
Test Generation through Programming in UDITA

Milos Gligoric
University of Illinois

Urbana, IL 61801, USA
gliga@illinois.edu

Tihomir Gvero
Ecole Polytechnique Fédérale

Lausanne, Switzerland
tihomir.gvero@epfl.ch

Vilas Jagannath
University of Illinois

Urbana IL, 61801, USA
vbangal2@illinois.edu

Sarfraz Khurshid
University of Texas

Austin, TX 78712, USA
khurshid@ece.utexas.edu

Viktor Kuncak
Ecole Polytechnique Fédérale

Lausanne, Switzerland
viktor.kuncak@epfl.ch

Darko Marinov
University of Illinois

Urbana IL, 61801, USA
marinov@illinois.edu

ABSTRACT
We present an approach for describing tests using non-
deterministic test generation programs. To write such pro-
grams, we introduce UDITA, a Java-based language with
non-deterministic choice operators and an interface for gen-
erating linked structures. We also describe new algorithms
that generate concrete tests by efficiently exploring the space
of all executions of non-deterministic UDITA programs.

We implemented our approach and incorporated it into
the official, publicly available repository of Java PathFinder
(JPF), a popular tool for verifying Java programs. We eval-
uate our technique by generating tests for data structures,
refactoring engines, and JPF itself. Our experiments show
that test generation using UDITA is faster and leads to
test descriptions that are easier to write than in previous
frameworks. Moreover, the novel execution mechanism of
UDITA is essential for making test generation feasible. Us-
ing UDITA, we have discovered a number of bugs in Eclipse,
NetBeans, Sun javac, and JPF.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Languages, Verification

Keywords
Automated testing, test generation, test filtering, test pred-
icates, test programs, UDITA, Java PathFinder, Pex

1. INTRODUCTION
Testing is the most widely used method for detecting soft-
ware bugs in industry, and the importance of testing is grow-
ing as the consequences of software bugs become more se-
vere. Testing tools such as JUnit are popular as they au-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

tomate text execution. However, widely adopted tools offer
little support for test generation. Manual test generation
is time-consuming and results in test suites that have poor
quality and are difficult to reuse. This is especially the case
for code that requires structurally complex test inputs, for
example code that operates on programs (e.g., compilers,
interpreters, model checkers, or refactoring engines) or on
complex data structures (e.g., container libraries).

Recent techniques aim to reduce the burden of manual
testing using systematic test generation based on specifica-
tions [5, 24] or on symbolic execution [8, 26] and its hybrids
with concrete executions [6, 9, 13, 20, 25, 34, 35, 38]. Modern
(hybrid) symbolic execution techniques can handle advanced
constructs of object-oriented programs, but practical appli-
cation of these techniques were largely limited to testing
units of code much smaller than hundred thousand lines,
or generating input values much simpler than representa-
tions of Java programs. The inherent requirement for not
only building path conditions, albeit with partial constraints,
but also determining their feasibility poses a key challenge
for scaling to structurally complex inputs and entire sys-
tems. Automatically handling programs of the complexity

of a compiler remains challenging for current systematic ap-
proaches. Our approach is to allow testers to utilize their
domain knowledge to scale these systematic approaches.

We propose a new technique to generate a large number
of complex test inputs by allowing the tester to write a test

generation program in UDITA, a Java-based language with
non-deterministic choices, including choices used to generate
linked data structures. Each execution of a test generation
program generates one test input. Our execution engine
systematically explores all executions to generate inputs for
bounded-exhaustive testing [29, 36] that validates the code
under test for all test inputs within a given bound (e.g., all
trees with up to N nodes). UDITA thus enables testers to
avoid manual generation of individual tests. However, our
approach does not attempt to fully automatically identify
tests [6, 20], because such approaches do not provide much
control to the tester to encode their intuition. Instead, we
provide testers with an expressive language in which they
have sufficient control to define the space of desired tests.

This paper makes several contributions.

1) New language for describing tests: We present
UDITA, a language that enhances Java with two impor-
tant extensions. The first extension are non-deterministic

choice commands and the assume command that (partially)

http://mir.cs.illinois.edu/~gliga/
http://people.epfl.ch/tihomir.gvero
http://www.vilasjagannath.com/
http://users.ece.utexas.edu/~khurshid/
http://lara.epfl.ch/~kuncak
http://mir.cs.illinois.edu/~marinov/

restricts these choices. These constructs are familiar to
users of model checkers such as Java PathFinder (JPF) [40].
Thanks to the built-in non-determinism, writing a test gen-
eration program (from which many test inputs can be gener-
ated) is often as simple as writing Java code that generates
one particular test input. The second extension is the ob-

ject pool abstraction that allows the tester to control gener-
ation of linked structures with any desired sharing patterns,
including trees but also DAGs, cyclic graphs, and domain-
specific data structures. Due to its expressive power, UDITA
enables testers to write test generation programs using any
desirable mixture of two styles—filtering (also previously
called declarative) [5, 14, 18, 24, 28, 29] and generating (also
previously called imperative) [11,23]—whereas previous sys-
tems required the use of only one style.

2) New test generation algorithms: We present ef-
ficient techniques for test generation by systematic execu-
tion of non-deterministic programs. Our techniques build
on systematic exploration performed by explicit-state model
checkers to obtain the effect of bounded-exhaustive test-
ing [29, 36]. The efficiency of our techniques is based on
a general principle of delayed choice [31], i.e., lazy non-
deterministic evaluation [15]. The basic delayed choice tech-
nique postpones the choices for each variable until it is first
accessed. The more advanced copy propagation technique
further postpones the choices even if the values are being
copied. Like lazy evaluation, our techniques guarantee that
each non-deterministic choice is executed at most once.

Our techniques support primitive fields but are partic-
ularly well-suited for linked structures (Section 4.2). The
techniques use a new object pool abstraction. We postpone
the choice of object identity until object’s first non-copy use,
reducing the amount of search. Furthermore, we avoid iso-
morphic structures [22, 28] which gives another source of
exponential performance improvement. Finally, to deter-
mine the feasibility of symbolic fresh-object constraints in
the current path, we use a new polynomial-time algorithm
(figures 10 and 11), which is in contrast to NP-hard con-
straints in traditional symbolic execution [8,26].

3) Implementation: We describe an implementation of
UDITA and our optimizations on top of JPF [40], a popu-
lar model checker for Java, which makes it easy to provide
UDITA as a library. Our code is publicly available [1].

4) Evaluation: We have performed several sets of experi-
ments to evaluate UDITA, mostly for black-box testing. The
first set of experiments, on six data structures, shows that
our optimizations improve the time to generate test
inputs up to a given bound.

The second set of experiments is on testing refactoring
engines, which are software development tools that take as
input program source code and refactor (transform) it to
change its design without changing its behavior [32]. Mod-
ern IDEs such as Eclipse or NetBeans include refactoring
engines for Java. A key challenge in testing refactoring en-
gines is generating input programs. Figures 5 and 6 show
some example programs with multiple inheritance that re-
vealed bugs in Eclipse. To generate such programs, we need
to both “generate inheritance graphs” and “add methods” in
the classes and interfaces in the graphs. Our experience with
UDITA’s combined filtering/generating style shows that,
compared to our prior approach, ASTGen [11,23], UDITA is
more expressive, resulting in shorter (and easier to write)

class IG { Node[] nodes; int size;
static class Node {

Node[] supertypes;
boolean isClass; } }

Figure 1: A representation of inheritance graphs

test generation programs, with sometimes faster gener-
ation (even on a slower JPF virtual machine). Through
these experiments, we revealed four bugs in Eclipse and
NetBeans (all four have been confirmed by developers and
assigned to be fixed), and even two bugs in the Sun Java
compiler.

The third set of experiments, on testing parts of the
UDITA implementation, revealed several new bugs in JPF,
and one bug in our JPF extension that we subsequently cor-
rected. These results suggest that UDITA is effective in
helping detect real bugs in large code bases.

The fourth set of experiments, for white-box testing, com-
pared UDITA with Pex [38], a state-of-the-art testing tool
based on symbolic execution. Our results found that ob-
ject pools are a powerful abstraction for guiding exploration,
orthogonal to the path-bounding approaches used by tools
such as Pex. In particular, even a naive implementation
of object pools helped Pex enumerate structures and find
bugs faster.

Our experimental results are publicly available [1]. Addi-
tional details are provided in a technical report [17].

2. EXAMPLE
To illustrate UDITA, we consider generation of inheritance
graphs for Java programs. Such generation helps in test-
ing real-world applications including compilers, interpreters,
model checkers, and refactoring engines (Section 5). The ex-
ample illustrates how UDITA can describe data structures
with non-trivial invariants. Figure 1 shows a simple repre-
sentation of inheritance graphs in Java. A graph has several
nodes. Each node is either a class or an interface, and has
zero or more supertypes that are classes or interfaces. (We
do not explicitly model the java.lang.Object class.)

Specification of inheritance graphs. Each inheritance
graph needs to satisfy the following two properties:

1) DAG (directed acyclic graph): The nodes in the graph
should have no directed cycle along the references in supertypes.

2) JavaInheritance: All supertypes of an interface are inter-

faces, and each class has at most one supertype class.

UDITA allows the tester to express these properties us-
ing full-fledged Java code extended with non-deterministic
choices. Testers describe properties in UDITA using any
desired mix of filtering and generating style. In a purely
filtering style, embodied in techniques such as TestEra [24]
and Korat [5,14,18,28,29], the tester writes the predicates—
what the test inputs should satisfy; then the tool searches

for valid tests. In contrast, in a purely generating style, em-
bodied in techniques such as ASTGen [11,23], the tester di-
rectly writes generators—how to generate valid inputs; then
the tool executes these generators to generate the inputs.
We first present these two pure approaches, then discuss
how UDITA allows freely combining them, and finally how
UDITA efficiently generates inputs.

Filtering approach. Figure 2 shows Java predicates
that return true when the above inheritance graph prop-

boolean isDAG(IG ig) {
Set<Node> visited = new HashSet<Node>();
Set<Node> path = new HashSet<Node>();
if (ig.nodes == null || ig.size != ig.nodes.length) return false;
for (Node n : ig.nodes)

if (!visited.contains(n))
if (!isAcyclic(n, path, visited)) return false;

return true; }
boolean isAcyclic(Node node,

Set<Node> path, Set<Node> visited) {
if (path.contains(node)) return false;
path.add(node);
visited.add(node);
for (int i = 0; i < supertypes.length; i++) {

Node s = supertypes[i];
// two supertypes cannot be the same
for (int j = 0; j < i; j++)

if (s == supertypes[j]) return false;
// check property on every supertype of this node
if (!isAcyclic(s, path, visited)) return false;

}
path.remove(node);
return true; }

boolean isJavaInheritance(IG ig) {
for (Node n : ig.nodes) {

boolean doesExtend = false;
for (Node s : n.supertypes)

if (s.isClass) {
// interface must not extend any class

if (!n.isClass) return false;
if (!doesExtend) { doesExtend = true;
// class must not extend more than one class

} else { return false; }
} } }

Figure 2: Filtering approach for inheritance graphs

IG initialize(int N) {
IG ig = new IG(); ig.size = N;
ObjectPool〈Node〉 pool = new ObjectPool〈Node〉(N);
ig.nodes = new Node[N];
for (int i = 0; i < N; i++) ig.nodes[i] = pool.getNew();
for (Node n : nodes) {

// next 3 lines unnecessary when using generateDAGBackbone
int num = getInt(0, N − 1);
n.supertypes = new Node[num];
for (int j = 0; j < num; j++) n.supertypes[j] = pool.getAny();
// next line unnecessary when using generateJavaInheritance
n.isClass = getBoolean(); }

return ig; }

static void mainFilt(int N) {
IG ig = initialize(N);
assume(isDAG(ig));
assume(isJavaInheritance(ig));
println(ig); }

static void mainGen(int N) {
IG ig = initialize(N);
generateDAGBackbone(ig);
generateJavaInheritance(ig);
println(ig); }

Figure 3: Examples of bounded-exhaustive generation

erties hold. To generate all test inputs from predicates,
the tester needs to specify bounds on possible values for
input elements, which in our example are the nodes, array
sizes, and isClass fields. For this purpose, UDITA uses non-

deterministic choices. JPF already has choices for primitive
values. For example, the assignment k=getInt(1, N) intro-
duces N branches in a non-deterministic execution, where
in branch i (for 1 ≤ i ≤ N) the variable k has value i.
JPF can systematically explore all (combinations) of non-
deterministic choices. UDITA additionally provides non-
deterministic choices for pointers/objects through the notion
of object pools (described in detail in Section 4.2). Figure 3

void generateDAGBackbone(IG ig) {
for (int i = 0; i < ig.nodes.length; i++) {

int num = getInt(0, i); // pick number of supertypes
ig.nodes[i].supertypes = new Node[num];
for (int j = 0, k = −1; j < num; j++) {

k = getInt(k + 1, i − (num − j));
// supertypes of ”i” can be only those ”k” generated before
ig.nodes[i].supertypes[j] = ig.nodes[k];

} } }
void generateJavaInheritance(IG ig) {
// not shown imperatively because it is complex:
// topologically sorts ”ig” to find what nodes can be classes or interfaces
}

Figure 4: Generating approach for inheritance graphs

shows the non-deterministic initialization of an inheritance
graph data structure. The method initialize proceeds in
several steps: (1) sets the graph size (the number of nodes),
(2) creates a pool of Node objects of this size, and (3) iterates
over all objects in the pool to non-deterministically initialize
their supertypes to point to other objects in the pool. The
getNew and getAny methods pick a fresh object and an arbi-
trary object from the pool, respectively. Running mainFilt

on JPF/UDITA generates all inheritance graphs of size N .

Generating approach. Instead of generating possible
graphs and then filtering those that are not inheritance
graphs, Figure 4 shows an alternative that directly gener-
ates DAGs of size N with the generateDAGBackbone method.
We say that Figure 4 presents a generator for DAGs, which
is in contrast to the predicate isDAG in Figure 2. The gen-
erator establishes by construction that there are no directed
cycles (because supertypes of a node i can only be nodes k

that were generated before i).
Writing generators instead of predicates can dramatically

speed up generation. However, using generators alone is
fairly involved. Although it is relatively easy to write a gen-
erator for all arbitrary DAGs, it is non-trivial to eliminate
isomorphic graphs (Section 4.2) or to properly label nodes as
classes and interfaces (generateJavaInheritance). Properties
of other data structures can be even harder to express as
generators. For example, an entire research paper was de-
voted to efficient generation of red-black trees [3]. In com-
parison, filtering is often easier, anecdotally confirmed by
the fact that even undergraduate students are able to write
appropriate checks [29]. This trade-off justifies the need for
optimized execution for predicate-based exploration but also
asks for an approach to combine predicates and generators.

Unifying predicates and generators. UDITA makes
combination of predicates and generators possible because
they are both expressed in a unified framework: system-
atic execution of non-deterministic choices. Consider the
properties in our running example. For the DAG property,
comparing Figure 4 and Figure 2, one could argue it is eas-
ier to write a generator than a predicate. However, for the
JavaInheritance property, it is much easier to write a pred-
icate than a generator. UDITA allows the tester to com-
bine, for example, a generator for DAG with a predicate
for JavaInheritance: one would write a new main that uses
generateDAGBackbone and assume(isJavaInheritance).

Test generation. After the tester writes some predicates
and/or generators, it is necessary to execute them to gener-
ate the tests. JPF already provides an execution engine for

import java.util.List;
class A implements B, D {

public List m(){
List l=null;
A a=null;
l.add(a.m());
return l; } }

interface D {
public List m(); }

interface B extends C {
public List m(); }

interface C {
public List m(); }

import java.util.List;
class A implements B, D {

public List<List> m() {
List<List<List>> l=null; //bug
A a=null;
l.add(a.m());
return l; } }

interface D {
public List<List> m(); }

interface B extends C {
public List<List> m(); }

interface C {
public List<List> m(); }

Figure 5: InferGenericType bug in Eclipse: when the

refactoring is applied on the input program (left), Eclipse

incorrectly infers the type of A.m.l as List<List<List>>,

which does not match the return type of A.m

class A implements B {
public A m() {

A a = null;
return a; } }

interface B extends C {
public B m(); }

interface C {
public C m(); }

class A implements B {
public C m() { // bug

C a = null;
return a; } }

interface B extends C {
public B m(); }

interface C {
public C m(); }

Figure 6: UseSupertypeWherePossible bug in Eclipse:

when the refactoring is applied on A, the return type of

A.m is incorrectly changed to C instead of displaying a

warning or suggesting changing the return type to B

getInt and getBoolean non-deterministic choices. Naive im-
plementations of the object pool’s getNew and getAny choices
(whose use is shown in Figure 3) can be simply done with
getInt (as discussed in Section 4.2). However, these naive
implementations, which we call eager as they immediately
return a value, result in a combinatorial explosion, e.g., main-
Filt from Figure 3 for N = 4 does not terminate in an hour!

We provide more efficient implementations, which we call
delayed as they postpone choices of primitive values (getInt
and getBoolean) and additionally optimize exploration for
object pools (getAny and getNew). For example, mainFilt

from Figure 3 for N = 4 terminates in just 5.5 seconds
with our delayed choice. Generating approach can be even
faster than filtering search. Section 5.1.1 shows our experi-
mental results for data structures. We evaluate mostly the
combined filtering/generating style, since test programs are
much easier to write than for purely generating style, and
generation for purely filtering style is several orders of mag-
nitude slower on basic JPF without delayed choice.

Section 5.1.2 shows our results for testing refactoring en-
gines, where we built on the inheritance graph generator to
produce Java programs as test inputs. Figures 5 and 6 show
two example input programs, generated by UDITA, which
found bugs in Eclipse, specifically in the InferGenericType
and UseSupertypeWherePossible refactorings.

3. UDITA LANGUAGE
UDITA language makes it easy to develop generic, reusable,
and composable generators. The key aspects of the UDITA
are: (1) constructs for generating primitive values and ob-
jects; (2) the ability to encapsulate UDITA generators into
reusable components using interfaces; and (3) the ability to
compose these components.

class ObjectPool〈T〉 {
public ObjectPool〈T〉(int size, boolean includeNull) { ... }
public T getAny() { ... }
public T getNew() { ... } }

Figure 7: Basic operations for object pools

interface IGenerator〈T〉 { T generate(); }
class IntGenerator implements IGenerator〈int〉 {

int lo, hi;
IntGenerator(int lo, int hi) { this.lo = lo; this.hi = hi; }
int generate() { return getInt(lo, hi); } }

class IGGenerator implements IGenerator〈IG〉 {
IG ig;
IGGenerator(int N) { ig = initialize(N); }
IG generate() {

assume(isDAG(ig) && isJavaInheritance(ig)); return ig; } }
class PairGenerator〈L, R〉 implements IGenerator〈Pair〈L, R〉〉 {

IGenerator〈L〉 lg; IGenerator〈R〉 rg;
PairGenerator(IGenerator〈L〉 lg, IGenerator〈R rg) { ... }
Pair〈L, R〉 generate() {

return new Pair〈L, R〉(lg.generate(), rg.generate()); } }

Figure 8: UDITA interface for generators and some ex-

ample generators

Basic Generators. The generators for UDITA borrow
from JPF non-deterministic choices for primitive values. For
example, getInt(int lo, int hi) returns an integer between
lo and hi, inclusively; and getBoolean() returns a boolean
value. UDITA also provides a new notion, object pools, for
non-deterministic choices of objects. Figure 7 shows the
interface for object pools. The constructor can create finite
(if size > 0) and infinite (if size < 0) pools, which may or
may not include the value null. The method getAny non-
deterministically returns any value from the pool (including
optionally null), whereas getNew returns an object that was
not returned by previous calls (and never null). Section 4.2
describes the implementation of these operations.

Generator Interface. UDITA provides IGenerator inter-
face for encapsulating generators, as shown in Figure 8. The
only method, generate, produces one object of the generic
type T. During the execution on JPF, this method will be
systematically explored for all non-deterministic choices, and
will generate many objects of the type T. The figure also
shows an example IntGenerator for primitive values (ignor-
ing any boxing of primitive values needed in Java) and an
example IGGenerator that encapsulates filtering style predi-
cates (isDAG and isJavaInheritance).

The design of UDITA generators is influenced by AST-
Gen [11] (which provides Java generators for abstract syn-
tax trees for testing refactoring engines) and QuickCheck [7]
(which provides a Haskell framework for generators).
UDITA provides a much simpler interface than ASTGen:
instead of one method, the basic IGenerator for ASTGen
has five methods [11, Sec. 3.2]. The cause of that com-
plexity is that ASTGen runs on a deterministic language;
to obtain bounded-exhaustive generation, the implementor
of the interface must manually manipulate the generator
state (to reset it, advance it, store/restore it). In con-
trast, UDITA supports non-determinism, with program exe-
cution enumerating all non-deterministic choices. Compared
to QuickCheck [7], which supports only random generation,
UDITA focuses on bounded-exhaustive generation, obtain-
ing random generation for free as one of the possible explo-

ration strategies of non-deterministic choices (where addi-
tional strategies include depth-first and breadth-first).

Composing generators. An important feature of frame-
works such as ASTGen, QuickCheck, or UDITA is to allow
reuse and composition of basic generators into more complex
generators [7, 11]. UDITA again offers a substantially sim-
pler solution than ASTGen. Figure 8 shows an example gen-
erator that produces pairs of values based on generators for
left and right pair elements. Note that the generate method
of PairGenerator has only one line of code. In contrast, the
corresponding ASTGen generator has ten lines of code [11,
Sec. 3.3]. The reason is, again, that ASTGen needs to ex-
plicitly iterate over possible values to produce their combina-
tions for bounded-exhaustive generation. QuickCheck pro-
vides composition through higher-order functional combina-
tors [7] but is designed for the purely functional language
Haskell and has no support for generating non-isomorphic
graph structures. Neither ASTGen nor QuickCheck provide
unified filtering/generating style like UDITA.

4. TEST GENERATION IN UDITA
We next describe our test generation algorithms, which
rely on the notion of delayed (lazy) execution of non-
deterministic choices.

4.1 Test Generation for Primitive Values
Eager choice execution. We could, in principle, use a
straightforward implementation of getInt that immediately

chooses a concrete value and returns it. When the execution
backtracks, the implementation picks a different value. This
approach allows us to easily obtain a baseline implementa-
tion on top of JPF. Unfortunately, the combinatorial explo-
sion in typical test generation programs (e.g., the initialize

method in Figure 3) causes this baseline implementation to
explicitly consider a large number of unnecessary possibil-
ities. We therefore use a more efficient and more complex
approach that still preserves the simple non-deterministic
semantics on which testers can rely.

Delayed choice execution. UDITA provides efficient
test generation by extending JPF with lazy evaluation of
non-deterministic choices [15, 31]. The key idea of delayed
execution strategy is to delay the non-deterministic choices
of values to the point where the values are used for the first
time. Consequently, the order in which the values are used
for the first time creates a dynamic ordering of the variables
in the search space.

Algorithm for getInt. Our algorithm for delayed exe-
cution of getInt can be expressed as a program transfor-
mation that postpones branching in the computation tree
generated by the program. The transformation extends the
domain of variables so that it stores a pointer to a muta-
ble cell c where c contains either 1) a concrete value as be-
fore, or 2) an expression of the form Susp(a, b), denoting
the set of values {x | a ≤ x ≤ b} from which a concrete
value may be chosen in the future. A reference to Susp(a, b)
corresponds to representations of delayed expressions in im-
plementations of non-strict functional languages [15]. The
transformation changes the meaning of x=getInt(a, b) to be
lazy, storing only a symbolic representation (a, b) of pos-
sible values. We use statement force(x) to denote making
an actual non-deterministic choice of the stored symbolic
value of x. The algorithm inserts force(x) before the first

class ObjectPool〈T〉 {
ArrayList〈T〉 allocated; int maxSize;
ObjectPool〈T〉(int size) {

allocated = new ArrayList〈T〉();
maxSize = size; }

T getAny() {
int i = getInt(0, allocated.size());
if (i < allocated.size()) return allocated.get(i);
else return getNew(); }

T getNew() {
assume(allocated.size() < maxSize);
T res = new T(); allocated.add(res);
return res; } }

Figure 9: Eager implementation of object pools

non-copy use of the variable x, treating all variable uses
other than copying as strict operations. Although in general
both delayed and eager choice could explore exponentially
many paths, in experiments we found exponential speedup
when using delayed choice instead of eager choice (figures 12
and 16). Delayed choice provides speedup because it avoids
exploring the values of variables not used in an execution
that evaluates assume(false).

4.2 Test Generation for Linked Structures
Eager implementation. Figure 9 presents a Java-like
pseudo code for an eager implementation of object pools.
We focus here on implementation of object pools of finite
size that return non-null objects only. Our implementa-
tion also handles the (straightforward) extensions with un-
bounded object pools and possibly-null objects.

Isomorphism avoidance. An important issue in generat-
ing object graphs is to avoid structures that are isomorphic
due to the abstract nature of Java references [5, 22]. For
instance, DAGs that have the same structure but differ in
the identity of nodes are isomorphic. In a purely generat-
ing approach, the control of isomorphism is up to the tester
and not UDITA. (Indeed, the code in Figure 4 generates iso-
morphic DAGs.) In a filtering approach that uses the getAny

method from object pools, UDITA automatically avoids iso-
morphic structures, like Korat [5]. The implementation in
Figure 9 avoids isomorphism by returning only the first fresh
object (rather than several different fresh objects).

Delayed execution implementation. The eager imple-
mentation in Figure 9 serves as a reference for our delayed
choice implementation. The delayed choice implementation
results in exploring the equivalent set of states as the refer-
ence implementation but does so much more efficiently. The
high-level idea of delayed execution is the same as for getInt,
but the implementation for object pools is more complex be-
cause getNew is a command that changes the state (the allo-

cated set). As a result, simply creating a suspension around
the methods from Figure 9 would not preserve the semantics
because the side effects on the allocated set would occur in
a different order.

To preserve the set of reachable states of the eager imple-
mentation, our implementation introduces symbolic values
at each call to getNew or getAny and also accumulates the
constraints imposed by the requirement that getNew returns
objects distinct from previously returned objects. When the
program uses symbolic objects (doing a force of the value),
UDITA assigns a concrete object to the symbolic object, en-
suring that the accumulated constraints on distinct objects

class Sym〈T〉 { // symbolic variable
T chosen; int level; boolean isGetNew;
Sym〈T〉(int level, boolean isGetNew) { ... }

}
class ObjectPool〈T〉 {

List〈T〉 allChosen;
List〈List〈Sym〈T〉〉〉 levels;
int maxSize, lastLevel, minModelSize;
ObjectPool(int size) {

allChosen = new List〈T〉(); levels = new List〈List〈Sym〈T〉〉〉();
maxSize = size; lastLevel = −1; minModelSize = 0; }

Sym〈T〉 getAny() {
if (lastLevel < 0) return getNew();
sym = new Sym〈T〉(lastLevel, false);
levels.get(lastLevel).add(sym); }

Sym〈T〉 getNew() {
lastLevel++;
newLevel = new List〈Sym〈T〉〉();
levels.add(newLevel);
sym = new Sym〈T〉(lastLevel, true);
newLevel.add(sym);
minModelSize++;
assume(minModelSize <= maxSize); } }

Figure 10: Delayed execution for object pools: data

structures, getAny, getNew

are satisfied. UDITA also ensures that it will be possible
to instantiate the remaining symbolic objects while satis-
fying all the constraints. In the terminology of symbolic
execution [26], UDITA maintains an efficient representation
of the path condition, which expresses that certain symbolic
objects are distinct, and ensures that the path condition is
satisfiable. To see the non-triviality of our path conditions,
consider this example with an object pool of size 3:

p = new ObjectPool<Node>(3); n1 = p.getNew();

a1 = p.getAny(); a2 = p.getAny(); a3 = p.getAny();
n2 = p.getNew(); n3 = p.getNew();
use(a1); use(a2); use(a3);

The delayed execution will pick the concrete values of a1,
a2, a3 only at their use points. When it picks the values, it
must have enough information to deduce that all values a1,
a2, a3 must be equal; otherwise, it will be impossible, in the
pool of size 3, to assign values n2, n3 such that n2 /∈ {n1, a1,
a2, a3} and n3 /∈ {n1, a1, a2, a3, n2}.

Figures 10 and 11 show the pseudo-code of the desired
delayed execution algorithm for object pools, implemented
in UDITA. Type List〈C〉 denotes an indexable linked list
(such as Java ArrayList) storing objects of type C. Type
Sym〈T 〉 denotes a symbolic variable, whose chosen field de-
notes concrete field (and is null if the concrete object is
not chosen yet). The methods getAny and getNew from Fig-
ure 10 introduce a new symbolic variable and store it into
the appropriate position in the two-dimensional levels data
structure; getAny stores the symbolic variable at the cur-
rent level, whereas getNew starts a new level. This structure
encodes, for j < i and for all applicable k, that

levels.get(i).get(0).chosen != levels.get(j).get(k).chosen

The force method from Figure 11 picks a concrete value for
a given symbolic variable by respecting the recorded con-
straints. After selecting in the candidate variable the set of
objects to which the symbolic variable could be made equal
to, it either 1) selects one of these objects or 2) introduces
a new concrete object. Finally, it recomputes the minimal
size of the model under the current constraints, ensuring
that the current choice of variables is satisfiable in the pool

void force(Sym〈T〉 x) {
if (x.chosen == null) {

List〈T〉 candidates;
if (x.isGetNew) {

candidates = new List〈T〉();
for (int i = x.level; i ≤ lastLevel; i++) {

List〈T〉 currentLevel = levels.get(i);
for (int j = 1; j < currentLevel.size(); j++)

Sym〈T〉 s = currentLevel.get(j);
if (s.chosen != null &&

!candidates.contains(s.chosen))
candidates.add(s.chosen); }

} else { // x created by getAny

candidates = new List〈T〉(allChosen);
for (int i = x.level+1; i ≤ lastLevel; i++) {

Sym〈T〉 s = levels.get(i).get(0); // getNew

if (s.chosen != null) candidates.remove(s.chosen); }
}
int choice = getInt(0, candidates.size());
if (choice < candidates.size())

x.chosen = candidates.get(choice);
else {

x.chosen = new T();
allChosen.add(x.chosen); }

findMinModelSize();
assume(minModelSize <= maxSize); } }

void findMinModelSize() {
List〈T〉 chi = new List〈T〉();
minModelSize = lastLevel;
for (int i = 0; i ≤ lastLevel; i++) {

foreach (Sym〈T〉 s in levels.get(i))
if (s.chosen != null && !chi.contains(s.chosen))

chi.add(s.chosen);
int levelModelSize = chi.size() + lastLevel − i;
minModelSize = max(minModelSize, levelModelSize); } }

Figure 11: Picking a concrete object for symbolic vari-

able of object pool in delayed execution

of the given size. Note that, although the problem has the
flavor of the NP-complete graph coloring problem, the struc-
ture of our constraints (building levels in layers) allowed us
to design the efficient test in the findMinModelSize method.

Correctness proof. The correctness of our algorithm can
be shown by viewing it as an efficient implementation of a
symbolic execution with disequality constraints. The only
subtle part is showing that the findMinModelSize method
from Figure 11 correctly computes the size of the smallest

model of the equality and disequality constraints imposed by
current symbolic variables and any concrete values assigned
to them. The correctness can be shown by considering the it-
eration I in which minModelSize reaches its maximum. The
concrete nodes at levels up to I together with any getNew

nodes at higher levels must all be distinct, so each model is
at least of size minModelSize. Conversely, by a greedy assign-
ment that favors previously chosen concrete objects, we can
construct a model of size minModelSize. The accompanying
technical report [17] has more proof details.

Novelty of object pools. Previous work on symbolic ex-
ecution also uses equality constraints on individual object
references (e.g., CUTE [35]), but can only encode them into
constraints whose satisfiability is NP-hard (in particular, the
constraint on the maximal number of distinct references typ-
ically introduce disjunctions). Our work introduces the new
object pool abstraction, which allows testers to conveniently
express “freshness” disequality constraints of one reference
against all references from a given user-defined set. More-
over, we developed a polynomial-time algorithm to test the
satisfiability of these constraints.

JPF Baseline Delayed Choice
program N structs time [s] explored time [s] expl.

DAG 3 34 11.14 4802 2.19 321
4 2352 o.o.m. - 12.42 21196
5 769894 o.o.m. - 1673.91 4997210

HeapArray 6 13139 29.00 160132 12.50 27664
7 117562 407.45 2739136 49.20 227494
8 1005075 7892.88 54481005 417.70 2325069

NQueens 6 4 13.81 46656 1.82 746
7 40 170.82 823543 3.60 3073
8 92 3416.38 16777216 6.50 13756

RBTree 6 20 5.91 8448 5.79 3588
7 35 21.76 54912 8.20 16983
8 64 107.49 366080 22.27 80470

SearchTree 4 490 5.00 3584 2.26 1484
5 5292 27.49 131250 8.29 21210
6 60984 1810.93 6158592 60.67 305052

SortedList 6 924 11.70 55987 5.10 3967
7 3432 126.14 960800 6.92 18026
8 12870 2495.49 19173961 17.87 80089

Figure 12: Enumeration of structures satisfying their

invariants (“o.o.m.” means “out of memory”)

5. EVALUATION
We implemented UDITA by modifying Java PathFinder
(JPF) version 4. The key changes were our delayed choice
algorithms and object pools. We implemented them using
JPF’s attribute mechanism [34] to store non-deterministic
values that have not been read yet. We correspondingly
modified the implementation of getInt to generate such de-
layed values. We also implemented object pools as described
in Section 4.2. Our code is publicly available [1].

We performed several experiments to evaluate UDITA.
UDITA is most applicable for black-box testing. The first
set of experiments, on six data structures, compares delayed
choice with base JPF for bounded-exhaustive test genera-
tion. The second set of experiments, on testing refactoring
engines, compares UDITA with ASTGen [11]. The third set
of experiments uses UDITA to test parts of the UDITA im-
plementation itself. UDITA can be also used for white-box
testing. The fourth set of experiments compares UDITA
with symbolic execution in Pex [38]. We ran the experi-
ments on an AMD Turion 1.80GHz laptop with Sun JVM
1.6.0 12, Eclipse 3.3.2, NetBeans 6.5, and Pex 0.19.41110.1.

5.1 Black-Box Testing

5.1.1 Generating Data Structures
We present an evaluation of delayed choice using a vari-
ety of data structure implementations: DAG represents di-
rected acyclic graphs related to the example introduced in
Section 2; HeapArray is an array-based heap data structure;
RBTree is red-black tree; SearchTree is binary search tree;
and SortedList is a doubly-linked list containing sorted ele-
ments. Additionally, NQueens is the traditional problem from
constraint solving [2]. For each structure, we wrote its repre-
sentation invariant using our combined filtering/generating
style. Our experimental setup compares base JPF against
JPF extended with our delayed choice execution, using the
same test generation program. We turn off JPF state hash-
ing in our experiments, because duplicate states rarely arise
in executions of our examples [18].

Enumerating structures. Figure 12 shows the efficiency
of our approach for structure enumeration. For each pro-
gram and several bounds N , we tabulate the total number

ASTGen UDITA
generator inputs time [s] LOC time [s] LOC

2ClsMethParent 2160 492.87 1316 117.92 835
3ClsMethChild 1152 265.19 1342 89.17 848
2ClsMethChild 576 135.34 1320 44.01 822
2Cls2FldChild 540 1.13 713 36.96 389
2Cls2FldRef 240 2.62 714 27.96 430

Figure 13: Comparing ASTGen and UDITA
Eclipse NetBeans

refactoring time [s] inputs fail bug fail bug

RenameMethod 105.15 207 0 0 75 1
UseSupertypeWP 85.80 402 59 1 7 1
InferGenericType 258.55 414 171 1 n/a n/a

Figure 14: Refactorings tested and bugs found

of successful paths in the exploration tree (i.e., the number
of structures generated), the exploration time, and the total
number of explored paths. JPF generates the same number
of structures with and without delayed choice, but delayed
choice explores fewer paths than the base JPF, providing
significant speed-ups, from 2x up to 500x as size increases.

Summary. The results show that delayed choice signifi-
cantly improves the time to enumerate test inputs up to a
given bound.

5.1.2 Testing Refactoring Engines
We applied UDITA to generate Java input programs for test-
ing refactoring engines as briefly described in Section 2 and
as previously done with ASTGen [11, Sec. 5]. Since the in-
puts are generated automatically, the outputs are validated
using programmatic oracles such as checking for refactoring
engine crashes, obtaining non-compilable output programs,
or getting different outputs for Eclipse and NetBeans (known
as differential testing [30]). We perform two kinds of exper-
iments: (1) rewriting some existing ASTGen generators in
UDITA to compare the ease of writing generators and the
efficiency of generation, and (2) writing new generators that
would be very difficult to express in ASTGen.

Rewriting ASTGen generators. We rewrote five (ran-
domly chosen, advanced) ASTGen generators in UDITA.
Figure 13 shows the results. The generators in UDITA have
fewer lines of code (“LOC”, which includes the top-level gen-
erator and the library it uses) and are, in our experience,
often easier to write. UDITA conceptually subsumes AST-
Gen, so we could not find a case where UDITA code would
be more complex than ASTGen code. UDITA generators
are about as efficient as ASTGen generators—sometimes a
bit faster, and sometimes a bit slower—which was quite sur-
prising to us at first: ASTGen runs on top of a regular JVM,
while UDITA runs on top of JPF, and JPF can be two or-
ders of magnitude slower than JVM. We did expect UDITA
generators to be easier to write but not to be faster, at least
not without special optimizations [18]. Our investigation
shows that UDITA can be faster for two reasons: (1) it has
a faster backtracking due to JPF’s storing and restoring of
states rather than the re-execution of code in ASTGen, and
(2) combined filtering/generating style for iteration/genera-
tion allows more efficient positioning of backtracking points
(UDITA need not build an entire input before realizing that
backtracking is required).

Writing new generators. We wrote three new genera-
tors in UDITA that would be extremely difficult to write in

ASTGen. All these generators use inheritance graphs which,
as discussed in Section 2, are much easier to express by com-
bining filtering and generating styles. UDITA is more ex-
pressive than ASTGen since UDITA allows natural mixing
of these two styles. These generators allowed us to test some
refactorings we did not test with ASTGen (UseSupertype-
WherePossible, which replaces one class/interface with its
superclass/superinterface where possible, and InferGeneric-
Type, which finds the most appropriate generic type pa-
rameters for raw types [39]) and to more thoroughly test a
refactoring we did test (RenameMethod). Figure 14 shows
the results. We revealed four bugs in Eclipse and NetBeans,
two of which are shown in figures 5 and 6. As can be seen
from the table, the number of failing tests is much larger
than the number of (unique) bugs; we used our oracle-based
test clustering technique [23] to inspect the failures.

Differential testing of compilers. While testing the
refactoring engines, we effectively used the same input pro-
grams to also perform differential testing of the Sun javac
(version 1.6.0 10) and Eclipse (version 3.3.2) Java compilers.
This revealed two differences, which are likely bugs in the
Sun javac compiler as it incorrectly rejects valid programs
accepted by the Eclipse compiler. We had reported these
bugs to Sun, but they were not confirmed as of this writing.

Summary. The combined filtering/generating style in
UDITA is better than purely generating style in ASTGen:
UDITA is more expressive, results in shorter (and easier to
write) test generation programs, and, in some cases, even
provides faster generation (despite running on JPF, which
is much slower than JVM). We found several new bugs with
UDITA; details of all the bugs are online [1].

5.1.3 Testing JPF and UDITA
We also applied UDITA to generate Java input programs for
testing parts of UDITA itself. Specifically, we used differen-
tial testing [30] to check (1) whether (base) JPF correctly
implements a JVM, and (2) whether our delayed choice im-
plementation behaves as non-delayed choice.

Testing JPF. JPF is implemented as a specialized JVM
that provides support for state exploration of programs with
non-deterministic choices [40]. For programs without non-
deterministic choices, JPF should behave as a regular JVM.
We knew from our experience with JPF that it does not al-
ways behave as JVM, especially for some standard libraries
(e.g., related to reflection or native methods) or for the lat-
est Java language features (e.g., annotations or enums). We
wrote generators to produce small Java programs that exer-
cise these libraries/features. We also wrote a generic driver
that would compile each generated program, run it on JPF
and JVM, and compare the outputs from the two. Fig-
ure 15 shows the results. Through this process, we found
eleven unique bugs in an older version of JPF (five of which
were corrected in a more recent revision, 1829, from the JPF
repository). Detailed results are online [1].

Testing delayed choice implementation. Although we
proved that our delayed choice algorithm is correct, we still
need to test its implementation, especially the challenging
part of object pools (Section 4.2). We wrote a generator that
produces Java programs with various sequences of getAny

and getNew calls on an object pool (and then reads the re-
turned values in various orders). We also wrote a script
to compile each program and run it on JPF both with and

generator time [s] inputs failures bugs

AnnotatedMethod 31.28 1280 0 0 (2)
ReflectionGet 23.71 160 80 1
DeclaredMethods 7.91 64 0 0
DeclaredMethodReturn 41.07 288 32 1
ReflectionSet 26.97 160 32 1
NotDefaultAnnotatedField 48.53 1760 0 0
Enum 1.67 78 0 0
ConstructorClass 12.01 387 27 1 (4)
DeclaredFieldTest 14.38 180 12 1
ClassCastMethod 27.96 102 75 1

Figure 15: Generators for testing JPF; bugs in paren-

theses were found in an older JPF version (revision 954)

without delayed choice. This process found a bug in our
implementation (related to the computation of levels from
Section 4.2) which occurred only for some sequences that
mix between getNew calls a number of getAny calls exactly
equal to the pool size. We subsequently corrected the bug
and used the generator to increase our confidence in the cor-
rected implementation.

Summary. The use of UDITA helped us identify a number
of bugs in parts of the UDITA implementation.

5.2 White-Box Testing
UDITA is primarily designed for black-box testing [41]:
UDITA executes test generation programs to create test in-
puts, and then those inputs are run on the code under test as

usual, without UDITA. However, UDITA can be also applied
for a limited form of white-box testing [41] by executing the

code under test itself on UDITA. Note that UDITA does
not use the information about the code under test, e.g.,
to increase syntactic coverage. Instead, UDITA executes
the code just to speed up the full coverage of the specified,
bounded region of the input space. Consider, for instance,
using the following code to test the remove method from a
red-black tree [1]:

static void main(int N) {
RBTree t = new RBTree(); t.initialize(N);// Pick a graph
assume(t.isRBT()); // satisfying invariant ,
int v = getInt(0, N); // and pick a value .
t. remove(v); // Run code under test ,
assert(t. isRBT()); } // and check invariant .

Generating any tree that fails the assertion reveals a bug.
Figure 16 shows the effectiveness of our approach for reveal-
ing bugs. Eight bugs of omission were manually inserted
into an implementation of RBTree by students not familiar
with our work. For each bug, the first row is for Pex (Sec-
tion 5.2.1). The second row is for purely filtering style (as
in figures 2 and 3, with initialize using getInt/getAny/get-

New), in which base JPF is extremely slow. The third row is
for combined filtering/generating style, and delayed choice
again outperforms base JPF for larger sizes.

5.2.1 Comparison with Symbolic Execution
Symbolic execution is a very active area of research, with
a number of recent testing tools including Crest, CUTE,
DART, DySy, EGT, EXE, KLEE, Pex, SAGE, Splat, JPF’s
Symbc. (Our technical report [17] has a detailed list of refer-
ences.) However, many of these tools are not publicly avail-
able and/or do not support symbolic references (either not
at all or not with isomorphism avoidance). Pex [38] is a pub-
licly available, state-of-the art tool from Microsoft Research
that supports symbolic references and avoids isomorphism.

UDITA Eager UDITA Delayed Pex
bug# style N time [s] expl. time expl. time

filter 1-* 22.05
1 filter 1–4 timeout - 1.89 799 14.49

f/g 1–4 1.61 168 1.59 132 8.13
filter 1-* timeout

2 filter 1–6 timeout - 12.37 16620 137.66
f/g 1–6 10.26 7166 8.20 3163 89.34

filter 1-* 21.53
3 filter 1–2 9.20 10710 0.70 27 9.83

f/g 1–2 0.61 9 0.62 9 5.14
filter 1-* 8.93

4 filter 1–3 timeout - 0.84 136 7.10
f/g 1–3 0.75 30 0.80 27 5.03

filter 1-* 24.65
5 filter 1–3 timeout - 1.12 151 12.45

f/g 1–3 1.08 31 1.09 28 5.59
filter 1-* 4.55

6 filter 1–1 0.50 1 0.47 1 4.69
f/g 1–1 0.36 1 0.39 1 4.19

filter 1-* 2.72
7 filter 1–1 0.53 1 0.53 1 4.99

f/g 1–1 0.47 1 0.49 1 4.27
filter 1-* 12.50

8 filter 1–4 timeout - 1.58 676 22.95
f/g 1–4 1.22 145 1.36 120 7.87

Figure 16: Time taken and structures explored to find

the first bug in remove/put methods of red-black tree.

“timeout” denotes time over 1 hour. “filter” denotes us-

ing purely filtering; “f/g” denotes combined filtering/-

generating style. UDITA requires bounds; “1–s” for N

denotes the generation of all trees of sizes from 1 to s,

where s is the smallest size that reveals the bug. Pex can

also work without bounds (denoted “filter 1-*”).

Pex is used for testing C#/.NET code. To solve path con-
ditions, Pex uses Z3 [12], one of the very best constraint
solvers (see http://www.smtexec.org).

We compared UDITA with Pex. To enable this compari-
son, we translated buggy red-black tree code from Java into
C#. We also translated the (filtering) predicates and (gen-
erating) generators for red-black tree to C#. We used Pex,
as UDITA, to test one method in isolation, remove or put.
(An alternative is to test several methods at once through
method sequences [10,37,42]). The predicate is required to
specify pre- and post-condition for the method under test,
in both Pex and UDITA. Note that Pex, unlike UDITA,
does not require specifying bounds on the input size, but
we wrote a simple, eager implementation of object pools in
Pex/C# to be able to limit the search space for Pex.

Figure 16 shows the results. Pex times are averaged over
five runs, because the results can differ as objects get allo-
cated at different locations in different runs. Pex is able to
quickly find all the bugs except that none of the five runs
found bug2 in filtering mode with no object pools. Pex, like
other tools based on symbolic execution, aims at exploring

paths of the code under test (with the goal of increasing cov-
erage to find bugs), unlike UDITA that is designed for gen-

erating all test inputs of a given size (bounded-exhaustive
testing). We hypothesized that Pex misses bug2 because
it requires a path with several repeated branches (result-
ing from loop unrolling) for a tree of size 6, while Pex aims
at increasing branch coverage, thus giving less priority to
repeated branches. Pex developers investigated bug2 and
found that it is indeed missed because Pex’s default explo-
ration strategy does not give priority to paths that could
find this bug.

However, when we ran Pex with object pools (even a sim-
ple, eager implementation), Pex was able to find bug2 in
about 137 seconds. Despite these results, we do not expect
UDITA by itself (concrete execution with object pools) to be
better than Pex for white-box testing. Our view is that ob-
ject pools are a powerful abstraction for guiding exploration,
orthogonal to the path-bounding approaches used by tools
such as Pex. We therefore expect tools like Pex to integrate
object pools into their symbolic engines in the future, ef-
fectively implementing delayed choice for object pools. In
addition to the current JPF implementation, UDITA can be
implemented on top of other platforms, with similar costs
and benefits: if the tester spends more time guiding the ex-
ploration, the tool may find some bugs faster.

6. RELATED WORK
There is a large body of work on automated test generation.
This paper focuses on test generation programs, combining
filtering [5, 14, 18, 24, 28, 29] and generating [11, 23] styles
in a general-purpose programming language. Related work
on topics such as specification-, constraint-, and grammar-
based testing [27] is reviewed in more detail in a previous
paper [11] and a PhD thesis [28]. The key technique that
enables efficient test generation for UDITA is delayed exe-
cution, so we review here related work on that topic.

Noll and Schlich [31] proposed delayed non-deterministic
execution for model checking assembly code. While their
and our approaches share the name, the algorithms differ:
UDITA precisely shares non-deterministic values that are
copied, using lazy evaluation, whereas their approach [31]
copies non-deterministic values, effectively using call-by-
name semantics and over-approximating state space, pos-
sibly exploring executions that are infeasible in regular ex-
ecution. Further differences stem from different abstraction
levels, with UDITA modeling each non-deterministic inte-
ger as one symbolic value as opposed to a set of bits, and
UDITA handling graph isomorphism for allocated objects.

Techniques similar to delayed choice execution are com-
mon in constraint solving—for constraints written in both
imperative and declarative languages. For example, Ko-
rat [5] implicitly uses delayed choice by monitoring field ac-
cesses and using them in field initializations for the new can-
didates it explores. Generalized symbolic execution [25] uses
“lazy initialization” to make non-deterministic field assign-
ments on first access. Deng et al.’s [13] “lazier initialization”
builds on generalized symbolic execution and makes non-
deterministic field assignments on first use. Visser et al. [41]
use preconditions written in Java for checking satisfiability
but require the users to provide“conservative preconditions”
which are hard to provide manually or generate automati-
cally. A key difference between previous work and this paper
is that we provide a generic framework that supports delayed
choice execution for arbitrary Java code extended with non-
deterministic choices for primitive values and objects. We
also apply UDITA on testing much larger code bases, finding
bugs in Eclipse, NetBeans, Sun javac, and JPF.

The ECLiPSe constraint solver [2] provides a constraint
logic programming (CLP) interface for writing declarative
constraints. ECLiPSe provides suspensions that delay test-
ing of predicates until more information is available. Re-
searchers have proposed translating imperative programs
into CLP engines [16] but faced limitations of current CLP
implementations. We believe that non-deterministic exten-

http://www.smtexec.org

sions of popular programming languages such as Java can
lead both to advances of software model checking and to
scalable implementations of constraint solvers.

Approaches to automated test generation includes those
based on exploration of method sequences for generation
of object-oriented unit tests [10, 37, 42]. Such exploration
cannot be used to generate complex test inputs when there
are no appropriate methods, e.g., for building inheritance
graphs. UDITA can directly generate complex test inputs,
and generators in UDITA can even use method sequences.

Unlike symbolic execution [8, 26], UDITA relies mostly
on concrete execution to generate test inputs, and uses a
polynomial-time algorithm (Section 4.2) to ensure the fea-
sibility of the currently explored path. This is in contrast
to traditional symbolic execution where path conditions be-
long to NP-hard logics (often containing propositional logic,
uninterpreted functions, and bitvector arithmetic). Sev-
eral recent approaches show promising results by combining
symbolic with concrete execution [6, 9, 20, 21, 34, 35, 38] or
with grammar-based input generation [19]. In contrast to
combination of concrete executions with abstraction [4, 33],
UDITA focuses on test generation by efficiently covering a
set of concrete executions, without approximation. UDITA
is most applicable for black-box testing as shown by finding
bugs in Eclipse, NetBeans, Sun javac, and JPF. However,
UDITA requires/allows the tester to manually guide the ex-
ploration. Tools based on symbolic execution are more au-
tomated and better than UDITA for white-box testing. Our
experience with Pex suggests that other tools can benefit by
incorporating object pools from UDITA.

Acknowledgments. We thank our shepherd and the
anonymous reviewers for help in improving this paper;
Jonathan de Halleux, Suresh Thummalapenta, Nikolai Till-
mann, Xusheng Xiao, and Tao Xie for help with Pex;
Yun Young Lee for help with NetBeans; Brett Daniel for
help with Eclipse; Rohan Sharma for preparing red-black
tree code; and Igor Andjelkovic, Nima Honarmand, Dusan
Matic, and Milos Siroka for creating faulty versions of the
red-black tree example. This material is based upon work
partially supported by the US NSF under Grant Nos. CCF-
0845628, CCF-0746856, and IIS-0438967; US AFOSR Grant
No. FA9550-09-1-0351; the Microsoft Innovation Cluster for
Embedded Software; and the Swiss State Secretariat for Ed-
ucation and Research. Milos Gligoric was supported in part
by the Saburo Muroga fellowship.

7. REFERENCES
[1] UDITA website. http://mir.cs.illinois.edu/udita.

[2] K. Apt and M. G. Wallace. Constraint Logic Programming
using Eclipse. CUP, 2006.

[3] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. J. White.
State generation and automated class testing. STVR, 2000.

[4] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J.
Simmons. Proofs from tests. In ISSTA, 2008.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In ISSTA, 2002.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
CCS, 2006.

[7] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for
random testing of Haskell programs. In ICFP, 2000.

[8] L. Clarke and D. Richardson. Symbolic evaluation methods for
program analysis. In Program Flow Analysis: Theory and
Applications, chapter 9. Prentice-Hall, Inc., 1981.

[9] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic
symbolic execution for invariant inference. In ICSE, 2008.

[10] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation and
classification techniques for object-oriented unit testing. In
ASE, 2006.

[11] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated
testing of refactoring engines. In ESEC/FSE, 2007.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, 2008.

[13] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded
symbolic execution for checking strong heap properties of open
systems. In ASE, 2006.

[14] B. Elkarablieh, D. Marinov, and S. Khurshid. Efficient solving
of structural constraints. In ISSTA, 2008.

[15] S. Fischer, O. Kiselyov, and C. Shan. Purely functional lazy
non-deterministic programming. In ICFP, 2009.

[16] C. Flanagan. Automatic software model checking via constraint
logic. J-SCP, 50(1-3), 2004.

[17] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak,
and D. Marinov. On test generation through programming in
UDITA. Tech. report LARA-REPORT-2009-005, EPFL, 2009.

[18] M. Gligoric, T. Gvero, S. Lauterburg, D. Marinov, and
S. Khurshid. Optimizing generation of object graphs in Java
PathFinder. In ICST, 2009.

[19] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. In PLDI, 2008.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In PLDI, 2005.

[21] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen.
Interaction coverage meets path coverage by SMT constraint
solving. In TestCom/FATES, 2009.

[22] R. Iosif. Symmetry reduction criteria for software model
checking. In SPIN, 2002.

[23] V. Jagannath, Y. Y. Lee, B. Daniel, and D. Marinov. Reducing
the costs of bounded-exhaustive testing. In FASE, 2009.

[24] S. Khurshid and D. Marinov. TestEra: Specification-based
testing of Java programs using SAT. J-ASE, 11(4), 2004.

[25] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In TACAS,
2003.

[26] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7), 1976.

[27] R. Lämmel and W. Schulte. Controllable combinatorial
coverage in grammar-based testing. In TestCom, 2006.

[28] D. Marinov. Automatic Testing of Software with Structurally
Complex Inputs. PhD thesis, MIT, 2005.

[29] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and
M. Rinard. An evaluation of exhaustive testing for data
structures. Technical Report MIT-LCS-TR-921, 2003.

[30] W. M. McKeeman. Differential testing for software. J-DTJ,
10(1), 1998.

[31] T. Noll and B. Schlich. Delayed nondeterminism in model
checking embedded systems assembly code. In HVC, 2007.

[32] W. F. Opdyke and R. E. Johnson. Refactoring: an aid in
designing application frameworks and evolving object-oriented
systems. In SOOPPA, 1990.

[33] C. Pasareanu, R. Pelánek, and W. Visser. Predicate abstraction
with under-approximation refinement. J-LMCS, 3(1), 2007.

[34] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. R. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In ISSTA, 2008.

[35] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE, 2005.

[36] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.
Software assurance by bounded exhaustive testing. In ISSTA,
2004.

[37] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte. MSeqGen: Object-oriented unit-test generation via
mining source code. In ESEC/FSE, 2009.

[38] N. Tillmann and J. de Halleux. Pex—White box test generation
for .NET. In TAP, 2008.

[39] F. Tip. Refactoring using type constraints. In SAS, 2007.

[40] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. J-ASE, 10(2), 2003.

[41] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In ISSTA, 2004.

[42] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input
generation for Java containers using state matching. In ISSTA,
2006.

http://mir.cs.illinois.edu/udita

	Introduction
	Example
	UDITA Language
	Test Generation in UDITA
	Test Generation for Primitive Values
	Test Generation for Linked Structures

	Evaluation
	Black-Box Testing
	Generating Data Structures
	Testing Refactoring Engines
	Testing JPF and UDITA

	White-Box Testing
	Comparison with Symbolic Execution

	Related Work
	References

