.0 4 0 N/A N/A 0 54 0.0 0.0 54 134 5.2 0.0 127
rm 8 0.0 0.0 8 2 0.0 0.0 2 144 0.0 0.0 144 389 3.0 0.0 377
rmdir 8 0.0 0.0 8 2 0.0 0.0 2 189 0.0 0.0 189 280 8.9 3.9 244
tac 124 0.0 0.0 124 2 0.0 0.0 2 486 0.0 0.0 486 539 10.7 2.2 469
tail 296 0.0 0.0 296 54 0.0 0.0 54 1728 0.0 0.0 1728 2595 6.0 1.3 2403
test 256 0.0 0.0 256 48 0.0 0.0 48 1296 0.0 0.0 1296 1477 5.0 4.4 1336
touch 20 0.0 0.0 20 18 0.0 0.0 18 405 0.0 0.0 405 640 8.1 2.6 571
tr 428 0.0 0.4 426 50 0.0 0.0 50 1296 0.0 0.0 1296 2506 6.4 1.6 2305
wc 172 0.0 1.1 170 40 0.0 0.0 40 666 0.0 0.0 666 902 7.5 1.5 820

Overall 2330 0.0 0.1 2326 470 0.0 0.0 470 12276 0.0 0.0 12265 18483 6.5 1.6 16968

TABLE IV: The number of generated mutants (#M), the percentages of equivalent (E%) and duplicated (D%) mutants, and

the number of NEND mutants, split across mutation operators classes at the -O0 level

Program -O3
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND

chmod 32 0.0 25.0 24 30 0.0 0.0 30 324 8.9 17.2 239 566 10.7 6.3 469
chown 12 0.0 25.0 9 6 0.0 0.0 6 144 6.9 16.6 110 291 19.5 1.3 230
cut 116 0.0 26.7 85 102 0.0 1.9 100 1215 7.5 13.4 960 1114 1.7 3.1 1060
dd 362 0.0 23.2 278 200 7.5 3.0 179 2106 7.3 17.2 1588 2053 6.2 4.8 1825
du 88 0.0 17.0 73 30 0.0 0.0 30 684 5.7 11.7 565 880 12.1 3.7 740
head 220 0.0 12.7 192 34 0.0 0.0 34 954 5.8 12.2 781 1305 14.8 5.5 1038
join 284 2.4 30.9 189 66 0.0 0.0 66 1872 7.2 10.1 1546 1758 11.2 3.4 1500
mkdir 4 0.0 0.0 4 14 0.0 0.0 14 81 9.8 8.6 66 154 4.5 1.9 144
mv 12 0.0 25.0 9 18 0.0 5.5 17 252 5.1 19.0 191 510 13.5 4.3 419
readlink 4 0.0 50.0 2 0 N/A N/A 0 45 6.6 11.1 37 91 2.2 3.3 86
rm 8 0.0 25.0 6 8 0.0 0.0 8 153 5.2 15.6 121 289 6.9 1.7 264
rmdir 8 0.0 37.5 5 12 0.0 0.0 12 207 5.8 8.7 177 190 2.1 8.9 169
tac 104 0.0 5.7 98 16 12.5 0.0 14 540 5.5 10.5 453 460 7.6 4.5 404
tail 348 0.0 12.6 304 94 0.0 1.0 93 2358 5.8 13.0 1912 2609 13.9 5.2 2109
test 408 0.0 19.1 330 86 0.0 0.0 86 2133 5.7 10.2 1792 2090 5.9 9.9 1758
touch 20 0.0 30.0 14 32 0.0 0.0 32 369 7.5 11.6 298 562 17.2 3.9 443
tr 396 0.0 24.4 299 208 0.4 0.0 207 1845 5.5 15.4 1457 2175 4.9 2.4 2014
wc 188 0.0 17.5 155 56 0.0 1.7 55 657 6.0 14.3 523 828 8.2 4.5 722

Overall 2614 0.2 20.3 2076 1012 1.7 1.0 983 15939 6.4 13.1 12816 17925 9.2 4.8 15394

TABLE V: The number of generated mutants (#M), the percentages of equivalent (E%) and duplicated (D%) mutants, and the

number of NEND mutants, split across mutation operators classes at the -O3 level

In brief, we obtain the following answer for RQ4: The

effects of -O0 and -O3 levels on mutation testing are most

likely due to compiler optimizations and not due to specific

mutation operators.

E. Visual Summary

As an overall visual summary of all our high-level re-

sults, Fig. 3 compares the number of instructions, mutation

opportunities, generated mutants (both all and NEND), and

mutation score (both all and NEND) between optimization

levels -O0, shown in (dark) blue, and -O3, shown in (light)

red. To summarize, although there are fewer instructions in the

programs compiled at the -O3 level than at the -O0 level, there

are actually slightly more mutation opportunities at the -O3

level, which in turn leads to more mutants generated. However,

when we keep only NEND mutants, there are fewer NEND

mutants at the -O3 level. For both all mutants and only NEND

mutants, the mutation score values are lower at the -O3 level.

V. THREATS TO VALIDITY

Internal. Our implementation of mutation testing and the

scripts for running the experiments may contain bugs. To

reduce the risks, we used the well-known framework LLVM

and reviewed our code and scripts to check basic functionality.

We built our own scripts to run the experiments, collect results,

and analyze them. We performed sanity checks on the numbers

that the scripts generated, e.g., we checked that equivalent

and duplicated mutants give the same results, as they should

(Section III-A). We also manually inspected some outliers to

confirm that the results were correct.



Program -O0 -O3
AOR LCR ROR ICR AOR LCR ROR ICR

All NEND All NEND All NEND All NEND All NEND All NEND All NEND All NEND

chmod 39.2 39.2 66.6 66.6 36.8 36.8 33.6 35.3 53.1 54.1 73.3 73.3 36.1 37.6 29.1 32.6

chown 50.0 50.0 50.0 50.0 31.9 31.9 32.3 34.0 50.0 44.4 50.0 50.0 35.4 35.4 25.7 32.1

cut 70.0 70.0 57.1 57.1 59.4 60.1 50.9 54.0 68.1 68.2 72.5 72.0 54.3 55.6 52.8 54.0

dd 35.4 35.4 48.6 48.6 35.5 35.5 28.7 30.7 33.9 29.8 38.0 39.1 36.3 37.4 25.2 27.2

du 72.7 72.7 58.3 58.3 46.5 46.5 37.6 40.2 61.3 56.1 73.3 73.3 34.0 34.8 34.0 38.7

head 14.4 14.4 7.1 7.1 21.2 21.2 16.5 17.9 13.1 11.4 14.7 14.7 16.3 17.8 15.7 18.7

join 65.5 65.5 100.0 100.0 54.4 54.5 53.0 56.6 44.7 45.5 46.9 46.9 40.3 41.9 38.7 42.6

mkdir 100.0 100.0 71.4 71.4 51.8 51.8 51.6 56.9 100.0 100.0 71.4 71.4 54.3 57.5 53.2 55.5

mv 100.0 100.0 87.5 87.5 59.5 59.5 49.1 51.5 100.0 100.0 83.3 82.3 63.1 62.3 42.1 46.3

readlink 100.0 100.0 N/A N/A 57.4 57.4 30.6 32.2 100.0 100.0 N/A N/A 53.3 54.0 31.8 33.7

rm 50.0 50.0 0.0 0.0 37.5 37.5 44.7 46.1 50.0 66.6 50.0 50.0 33.3 34.7 35.6 37.5

rmdir 50.0 50.0 50.0 50.0 32.8 32.8 26.4 29.5 50.0 40.0 50.0 50.0 24.6 27.1 30.0 30.7

tac 46.7 46.7 50.0 50.0 46.5 46.5 35.4 39.6 66.3 66.3 31.2 35.7 38.5 38.8 28.9 31.1

tail 53.7 53.7 11.1 11.1 30.7 30.7 29.6 31.5 45.6 46.3 23.4 22.5 24.2 24.0 22.0 25.7

test 38.2 38.2 45.8 45.8 41.2 41.2 34.0 36.1 40.6 40.3 41.8 41.8 33.4 34.7 40.4 43.3

touch 60.0 60.0 11.1 11.1 46.1 46.1 35.3 38.7 60.0 57.1 31.2 31.2 44.1 44.9 33.9 39.5

tr 80.1 80.0 52.0 52.0 60.1 60.1 55.3 59.0 85.3 83.6 37.9 38.1 59.0 60.1 56.7 59.3

wc 44.7 45.2 40.0 40.0 28.3 28.3 32.8 35.6 42.0 40.0 41.0 40.0 21.9 21.4 26.0 26.8

Overall 51.4 51.4 45.1 45.1 41.9 42.0 37.8 40.5 49.2 47.5 43.7 43.9 37.3 38.1 34.6 38.1

TABLE VI: The mutation score split across mutation operator classes for all generated mutants and only NEND mutants

Relationship Operators
All AOR LCR ROR ICR

for all generated mutants, overall #M at -O3 > #M at -O0 yes yes yes yes no
for only NEND mutants, overall #NEND at -O3 < #NEND at -O0 yes yes no no yes
overall E% at -O3 ≥ E% at -O0 yes yes yes yes yes
overall D% at -O3 ≥ D% at -O0 yes yes yes yes yes
for all generated mutants, overall mutation score at -O3 < mutation score at -O0 yes yes yes yes yes
for only NEND mutants, overall mutation score at -O3 < mutation score at -O0 yes yes yes yes yes

TABLE VII: Relationships for mutants generated by all operators together vs. mutants generated by each operator individually

#Inst #Opportunities #M #NEND MS NEND MS
0

5000

10000

15000

20000

25000

30000

35000

40000

 22
06

4

 96
90

 33
55

9

 32
02

4

 16
57

9

 97
04

 37
49

0

 29
81

2

0

5

10

15

20

25

30

35

40

45

 40

 41

 37

 38

O0
O3

Fig. 3: The overall number of instructions, mutation opportu-

nities, generated mutants (all and NEND), and mutation score

(all and NEND)

External. The programs and tests that we used for our

empirical study are a subset of all available software and may

not be representative. Thus, our findings may not generalize

to all software. To address this threat, we selected a total

of 18 open-source programs from the widely used Coreutils

distribution. We used all of the regression tests that come with

each Coreutils program and specifically target it.

Construct. We use the technique proposed by Papadakis et

al. to identify equivalent and duplicated mutants [29]. The

technique is a heuristic and provides only a lower bound on

the number of such mutants; we cannot claim we identified

all equivalent and duplicated mutants. We also chose the basic

-O0 optimization level in LLVM as our baseline and compared

it with one of the most advanced levels, -O3. The results could

differ for other combinations of compiler optimizations, but

we hypothesize that the general result holds: using higher

optimization levels is beneficial, as long as equivalent and

duplicated mutants are removed, and the mutation score is

properly interpreted.

VI. RELATED WORK

Mutation testing was introduced almost four decades

ago [7], [12]. Since its introduction, mutation testing has been

used for a number of different programming languages and

in numerous applications; Jia and Harman present a recent

survey [17]. Mutation testing has gained popularity in testing

research primarily for its ability to assess the quality of test

suites. Substantial progress has been made toward turning

mutation testing into a broadly applicable and fully automated

approach; several tools have been created explicitly for this

purpose. The most related to our work are two tools that

operate on the LLVM IR, namely Sen and Sousa’s testing

framework for automated mutant generation for transaction

level modeling [35] and Schulte’s llvm-mutate tool (which

uses a different set of mutation operators than what we

use) [33], [34]. However, their previous work did not study

the effect of the LLVM’s compiler optimizations on mutation

testing (including the number of generated mutants, duplicated

and equivalent mutants, and the mutation score).

Despite the progress made on increasing the applicability

of mutation testing, the approach still suffers from a number



of issues. One key issue is the mutant equivalence problem,

i.e., determining which mutants are semantically equivalent to

the original program. (There are variations in the definition

based on the scope of testing, e.g., Ellims et al. suggested a

“resource-aware” view of mutants that encompasses memory

and time usage as well as functional output [9].) Budd and

Angluin first noted that determining mutant equivalence auto-

matically is generally undecidable [5]. However, a number of

heuristics have been developed for identifying equivalent and

duplicated mutants in some cases.

The foundational work was done by Baldwin and Sayward

in their study on the use of compiler optimizations to de-

termine mutant equivalencies [4]. Using established compiler

optimization techniques, they attempted to identify equivalent

mutants by either “optimizing” or “de-optimizing” the pro-

duced programs and comparing them to the original. Offutt

and Pan created a new approach to the problem by formu-

lating the question of equivalence as a constraint satisfaction

problem [27], [28]. In their approach, constraints are generated

through analysis of the mutant’s path conditions, and empirical

evaluations showed that this approach tended to be more

powerful than the compiler optimization technique [25].

Papadakis et al. presented trivial compiler equivalence, a

technique that compares a mutant’s machine code to that

of its progenitor program to determine whether or not it

is equivalent [29]. This technique was already broadly used

in the field of compiler optimizations to determine where

optimizations had yielded no improvement or other change.

In contrast to the technique proposed by Papadakis et al.

that aims to find definitely equivalent mutants, several studies

have proposed heuristics to help identify mutants that are likely

(non-)equivalent. Schuler et al. proposed two such techniques

for ranking mutants based on code coverage and dynamically

inferred invariants [31], [32]. Grün et al. defined an impact

function characterizing the difference between a mutant’s

execution and the original program’s execution [11]; they find

mutants with lower impact were more likely to be equivalent.

In a similar spirit to these heuristics, Harman et al. de-

veloped a technique for equivalence detection using program

slicing [13], [15]. Their method does not automatically detect

equivalent mutants after generation but does reduce their

number during generation, and it also assists in the manual

process of equivalence analysis by simplifying the program

to a minimal state representing at least a partial answer to the

equivalence question. Adamopoulos et al. proposed a different

approach that uses genetic algorithms wherein mutants are

evaluated using a fitness function that has a much lower value

for equivalent mutants [1]. Their approach allows mutants to

evolve alongside the test suites that support the program while

reducing the number of equivalent mutants generated.

Rajan et al. studied the effect of program transformations on

code coverage, specifically MC/DC [14], [30]. In their study,

Rajan et al. used mutation testing as an enabling method but

did so without regard for compiler optimization levels.

To the best of our knowledge, no previous work examined

the impact of the compiler optimization level on mutation

testing (including the impact on equivalent and duplicated

mutants and especially the impact on mutation score) as our

study does. However, ours is not the first study to examine the

effects of compiler optimizations and other transformations

on advanced testing and verification tools. Most recently,

Dong et al. investigated the interactions between compiler

optimizations and symbolic execution [8]. They found that

the same transformations that speed up concrete execution can

negatively impact symbolic execution, especially in combina-

tion. In contrast, we find that compiler optimizations at the

highest level not only can speed up program execution but

also can substantially help in mutation testing.

VII. CONCLUSIONS

We presented a study of the effects of compiler optimiza-

tions, which are widely used semantics-preserving transforma-

tions aimed at improving program performance, on mutation

testing, a research approach for evaluating the quality of test

suites. While mutation testing and compiler optimizations are

two well-studied approaches, they are seldom used together.

Our study aims to find new opportunities that enhance the

effectiveness and application of mutation testing by leveraging

modern compiler infrastructures. We target LLVM, a popular

compiler infrastructure that supports multiple languages. Our

evaluation uses 18 Coreutils programs. Some of the findings

about the number of mutants and the mutation scores on

optimized and unoptimized programs surprised us.

The overall conclusion is that mutation testing can use very

high optimization levels, but one should remove equivalent

and duplicated mutants, and one should carefully interpret the

overall mutation score. Note that our conclusion about the

mutation score views mutation testing only as a means to

evaluate test suites and does not necessarily aim to provide

guidance for how to generate new tests to kill more mutants;

indeed, it would be hard for a human to reason about the

changes made to the optimized program and successfully con-

struct test inputs that could kill the mutant. We hope that our

work encourages others to further integrate mutation testing

with compiler infrastructures, and to enhance the efficacy and

usage of mutation testing.

ACKNOWLEDGEMENTS

We thank Ben Lambeth for his help with our experimental

scripts; Owolabi Legunsen for his discussions about this

project; and Vimuth Fernando, Milica Hadži-Tanović, Sasa

Misailovic, Peiyuan Zhao, and the anonymous reviewers for

feedback on previous drafts of this paper. This research was

partially supported by National Science Foundation Grant Nos.

CNS-1239498, CCF-1319688, CCF-1409423, CCF-1421503,

CCF-1438982, and CCF-1439957.

REFERENCES

[1] K. Adamopoulos, M. Harman, and R. M. Hierons. How to overcome
the equivalent mutant problem and achieve tailored selective mutation
using co-evolution. In GECCO, pages 1338–1349, 2004.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.



[3] J. Andrews, L. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In ICSE, pages 402–411, 2005.

[4] D. Baldwin and F. Sayward. Heuristics for determining equivalence of
program mutations. Technical report, Yale University, 1979.

[5] T. A. Budd and D. Angluin. Two notions of correctness and their relation
to testing. Acta Informatica, 18(1):31–45, 1982.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
1978.

[8] S. Dong, O. Olivo, L. Zhang, and S. Khurshid. Studying the influence
of standard compiler optimizations on symbolic execution. In ISSRE,
pages 205–215, 2015.

[9] M. Ellims, D. Ince, and M. Petre. The Csaw C mutation tool: Initial
results. In TAIC PART, pages 185–192, 2007.

[10] F. S. Foundation. Coreutils – GNU core utilities. http://www.gnu.org/
software/coreutils/coreutils.html.

[11] B. J. M. Grün, D. Schuler, and A. Zeller. The impact of equivalent
mutants. In ICSTW, pages 192–199, 2009.

[12] R. G. Hamlet. Testing programs with the aid of a compiler. TSE,
3(4):279–290, 1977.

[13] M. Harman, R. Hierons, and S. Danicic. Mutation Testing for the New

Century. Kluwer Academic Publishers, 2001.
[14] M. P. Heimdahl, M. W. Whalen, A. Rajan, and M. Staats. On MC/DC

and implementation structure: An empirical study. In DASC, pages
5.B.3–1–5.B.3–13, 2008.

[15] R. Hierons, M. Harman, and S. Danicic. Using program slicing to assist
in the detection of equivalent mutants. STVR, 9(4):233–262, 1999.

[16] Y. Jia and M. Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In TAIC PART, pages
94–98, 2008.

[17] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. TSE, 37(5):649–678, 2011.

[18] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging
in symbolic execution. In PLDI, pages 193–204, 2012.

[19] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–86, 2004.

[20] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In FSE, pages 643–653, 2014.

[21] P. D. Marinescu and C. Cadar. Make test-zesti: A symbolic execution
solution for improving regression testing. In ICSE, pages 716–726, 2012.

[22] U. of Illinois. Clang: A C family language frontend for LLVM. http:
//clang.llvm.org/.

[23] U. of Illinois. The LLVM compilation infrastructure. http://llvm.org/.
[24] U. of Illinois. Tail call optimization. http://llvm.org/docs/CodeGenerator.

html#tail-call-optimization.
[25] A. J. Offutt and W. M. Craft. Using compiler optimization techniques

to detect equivalent mutants. STVR, 4(3):131–154, 1994.
[26] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An

experimental determination of sufficient mutant operators. TOSEM,
5(2):99–118, 1996.

[27] A. J. Offutt and J. Pan. Detecting equivalent mutants and the feasible
path problem. In COMPASS, pages 224–236, 1996.

[28] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and
infeasible paths. STVR, 7(3):165–192, 1997.

[29] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique. In ICSE, pages 936–946, 2015.

[30] A. Rajan, M. W. Whalen, and M. P. Heimdahl. The effect of program
and model structure on MC/DC test adequacy coverage. In ICSE, pages
161–170, 2008.

[31] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for Java.
In ESEC/FSE, pages 297–298, 2009.

[32] D. Schuler and A. Zeller. (Un-)covering equivalent mutants. In ICST,
pages 45–54, 2010.

[33] E. Schulte. llvm-mutate. http://eschulte.github.io/llvm-mutate/.
[34] E. Schulte. Neutral Networks of Real-World Programs and their

Application to Automated Software Evolution. PhD thesis, University
of New Mexico, 2014.

[35] M. Sousa and A. Sen. Generation of TLM testbenches using mutation
testing. In CODES+ISSS, pages 323–332, 2012.


