
Practical Regression Test Selection
with Dynamic File Dependencies

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov
University of Illinois at Urbana-Champaign

{gliga,eloussi2,marinov}@illinois.edu

ABSTRACT

Regression testing is important but can be time-intensive.
One approach to speed it up is regression test selection
(RTS), which runs only a subset of tests. RTS was proposed
over three decades ago but has not been widely adopted in
practice. Meanwhile, testing frameworks, such as JUnit, are
widely adopted and well integrated with many popular build
systems. Hence, integrating RTS in a testing framework al-
ready used by many projects would increase the likelihood
that RTS is adopted.

We propose a new, lightweight RTS technique, called Ek-

stazi, that can integrate well with testing frameworks. Ek-
stazi tracks dynamic dependencies of tests on files, and un-
like most prior RTS techniques, Ekstazi requires no inte-
gration with version-control systems. We implemented Ek-

stazi for Java and JUnit, and evaluated it on 615 revisions
of 32 open-source projects (totaling almost 5M LOC) with
shorter- and longer-running test suites. The results show
that Ekstazi reduced the end-to-end testing time 32% on
average, and 54% for longer-running test suites, compared to
executing all tests. Ekstazi also has lower end-to-end time
than the existing techniques, despite the fact that it selects
more tests. Ekstazi has been adopted by several popu-
lar open source projects, including Apache Camel, Apache
Commons Math, and Apache CXF.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Experimentation

Keywords: Regression test selection, file dependencies

1. INTRODUCTION
Regression testing is important for checking that software

changes do not break previously working functionality. How-
ever, regression testing is costly as it runs a large number
of tests. Some studies [13, 15, 21, 38, 43] estimate that re-
gression testing can take up to 80% of the testing budget
and up to 50% of the software maintenance cost. The cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

of regression testing increases as software grows. For exam-
ple, Google observed that their regression-testing system,
TAP [20, 55, 57], has had a linear increase in both the num-
ber of software changes and the average test-suite execution
time, leading to a quadratic increase in the total test-suite-
execution time. As a result, the increase is challenging to
keep up with even for a company with an abundance of com-
puting resources.

Regression test selection (RTS) is a promising approach
to speed up regression testing. Researchers have proposed
many RTS techniques (e.g., [23, 27, 31–33, 50, 62]); En-
gström et al. [22] present a survey of RTS, and Yoo and
Harman [59] present a survey of regression testing including
RTS. A traditional RTS technique takes four inputs—two
software revisions (new and old), test suite at the new re-
vision, and dependency information from the test runs on
the old revision—and produces, as output, a subset of the
test suite for the new revision. The subset includes the tests
that can be affected by the changes; viewed dually, it ex-
cludes the tests that cannot be affected by the changes and
thus, need not be rerun on the new revision. RTS is safe
if it guarantees that the subset of selected tests includes all
tests whose behavior may be affected by the changes.

While RTS was proposed over three decades ago [22, 59],
it has not been widely adopted in practice, except for the
substantial success of the Google TAP system [20, 55, 57].
Unfortunately, TAP performs RTS only across projects (e.g.,
YouTube depends on the Guava project, so all YouTube
tests are run if anything in Guava changes) and provides no
benefit within a project . However, most developers work on
one isolated project at a time rather than on a project from
a huge codebase as done at Google. Moreover, our recent
empirical study [26] shows that developers who work on such
isolated projects frequently perform manual RTS, i.e., select
to run only some of the tests from their test suite, even when
their test suites are relatively fast. In sum, a large number of
developers would benefit from an automated RTS technique
that could work in practice.
Relevant Problem: We pose the following question: how
should researchers design an RTS technique and tool to in-
crease the likelihood that RTS actually be adopted in prac-
tice? We note that testing frameworks, such as JUnit, are
widely adopted and well integrated with many popular build
systems, such as Ant or Maven. For example, our analysis of
666 most active, Maven-based1 Java projects from GitHub
showed that at least 520 (78%) use JUnit (and 59 more

1We cloned 2000 most active Java projects but filtered those
that did not use Maven to automate our analysis.

use TestNG, another testing framework). In addition, at
least 101 projects (15%) use a code coverage tool, and 2
projects even use a mutation testing tool (PIT [47]). Yet,
no project used automated RTS. We believe that integrat-
ing a lightweight RTS technique with an existing testing
framework would likely increase RTS adoption. Ideally, a
project that already uses the testing framework could adopt
RTS with just a minimal change to its build script, such as
build.xml or pom.xml.

The key requirement for an RTS technique to be adopted
is that the end-to-end time, on average, is shorter than the
time to execute all tests in the testing framework [37, 40].
A typical RTS technique has three phases: the analysis (A)
phase selects tests to run, the execution (E) phase runs the
selected tests, and the collection (C) phase collects informa-
tion from the current revision to enable the analysis for the
next revision. Most research has evaluated RTS techniques
based on the number of selected tests, i.e., implicitly based
on the time only for the E phase; a few papers that do report
time (e.g., [45, 58]) measure only A and E phases, ignoring
the C phase. To properly compare speedup (or slowdown) of
RTS techniques, we believe it is important to consider the
end-to-end time that the developer observes, from initiating
the test-suite execution for a new code revision until all test
outcomes become available.
Lightweight Technique: We propose Ekstazi, a novel
RTS technique based on file dependencies. Ekstazi is moti-
vated by recent advances in build systems [2, 3, 7–9, 17, 24,
42] and prior work on RTS based on class dependencies [21–
23, 34, 36, 45, 52] and external resources [29, 30, 43, 58], as
discussed further in Section 7. Unlike most prior RTS tech-
niques based on finer-grained dependencies (e.g., methods
or basic blocks), Ekstazi does not require integration with
version-control systems (VCS): Ekstazi does not explicitly
compare the old and new revisions. Instead, Ekstazi com-
putes for each test entity (a test method or a test class) what
files it depends on; the files can be either executable code
(e.g., .class files in Java) or external resources (e.g., config-
uration files). A test need not be run in the new revision
if none of its dependent files changed. While we provide no
formal proof that Ekstazi is safe, its safety follows directly
from the proven safety for RTS based on class dependen-
cies [52] and partial builds based on file dependencies [17].
Robust Implementation: We implement theEkstazi tech-
nique in a tool [25] integrated with JUnit. Our tool handles
many features of Java, such as packing of .class files in .jar

archives, comparison of .class files using smart checksums
(e.g., ignoring debug information), instrumentation to col-
lect dependencies using class loaders or Java agents, reflec-
tion, etc. Our tool can work out-of-the-box on any project
that uses JUnit. The tool is available at www.ekstazi.org.
Extensive Evaluation: We evaluate Ekstazi on 615 re-
visions of 32 Java projects, ranging from 7,389 to 920,208
LOC and from 83 to 641,534 test methods that take from 8
to 2,565 seconds to execute in the base case, called RetestAll
(that runs all the tests) [37]. To the best of our knowledge,
this is the largest evaluation of any RTS study, and the first
to report the end-to-end RTS time, including the C phase.
The experiments show that Ekstazi reduces the end-to-end
time 32% on average, 54% for longer-running test suites,
compared to RetestAll. Further, Ekstazi reduces the time
47% on average, 66% for longer-running test suites, when
the C phase is performed in a separate, off-line run [15, 18].

class TestM {
void t1() {
assert new C().m() == 1; }

void t2() {
assert new D().m() == 1; }

}

class TestP {
void t3() {
assert new C().p() == 0; }

void t4() {
assert new D().p() == 4; }

}

class C {
C() {}
int m() {
/∗ no method calls ∗/ }

int p() {
/∗ no method calls ∗/ }

}

class D extends C {
D() {}
@Override
int p() {
/∗ no method calls ∗/ }

}

Figure 1: Example test code and code under test

t1 → C.C, C.m
t2 → D.D, C.C, C.m
t3 → C.C, C.p
t4 → D.D, C.C, D.p

(a) meth-meth

t1 → TestM, C
t2 → TestM, D, C
t3 → TestP, C
t4 → TestP, D, C

(b) meth-class

TestM → TestM, C, D
TestP → TestP, C, D

(c) class-class

Figure 2: Dependencies collected for code in Figure 1

We also compare Ekstazi with FaultTracer [60], a state-
of-the-research RTS tool based on fine-grained dependencies,
on a few projects that FaultTracer can work on. Not only is
Ekstazi faster than FaultTracer, but FaultTracer is, on av-
erage, even slower than RetestAll. We discuss why the main
result—that Ekstazi is better than FaultTracer in terms
of the end-to-end time—is not simply due to FaultTracer
being a research prototype but a likely general result. Ek-

stazi tracks dependencies at our proposed file granularity,
whereas FaultTracer uses a finer granularity. While Ekstazi
does select more tests than FaultTracer and has a slightly
slower E phase, Ekstazi has much faster A and C phases
and thus, a lower end-to-end time.

Ekstazi has already been integrated in the main reposi-
tories of several open-source projects where it is used on a
daily basis, including in Apache Camel [10], Apache Com-
mons Math [11], and Apache CXF [12].

2. EXAMPLE
We use a synthetic example to introduce key terms and

illustrate several RTS techniques and their trade-offs. Fig-
ure 1 shows code that represents an old project revision: two
test classes—TestM and TestP—contain four test methods—
t1, t2, t3, and t4—for two classes under test—C and D.

Executing the tests on this revision can collect the de-
pendencies that relate each test entity to a set of dependent
elements. These elements can be of various granularity; for
our example, we use methods and classes. We refer to the
granularity of test entities as selection granularity—this is
the level at which tests are tracked and selected (as test
methods or test classes), and we refer to the granularity of
dependent elements as dependency granularity—this is the
level at which changes are determined.

A traditional RTS technique, e.g., FaultTracer [60], using
methods for both the selection granularity and the depen-
dency granularity would collect the dependencies as in Fig-
ure 2a. Ekstazi uses classes (more generally, files) for the
dependency granularity and either methods or classes for
the selection granularity. Using methods or classes collects
the dependencies as in Figure 2b or Figure 2c, respectively.

In Ekstazi, whenever a test entity depends on D, it also
depends on C (in general, on all superclasses of D). Each
test entity also depends on its test class, e.g., t1 depends on

www.ekstazi.org

TestM. Finally, this simple example does not show the test
code or the code under test accessing any files, but Ekstazi
also tracks files (including directories).

Assume that a new code revision changes only the body
of the method D.p and thus only the class D. FaultTracer
would select to run only one test, t4. In contrast, Ekstazi
at the method granularity would select two tests, t2 and
t4, because they both depend on the changed class D. More-
over, Ekstazi at the class granularity would select both test
classes, TestM and TestP, and thus all four test methods, be-
cause both test classes depend on the changed class D.

At a glance, it seems that Ekstazi cannot be better than
the traditional techniques, because Ekstazi never selects
fewer tests. However, our goal is to optimize the end-to-end
time for RTS. Although Ekstazi selects some more tests and
thus has a longer execution phase, its use of much coarser
dependencies shortens both the analysis and collection. As
a result, Ekstazi has a much lower end-to-end time.

Safely using methods as the dependency granularity is ex-
pensive. An RTS technique that just intersects methods that
are in the set of dependencies with the changes, as we dis-
cussed in our simplified description, is unsafe, i.e., it could
fail to select some test that is affected by the changes. For
example, the new revision could add a method m in class D

(that overrides C.m); a naive intersection would not select
any test, but the outcome of t2 could change: the execution
of this test on the old revision does depend on the existence
(or absence) of D.m, although the test could not execute that
(non-existent) method [31, 48]. For another example, the
new revision could change the value of a final field accessed
from the existing method C.m; it would be necessary to col-
lect accessed fields to safely reason about the change and
determine which tests should be selected [48, 60].

As a consequence, an RTS technique that uses methods
as the dependency granularity could be safer by collecting
more dependencies than just used methods (hence making
the collection expensive and later selecting more tests, mak-
ing the execution more expensive), and, more critically, it
also needs sophisticated, expensive comparison of the old
and new revisions to reason about the changes (hence mak-
ing the analysis phase expensive). In contrast, an RTS tech-
nique that uses classes as the dependency granularity can be
safer by simply collecting all used classes (hence speeding up
the collection), and more critically, it can use a rather fast
check of the new revision that does not even require the old
revision (hence speeding up the analysis phase). However,
when tests depend not only on the code under test but also
on external files [17, 43], collecting only the classes is not
safe, and hence Ekstazi uses files as dependencies.

3. TECHNIQUE AND IMPLEMENTATION
A typical RTS technique has three phases: the analysis

(A) phase selects what tests to run in the current revision,
the execution (E) phase runs the selected tests, and the col-
lection (C) phase collects information for the next revision.
Ekstazi collects dependencies at the level of files. For each
test entity, Ekstazi saves (in the corresponding dependency
file2) the names and checksums of the files that the entity
uses during execution.

Ekstazi technique is safe for any code change and any
change on the file system. The safety of Ekstazi intuitively
follows from the proven safety of RTS based on class de-
pendencies [52] and partial builds based on file dependen-

cies [17]. We leave it as a future work to formally prove that
Ekstazi is safe.

In the rest of the section, we first describe the RTS phases
in more detail. We then describe the format in which Ek-

stazi saves the dependencies, and describe an optimization
that is important to make Ekstazi practical. We finally
describe Ekstazi integration with a testing framework.

3.1 Analysis (A) Phase
The analysis phase in Ekstazi is quite simple and thus

fast. For each test entity, Ekstazi checks if the checksums
of all used files are still the same. If so, the test entity
is not selected. Note that an executable file can remain the
same even when its source file changes (e.g., renaming a local
variable or using syntactic sugar); dually, the executable file
can change even when its source file remains the same (e.g.,
due to a change in compilation). This checking requires
no sophisticated comparisons of the old and new revisions,
which prior RTS research techniques usually perform on the
source, and in fact it does not even need to analyze the old
revision (much like a build system can incrementally compile
code just by knowing which source files changed). The only
check is if the files remained the same.

Ekstazi naturally handles newly added test entities: if
there is no dependency information for some entity, it is se-
lected. Initially, on the very first run, there is no dependency
information for any entity, so they are all selected.

3.2 Execution (E) Phase
Although one can initiate test execution directly from a

testing framework, large projects typically initiate test ex-
ecution from a build system. Popular build systems (e.g.,
Ant or Maven) allow the user to specify an includes list of
all test classes to execute.

Figure 3 shows two approaches to integrate RTS in a typi-
cal Java project. Ekstazi can work with testing frameworks
in both approaches. When tightly integrating the A and E

phases (Figure 3a), the build system finds all test classes and
invokes a testing framework as if all test entities will run;
Ekstazi then checks for each entity if it should be actually
run or not. Tightly integrating these two phases simplifies
adding Ekstazi to an existing build: to use Ekstazi re-
quires only a single change, to replace testingframework.jar

(e.g., junit.jar) with ekstazi.jar.
Loosely integrating the A and E phases (Figure 3b) can

improve performance in some cases. It first determines what
test entities not to run. This avoids the unnecessary over-
head (e.g., loading classes or spawning a new JVM when the
build spawns a JVM for each test entity) of preparing to run
an entity and finding it should not run. The A phase makes
an excludes list of test classes that should not run, and
the build system ignores them before executing the tests.
Ekstazi makes an excludes list from previously collected
dependency files and excludes test classes rather than test
methods because most build systems support an excludes

list of classes. In case of the method selection granularity,
the test methods that are not affected are excluded at the
beginning of the E phase.

Figure 3 also shows two approaches to integrate the E

and C phases. First, the dependencies for the test entities

2Note that a “dependency file”, which stores dependencies,
should not be confused with “dependent files”, which are the
dependencies themselves.

System
Build

Test
Outcomes

JVM

All
Run CUT & Tests

& A Phase C Phase
(E Phase)

Dependency
Files

Testing Framework

(a) Tight integration

JVM

CUT & Tests

(E Phase)

JVM

Some
Run

(E Phase)
CUT & Tests

Excludes

C Phase
Files

Dependency

Testing Framework

Testing Framework

System
Build

JVM

A Phase

Test
Outcomes

(b) Loose integration
Figure 3: Integration of an RTS technique in a typical build with a testing framework

that were not selected cannot change: these entities are not
run and their corresponding dependency files do not change.
But the test entities that were selected need to be run to de-
termine if they still pass or fail, and thus to inform the user
who initiated the test-suite execution. Because the depen-
dencies for these entities change, the simplest way to update
their dependency files is with one pass (AEC) that both de-
termines the test outcome and updates the dependency files.
However, collecting dependencies has an overhead. There-
fore, some settings [15, 18] may prefer to use two passes: one
without collecting dependencies (AE), just to determine the
test outcome and inform the user, and another to also collect
the dependencies (AEC). The second pass can be started in
parallel with the first or can be performed sequentially later.

3.3 Collection (C) Phase
The collection phase creates the dependency files for the

executed test entities. Ekstazi monitors the execution of
the tests and the code under test to collect the set of files ac-
cessed during execution of each entity, computes the check-
sum for these files, and saves them in the corresponding
dependency file. Ekstazi currently collects all files that are
either read or written, but it could be even more precise by
distinguishing writes that do not create a dependency [28].
Moreover, Ekstazi tracks even files that were attempted to
be accessed but did not exist; if those files are added later,
the behavior can change.

In principle, we could collect file dependencies by adapting
a tool such as Fabricate [24] or Memoize [42]: these tools
can monitor any OS process to collect its file dependencies,
and thus they could be used to monitor a JVM that runs
tests. However, these tools would be rather imprecise for
two reasons. First, they would not collect dependencies per
entity when multiple entities run in one JVM. Second, they
would not collect dependencies at the level of .class files
archived in .jar files. Moreover, these tools are not portable
from one OS to another, and cannot be easily integrated in
a testing framework such as JUnit or a build system such as
Maven or Ant.

We implemented the C phase in Ekstazi as a pure Java
library that is called from a testing framework and addresses
both points of imprecision. To collect dependencies per test
entity, Ekstazi needs to be informed when an entity starts
and ends. Ekstazi offers API methods entityStarted(String
name), which clears all previously collected dependencies,
and entityEnded(String name), which saves all the collected
dependencies to an appropriately named dependency file.

When using method selection granularity, due to common
designs of testing frameworks, additional steps are needed to

properly collect dependencies. Namely, many testing frame-
works invoke a constructor of a test class only once, and then
invoke setUp method(s) before each test method is invoked.
Therefore, Ekstazi appends dependencies collected during
constructor invocation and setUp method(s) to the depen-
dencies collected during the execution of each test method.

To precisely collect accessed files, Ekstazi dynamically
instruments the bytecode and monitors the execution to col-
lect both explicitly accessed files (through the java.io pack-
age) and implicitly accessed files (i.e., the .class files that
contain the executed bytecode). Ekstazi collects explicitly
used files by monitoring all standard Java library methods
that may open a file (e.g., FileInputStream). Files that con-
tain bytecode for Java classes are not explicitly accessed
during execution; instead, a class loader accesses a classfile
when a class is used for the first time. Our instrumentation
collects a set of objects of the type java.lang.Class that a
test depends on; Ekstazi then finds for each class where it
was loaded from. If a class is not loaded from disk but dy-
namically created during execution, it need not be tracked
as a dependency, because it cannot change unless the code
that generates it changes.
Instrumented Code Points: More precisely, Ekstazi in-
struments the following code points: (1) start of a construc-
tor, (2) start of a static initializer, (3) start of a static
method, (4) access to a static field, (5) use of a class lit-
eral, (6) reflection invocations, and (7) invocation through
invokeinterface (bytecode instruction). Ekstazi needs no
special instrumentation for the test class: it gets captured
as a dependency when its constructor is invoked. Ekstazi

also does not instrument the start of instance methods: if
a method of class C is invoked, then an object of class C is
already constructed, which captured the dependency on C.

3.4 Dependency Format
Ekstazi saves dependencies in a simple format similar to

the dependency format of build tools such as Fabricate [24].
For each test entity, Ekstazi saves all the information in
a separate dependency file whose name corresponds to the
entity name. For example in Figure 2b, Ekstazi creates
four files TestM.t1, TestM.t2, TestP.t3, and TestP.t4. Sav-
ing dependencies from all test entities in one file would save
space and could save time for smaller projects, but it would
increase time for large projects that often run several test
entities in parallel (e.g., spawn multiple JVMs) so using one
dependency file would require costly synchronization. In the
future, we plan to explore other ways to persist the depen-
dencies, e.g., databases.

3.5 Smart Checksums
Ekstazi’s use of file checksums offers several advantages,

most notably (1) the old revision need not be available for
the A phase, and (2) hashing to compute checksums is fast.
On top of collecting the executable files (.class) from the
archives (.jar), Ekstazi can compute the smart checksum
for the .class files. Computing the checksum from the byte-
codes already ignores some changes in the source code (e.g.,
i++ and i+=1 could be compiled the same way). The base-
line approach computes the checksum from the entire file
content, including all the bytecodes.

However, two somewhat different executable files may still
have the same semantics in most contexts. For example,
adding an empty line in a .java file would change the de-
bug info in the corresponding .class file, but almost all test
executions would still be the same (unless they observe the
debug info, e.g., through exceptions that check line num-
bers). Ekstazi can ignore certain file parts, such as compile-
time annotations and other debug info, when computing the
checksum. The trade-off is that the smart checksum makes
the A and C phases slower (rather than quickly applying a
checksum on the entire file, Ekstazi needs to parse parts
of the file and run the checksum on a part of the file), but
it makes the E phase faster (as Ekstazi selects fewer tests
because some dependent files match even after they change).

3.6 Integrating Ekstazi with JUnit
We implemented the Ekstazi technique in a robust tool

for Java and JUnit [25]. We integrated Ekstazi with JUnit
because it is a widely used framework for executing unit tests
in Java. Regarding the implementation, our ekstazi.jar has
to change (dynamically) a part of the JUnit core itself to
allow Ekstazi to skip a test method that should not be
run. While JUnit provides listeners that can monitor start
and end of tests, currently the listeners cannot change the
control-flow of tests. Ekstazi supports both JUnit 3 and
JUnit 4, each with some limitation. For JUnit 3, Ekstazi
supports only methods (not classes) as selection granularity.
For JUnit 4, if a project uses a custom runner, Ekstazi

supports only classes (not methods); otherwise, if no custom
runner is used, Ekstazi supports both classes and methods.
It is important to note that when Ekstazi does not support
some case, it simply offers no test selection and runs all the
tests, as RetestAll.

4. EVALUATION
This section describes an experimental evaluation of Ek-

stazi. We (1) describe the projects used in the evaluation,
(2) describe the experimental setup, (3) report the RTS re-
sults in terms of the number of selected test entities and
time, (4) measure benefits of the smart checksum, (5) evalu-
ate the importance of selection granularity, (6) evaluate the
importance of dependency granularity by comparing Ek-

stazi with FaultTracer [60], and (7) describe a case study
of Ekstazi integration with a popular open-source project.
More information about the experiments (e.g., links to the
projects used in evaluation) is available at www.ekstazi.

org/research.html.
We ran all the experiments on a 4-core 1.6 GHz Intel

i7 CPU with 4GB of RAM, running Ubuntu Linux 12.04
LTS. We used three versions of Oracle Java 64-Bit Server:
1.6.0 45, 1.7.0 45, and 1.8.0 05. Different versions were nec-

essary as several projects require specific older or newer Java
version. For each project, we used the latest revision that
successfully compiled and executed all tests.

4.1 Projects
Figure 4 lists the projects used in the evaluation; all 32

projects are open source. The set of projects was created by
three undergraduate students who were not familiar with our
study. We suggested starting places with larger open-source
projects: Apache [1], GitHub [4], and GoogleCode [5]. We
also asked that each project satisfies several requirements:
(1) has the latest available revision (obtained at the time
of the first download) build without errors (using one of
three Java versions mentioned above), (2) has at least 100
JUnit tests, (3) uses Ant or Maven to build code and execute
tests, and (4) uses SVN or Git version-control systems. The
first two requirements were necessary to consider compilable,
non-trivial projects, but the last two requirements were set
to simplify our automation of the experiments.

Note that Ekstazi itself does not require any integra-
tion with VCS, but our experiments do require to automate
checking out of various project revisions. To support both
Ant and Maven across many project revisions, we do not
modify the .xml configuration files but replace the appro-
priate junit.jar (in the lib for Ant-based projects or in
the Maven .m2 download repo) with our ekstazi.jar. From
about 100 projects initially considered from the three source-
code repositories, two-thirds were excluded because they did
not build (e.g., due to syntax errors or missing dependen-
cies), used a different build systems (e.g., Gradle), or had
too few tests. The students confirmed that they were able
to execute JUnit tests in all selected projects.

Figure 4 tabulates for each project its name, the latest re-
vision available at the time of our first download, the number
of revisions that could build out of 20 revisions before the
specified revision, the total number of lines of code (as re-
ported by sloccount [53]), the number of JUnit test methods
and classes averaged across all buildable revisions, and the
average (avg) and total (

∑
) time to execute the entire test

suite across all buildable revisions. The remaining columns
are discussed in the following sections.

The row labeled
∑

at the bottom of the table shows the
cumulative numbers across all projects. We performed our
evaluation on 615 revisions of 32 projects totaling 4,937,189
LOC. To the best of our knowledge, this is the largest dataset
used in any RTS study.

We visually separate projects with short running and long
running test suites. While no strict rule defines the bound-
ary between the two, we classified the projects whose test
suites execute in less than one minute as short running.
The following sections mostly present results for all projects
together, but in several cases we contrast the results for
projects with short- and long-running test suites.

4.2 Experimental Setup
We briefly describe our experimental setup. The goal is

to evaluate how Ekstazi performs if RTS is run for each
committed project revision. In general, developers may run
RTS even between commits [26], but there is no dataset
that would allow executing tests the same way that devel-
opers executed them in between commits. For each project,
our experimental script checks out the revision that is 20
revisions before the revision specified in Figure 4. If any re-

www.ekstazi.org/research.html
www.ekstazi.org/research.html

Project Revision
Buildable

Revisions
LOC

Test [avg] Time [sec] Test Selection [%]

classes methods avg
∑

e% tAEC tAE
sh
o
r
t
r
u
n
n
in
g

Cucumber 5df09f85 20 19,939 49 296 8 169 12 99 76

JodaTimeM f17223a4 20 82,996 124 4,039 10 214 21 107 75

Retrofit 810bb53e 20 7,389 15 162 10 217 16 104 90

CommonsValidatorM 1610469 20 12,171 61 416 11 230 6 88 78

BVal 1598345 20 17,202 21 231 13 267 13 138 97

CommonsJXPathM 1564371 13 24,518 33 386 15 205 20 94 81

GraphHopper 0e0e311c 20 33,254 80 677 15 303 16 85 59

River 1520131 19 297,565 14 83 17 335 6 35 18

Functor 1541713 20 21,688 164 1,134 21 439 13 112 90

EmpireDB 1562914 20 43,980 23 113 27 546 18 112 99

JFreeChart 3070 20 140,575 359 2,205 30 618 5 80 64

CommonsColl4 1567759 20 52,040 145 13,684 32 644 9 66 55

CommonsLang3 1568639 20 63,425 121 2,492 36 728 11 60 53

CommonsConfig 1571738 16 55,187 141 2,266 39 633 20 72 58

PdfBox 1582785 20 109,951 94 892 40 813 12 80 63

GSCollections 6270110e 20 920,208 1,106 64,614 51 1,036 29 107 90

lo
n
g
r
u
n
n
in
g

CommonsNet 1584216 19 25,698 37 215 68 1,300 10 21 21

ClosureCompiler 65401150 20 211,951 233 8,864 71 1,429 17 62 50

CommonsDBCP 1573792 16 18,759 27 480 76 1,229 21 46 39

Log4jM 1567108 19 30,287 38 440 79 1,508 6 62 43

JGitM bf33a6ee 20 124,436 229 2,223 83 1,663 22 65 50

CommonsIO 1603493 20 25,981 84 976 98 1,969 12 30 24

IvyM 1558740 18 72,179 121 1,005 170 3,077 38 53 44

Jenkins (light) c826a014 20 112,511 86 3,314 171 3,428 7 74 71

CommonsMath 1573523 20 186,796 461 5,859 249 4,996 6 77 16

AntM 1570454 20 131,864 234 1,667 380 7,613 13 24 21

ContinuumM 1534878 20 91,113 68 361 453 9,064 10 32 26

GuavaM af2232f5 16 257,198 348 641,534 469 7,518 13 45 17

Camel (core) f6114d52 20 604,301 2,015 4,975 1,296 25,938 5 9 7

Jetty 0f70f288 20 282,041 504 4,879 1,363 27,275 26 57 49

Hadoop (core) f3043f97 20 787,327 317 2,551 1,415 28,316 7 38 22

ZooKeeperM 1605517 19 72,659 127 532 2,565 48,737 20 43 37
∑

- - 615 4,937,189 7,479 773,565 9,400 182,475 - - -

avg(all) 14 68 53

avg(short running) | avg(long running) 14|15 90|46 72|34

Figure 4: Projects used in the evaluation and test selection results using Ekstazi. Figure 5 describes the column titles

c% Percentage of test classes selected
e% Percentage of test entities selected
m% Percentage of test methods selected
tAEC Time for AEC normalized by time for RetestAll
tAE Time for AE normalized by time for RetestAll

Figure 5: Legend for symbols used in evaluation

vision cannot build, it is ignored from the experiment, i.e.,
the analysis phase of the next buildable revision uses de-
pendencies collected at the previous buildable revision. If
it can build, the script executes the tests in three scenarios:
(1) RetestAll executes all tests without Ekstazi integration,
(2) AEC executes the tests with Ekstazi while collecting de-
pendencies, and (3) AE executes the tests with Ekstazi but
without collecting dependencies, which is preferred in some
settings (Section 3.2). The script then repeats these three
steps for all revisions until reaching the latest available re-
vision listed in Figure 4.

In each step, the script measures the number of executed
tests and the testing time (the execution of all tests for JU-
nit, the end-to-end time for all AEC phases of Ekstazi,
or just the times for the AE phases). The script measures
the time to execute the build command that the developers
use to execute the tests (e.g., ant junit-tests or mvn test).
We sometimes limited the tests to just a part of the entire
project (e.g., the core tests for Hadoop in RetestAll take
almost 8 hours across 20 revisions, and the full test suite
takes over 17 hours for just one revision). In our evaluation,
we did not modify anything in the build configuration file
for running the tests, e.g., if it uses multiple cores, excludes
some tests, or spawns new JVMs for each test class. By
measuring the time for the build command, we evaluate the
speedup that the developers would have observed had they
used Ekstazi. Note that the speedup that Ekstazi provides
over RetestAll is even bigger for the testing itself than for
the build command, because the build command has some
fixed overhead before initiating the testing.

−20 −15 −10 −5 0

Revision

0

100

200

300

400

500

600

700

N
u
m
b
e
r
o
f
te
s
ts

RetestAll

Class

Method

(a) GraphHopper tests

−20 −15 −10 −5 0

Revision

0

5

10

15

20

25

30

T
im

e
[s
e
c
]

RetestAll

AE

AEC

(b) GraphHopper time

−20 −15 −10 −5 0

Revision

0

500

1000

1500

2000

2500

N
u
m
b
e
r
o
f
te
s
ts

RetestAll

Class

Method

(c) CommonsLang3 tests

−20 −15 −10 −5 0

Revision

0

5

10

15

20

25

30

35

40

45

T
im

e
[s
e
c
]

RetestAll

AE

AEC

(d) CommonsLang3 time
Figure 6: Number of available and selected tests (a,c) and end-to-end time in seconds (b,d)

Ekstazi has two main options: selection granularity can
be class or method, and smart checksum can be on or off.
The default configuration uses the class selection granularity
with smart checksum. As discussed earlier, due to idiosyn-
crasies of JUnit 3, Ekstazi does not run the class selection
granularity for all projects; those that use the method selec-
tion granularity have the superscript M in Figure 4.

4.3 Main RTS Results
The testing time is the key metric to compare RetestAll,

Ekstazi AEC, and Ekstazi AE runs; as an additional met-
ric, we use the number of executed tests. Figure 6 visu-
alizes these metrics for two of the projects, GraphHopper
and CommonsLang3. Plots for other projects look simi-
lar; the selected projects include several revisions that are
interesting to highlight. For each of the 20 revisions, we
plot the total number of test methods (close to 700 and
2,500 in GraphHopper and CommonsLang3, respectively),
the number of test methods Ekstazi selects at the method
level (blue line), the number of test methods Ekstazi se-
lects at the class level (yellow line), the time for RetestAll
(orange line), the time for all AEC phases of Ekstazi at
the method level (purple line), and the time for only AE

phases at the method level (green line). For example, revi-
sion −12 for CommonsLang3 has about 400 and 1,200 test
methods selected at the method and class level, respectively.
We compute the selection ratio for each revision, in this case
∼400/2,500 and ∼1,200/2,500, and then average the ratios
over all revisions; for CommonsLang3, the average ratio is
about 8% of methods and 11% of classes (Figure 8). Like-
wise for times, we compute the ratio of the Ekstazi time
over the RetestAll time for each revision and then average
these ratios. In all starting revisions, −20, we expect the
Ekstazi AEC to be slower than RetestAll, as Ekstazi runs
all the tests and collects dependencies. In general, whenever
Ekstazi selects (almost) all tests, it is expected to be slower
than RetestAll, due to analysis and collection overhead. For
example, Ekstazi is slower in revisions −1, −8, and −14 for
GraphHopper, but it is faster for many other revisions. We
also expect Ekstazi AE runs to be faster than Ekstazi AEC

runs, but there are some cases where the background pro-
cesses flip that, e.g., revisions −5 and −6 for GraphHopper.
The background noise also makes the time for RetestAll to
fluctuate, but over a large number of revisions we expect the
noise to cancel out and allow a fair comparison of times for
RetestAll, Ekstazi AEC, and Ekstazi AE . The noise has
smaller effect on long running test suites.

All Smart
m% tAEC tAE m% tAEC tAE

Camel (core) 5 9 7 5 9 7
CommonsDBCP 40 60 47 23 43 37
CommonsIO 21 42 32 14 30 24
CommonsMath 6 85 16 6 75 17
CommonsNet 11 28 28 9 26 22
CommonsValidator 7 93 79 6 88 78
Ivy 47 63 52 38 53 44
Jenkins (light) 14 72 69 7 74 71
JFreeChart 6 87 70 5 84 67

avg(all) 17 60 45 13 54 41

Figure 7: Ekstazi without and with smart checksums

The last three columns in Figure 4 show the average selec-
tion per project; “e%” shows the ratio of test entities (meth-
ods or classes) selected, and the times for AEC and AE are
normalized to the JUnit run without Ekstazi. For example,
for Cucumber, Ekstazi selects on average 12% of test en-
tities, but the time that Ekstazi takes is 99% of RetestAll
(or 76% if the C phase is ignored), so it provides almost no
benefit. In fact, for some other projects with short-running
test suites, Ekstazi is slower than RetestAll; we highlight
such cases, e.g., for JodaTime in Figure 4.

Overall, the selection ratio of test entities varies between
5% and 38% of RetestAll, the time for AEC varies between
9% and 138 % (slowdown), and the time for AE varies be-
tween 7% and 99%. On average, across all the projects,
the AEC time is 68%, and the AE time is 53%. More impor-
tantly, all slowdowns are for projects with short-running test
suites. Considering only the projects with long-running test
suites, Ekstazi reduces the AEC time to 46% of RetestAll,
and reduces the AE time to 34%. In sum, Ekstazi appears
useful for projects whose test suites take over a minute: Ek-
stazi on average roughly halves their testing time.

4.4 Smart Checksums
Recall that smart checksum performs a more expensive

comparison of .class files to reduce the number of selected
test entities. Figure 7 shows a comparison of Ekstazi runs
with smart checksum being off and on, for a diverse subset of
projects. While smart checksum improves both the number
of selected entities and the testing time (on average and in
most cases), there are several cases where the results are the
same, or the reduction in the testing time is even slightly
lower, e.g., both times for Jenkins or the AE time for Com-

Method Class
m% tAEC tAE c% tAEC tAE

BVal 16 138 94 13 138 97
ClosureCompiler 20 96 53 17 62 50
CommonsColl4 7 81 60 9 66 55
CommonsConfig 19 76 57 20 72 58
CommonsDBCP 23 43 37 21 46 39
CommonsIO 14 30 24 12 30 24
CommonsLang3 8 63 51 11 60 53
CommonsMath 6 75 17 6 77 16
CommonsNet 9 26 22 10 21 21

Cucumber 13 105 78 12 99 76

EmpireDB 13 117 100 18 112 99

Functor 15 111 100 13 112 90
GraphHopper 19 84 54 16 85 59

GSCollections 16 198 101 29 107 90
JFreeChart 5 84 67 5 80 64
PdfBox 8 85 70 12 80 63

Retrofit 19 113 93 16 104 90
River 6 34 17 6 35 18

avg(all) 13 87 61 14 77 59

Figure 8: Ekstazi with both selection granularities

monsMath. This happens if projects have no revision (in
the last 20 revisions) that modifies only debug info; using
smart checksum then leads to a slowdown as it never selects
fewer tests but increases the cost of checking and collecting
dependencies. We also manually inspected the results for
several projects and found that smart checksum can be fur-
ther improved: some .class files differ only in the order of
annotations, but Java specification does not attach seman-
tics to this order, so such changes can be safely ignored. In
sum, smart checksum reduces the overall testing time.

4.5 Selection Granularity
Ekstazi provides two levels of selection granularity: meth-

ods (which selects fewer tests for the E phase but makes the
A and C phases slower) and classes (which makes the A

and C phases faster but selects more tests for the E phase).
Figure 8 shows a comparison of Ekstazi for these two lev-
els, on several randomly selected projects. Because Ekstazi
does not support method selection granularity for projects
that use a custom JUnit runner, we do not compare for
such projects. Also, we do not compare for Guava; it has
a huge number of test methods, and with method selection
granularity, our default format for saving dependencies (Sec-
tion 3.4) would create a huge number of dependency files
that may exceed limits set by the file system. The class selec-
tion granularity improves both AEC and AE times on aver-
age and in most cases, especially for GSCollections. In some
cases where the class selection granularity is not faster, it is
only slightly slower. In sum, the class selection granularity
reduces the overall testing time compared to the method se-
lection granularity, and the class selection granularity should
be the default value.

4.6 Dependency Granularity
We next evaluate two levels of dependency granularity. We

compare Ekstazi, which uses the class dependency granu-
larity, with FaultTracer [60], which tracks dependencies on
the edges of an extended control-flow graph (ECFG). To
the best of our knowledge, FaultTracer was the only pub-
licly available tool for RTS at the time of our experiments.

FaultTracer Ekstazi

m% tAEC m% tAEC

CommonsConfig 8 223 19 76

CommonsJXPath 14 294 20 94

CommonsLang3 1 183 8 63
CommonsNet 2 57 9 26

CommonsValidator 1 255 6 88

JodaTime 3 663 21 107

avg(all) 5 279 14 76

Figure 9: Test selection with FaultTracer and Ekstazi

FaultTracer collects the set of ECFG edges covered during
the execution of each test method. For comparison purposes,
we also use Ekstazi with the method selection granular-
ity. FaultTracer implements a sophisticated change-impact
analysis using the Eclipse [35] infrastructure to parse and
traverse Java sources of two revisions. Although robust,
FaultTracer has several limitations: (1) it requires that the
project be an Eclipse project, (2) the project has to have
only a single module, (3) FaultTracer does not track depen-
dencies on external files, (4) it requires that both source
revisions be available, (5) it does not track reflection calls,
(6) it does not select newly added tests, (7) it does not
detect any change in the test code, and (8) it cannot ig-
nore changes in annotations that Ekstazi ignores via smart
checksum [6]. Due to these limitations, we had to discard
most of the projects from the comparison, e.g., 15 projects
had multiple modules, and for CommonsIO, FaultTracer was
unable to instrument the code.

Figure 9 shows a comparison of FaultTracer and Ekstazi,
with the values, as earlier, first normalized to the savings
compared to RetestAll for one revision, and then averaged
across revisions. The Ekstazi results are the same as in
Figure 4 and repeated for easier comparison. The results
show that Ekstazi has a much lower end-to-end time than
FaultTracer, even though Ekstazi does select more tests to
run. Moreover, the results show that FaultTracer is even
slower than RetestAll.

To gain confidence in the implementation, we compared
the sets of tests selected by Ekstazi and FaultTracer, and
confirmed that the results were correct. In most cases, Ek-
stazi selected a superset of tests selected by FaultTracer.
In a few cases, Ekstazi (correctly) selected fewer tests than
FaultTracer for two reasons. First, Ekstazimay select fewer
tests due to smart checksum (Section 3.5). Second, Ekstazi
ignores changes in source code that are not visible at the
bytecode level, e.g., local variable rename (Section 3.3).

4.7 Apache CXF Case Study
Several Apache projects integrated Ekstazi into their main

repositories. Note that Ekstazi was integrated in these
projects after we selected the projects for the evaluation,
as explained in Section 4.2. One of the projects that in-
tegrated Ekstazi, Apache CXF [12], was not used in our
evaluation. To estimate the benefits observed by Apache
developers, we performed a study to measure time savings
since Ekstazi was integrated (189 revisions at the time of
this writing). We measured test execution time, across all
revisions, for RetestAll and Ekstazi. Running tests with
Ekstazi (∼54h) was 2.74X faster than RetestAll (∼148h).

5. DISCUSSION
Coarser Dependencies Can Be Faster: We argue that
the cost of FaultTracer is due to its approach and not just
due to it being a research tool. The cost of FaultTracer
stems from collecting fine-grained dependencies, which af-
fects both the A and C phases. In particular, the A phase
needs to parse both old and new revisions and compare
them. While Orso et al. [45] show how some of that cost
can be lowered by filtering classes that did not change, their
results show that the overhead of parsing and comparison
still ranges from a few seconds up to 4min [45]. Moreover,
collecting fine-grained dependencies is also costly. For ex-
ample, we had to stop FaultTracer from collecting ECFG
dependencies of CommonsMath after one hour; it is interest-
ing to note that CommonsMath also has the most expensive
C phase for Ekstazi (∼8X for the initial run when there is
no prior dependency info). Last but not least, in terms of
adoption, FaultTracer and similar approaches are also more
challenging than Ekstazi because they require access to the
old revision through some integration with version-control
systems. In contrast, Ekstazi only needs the checksums of
dependent files from the old revision.
Sparse Collection: Although Ekstazi collects dependen-
cies at each revision by default, one can envision collecting
dependencies at every n-th revision [16, 18]. Note that this
approach is safe as long as the analysis phase checks the
changes between the current revision and the latest revision
for which dependencies were collected. This avoids the cost
of frequent collection but leads to less precise selection.
Duplicate Tests: In a few cases, we observed that Ek-

stazi did not run some tests during the first run, which
initially seemed like a bug in Ekstazi. However, inspecting
these cases showed that some test classes were (inefficiently)
included multiple times in the same test suite by the origi-
nal developers. When JUnit (without Ekstazi) runs these
classes, they are indeed executed multiple times. But when
Ekstazi runs these test suites, after it executes a test for
the first time, it saves the test’s dependency file, so when the
test is encountered again for the same test suite, all its de-
pendent files are the same, and the test is ignored. However,
if the same test method name is encountered consecutively
multiple times, Ekstazi does not ignore the non-first runs
but unions the dependencies for all those invocations, to
support parameterized unit tests.
Parameterized Tests: Recent versions of JUnit support
parameterized unit tests [56]. A parameterized test defines
a set of input data and invokes a test method with each input
from the set; each input may contain multiple values. This
approach is used in data-driven scenarios where only the
test input changes, but the test method remains the same.
Currently, Ekstazi considers a parameterized unit test as
a single test and unions the dependencies collected when
executing the test method with each element from the input
data set. In the future, we could explore tracking individual
invocations of parameterized tests.
Flaky Tests: Tests can have non-deterministic executions
for multiple reasons such as multi-threaded code, time de-
pendencies, asynchronous calls, etc. If a test passes and
fails for the same code revision, it is often called a “flaky
test” [39]. Even if a test has the same outcome, it can have
different dependencies in different runs. Ekstazi collects
dependencies for a single run and guarantees that the test
will be selected if any of its dependencies changes. However,

if a dependency changes for another run that was not ob-
served, the test will not be selected. This is the common
approach in RTS [50] because collecting dependencies for all
runs (e.g., using software model checking) would be costly.
Parallel Execution vs. RTS: It may be (incorrectly) as-
sumed that RTS is not needed in the presence of paral-
lel execution if sufficient resources are available. However,
even companies with an abundance of resources cannot keep
up with running all tests for every revision [20, 55, 57].
Additionally, parallel test execution is orthogonal to RTS.
Namely, RTS can significantly speed up test execution even
if the tests are run in parallel. For example, tests for four
projects used in our evaluation (ClosureCompiler, Hadoop,
Jenkins, and JGit) execute by default on all available cores.
Still, we can observe substantial speedup in testing time
when Ekstazi is integrated in these projects. Moreover,
RTS itself can be parallelized. In loose integration (Sec-
tion 3.2), we can run A of all tests in parallel and then run
EC of all tests in parallel. In tight integration, we can run
AEC of all tests in parallel.

6. THREATS TO VALIDITY
External: The projects used in the evaluation may not be
representative. To mitigate this threat, we performed ex-
periments on a number of projects that vary in size, number
of developers, number of revisions, and application domain.

We performed experiments on 20 revisions per project;
the results could differ if we selected more revisions or dif-
ferent segments from the software history. We considered
only 20 revisions to limit machine time needed for experi-
ments. Further, we consider each segment right before the
latest available revision at the time when we started the
experiments on the project.

The reported results for each project were obtained on a
single machine. The results may differ based on the config-
uration (e.g., available memory). We also tried a small sub-
set of experiments on another machine and observed similar
results in terms of speedup, although the absolute times dif-
fered due to machine configurations. Because our goal is to
compare real time, we did not want to merge experimental
results from different machines.
Internal: Ekstazi implementation may contain bugs that
may impact our conclusions. To increase the confidence in
our implementation, we reviewed the code, tested it on a
number of small examples, and manually inspected several
results for both small and large projects.
Construct: Although many RTS techniques have been pro-
posed, we compared Ekstazi only with FaultTracer. To the
best of our knowledge, FaultTracer was the only publicly
available RTS tool. Our focus in comparison is not only on
the number of selected tests but primarily on the end-to-end
time taken for testing. We believe that the time that the de-
veloper observes, from initiating the test-suite execution for
the new code revision until all the test outcomes become
available, is the most relevant metric for RTS.

7. RELATED WORK
There has been a lot of work on regression testing in gen-

eral, as surveyed in two reviews [14, 59], and on RTS in
particular, as further surveyed in two more reviews [22, 23].
We first discuss work that inspired our Ekstazi technique:
recent advances in build systems [2, 3, 7–9, 17, 24, 42], prior

work on RTS based on class dependencies [21, 34, 36, 45,
51, 52], and external resources [29, 30, 43, 58]. We then dis-
cuss prior techniques that use different levels of dependency
granularity and other related work.
Build Systems and Memoization: Memoize [42], which is
a Python-based system, uses strace on Linux to monitor all
files opened while the given command executes. Memoize
saves all file paths and file checksums, and ignores subse-
quent runs of the same command if no checksum changed.
Fabricate [24] is an improved version of Memoize that also
supports parallel builds. Other build systems, for example
SCons [8] and Vesta [9], capture dependencies on files that
are attempted to be accessed, even if they do not exist. For
memoization of Python code, Guo and Engler proposed In-
cPy [28] that memoizes calls to functions. IncPy supports
functions that use files, i.e., it stores the file checksums and
re-executes a function if any of its inputs or files change.
Our insight is to view RTS as memoization: if none of the
dependent files for some test changed, then the test need not
be run. By capturing file dependencies for each test entity,
Ekstazi provides scalable and efficient RTS that integrates
well with testing frameworks, increasing the chance of adop-
tion. Ekstazi differs from build systems and memoization
in several aspects: capturing dependencies for each test en-
tity even when all entities are executed in the same JVM,
supporting test entity granularities, smart checksums, and
capturing files inside archives (i.e., classfiles inside jar files).
Class-based Test Selection: Hsia et al. [34] were the first
to propose RTS based on class firewall [36], i.e., the statically
computed set of classes that may be affected by a change.
Orso et al. [45] present an RTS technique that combines class
firewall and dangerous edges [50]. Their approach works in
two phases: it finds relations between classes and interfaces
to identify a subgraph of the Java Interclass Graph that may
be affected by the changes, and then selects tests via an edge-
level RTS on the identified subgraph. Skoglund and Runeson
first performed a large case study on class firewall [51] and
then [52] proposed an improved technique that removes the
class firewall and uses a change-based RTS technique that
selects only tests that execute modified classes. More re-
cently, Christakis et al. [17] give a machine-verifiable proof
that memoization of partial builds is safe when capturing
dependencies on all files, assuming that code behaves deter-
ministically (e.g., there is no network access). Compared to
prior work, Ekstazi captures all files (including classes) for
RTS, handles addition and changes of test classes, applies
smart checksums, supports reflection, and has both class
and method selection granularity. Moreover, we integrated
Ekstazi with JUnit and evaluated on a much larger set of
projects, using the end-to-end testing time.
External Resources: Haraty et al. [29] and Daou [30] ex-
plored regression testing for database programs. Willmor
and Embury [58] proposed two RTS techniques, one that
captures interaction between a database and the application,
and the other based solely on the database state. Nanda et
al. [43] proposed RTS for applications with configuration
files and databases. We explored several ways to integrate
RTS with the existing testing frameworks, and Ekstazi cap-
tures all files. At the moment, Ekstazi offers no special sup-
port for dependencies other than files (e.g., databases and
web services). We plan to support these cases in the future.
Granularity Levels: Ren et al. [48] described the Chi-
anti approach for change impact analysis. Chianti collects

method dependencies for each test and analyzes differences
at the source level. We show that fine-grained analysis can
be expensive. Echelon from Microsoft [54] performs test pri-
oritization [59] rather than RTS. It tracks fine-grained de-
pendencies based on basic blocks and accurately computes
changes between code revisions by analyzing compiled bina-
ries. Most research RTS techniques [59] also compute fine-
grained dependencies like Echelon. Because Echelon is not
publicly available, our evaluation used FaultTracer [60], a
state-of-the-research RTS tool. Elbaum et al. [19] and Di
Nardo et al. [44] compared different granularity levels (e.g.,
statement vs. function) for test prioritization techniques.
Ekstazi uses a coarse granularity, i.e., files, for dependency
granularity, and the experiments show better results than
for FaultTracer based on a finer granularity. Also, the com-
parison of both selection granularities shows that the coarser
granularity provides more savings.
Other Related Work: Zheng et al. [61] propose a fully
static test selection technique that does not collect depen-
dencies but constructs a call graph (for each test) and in-
tersects the graph with the changes. Ekstazi collects de-
pendencies dynamically, and measures the end-to-end time.
Pinto et al. [46] and Marinescu et al. [41] studied test-suite
evolution and other execution metrics over several project
revisions. While we did not use those same projects and
revisions (e.g., Marinescu et al.’s projects are in C), we
did use 615 revisions of 32 projects. Several prediction
models [32, 49] were proposed to estimate if RTS would be
cheaper than RetestAll. Most models assume that the C

phase is run separately and would need to be adjusted when
RTS runs all phases and the end-to-end time matters. We
focus Ekstazi on the end-to-end time.

8. CONCLUSIONS
We described the Ekstazi technique and its implementa-

tion for regression test selection. The key difference between
Ekstazi and prior work is that Ekstazi tracks test depen-
dencies on files and integrates with JUnit. For each test en-
tity, Ekstazi collects a set of files that are accessed during
the execution. Ekstazi detects affected tests by checking if
the dependent files changed.

We aim to make RTS practical by balancing the time
for the analysis and collection phases, rather than focusing
solely on reducing the number of selected tests for the exe-
cution phase. The use of coarse-grain dependencies provides
a “sweet-spot”. The experiments show that Ekstazi al-
ready performs better overall than the state-of-the-research
tools. Most importantly, Ekstazi works faster than the
RetestAll base case. Finally, Ekstazi has already been in-
tegrated in the main repositories by several popular open
source projects, including Apache Camel, Apache Commons
Math, and Apache CXF.

9. ACKNOWLEDGMENTS
We thank Alex Gyori, Farah Hariri, Owolabi Legunsen,

Jessy Li, Yu Lin, Qingzhou Luo, Aleksandar Milicevic, and
August Shi for their feedback on this work; Nikhil Unni,
Dan Schweikert, and Rohan Sehgal for helping to make the
list of projects used in the evaluation; and Lingming Zhang
for making FaultTracer available. This research was par-
tially supported by the NSF Grant Nos. CNS-0958199, CCF-
1012759, CCF-1421503, and CCF-1439957.

10. REFERENCES

[1] Apache Projects. https://projects.apache.org/.

[2] Buck. http://facebook.github.io/buck/.

[3] Build in the cloud.
http://google-engtools.blogspot.com/2011/08/

build-in-cloud-how-build-system-works.html.

[4] GitHub. https://github.com/.

[5] Google Code. https://code.google.com/.

[6] Java Annotations. http://docs.oracle.com/javase/

7/docs/technotes/guides/language/annotations.

html.

[7] Ninja. https://martine.github.io/ninja/.

[8] SCons. http://www.scons.org/.

[9] Vesta. http://www.vestasys.org/.

[10] Apache Camel - Building. http://camel.apache.org/
building.html.

[11] Apache Commons Math.
https://github.com/apache/commons-math.

[12] Apache CXF. https://github.com/apache/cxf.

[13] B. Beizer. Software Testing Techniques (2nd Ed.). 1990.

[14] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran.
Regression test selection techniques: A survey. Infor-
matica (Slovenia), 35(3):289–321, 2011.

[15] P. K. Chittimalli and M. J. Harrold. Re-computing
coverage information to assist regression testing. In In-
ternational Conference on Software Maintenance, pages
164–173, 2007.

[16] P. K. Chittimalli and M. J. Harrold. Recomputing cov-
erage information to assist regression testing. Transac-
tions on Software Engineering, 35(4):452–469, 2009.

[17] M. Christakis, K. R. M. Leino, and W. Schulte. Formal-
izing and verifying a modern build language. In Interna-
tional Symposium on Formal Methods, pages 643–657,
2014.

[18] S. Elbaum, D. Gable, and G. Rothermel. The impact of
software evolution on code coverage information. In In-
ternational Conference on Software Maintenance, pages
170–179, 2001.

[19] S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Test case prioritization: A family of empirical studies.
Transactions on Software Engineering, 28(2):159–182,
2002.

[20] S. Elbaum, G. Rothermel, and J. Penix. Techniques
for improving regression testing in continuous integra-
tion development environments. In International Sym-
posium on Foundations of Software Engineering, pages
235–245, 2014.

[21] E. Engström and P. Runeson. A qualitative survey of
regression testing practices. In Product-Focused Soft-
ware Process Improvement, volume 6156, pages 3–16.
Springer-Verlag, 2010.

[22] E. Engström, P. Runeson, and M. Skoglund. A sys-
tematic review on regression test selection techniques.
Information & Software Technology, 52(1):14–30, 2010.

[23] E. Engström, M. Skoglund, and P. Runeson. Empiri-
cal evaluations of regression test selection techniques: a
systematic review. In International Symposium on Em-
pirical Software Engineering and Measurement, pages
22–31, 2008.

[24] Fabricate. https://code.google.com/p/fabricate/.

[25] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi:
Lightweight test selection. In International Conference
on Software Engineering, demo papers, 2015. To ap-
pear.

[26] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov.
An empirical evaluation and comparison of manual and
automated test selection. In Automated Software Engi-
neering, pages 361–372, 2014.

[27] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test
selection techniques. Transactions on Software Engi-
neering and Methodology, 10(2):184–208, 2001.

[28] P. J. Guo and D. Engler. Using automatic persistent
memoization to facilitate data analysis scripting. In In-
ternational Symposium on Software Testing and Anal-
ysis, pages 287–297, 2011.

[29] R. A. Haraty, N. Mansour, and B. Daou. Regression
testing of database applications. In Symposium on Ap-
plied Computing, pages 285–289, 2001.

[30] R. A. Haraty, N. Mansour, and B. Daou. Regression test
selection for database applications. Advanced Topics in
Database Research, 3:141–165, 2004.

[31] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 312–326, 2001.

[32] M. J. Harrold, D. S. Rosenblum, G. Rothermel, and
E. J. Weyuker. Empirical studies of a prediction model
for regression test selection. Transactions on Software
Engineering, 27(3):248–263, 2001.

[33] M. J. Harrold and M. L. Soffa. An incremental approach
to unit testing during maintenance. In International
Conference on Software Maintenance, pages 362–367,
1988.

[34] P. Hsia, X. Li, D. Chenho Kung, C.-T. Hsu, L. Li,
Y. Toyoshima, and C. Chen. A technique for the se-
lective revalidation of OO software. Journal of Soft-
ware Maintenance: Research and Practice, 9(4):217–
233, 1997.

[35] Eclipse Kepler. http://www.eclipse.org/kepler/.

https://projects.apache.org/
http://facebook.github.io/buck/
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
https://github.com/
https://code.google.com/
http://docs.oracle.com/javase/7/docs/technotes/guides/language/annotations.html
http://docs.oracle.com/javase/7/docs/technotes/guides/language/annotations.html
http://docs.oracle.com/javase/7/docs/technotes/guides/language/annotations.html
https://martine.github.io/ninja/
http://www.scons.org/
http://www.vestasys.org/
http://camel.apache.org/building.html
http://camel.apache.org/building.html
https://github.com/apache/commons-math
https://github.com/apache/cxf
https://code.google.com/p/fabricate/
http://www.eclipse.org/kepler/

[36] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima.
Class firewall, test order, and regression testing of
object-oriented programs. Journal of Object-Oriented
Programming, 8(2):51–65, 1995.

[37] H. Leung and L. White. A cost model to compare re-
gression test strategies. In International Conference on
Software Maintenance, pages 201–208, 1991.

[38] H. K. N. Leung and L. White. Insights into regres-
sion testing. In International Conference on Software
Maintenance, pages 60–69, 1989.

[39] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An em-
pirical analysis of flaky tests. In Symposium on Foun-
dations of Software Engineering, pages 643–653, 2014.

[40] A. G. Malishevsky, G. Rothermel, and S. Elbaum. Mod-
eling the cost-benefits tradeoffs for regression testing
techniques. In International Conference on Software
Maintenance, pages 204–213, 2002.

[41] P. D. Marinescu, P. Hosek, and C. Cadar. Covrig: A
framework for the analysis of code, test, and coverage
evolution in real software. In International Symposium
on Software Testing and Analysis, pages 93–104, 2014.

[42] Memoize.
https://github.com/kgaughan/memoize.py.

[43] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and
A. Orso. Regression testing in the presence of non-code
changes. In International Conference on Software Test-
ing, Verification, and Validation, pages 21–30, 2011.

[44] D. D. Nardo, N. Alshahwan, L. C. Briand, and
Y. Labiche. Coverage-based test case prioritisation:
An industrial case study. In International Conference
on Software Testing, Verification and Validation, pages
302–311, 2013.

[45] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In International Sym-
posium on Foundations of Software Engineering, pages
241–251, 2004.

[46] L. S. Pinto, S. Sinha, and A. Orso. Understanding
myths and realities of test-suite evolution. In Sym-
posium on the Foundations of Software Engineering,
pages 1–11, 2012.

[47] PIT. http://pitest.org/.

[48] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of Java pro-
grams. In Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 432–448,
2004.

[49] D. S. Rosenblum and E. J. Weyuker. Using coverage in-
formation to predict the cost-effectiveness of regression
testing strategies. Transactions on Software Engineer-
ing, 23(3):146–156, 1997.

[50] G. Rothermel and M. J. Harrold. A safe, efficient regres-
sion test selection technique. Transactions on Software
Engineering and Methodology, 6(2):173–210, 1997.

[51] M. Skoglund and P. Runeson. A case study of the
class firewall regression test selection technique on a
large scale distributed software system. In International
Symposium on Empirical Software Engineering, pages
74–83, 2005.

[52] M. Skoglund and P. Runeson. Improving class fire-
wall regression test selection by removing the class fire-
wall. International Journal of Software Engineering and
Knowledge Engineering, 17(3):359–378, 2007.

[53] sloccount. http://www.dwheeler.com/sloccount/.

[54] A. Srivastava and J. Thiagarajan. Effectively prioritiz-
ing tests in development environment. Software Engi-
neering Notes, 27(4):97–106, 2002.

[55] Testing at the speed and scale of Google, Jun
2011. http://google-engtools.blogspot.com/2011/

06/testing-at-speed-and-scale-of-google.html.

[56] N. Tillmann and W. Schulte. Parameterized unit tests.
In International Symposium on Foundations of Soft-
ware Engineering, pages 253–262, 2005.

[57] Tools for continuous integration at Google scale, Octo-
ber 2011.
http://www.youtube.com/watch?v=b52aXZ2yi08.

[58] D. Willmor and S. M. Embury. A safe regression test
selection technique for database-driven applications.
In International Conference on Software Maintenance,
pages 421–430, 2005.

[59] S. Yoo and M. Harman. Regression testing minimiza-
tion, selection and prioritization: A survey. Journal of
Software Testing, Verification and Reliability, 22(2):67–
120, 2012.

[60] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-
inducing program edits based on spectrum information.
In International Conference on Software Maintenance,
pages 23–32, 2011.

[61] J. Zheng, B. Robinson, L. Williams, and K. Smiley. An
initial study of a lightweight process for change identifi-
cation and regression test selection when source code is
not available. In International Symposium on Software
Reliability Engineering, pages 225–234, 2005.

[62] J. Zheng, B. Robinson, L. Williams, and K. Smiley.
Applying regression test selection for COTS-based ap-
plications. In International Conference on Software En-
gineering, pages 512–522, 2006.

https://github.com/kgaughan/memoize.py
http://pitest.org/
http://www.dwheeler.com/sloccount/
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://www.youtube.com/watch?v=b52aXZ2yi08

