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ABSTRACT
Software engineering involves a lot of change as code arti-
facts are not only created once but maintained over time. In
the last 25 years, major paradigms of program development
have arisen – agile development with refactorings, software
product lines, moving sequential code to multicore or cloud,
etc. Each is centered on particular kinds of change; their
conceptual foundations rely on transformations that (semi-)
automate these changes.

We are exploring how transformations can be placed at
the center of software development in future IDEs, and when
such a view can provide benefits over the traditional view.
Cope, a Change-Oriented Programming Environment, looks
at 5 activities: (1) analyze what changes programmers typi-
cally make and how they perceive, recall, and communicate
changes, (2) automate transformations to make it easier to
apply and script changes, (3) develop tools that compose and
manipulate transformations to make it easier to reuse them,
(4) integrate transformations with version control to pro-
vide better ways for archiving and understanding changes,
and (5) develop tools that infer higher-level transformations
from lower-level changes. Characterizing software develop-
ment in terms of transformations is an essential step to take
software engineering from manual development to (semi-)
automated development of software.

1. OUR VIEW OF TODAY
Software constantly changes. Most companies spend more

on maintaining old systems than on building new ones. It
is often reported that at least two-thirds of software costs
are due to evolution [1, 2], with some industrial surveys [3]
claiming 90%. This is good, because it is a sign that we
build software that is worth keeping. But it means that the
traditional view of software development is wrong: software
development is not about the conversion of user require-
ments into new software as much as it is about responding
to user needs by changing existing software. Change is the
heart of software development.
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This observation should sound familiar. In the last 25
years, major paradigms of software development and soft-
ware platforms have emerged based on (semi-)automatable
changes. Agile development is centered on the constant re-
structuring of programs to meet new demands; behavior-
preserving transformations called refactorings lie at its foun-
dation. Model Driven Engineering (MDE) focusses on the
mapping of high-level models of programs to low-level im-
plementations. Reusable transformations are the computa-
tional foundation of MDE. Software product lines (SPLs)
raise the idea of change to features (stereo-typical incre-
ments in program behavior) to explain how simple programs
can be modified in structured ways to create program fam-
ilies. Features are program transformations in SPLs. A
modern activity is parallelizing sequential programs. This
too can be understood as applying a series of behavior-
preserving transformations that map sequential computa-
tions to parallel computations. In short, disjoint research
communities have recognized that stereotypical changes can
be (semi-)automated by transformations; this could be a
hallmark of future software development paradigms.

Against this backdrop we ask: how can transformations be
placed more at the center of software development in today’s
IDEs? IDEs are often at the front-line of program develop-
ment today; how can we begin to make changes (transforma-
tions) front-and-center in tomorrow’s software development
and “not get in the way” of modern thinking? Exploring
answers to these questions will help to promote the revolu-
tion in thinking about transformations in modern software
engineering, and to demonstrate concrete benefits of making
programmers more productive and software more reliable.

2. OUR VIEW OF TOMORROW
We envision an environment where program transforma-

tions unify many of the software development activities. By
investigating when, how, and why transformations can be
placed at the center of software development, we can lay the
foundations of scientific theories and build tools that will
improve our abilities to automate and simplify software evo-
lution. We want both average and expert programmers to be
able to write, script, modify, and replay their own transfor-
mations. We want programmers to think about programs as
compositions of transformations, and to automate as many
of these transformations as possible.

To this end, we propose to create a change-oriented pro-
gramming environment (Cope). Each change, even manual
edits, will be considered a program transformation, since it
transforms one version of a program to the next. Thus, in



addition to the traditional view of a program being a col-
lection of modules, Cope will promote an orthogonal view
of a program as a sequence of transformations. Programs
(and/or their modules) will be objects in Cope, and trans-
formations will be mappings that are applied to these ob-
jects. By providing this more abstract view, Cope will
make programmers understand and control change better.
By mechanizing some changes, transformations will be more
reusable, making change less expensive and more reliable.

2.1 Example Killer Applications of COPE
An environment like Cope, which treats changes as first-

class entities, enables programmers to perform many devel-
opment tasks in ways not possible with current technology.
Here are three examples.
Ex1. Multi-views. Although some transformations (e.g.,
refactorings) make code more readable, others (e.g., opti-
mizations or security improvements) make it less readable
and more expensive to maintain. Suppose that Alice has
to finish two tasks: extend an existing video encoding algo-
rithm to support a new device and fix a security hole. She
cannot juggle both tasks at once, and current IDEs show
all the code entangled. To disentangle it, Alice relies heav-
ily on Cope’s multiple views, where each view shows only
some code fragments. First she uses a view that shows only
the central parts of the encoding algorithm but hides all de-
tails of optimizations or security fixes. Next she applies a
temporary transformation to produce a new view; e.g., the
algorithm is spread over methods in a large class hierarchy,
and she defines a view that uses the Visitor design pattern
to put all the methods in a single class. Now she can under-
stand the algorithm and change it easier. Then she starts
fixing the security hole. She uses a view that shows only the
code pertaining to security and hides all other code. She can
quickly spot and fix the security hole as the other details are
hidden. Di↵erent views emphasize the part of the code that
Alice cares to see at a given moment, thus views make code
more understandable.
Ex2. Separate portable from non-portable code.
Some transformations (e.g., platform-specific optimizations)
make code non-portable. Suppose Bob migrated his desk-
top email application to support a web interface platform.
He had to first undo desktop-specific optimizations and then
apply new transformations for the web platform. This was
expensive. A recent DOE workshop estimated $100 per line
of code ported to another platform. Sadly, in a few years,
he will go through the same expensive process to retarget
the email application for a smartphone. Instead, Bob uses
Cope to support multiple versions of his application by con-
trolling the transformations that are applied. For example,
the desktop version can use several optimizations but not se-
curity transformations. The web version would use security
transformations. The smartphone version will use power-
aware transformations. Bob always adds new features to one
single version of the code, regardless of how many platforms
he supports. This control of transformations will make code
more portable.
Ex3. Manipulate transformations. Carol is a program-
mer at a US stock exchange that has recently expanded into
the Brazilian market. Due to lack of time, the developers
forked the code into two branches rather than making a sin-
gle code base for both markets. However, Carol and her
team now frequently face the maintenance problem of push-

ing some common changes into both branches. Recently,
Carol had to change the error-recovery policy which required
changing 270 try-catch blocks for the US code branch. She
started by making the changes manually, then decided to use
Cope to write a script to perform them. The script made
it easy to push the changes to the Brazilian branch even
though this code uses di↵erent names for the code entities.
Scripting and reusing transformations make the programmer
more productive.

Recap. Supporting just one of these tasks would make
Cope worthwhile for some programmers. Supporting all
such tasks will make Cope worthwhile for all programmers.
Cope will make them more in control of their project and
more productive. That is why we believe Cope will revolu-
tionize software engineering.

2.2 COPE Challenges
As a foundational paradigm of Cope, we envision pro-

grammers thinking about a software system as a core pro-
gram followed by a series of transformations. As a commu-
nity of software evolution researchers, we need to answer
questions about when, how, and why this paradigm helps:

When would it be helpful and when would it get in the
way of understanding? How often is it really possible
to use a transformation to identify the task relevant
code? When is it more profitable to encode a change
as a reusable transformation, and when to simply edit
the code directly?

How would it a↵ect development activities such as test-
ing and debugging? What should be tested: the core
program, the transformations? In case of a bug, how
to determine which transformation(s) caused the bug?
How can Cope co-exist with the traditional view of
code/edit-centered IDE? Can it be introduced incre-
mentally? Can it be intermixed with low-level changes?

Why would Cope be more successful than previous ap-
proaches, for example, concern-based design or aspects?
Are there just a few obvious compelling use cases, or
is there a much larger set of use cases that envisions
code interactions as centering around transformations?
Could (or should) some functionality be modularized
as a transformation rather than as parameterized com-
ponent?

To turn Cope into reality, we address five key challenges:
(1) Understand transformations. We will study how
programmers perceive, recall, and communicate change in
complex code. Our work [4] addressed some questions for
refactorings—e.g., how programmers understand them and
why, when, and where programmers do (not) apply them—
but this work needs to be significantly extended to handle
other types of transformations.

(2) Automate transformations. Writing and scripting
transformations today is hard, e.g., implementing a sim-
ple transformation such as RenameMethod requires writing
hundreds of lines of code. We must make this simpler. Cope

will provide better ways for average programmers to quickly
script their own transformations and for experts to imple-
ment sophisticated transformations.

(3) Compose, manipulate, and visualize transfor-
mations. Understanding properties of transformations—



commutativity, dependencies, parameterization—is central
to transformation’s analysis and reuse. Programmers should
be able to take a sequence of transformations representing
an optimization or feature or bug fix, and reapply it to dif-
ferent versions of a program or even completely di↵erent
programs. We will develop novel approaches to manipulate
transformations as well as visualize their e↵ects.

(4) Archive and retrieve transformations. When pro-
grams are represented as sequences of transformations, Cope

must subsume and generalize the activities of version con-
trol. Instead of dealing with text edits, Cope will archive,
retrieve, visualize, and merge transformations.

(5) Infer transformations. We will develop an infrastruc-
ture within Cope to infer higher-level changes (e.g., bug fix,
security patch) from lower-level changes, especially code ed-
its. This will allow us to capture high-level program trans-
formations even when the programmer did not specify them.

To ensure that our results are general enough to handle a
wide range of changes, we will study changes in four di↵er-
ent exemplars: (1) upgrading applications when third-party
components evolve, (2) applying features to programs in a
product line, (3) fixing bugs, and (4) evolving tests to match
the new expected behavior of a system. Some exemplars fo-
cus on changes to behavior; others keep behavior the same.
Some stress automation, others manipulation or inference of
transformations. Together they define a large design space
to explore. We will generalize from these exemplars to build
a unified framework, Cope.

3. PRELIMINARY & ONGOING RESULTS
Our previous and ongoing research has explored isolated

points in the program transformation space. The success of
that research—(1) showing the feasibility and desirability of
representing programs as sequences of transformations and
(2) developing new techniques and tools integrated in IDEs
used by millions of programmers—motivates the proposed
deeper exploration of a large space.

3.1 Analytics for fine-grained changes
We need a science of software changes. But this science

can only flourish if we develop the theories, models, and
instruments to measure and understand changes.

Some researchers may argue that our community has been
already analyzing software changes for decades: we have a
plethora of data stored in Version Control Systems (VCS)
that we can analyze, and there are communities (like the
Mining Software Repositories) who are already doing a great
job at this. However, we argue that this is the equivalent
of reactive (as opposed to proactive) instruments, and the
data that we get is too coarse grained and not enough.

We developed CodingTracker [5,6], an Eclipse plugin that
records textual edits and operations from the IDE and uses
this low-level recording to infer changes on a program repre-
sented as Abstract Syntax Trees. We view CodingTracker as
the lowest level of Cope. So far we have used CodingTracker
to capture more than 1,500 hours of code development from
26 Java programmers. Our experiment highlights severe lim-
itations in using VCS data to analyze code changes.

First, VCS data is incomplete. We found that 35% of
the changes that programmers make never get checked into

VCS because they are shadowed by other changes (for ex-
ample when doing several attempts to tune performance).
Of these shadowed changes, a few are due to comment-
ing/uncommenting or by undoing changes, but 90% are real
code changes.

Second, VCS data is imprecise. A single VCS commit
may contain several overlapping changes to the same pro-
gram entity. For example, a refactored method could also
be edited in the same commit.

Third, answering research questions that correlate code
changes with other development activities (e.g., test runs,
refactoring) is impossible. VCS does not capture many kinds
of developer actions, such as running or debugging the ap-
plication or the tests. This severely limits the ability to
study the code development process. How often do devel-
opers commit changes that are untested? For developers
claiming to use XP and Test Driven Development (TDD),
do they write tests before the production code, or after they
wrote the production code?

Here are ideas that capture our imagination. First, we
want to develop software analytics to better understand code
evolution. This can turn SE into a data-driven field.
For example, at one of the companies that we partnered to
do research with, the CTO mandates that all software devel-
opers do TDD. Using rich data such as the one from our part-
ner company will help answer question such as: Do certain
development practices make the developer more productive?
Can we use smart real-time analytics and visualizations to
change developer habits? For example, imagine an eCoach
that prompts developers with a voice of consciousness: “it
seems that you have been developing too much code without
running any tests yet”.

Second, based on proactive monitoring of changes, we
want to develop recommendations for program changes.
Can we recommend to a developer which APIs to use based
on how other developers changed similar code in the past?
Can we detect when a developer is in the middle of a com-
plex change, and use the programming environment to in-
teractively complete the rest of the change based on learned
changes from the past?

Third, it would increase the awareness of changes:
imagine that the code is complemented by information and
warnings that show the risk of making a change. For exam-
ple, when a programmer tries to change a certain piece of
code, a warning pops up: “these five lines of code that you
are planning to change are very complex and the previous
developer who worked on them, spent 3 hours fiddling with
them”, or“you are in the middle of a change, but this change
is known to have caused many bugs before”.

Our recent work [7] shows that developers use 3 con-
ceptual “lenses” to reason about software changes. Among
them, the“immediate lens”describes recent changes that de-
veloper made but did not yet commit in the VCS. Inspecting
such changes is one of the most acute developer needs but it
is not currently met by tools. We envision many applications
for this lens: backtracking and selective undo [8] of changes,
navigating and grouping changes, and splitting changes into
logical units of commits.

3.2 API evolution as program transformations
Ideally, the interface to a software component never changes.

In practice, it often does. For example, between two major
versions, the Eclipse IDE had 51 API changes that were



not backwards-compatible. Struts, a popular framework for
web applications, had 136 API changes [9] that were not
backwards-compatible. Such API changes require applica-
tions that use components to be changed (upgraded) before
new versions can be used. The current state-of-the-practice
for component evolution uses text-based tools which are too
poor to express the complexities of API evolution. Instead,
our solution treated API changes as first-class citizens: we
expressed API evolution in terms of program transforma-
tions with well-defined semantics. We also defined an alge-
bra [10] to express commutativity and dependences among
API changes.

To make our solution practical, we developed tools [11] to
detect API program transformations (focusing on API refac-
torings) and then replay them on the applications (this fea-
ture ships with the o�cial release since Eclipse 3.2). More-
over, we developed a versioning tool [12] that semantically
merges the library and application API changes. This is
the first system that intelligently composes refactorings and
edits, two kinds of program transformations.

3.3 Automating program transformations
Refactoring scripts [13, 14]. It is widely known that

many design patterns can be created by repeated applica-
tions of refactorings. It is long overdue that IDEs support
refactoring scripts that programmatically invoke refactor-
ings in repeated and well-understood ways. We have lever-
aged the Eclipse refactoring engine to build a plug-in that
allows programmers to write refactoring scripts [13] in Java;
the lack of specific refactorings and refactoring reliability
drove us to build a new refactoring engine [14], one that is
significantly faster and more extensible than that of Eclipse.

Product lines (current work) We built a set of tools,
AHEAD [15], for product line creation that equated fea-
tures with program transformations. The next generation
of these ideas no longer require new programming language
constructs [16]; we instead use languages as-is and “color
code”: all code belonging to the blue feature is painted blue,
all code belonging to the red feature is painted red, etc. Code
with multiple colors denotes feature interactions. Particular
programs of a product line are created by projection (i.e.,
eliminating code whose features were not selected). Coloring
elevates text preprocessing to a disciplined use of optional
(AST) program structures, which has a solid algebraic foun-
dation.

Evolving tests [17–19]. Programmers often change soft-
ware in ways that cause tests to fail. If programmers de-
termine that failures are caused by errors not in the code
under test but in the test code itself, they should repair
failing tests. Fortunately, simple program transformations
can repair many failing tests automatically. Example trans-
formations include replacing literal values in tests, chang-
ing assertion methods, or replacing one assertion with sev-
eral. To automate such transformations, we developed a
tool, ReAssert [17]. Experiments show that ReAssert can
repair many common test failures and that its suggested
repairs correspond to programmers’ expectations. Our ini-
tial work used several ad-hoc transformation for repair [17],
and our later repairs used symbolic execution [18]. We have
also developed a technique [19] to transform tests for multi-
threaded code which showed the importance of using dy-
namic analysis for test code transformation.

4. CONCLUSIONS
We think it is time for a software revolution in software

development, similar with the one in the industrial revolu-
tion era, from manual development to semi-automated de-
velopment of software. By placing transformations at the
center of software development, we lay the foundations
of a change-oriented programming environment (Cope).

By creating a consortium of researchers, we can reuse the
platforms and datasets, and avoid spending several years to
re-build such platforms. Our call is for collaborators to cre-
ate a common platform for research for the next 10 years,
and produce results that become standard software develop-
ment practice in 15 years. If Cope is successful, it will have
a major impact on industry, as it will influence the major
IDEs and software engineering tools to treat change and
transformations as first-class citizens. Cope will be
also a catalyst for education as it can revamp the undergrad
software engineering curriculum to emphasize the activities
of changing large codebases.
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