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Abstract. One of the costs of reusing software components is updating appli-
cations to use the new version of the components. Updating an application ca
be error-prone, tedious, and disruptive of the development psoGes previous
study showed that more than 80% of the disruptive changes in fiveatiffeom-
ponents were caused by refactorings. If the refactorings that haggeetween
two versions of a component could be automatically detected, a refagtooh
could replay them on applications. We present an algorithm that deteatsaef
ings performed during component evolution. Our algorithm uses a ic@atidn

of a fast syntactic analysis to detect refactoring candidates and a rpEesive
semantic analysis to refine the results. The experiments on componegitsgra
from 17 KLOC to 352 KLOC show that our algorithm detects refactorings in
real-world components with accuracy over 85%.

1 Introduction

Part of maintaining a software system is updating it to usddtest version of its com-
ponents. Developers like to reuse software componentsitilgbuild a system, but
reuse makes the system dependent on the components. |dealigterface of a com-
ponent never changes. In practice, however, new versioosmponents often change
their interfaces and require the developers to change gtemyto use the new versions
of the components.

An important kind of change in object-oriented software igefactoring. Refac-
torings [FBB"99] are program transformations that change the strucfusepoogram
but not its behavior. Example refactorings include chagdire names of classes and
methods, moving methods and fields from one class to anathdrsplitting methods
or classes. An automated tool, calledactoring engingcan apply the refactorings to
change the source code of a component. However, a refagtemigine can change only
the source code that it has access to. Component develdpemnsdo not have access
to the source code of all the applications that reuse the oomgs. Therefore, refac-
torings that component developers perform preserve thamMi@iof the component but
not of the applications that use the component; in other syatthough the change is
a refactoring from the component developers’ point of viév, not a refactoring from
the application developers’ point of view.



One approach to automate the update of applications wherctdmeponents change
is to extend the refactoring engine to record refactoringthe component and then to
replay them on the applications. Record-and-replay ofctefangs was demonstrated
in CatchUp [HDO5] and JBuilder2005 [Bor] and recently inporated in Eclipse 3.2
Milestone 4 [Ecl]. As component developers refactor thette; the refactoring engine
creates a log of refactorings. The developers ship thislmpavith the new version of
the component. An application developer can then upgragl@pplication to the new
version by using the refactoring engine to play back the fagfactorings.

While replay of refactorings shows great promise, it relieshe existence of refac-
toring logs. However, logs are not available for the legaengions of components. Also,
logs will not be available for all future versions; some depers will not use refactor-
ing engines with recording, and some developers will paerfaafactorings manually. To
exploit the full potential of replay, it is therefore imparit to be able to automatically
detect the refactorings used to create a new version of a@oamp.

We propose a novel algorithm that detects a likely sequefwedarctorings between
two versions of a component. Previous algorithms [APM04NDD, GW05, GZ05,
RDO03] assumed closed-world development, where codebasassad only in-house
and changes happen abruptly (e.g., one entity dies in aovessid a new refactored
entity starts from the next version). However, in the opemiev development, com-
ponents are reused outside the organization, thereforggebalo not happen overnight
but follow a long deprecate-replace-remove lifecycle. @éte entities will coexist with
their newer counterparts until they are no longer suppo/ésb, multiple refactorings
can happen to the same entity or related entities. Thisylileanakes it hard to accu-
rately detect refactorings. Our algorithm works fine fortbolosed- and open-world
paradigms.

We aim for our algorithm to help the developer infer a log d&otorings for replay.
To be practical, the algorithm needs to detect refactonvigsa high accuracy. On one
hand, if the algorithm adds to a log a change that is not dgtaatefactoring (false
positive), the developer needs to remove it from the log erdplay could potentially
introduce bugs. On the other hand, if the algorithm does ddtta a log an actual
refactoring (false negative), the developer needs to migniirad it and add it to the
log. Previous algorithms [APM04, DDNOO, GWO05, GZ05, RD03hat at detection of
refactorings for the purpose of program comprehensionrefbee, they can tolerate
lower accuracy as long as they focus the developer’s attewtn the relevant parts of
the software.

Our algorithm combines a fast syntactic analysis to detefeictoring candidates
and a more expensive semantic analysis to refine the re@ultssyntactic analysis is
based on Shingles encoding [Bro97], a technique from Inédion Retrieval. Shingles
are a fast technique to find similar fragments in text files; agorithm applies shin-
gles to source files. Most refactorings involve repartitignof the source files, which
results in similar fragments of source text between difierersions of a component.
Our semantic analysis is based on tference graphthat represent references among
source-level entities, e.g., calls among methodis analysis considers the semantic

! Thesereferenceslo not refer to pointers between objects but to references amonguteeso
code entities in each version of the component.



EclipseUl 2.1.3 EclipseUl 3.0

AbstractTextEditor AbstractTextEditor

performRevertOperation performRevert()
(WMO, IPM)

Fig. 1. An excerpt from Eclipse versions 2.1 and 3.0 showing two refactsrirename method

and changed method signature, applied to the same method. The seymesent classes, the
ellipses methods, and arrows are method calls. The method that clagigatire also changes
name from performRevertOperation to performRevert.

doRevertToSaved() doRevertToSaved()

relationship between candidate entities to determine lvenghey represent a refactor-
ing.

We have implemented our algorithm as an Eclipse pluginedd&lefactoringCrawler,
that detects refactorings in Java components. The ideag ialgorithm can be applied
to other programming languages. RefactoringCrawler otireletects seven types of
refactorings, focusing on rename and move refactoringswedound to be the most
commonly applied in several components [DJO05]. We haveiatatl RefactoringCrawler
on three components ranging in size from 17 KLOC to 352 KLORe Tesults show
that RefactoringCrawler scales to real-world componeartd,its accuracy in detecting
refactorings is over 85%.

RefactoringCrawler and our evaluation results are aviailab the website [Ref].

2 Example

We next illustrate some refactorings that our algorithnedest between two versions of
a component. We use an example from the EclipseUl compori¢ié cclipse devel-
opment platform. We consider two versions of EclipseUlnfrEclipse versions 2.1.3
and 3.0. Each of these versions of EclipseUl has over 1,@38e$ and 10,000 methods
in the public API (of non-internal packages). Our algoritfirat uses a fast syntactic
analysis to find similar methods, classes, and package®batthe two versions of the
component. (Section 4 presents the details of our syntaotitysis.) For EclipseUl,
our algorithm finds 231,453 pairs of methods with similariesd487 pairs of similar
classes, and 22 pairs of similar packages. (Section 8 pgees®re details of this case
study.) These similar entities are candidates for refagjsr Our example focuses on
two pairs of similar methods.

Figure 1 shows two pairs of similar methods from the two \mrsi of the
class Abt st ract Text Edi tor from Eclipse 2.1 and 3.0. The syntactic analysis
finds that the methodioRevert ToSaved in version 2.1 is similar to (although
not identical with) the methodoRevert ToSaved in version 3.0, and the method



per f or nRever t Oper at i on is similar to the methoder f or nRever t . Our algorithm
then uses a semantic analysis to detect the refactoringsvéra performed on these
pairs. As the result, our algorithm detects that the metieod or nRever t Oper ati on
was renamed tper f or mOper at i on, and its signature changed from having two ar-
guments in the version 2.1 to no argument in the version 3W0. @@evious manual
inspection [DJO5] of the Eclipse documentation and codeéddound that these two
refactorings, renamed method and changed method signateire performed.

Our semantic analysis applies a series of detection steatdat find whether can-
didate pairs of similar entities are indeed results of nefdcgs. The key informa-
tion that the strategies consider is tlederencedetween the entities in each version.
For methods, the references correspond to call edges. Faxample methods, both
per f or nRever t Oper ati on andper f or nRevert have only one call in the entire
EclipseUl: they are both called exactly once fraiwRevert ToSaved. Our analysis
represents this information with an edge, labeled with thelper of calls, between
these methods. We present how the two strategies for renamattbds and changed
method signature proceed in our running example.

The strategy that detects renamed methods discards thef paiRever t ToSaved
methods since they have the same name. This strategy, howesestigates further
whethermer f or nRevert is a renaming oper f or nRevert Oper at i on. The strategy
(lazily) finds the calls to these two methods and realizestttey are called (the same
number of times) from the correspondidgRevert ToSaved methods in both ver-
sions. Therefore, methoder f or mRever t Oper at i on andper f or nRevert (i) are
both in classtbt st r act Text Edi t or, (ii) have similar method bodies, (iii) have sim-
ilar incoming call edges, but (iv) differ in the name. Theattgy thus concludes that
per f or nRevert is a renaming oper f or rtRever t Qper at i on.

The strategy that detects changed method signatures atsidecs all pairs
of similar methods. This strategy discards the pairdoRevert ToSaved meth-
ods since they have the same signature. This strategy, leowavestigates further
per f or mRever t Oper at i on andper f or rRevert methods, because they represent
the same method but renamed. It is important to point out tierestrategieshare
detected refactoringsalthough per f or nRevert Qper ati on and per f or nRevert
seemingly have different names, the RenameMethod strdtag\already found that
these two methods correspond. The ChangedMethodSigrsitategy then finds that
per f or rRever t Oper at i on andper f or nOper at i on (i) have similar method bod-
ies, (ii) “same” name, (iii) similar call edges, but (iv) fifent signatures. The strategy
thus correctly concludes that a changed method signatéaetoeing was applied to
per f or mOper ati on.

3 Algorithm Overview

This section presents a high-level overview of our alganifior detection of refactor-
ings. Figure 2 shows the pseudo-code of the algorithm. Tpetiare two versions of
a component, and the output is a log of refactorings appliediato producec2. The
algorithm consists of two analyses: a fagntactic analysishat finds candidates for
refactorings and a precisemantic analysithat finds the actual refactorings.



Ref act ori ngs det ect Ref act ori ngs(Conmponent cl1, c2) {
/'l syntactic analysis
Graph gl = parseLightweight(cl);
Graph g2 = parseli ghtweight(c2);
Shingles sl annot at eG aphNodesW t hShi ngl es(gl);
Shingles s2 annot at eG aphNodesW t hShi ngl es(g2);
Pairs pairs findSimlarEntities(sl, s2);
/1 semantic anal ysis
Ref actorings rlog = enptyRefactorings();
foreach (DetectionStrategy strategy) {
do {
Ref actorings rlog” = rlog.copy();
foreach (Pair<el, e2> frompairs relevant to strategy)
if (strategy.isLikelyRefactoring(el, e2, rlog))
rl og. add(<el, e2>, strategy);
} while (!rlog .equals(rlog)); // fixed point

}

return rlog;

Fig. 2. Pseudo-code of the conceptual algorithm for detection of refactorings

Our syntactic analysis starts by parsing the source fileketwo versions of the
component into théghtweightASTs, where the parsing stops at the declaration of the
methods and fields in classes. For each component, the gp@rsiduces a graph (more
precisely, a tree to which analysis later adds more edgesh Bode of the graphs
represents a source-level entity, namely a package, g eassthod, or a field. Each
node stores a fully qualified name for the entity, and eacthatkhode also stores the
fully qualified names of method arguments to distinguishrimesled methods. Nodes
are arranged hierarchically in the tree, based on theiy fyllalified names: the node
p.n is a child of the node.

The heart of our syntactic analysis is the use ofShagles encodinty find similar
pairs of entities (methods, classes, and packages) in thedwgions of the component.
Shingles are “fingerprints” for strings with the followinggperty: if a string changes
slightly, then its shingles also change slightly. Therefahingles enable detection of
strings with similar fragments much more robustly than tiaditional string matching
techniques that are not immune to small perturbations Ekxemings or small edits.
Section 4 presents the computation of shingles in detail.

The result of our syntactic analysis is a set of pairs of istithat have similar
shingles encodings in the two versions of the component: Bair consists of an entity
from the first version and an entity of the same kind from theoad version; there are
separate pairs for methods, classes, and packages. Thesefpsimilar entities are
candidates for refactorings.

Our semantic analysis detects from the candidate paire thbere the second entity
is a likely refactoring of the first entity. The analysis @pplseven strategies for detect-
ing specific refactorings, such as RenameMethod or Chantheld8ignature discussed



in section 2. Section 5 presents the strategies in detad .anialysis applies each strat-
egy until it finds all possible refactorings of its type. Easthategy considers all pairs
of entities{e;, e2) of the appropriate type, e.g., RenameMethod considers ailg
of methods. For each pair, the strategy computes how lilketipate; was refactored
into e,; if the likelihood is above a user-specified threshold, tinatsgy adds the pair
to the log of refactorings that the subsequent strategiesusa during further analy-
sis. Note that each strategy takes into account alreadytddteefactorings; sharing
detected refactorings among strategies is a key for aecdetection of refactorings
when multiple types of refactorings applied to the sametye(i.g., a method was re-
named and has a different signature) or related entitigs gemethod was renamed and
also its class was renamed). Our analysis cannot recovdistiug refactorings in the
order they were performed, but it findse paththat leads to the same result.

4 Syntactic Analysis

To identify possible candidates for refactorings, our athm first determines pairs
of similar methods, classes, and packages. Our algorithm uses thgl&thencod-
ing [Bro97] to compute a fingerprint for each method and detees two methods
to be similar if and only if they have similar fingerprints. like the traditional hashing
functions that map even the smallest change in the input torgletely different hash
value, the Shingles algorithm maps small changes in the iigpsmall changes in the
fingerprint encoding.

4.1 Computing Shingles for Methods

The Shingles algorithm takes as input a sequence of tokehg@nputes a multiset
of integers called shingles. The tokens represent the mdtbdy or the Javadoc com-
ments for the method (as interface methods and abstracodstiave no body). The to-
kens do not include method name and signature becauseorifigstaffect these parts.
The algorithm takes two parameters, the length of the gidimdow, W, and the max-
imum size of the resulting multises,. Given a sequence of tokens, the algorithm uses
the sliding window to find all subsequences of length computes the shingle for each
subsequence, and selects fheinimum shingles for the resulting multiset. Instead of
selectingS shingles which have minimum values, the algorithm could arse other
heuristic that deterministically selecfsvalues from a larger set. Our implementation
uses the Rabin’s hash function [Rab81] to compute the sksngl

If the method is short and has fewer thérshingles, then the multiset contains all
shingles. This is the case with many setters and gettersoane sonstructors and other
initializers. The parameté$ acts as the upper bound for the space needed to represent
shingles: a larger value &f makes calculations more expensive, and a smaller value
makes it harder to distinguish strings. Our implementasiets the number of shingles
proportional to the length of the method body/comments.

Figure 3 shows the result of calculating the shingles for aethod bodies with
W = 2 andS = 10. The differences in the bodies and the shingle values areeipn g
boxes. Notice that the small changes in the tokens produgesamall changes in the
shingle representation, enabling the algorithm to find timdlarities between methods.



void doRevertToSaved() {

IDocumentProvider p= getDocumentProvider(); Shingles: { -1942396283, -1672190785,
if (p == null) -12148775115, -56733233372, 208215292,
return; 1307570125, 1431157461,
performRevertOperation(createRevertOperation(), 190471951, 969607679'}
getProgressMonitor());

}

void doRevertToSaved() { Shingles: {-1942396283, 1672190785,
IDocumentProvider p= getDocumentProvider(); -1214877515, -5673233372, 208215292,

if (p == null) 1307570125, 1431157461,@
return;
|perf0rmRevert(); |

1

Fig. 3. Shingles encoding for two versions Albst r act Text Edi t or . doRevert ToSaved
between Eclipse 2.1 and 3.0. Notice that small changes (gray boxs) imput strings produce
small changes in the Shingles encoding.

4.2 Computing Shingles for Classes and Packages

The shingles for methods are used to compute shingles fssedaand packages. The
shingles for a class are the minimu#y,;,;s values of the union of the shingles of
the methods in that class. Analogously, the shingles forckame are the minimum
Spackage Values of the union of the shingles of the classes in thatgmpekThis way,
the algorithm efficiently computes shingles values andds/cécalculations.

4.3 Finding Candidates

Our analysis uses the shingles to find candidates for refagg Each candidate is
a pair of similar entities from the two versions of the comgatn This analysis is an
effective way of eliminating a large number of pairs of @ati{ so that the expensive
operation of computing the reference graphs is only dona fanall subset of all possi-
ble pairs. More specifically, Iét/; and)M; be the multisets of shingles for two methods,
classes, or packages. Our analysis computes similarityeleet these two multisets. Let
| My N Ms| be the cardinality of the intersection 8f; and M>. To compare similarity
for different pairs, the algorithmormalizeghe similarity to be between 0 and 1. More
precisely, the algorithm computes the similarity as dlverageof similarity from M,

to M, and similarity fromM; to M; to address the cases whif is similar toMs but
My is not similar toM; :

| M1NMs| + | Man M|
[ M| | Ma|

2

If this similarity value is above the user-specified thrddhthe pair is deemed similar
and passed to the semantic analysis.



5 Semantic Analysis

We present the semantic analysis that our algorithm usesterdrefactorings. Re-
call from Figure 2 that the algorithm applies each detecsibategy until it reaches a
fixed point and that all strategies share the same log of geteefactoringsr | og.
This sharing is crucial for successful detection of refengs when multiple types of
refactorings happened to the same entity (e.g., a methodemasned and has a dif-
ferent signature) or related entities (e.g., a method waamed and also its class was
renamed). We first describe how the strategies use the sluyed refactorings. We
then describeeferenceghat several strategies use to compute the likelihood aefcref
toring. We also define the multiplicity of references anddimailarity that our algorithm
computes between references. We finally presents detadaalf strategy. Due to the
sharing of the log, our algorithm imposes an order on thetgeefactorings it detects
first. Specifically, the algorithm applies the strategiethimfollowing order:

RenamePackage (RP)
RenameClass (RC)
RenameMethod (RM)
PullUpMethod (PUM)
PushDownMethod (PDM)
MoveMethod (MM)
ChangeMethodSignature (CMS)

NogMwhE

5.1 Shared Log

The strategies compare whether an entity in one graph @ames to an entity in
another graplwith respect to the already detected refactoringsparticular with re-

naming refactorings. Suppose that the refactorings logg already contains several
renamings that map fully qualified names from versiarto versionc2. These renam-
ings map package names to package names, class names toastass, or method
names to method names. We define a renaming fungtitiat maps a fully qualified
namef gn from c1 with respect to the renamingsiih og:

p(fan,rlog) = if (definedr! og(f gn)) thenr! og(f qn)
elsep(pre(f gn),rlog) +"." + suf(f gn)
p(".rlog)="",
where suf and pre are functions that take a fully qualified eamd return its simple
name 6uffiy and the entire name but the simple napee{iX), respectively. The func-

tion p recursively checks whether a renaming of some part of thg duialified name
is already inr | og.

5.2 References

The strategies compute the likelihood of refactoring basedeferencesamong the
source-code entities in each of the two versions of the compo In each graph that



represents a version of the component, our algorithm fpadds an edge from a node
n' to a noden if the source entity represented by has a reference to a source entity
represented by. (The graph also contains the edges from the parse tree.)eéeed
references for each kind of nodes/entities in the followiray:

— There is a reference from a node/methatito a node/methody iff m’ callsm.
Effectively, references between methods correspond tedges in call graphs.
— There is a reference from a nodéto a node/clas€’ iff:
e 1/ is a method that has (i) an argument or return of Qer (ii) an instantia-
tion of classC, or (iii) a local variable of clas§’.
e n'is aclass that (i) has a field whose typ&ir (ii) is a subclass of’.
— There is a reference from a nodeto a node/packageiff n’ is a class that imports
some class from the package

There can be several references from one entity to anotheexample, one method
can have several calls to another method or one class cas&exal fields whose type
is another class. Our algorithm assigns to each edgaltplicity that is the number
of references. For example, if a methed has two calls to a methad, then the edge
from the node’ that represents:’ to the node: that represents: has multiplicity two.
Conceptually, we consider that there is an edge betweemaryddes, potentially with
multiplicity zero. We writeu(n’, n) for the multiplicity from the node.’ to the noden.

5.3 Similarity of References

Our algorithm uses a metric to determine the similarity éérences to entities in the
two versions of the component, with respect to a given logefdatorings. We write

n € g for a noden that belongs to a graph Consider two nodes; € g1 andn, € g2.
We define the similarity of their incoming edges as follows fitst define thairected
similarity between two nodes with respect to the refactorings. We tilenthe overall
similarity betweem, andn, as the average of directed similarities betwegrandn.
and betweems andn;. The average of directed similarities helps to compute ra fai
grade whem is similar ton, butns is not similar ton.

We define the directed similarity between two nodeandn’ as the overlap of
multiplicities of theircorrespondingncoming edges. More precisely, for each incom-
ing edge from a node; to n, the directed similarity finds a nod€ = p(n;,rl og)
that corresponds ta; (with respect to refactorings) and then computes the gveria
multiplicities between the edges from to n and fromn/ to n’. The number of over-
lapping incoming edges is divided by the total number of mow edges. The formula
for directed similarity is:

) 22, min(u(ng, n), u(p(ng,riog),n’))
d(n,n',rlog) = NI

The overall similarity is the average of directed similiast

5(ni,n2,rl og) + d(ng,ny1,rlog™t)

o(ni,n2,rlog) = 5




When computing the directed similarity betweep andn;, the algorithm needs
to take into account the inverse of renaming log, denotedi kg —!. Namely, starting
from a noden; in g, the analysis searches for a nedein g; such that the renaming
of n; (with respect ta | og) is n;, or equivalentlyp(n;,rl og=!) = n;.

We describe informally an equivalent definition of direcssahilarity based on the
view of graphs with multiplicities as multigraphs that caavé several edges between
two same nodes. The set of edges between two nodes can behdewemultiset, and
finding the overlap corresponds to finding the intersectfane multiset of edges with
the other multiset of edges (for nodes corresponding wipeet to the refactorings).
In this view, similarity between edges in the graph is comgally analogous to the
similarity of multisets of shingles.

5.4 Detection Strategies

We next precisely describe all detection strategies faatefings. Each strategy checks
appropriate pairs of entities and has access to the g@pblasdg2 and ther | og of
refactorings. (See the call icsLi kel yRef act ori ng in Figure 2.) Figure 4 shows
the seven strategies currently implemented in RefactGriagler. For each pair, the
strategy first performs a fast syntactic check that detezsnvhether the pair is relevant
for the refactoring and then performs a semantic check #tarohines the likelihood of
the refactoring. The semantic checks compare the sinyilafiteferences to the user-
specified threshold valug.

RenamePackage (RP), RenameClass (RC), and RenameMeMpst(&Regies are
similar. The first syntactic check requires the entity frgznnot to be ing1; otherwise,
the entity is not new. The second check requires the twoentid have the same name
prefix, modulo the renamings int og; otherwise, the refactoring is a potential move but
not a rename. The third check requires the two entities te diferent simple names.

PullUpMethod (PUM) and PushDownMethod (PDM) are the opeasfieach other.
Figure 5 illustrates a PUM that pulls up the declaration ofedhud from a subclass into
the superclass such that the method can be reused by otlbassds. Figure 6 illus-
trates a PDM that pushes down the declaration of a method &superclass into a
subclass that uses the method because the method is no teniged by other sub-
classes. In general, the PUM and PDM can be between sevasaksl related by in-
heritance, not just between the immediate subclass anddagse therefore, PUM and
PDM check that the original class igl@scendandnd anancestoy respectively, of the
target class. These inheritance checks are done on the ggaph

MoveMethod (MM) has the second syntactic check that requtre parent classes
of the two methods to be different. Without this check, MM wbincorrectly classify
all methods of a renamed class as moved methods. The seaqoadtsecheck requires
that the declaration classes of the methods not be relatethbyitance; otherwise, the
refactorings would be incorrectly classified as MM as oppasea PUM/PDM. The
third check requires that all references to the target di@ssemoved in the second
version and that all calls to methods from the initial classé&placed with sending a
message to an instance of the initial class. We illustragectieck on the sample code
in Figure 7. In the first version, metha. nt calls a methodl. xyz of the same class
C1 and also calls a methaz2. n2. After ml is moved to the class2, mi can call any



| Refactoring | Syntactic Checks [ Semantic Checks

RP{1, p2) p2 €91 o(p1,p2,rlog) >T
p(pre(p1), 11 0g) = pre(pz)
suf(p1) # suf(pz)
RC(Cy, C2) Cy 9l 0(01,027” Og) >T
p(pre(Ch),r | og) = pre(C2)
suf(Cy) # suf(Cy)
RM(m1, m2) mo € gl o(mi,ma,rlog)>T
p(pre(ms), 11 0g) = pre(my)
suf(m.) # suf(ms)

PUM(m1, mo) mo & gl o(mi,ma,rlog)>T
p(pre(m), 1 0g) # pre(ms) | p(pre(ma), | 0g) descendant-of pter>)
suf(m.) = suf(ms)
PDM(m1, m2) ma ¢ gl o(mi, ma,rlog) >T
p(pre(ma),r1 og) # pre(msz) | p(pre(mq),r1 0g) ancestor-of prens)
suf(mi) = suf(ms)

MM(m1, ma) mo € gl o(mi,ma,rlog) >T
p(pre(ma),rl og) # pre(mz) |—p(pre(mq),r1 0g) anc.-or-desc. pfenz)
suf(m) = suf(mz) references-properly-updated
CMS(m1, m2)| p(fan(mq),r 1 og) = fqn(my) o(mi,ma,rlog)>T

signatur¢m:) # signaturéms)

Fig. 4. Syntactic and semantic checks performed by different detection seatéy refac-
torings: RP=RenamePackage, RC=RenameClass, RM=RenameMBthibt-PullUpMethod,
PDM=PushDownMethod, MM=MoveMethod, and CMS=ChangeMethau8ige.

method inC2 directly (e.g.,n2), but any calls to methods residing @1 need to be
executed through an instancecif.

ChangeMethodSignature (CMS) looks for methods that hawesdéime fully qual-
ified name (modulo renamings) but different signatures. digaature of the method
can change by gaining/loosing arguments, by changing the ¢ the arguments, by
changing the order of the arguments, or by changing therréype.

6 Discussion of the Algorithm

The example from Section 2 illustrates some of the challemg@utomatic detection
of refactorings that happened in reusable components. Weerplicitly discuss three
main challenges and present how our algorithm addresses the

The first challenge is the size of the code to be analyzed. Aeresive semantic
analysis—for example finding similar subgraphs in call geaphore generally, in the
entire reference graphs)—might detect refactorings bus doé scale up to the size of
real-world components with tens of thousands of entitiesluding methods, classes,
and packages. A cheap syntactic analysis, in contrast,trifighmany similar entities
but is fallible to renamings. Also, an analysis that would tade into account the se-
mantics of entity relationships would produce a large nuntdfdalse positives. Our
algorithm uses a hybrid of syntactic and semantic analysdast syntactic analysis



Version 1 Version 2

Class1 Class1
4 +m2()
Class2
ass Class?2
+mil()
+n2() ()

Fig. 5. PullUpMethod: method® is pulled up from the subclag® into the superclassl.

Version 1 Version 2
Class1 Class1
+n2() ?
Class?2 Class2
+m() ()
+n2()

Fig. 6. PushDown: method? is pushed down from the supercla@k into the subclas€2.

creates pairs of candidate entities that are suspectedaataang, and a more precise
semantic analysis on these candidates detects whethearth@ydeed refactorings.

The second challenge is the noise introduced by preseracighard compatibility
in the components. Consider for example the following cleainghe Struts framework
from version 1.1 to version 1.2.4: the methoel f or min the classCont rol | er was
renamed t@xecut e, butper f or mstill exists in the later version. Howeverer f or m
is deprecated, all the internal references to it were replagth references texecut e,
and the users are warned to usecut e instead ofper f or m Since it is not feasible
to perform an expensive analysis on all possible pairs dgfiesiacross two versions of
a component, any detection algorithm has to consider onlyse of pairs. Some pre-
vious algorithms [APMO04, DDNO0O, GZ05] consider only the adatied entities that die
in one version and then search for refactored countergaatsate created in the next
version. The assumption that entities change in this fasinideed holds in the closed-
world development (where the only users of components a&edmponent develop-
ers) but does not hold in the open-world development whetdabed entities coexist
with their refactored counterparts. For example, the puevialgorithms cannot detect
thatper f or mwas renamed texecut e sinceper f or mstill exists in the subsequent
version. Our algorithm detects thaér f or min the first version anéxecut e in the



Version 1

Class C1{
public void m1(C2 c2) {

}

Class C2 {
public void m2() { .....}

Version 2

Class C1 {
public void xyz() { ..... }
}

Class C2 {

public void m {

public void m2() {....}

} }

Fig. 7.Methodml moves from clas€l in one version to clags2 in the next version. The method
body changes to reflect that the local methods (e®) are called directly, while methods from
the previous class (e.xyz) are called indirectly through an instanceGif.

second version have the same shingles and their call segbaisame, and therefore
our algorithm correctly classifies the change as a methaahnen

The third challenge is multiple refactorings happeninghtosame entity or related
entities. The example from Section 2, for instance, shows refactorings, rename
method and change method signature, applied to the sameaneth example of
refactorings happening to related entities is renaming thogealong with renaming
the method’s class. Figure 8 illustrates this scenarioog&the two versions of a com-
ponent, clas€1l was renamed t@€1REN, and one of its methodsg, was renamed to
nm2REN. During component evolution, regardless of whether thesotet method rename
was executed first, the end result is the same. In Figure 8ytper part shows the case
when the class rename was executed first, and the lower pavsshe case when the
method rename was executed first.

Our algorithm addresses the third challenge by imposingrderamn the detection
strategies and sharing the information about detectedtmefags among the detection
strategies. Any algorithm that detects refactorings cptuadly reconstructs the log of
refactorings and thus not only the start and the end statecofrponent but also the
intermediate states. Our algorithm detects the two refagts in Figure 8 by following
the upper path. When detecting a class rename, the algoattes into account only the
shingles for class methods and not the method names. Therefa algorithm detects
classCLREN as a rename of clasdl although one of its methods was renamed. This
information is fed back into the loop; it conceptually restincts the state 2a, and the
analysis continues. The subsequent analysis for the remetied checks whether the
new-name method belongs to the same class as the old-natmedysince the previous
detection discovered thatl is equivalent modulo rename wittiREN, n2REN can be
detected as a renamerdd.

The order in which an algorithm detects the two refactorimgsters. We described
how our algorithm detects a class rename followed by a methioame. Consider, in
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Fig. 8. Refactorings affect related entities class C1 and method m2. The clesnechappens
before the method rename in the upper path, the reverse happens aittira path. Both paths
end up with the same result.

contrast, what would happen to an algorithm that attempfsltow the bottom path.
When analyzing what happened between the meth@dand n2REN, the algorithm
would need the intermediate state 2b (whe2&EN belongs toCl1) to detect that

was renamed ta2REN. However, that state is not given, and in the end St@REN
belongs taC1REN, so the algorithm would mistakenly conclude thaREN was moved

to another classdLREN). The subsequent analysis of what happened between classes
Cl andC1REN would presumably find that they are a rename and would thed toee
backtrack to correct the previously misqualified move methe a rename method.

For this reason, our algorithm imposes an order on the detestrategies and runs
detection of renamings top-down, from packages to classerthods.

To achieve a high level of accuracy, our algorithm uses a fpadt computation in
addition to the ordering of detection strategies. The algrruns each strategy repeat-
edly until it finds no new refactorings. This loop is necegdmcause entities are inter-
twined with other entities, and a strategy cannot detectazt@ring in one entity until
it detects a refactoring in the dependent entities. Foaire, consider this example
change that happened in the Struts framework between thiorerl.1 and 1.2.4: in the
classAct i onCont rol | er, the methogber f or mwas renamed texecut e. The imple-
mentation ofper f or min Acti onCont rol | er is a utility class that merely delegates
to different subclasses att i on by sending them per f or mmessage. For 11 of these
Acti on classes, their callers consist mostly of theti onControl |l er. perform
Therefore, unless a tool detects first that f or mwas renamed texecut e, it can-
not detect correctly the similarity of the incoming call eddor the other 11 methods.
After the first run of the RenameMethod detection, our RefémgCrawler tool misses



the 11 other method renames. However, the feedback loopthddsformation about
the rename oper f or m and the second run of the RenameMethod detection correctly
finds another 11 renamed methods.

Even though we only analyze seven types of refactoringseqmmally similar com-
bination of syntactic and semantic analysis can detect rativer types of refactorings.
A lot of the refactorings published by Fowler et al. [FB®9] can be detected in this
way, including extract/inline method, extract/inline gage, extract/inline class or in-
terface, move class to different package, collapse clamsidehy into a single class,
replace record with data class, replace anonymous witkedetdss, replace type con-
ditional code with polymorphism, as well as some higheeleefactorings to design
patterns [GHJV95] including create Factory methods, foemplate Method, replace
type code with State/Strategy.

The largest extension to the current algorithm is requingdréplace type condi-
tional code with polymorphism’. This refactoring replaceswitch statement whose
branches type-check the exact type of an object (e.g., usstgnceofin Java) with
a call to a polymorphic method that is dynamically dispattherun time to the right
class. All the code in each branch statement is moved to ties ahhose type was
checked in that branch. To detect this refactoring, theasyitt analysis should not only
detect similar methods, but also similar statements antesgjons within method bod-
ies. This requires that shingles are computed for indiVidteiements and expressions,
which is overhead to the current implementation, but oféefimer level of granularity.
Upon detection of similar statements in a switch branch aralélass method, the se-
mantic analysis needs to check whether the class has thetgpenas the one checked
in the branch and whether the switch is replaced in the seearsibn with a call to the
polymorphic method.

7 Implementation

We have implemented our algorithm for detecting refactgsim RefactoringCrawler,
a plugin for the Eclipse development environment. The usadd the two versions of
the component to be compared as projects inside the Eclipskspace and selects
the two projects for which RefactoringCrawler detectscetfengs. To experiment with
the accuracy and performance of the analysis, the user tdnesealues for different
parameters, such as the size of the sliding window for thadgis encoding (Section
4); the number of shingles to represent the digital fingatmf methods, classes and
package; and the thresholds used in computing the similefishingles encoding or
the reference graphs. RefactoringCrawler provides a skifatilt parameter values that
should work fine for most Java components.

RefactoringCrawler provides an efficient implementatibthe algorithm shown in
Figure 2. The syntactic analysis starts by parsing the sofiiles of the two versions
of the component and creates a graph representation mygrdrelightweight ASTSs.
We call it lightweight because the parsing stops at the datiten of the methods and
fields in classes. RefactoringCrawler then annotates eathatt and field node with
shingles values corresponding to the source code behirtdreste (e.g. method body
or field initializers). From the leaves’ shingles valuesfdR&ringCrawler annotates



(bottom-up) with shingles values all the nodes correspuntb classes and packages.
Since each node contains the fully qualified name of the gotode entity, it is easy to
navigate back and forth between the actual source code argidabh representation.

During the semantic analysis, RefactoringCrawler useip&&s search engine to
find the references among source code entities. The seagtte@perates on the source
code, not on the graph. The search engine does a type anyigientify the class
of a reference when two methods in unrelated classes haveathe name. Finding
the references is an expensive computation, so Refac@rwger lazily runs this and
caches the intermediate results by adding edges betwegrathie nodes that refer each
other.

RefactoringCrawler performs the analysis and returns hhekresults inside an
Eclipse view. RefactoringCrawler presents only the refidcys that happened to the
public API level of the component since only these can affeetcomponent users.
RefactoringCrawler groups the results in categories spording to each refactoring
strategy. Double clicking on any leaf Java element opengldaréhaving selected the
declaration of that particular Java element. Refactoriager also allows the user to
export the results into an XML format compatible with therfat that CatchUp [HDO5]
uses to load a log of refactorings. A similar XML format is dder the Eclipse 3.2
Milestone 4. Additionally, the XML format allows the develer to further analyze and
edit the log, removing false positives or adding missedctefings.

The reader can see screenshots and is encouraged to dowiméotmbl from the
website [Ref].

8 Evaluation

We evaluate RefactoringCrawler on three real-world corepts To measure the accu-
racy of RefactoringCrawler, we need to know the refactaitigat were applied in the
components. Therefore, we chose the components from owviopeestudy [DJO05] that
analyzed the API changes in software evolution and founakctefings to be respon-
sible for more than 80% of the changes. The previous studgidered components
with good release notes describing the API changes. Sgafriim the release notes,
we manually discovered the refactorings applied in thesepoments. These manually
discovered refactorings helped us to measure the accufdbg oefactoring logs that
RefactoringCrawler reports. In general, it is easier tedethe false positives (refac-
torings that RefactoringCrawler erroneously reports) iyparing the reported refac-
torings against the source code than it is to detect the fedgatives (refactorings that
RefactoringCrawler misses). To determine false negatiwescompare the manually
found refactorings against the refactorings reported bia@®eringCrawler. Addition-
ally, RefactoringCrawler found a few refactorings that @aot documented in the re-
lease notes. Our previous study and the evaluation of RefagCrawler allowed us to
build a repository of refactorings that happened betweeriwlo versions of the three
components. The case study along with the tool and the @eteefactorings can be
found online [Ref].

For each component, we need to choose two versions. Theopeestudy [DJ05]
chose two major releases that span large architecturagelamecause such releases



are likely to have lots of changes and to have the changesmed. We use the
same versions to evaluate RefactoringCrawler. Note, heryévat these versions can
present hard cases for RefactoringCrawler because thégraxpart and can have large
changes. RefactoringCrawler still achieves practicaleay for these versions. We
believe that RefactoringCrawler could achieve even higleeuracy on closer versions
with less changes.

8.1 Case Study Components

Table 1 shows the size of the case study components. Releesedive the size (in
pages) of the documents that the component developersdebtd describe the API
changes. We next describe the components and the versaingdtanalyze [DJ05].

Size |Package€lassegMethodsReleaseNotes
KLOC [Pages]
Eclipse.Ul 2.1.$ 222 105 1151 | 10285 -
Eclipse.Ul 3.0| 352 192 1735 | 15894 8
Struts 1.1 114 88 460 | 5916 -

Struts 1.2.4 | 97 78 469 | 6044 16
JHotDraw 5.2| 17 19 160 | 1458 -
JHotDraw 5.3| 27 19 195 | 2038 3

Table 1.Size of the studied components.

Eclipse Platform [eclipse.org] provides many APIs and many different smditkeme-
works. The key framework in Eclipse is a plug-in based frawréthat can be used to
develop and integrate software tools. This framework isroftsed to develop Integrated
Development Environments (IDEs). We focus on the Ul subaamept (Eclipse.Ul)
that contains 13 plug-ins.

We chose two major releases of Eclipse, 2.1 (March 2003) abidJ8ne 2004).
Eclipse 3.0 came with some major themes that affected the.ARPleresponsiveness
theme ensured that more operations run in the backgroumeutiblocking the user.
New APIs allow long-running operations like builds and sbas to be performed
in the background while the user continues to work. Anothajomtheme in 3.0 is
rich-client platforms Eclipse was designed as a universal IDE. However many compo
nents of Eclipse are not particularly specific to IDEs and lbameused in other rich-
client applications (e.qg., plug-ins, help system, updaamager, window-based GUIs).
This architectural theme involved factoring out IDE-sfie@lements. APIs heavily af-
fected by this change are those that made use of the filesystmarces. For instance
| Wor kbenchPage is an interface used to open an editor for a file input. All e
that were resource specific (those that dealt with openiitgredover files) were re-
moved from the interface. A client who opens an editor foragtould convert it first
to a generic editor input. Now the interface can be used bly boh-IDE clients (e.g.,
an electronic mail client that edits the message body) asaséDE clients.



Struts [struts.apache.org] is an open source framework for mgldiava web appli-
cations. The framework is a variation of the Model-View-@oiier (MVC) design
paradigm. Struts provides its own Controller componentiatetjrates with other tech-
nologies to provide the Model and the View. For the Modeluttrcan interact with
standard data access technologies, like JDBC and EJB, amgdthied-party packages.
For the View, Struts works with many presentation systems.

We chose two major releases of Struts, 1.1 (June 2003) art(S€ptember 2004).
All the API changes reveal consolidation work that was danbdtween the two re-
leases. The developers eliminated duplicated code and/eshummaintained or buggy
code.

JHotDraw [jhotdraw.org] is a two-dimensional graphics framework &iructured
drawing editors. In contrast to the Swing graphics libraiptDraw defines a basic
skeleton for a GUI-based editor with tools in a tool paladifferent views, user-defined
graphical figures, and support for saving, loading, andtipgndrawings. The frame-
work has been used to create many different editors.

We chose two major releases of JHotDraw, 5.2 (February 2806d)5.3 (January
2002). The purpose of 5.3 release was to clean up the APIsxahdds.

8.2 Measuring the Recall and Precision

To measure the accuracy of RefactoringCrawler, we usegpoecand recall, two stan-
dard metrics from the Information Retrieval fielélrecisionis the ratio of the number
of relevant refactorings found by the tool to the total numdfdrrelevant and relevant
refactorings found by the tool. It is expressed as the péagen

PRECISION = GoodResults/(GoodResults + FalsePositives)

Recallis the ratio of the number of relevant refactorings found lgy tool (good re-
sults) to the total number of actual refactorings in the congmt. It is expressed as the
percentage:

RECALL = GoodResults/(GoodResults + FalseNegatives)

Ideally, precision and recall should be 100%. If that wasctee, the reported refac-
torings could be fed directly into a tool that replays thematgomatically upgrade
component-based applications. However, due to the clygiementioned in Section 6,
it is hard to have 100% precision and recall.

Table 2 shows how many instances of each refactoring wenedféar the three
components. These results use the default values for treemesers in Refactor-
ingCrawler [Ref]. For each refactoring type, we show in pl&ihow many good results
RefactoringCrawler found, how many false positives RefiacgCrawler found, and
how many false negatives (according to the release noté&35]DRefactoringCrawler
found. For each component, we compute precision and réedltdke into account the
refactorings of all kinds.

We further analyzed why RefactoringCrawler missed a fewaatefings. In
Struts, for instance, methd@&quest Uti | s. conput ePar anet er s is moved to



[ [ RM [RC] RP[ MM [PUM [PDM| CMS][PrecisiorjRecall
EclipseU! 2.1.3 - 3.0 2,1,0/0,0,00,0,9 8,2,4(11,0,00,0,0 6,0,0| 90% | 86%
Struts 1.2.1 - 1.2.4/20,0,11,0,1/0,0,020,0,7 1,0,0|0,0,0/24,0,1| 100% | 86%
JHotDraw 5.2 - 5.3| 5,0,0/0,0,00,0,4 0,0,0| 0,0,0{0,0,0119,0,0] 100% |100%
Table 2. Triples of (GoodResults, FalsePositives, FalseNegatives) for Reviathod(RM), Re-
nameClass(RC), RenamePackage(RP), MoveMethod(MM), Pullth@déPUM), PushDown-
Method(PDM), ChangeMethodSignature(CMS)

TagUti | s. comput ePar anet er s, and methodRequest Uti | s. pageURL is
moved toTagUt i | s. pageURL. There are numerous calls to these methods from
a test class. However, it appears that the test code wasfaotaeed, and therefore it
still calls the old method (that is deprecated), which rssinl quite different call sites
for the old and the refactored method.

8.3 Performance

The results in Table 2 were obtained when RefactoringCraraie on a Fujitsu lap-
top with a 1.73GHz Pentium 4M CPU and 1.25GB of RAM. It took 1 188 sec for
detecting the refactorings in EclipseUl, 4 min and 55 se&tants, and 37 sec for JHot-
Draw. Figure 9 shows how the running time for JHotDraw vawiéhk the change of the
method similarity threshold values used in the syntactadyasis. For low threshold val-
ues, the number of candidate pairs passed to the semanlysiansa large, resulting in
longer analysis time. For high threshold values, fewer hatd pairs pass into the se-
mantic analysis, resulting in lower running times. For JBtaiv, a .1 method similarity
threshold passes 1842 method candidates to the RenameaRéetemantic analysis, a
.5 threshold value passes 88 candidates, while a .9 thephekes only 4 candidates.

The more important question, however, is how precision &adll vary with the
change of the similarity threshold values. Very low thrddh@lues produce a larger
number of candidates to be analyzed, which results in adatgaber of false positives,
but increases the chance that all the relevant refactodrgound among the results.
Very high threshold values imply that only those candiddies have almost perfect
body resemblance are taken into account, which reduceautheer of false positives
but can miss some refactorings. We have found that threstadlgs between 0.5 and
0.7 result in practical precision and recall.

8.4 Strengths and Limitations
We next discuss the strengths and the limitations of ourcambr to detecting refactor-
ings. We also propose new extensions to overcome the lionat

Strengths

— High precision and recall.Our evaluation on the three components shows that both
precision and recall of RefactoringCrawler are over 85%c&RefactoringCrawler
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Fig. 9. Running time for JHotDraw decreases exponentially with higher thresladlgs used in
the syntactic analysis.

combines both syntactic and semantic analysis, it can psoaerealistic size of
software with practical accuracy. Compared to other apgresa [APM04,DDNOO,
GWO05, GZ05, RDO03] that use only syntactic analysis and predagge number
of false positives, our tool requires little human interien to validate the refac-
torings. RefactoringCrawler can significantly reduce theden necessary to find
refactoring logs that a replay tool uses to automaticallgrage component-based
applications.

— Robust.Our tool is able to detect refactorings in the presence dfenwitroduced
because of maintaining backwards compatibility, the nofsaultiple refactorings,
and the noise of renamings. Renamings create huge probterother approaches
but do not impede our tool. Since our tool identifies codetiest{imethods, classes,
packages) based on their body resemblance and not on tme@shaur tool can
successfully track the same entity across different vassieven when its name
changes. For previous approaches, a rename is equivakbranventity disappear-
ing and a brand new entity appearing in the subsequent veritther problem
for previous approaches is the application of multiple ¢feings to the same en-
tity. Our tool takes this into account by sharing the log dactorings between
the detection strategies and repeating each strategyiturgdches a fixed point.
Lastly, our tool detects refactorings in an open-world d@yment where, due to
backwards compatibility, obsolete entities coexist whtit refactored counterparts
until the former are removed. We can detect refactoringsiah san environment
because most of refactorings involve repartitioning thee® code. This results in
parts of the code from a release being spread in differenepla the next release.
Our algorithm starts by detecting the similarities betwten versions.

— Scalable.Running expensive semantic analysis (like identifyingikinsubgraphs
in the entire reference graph) on large codebases compostens of thousands of
nodes (methods, classes, packages) is very expensiveoitbthis, we run first an
inexpensive syntactic analysis that reduces the whole idonain to a relatively



small number of candidates to be analyzed semanticalbok RefactoringCrawler
16 min 38 sec to analyze for the org.eclipse.ui subcompo3&2 KLOC) of the
Eclipse Platform.

Limitations

— Poor support for interfaces and fields.Since our approach tracks the identity
of methods, classes, and packages based on their textuaskbati not on their
names, it does not fit for those entities that lack a body. Btdks fields and in-
terface methods do not contain any body other than theiladsabn name. After
the syntactic analysis, only entities that have a body retmme are passed to the
semantic analysis. Therefore, refactorings that happenféelds or interface meth-
ods cannot be detected. This was the case in org.eclipskasevibetween versions
2.1.3 and 3.0 many static fields were moved to other classsnamy interface
methods were moved to abstract classes. To counteractchefidextual bodies
for fields or interface methods, we treated their associgteatiloc comments as
their text bodies. This seems to work for some cases, butlinot a

— Requires experimentation.As with any approach based on heuristics, coming up
with the right values for the detection algorithms mightgakfew trials. Selecting
threshold values too high reduces the false positives thaeto but can miss some
refactorings as only those candidates that have perfeeitdance are selected.
Selecting too low threshold values produces a large numibialse positives but
increases the chances that all relevant refactorings amedfamong the results.
The default threshold values for RefactoringCrawler arevben 0.5 and 0.7 (for
various similarity parameters) [Ref]. When default valuesdt produce adequate
results, users could start from high threshold values athalcethem until the num-
ber of false positive becomes too large.

9 Related Work

We provide an overview of related work on refactoring, awted detection of refac-
torings, and the use of Shingles encoding.

9.1 Refactoring

Programmers have been cleaning up their code for decadet)ebtermrefactoring
was coined much later [0J90]. Opdyke [Opd92] wrote the fiegtlog of refactor-
ings, while Roberts and Brant [RBJ97, Rob99] were the firgiglement a refactoring
engine. The refactoring field gained much popularity with datalog of refactorings
written by Fowler et al. [FBB99]. Soon after this, IDEs began to incorporate refac-
toring engines. Tokuda and Batory [TBO1] describe how langditectural changes in
two frameworks can be achieved as a sequence of small refayggoThey estimate that
automated refactorings are 10 times quicker to perform thanual ones.



More recent research on refactoring focuses on the andiysaatomating power-
ful refactorings. Tip et al. [TKBO03] use type constraintstgport an analysis for refac-
torings that introduce type generalization. Donovan g TEO04] use a pointer anal-
ysis and a set-constraint-based analysis to support ogfiags that replace the instan-
tiation of raw classes with generic classes. Dincklage amehD [vDDO04] use various
heuristics to convert from non-generic classes to genkréses. Balaban et al. [BTF05]
propose refactorings that automatically replace obstileiEy classes with their newer
counterparts. Component developers have to provide mgppetween legacy classes
and their replacements, and an analysis based on type aiotstletermines where the
replacement can be done. Thomas [Tho05] points out thattoefags in the compo-
nents result into integration problems and advocates thd fur languages that would
allow developers to specify refactorings to create custabie refactorings.

9.2 Detection of refactorings

Researchers have already developed some tool support tiestidg and classifying
structural evolution, mostly spawned from the reengimgpGommunity. Detection
of class splitting and merging was the main target of theenirtools. Demeyer et
al. [DDNOOQ] use a set of object-oriented change metrics andistics to detect refac-
torings that will serve as markers for the reverse engirggonio et al. [APMO04] use
a technique inspired from the Information Retrieval to detiscontinuities in classes
(e.g., a class was replaced with another one, a class wasnspltwo, or two classes
merge into one). Based on Vector Space cosine similargy,¢bmpare the class identi-
fiers found in two subsequent releases. Therefore, if a,dagResol ver , was present
in versionn but disappears in versiom + 1 and a new clasSi npl eResol ver ap-
pears in versiom + 1, they conclude that a class replacement happened. Godfcey a
Zou [GZO05] are the closest to the way how we envision detgdinuctural changes.
They implemented a tool that can detect some refactorikgsdinaming, move method,
split, and merge for procedural code. Whereas we start frangls analysis, they em-
ploy origin analysis along with a more expensive analysisahgraphs to detect and
classify these changes. Rysselberghe and Demeyer [RD@34 wtone finding tool
(Duploc) to detect methods that were moved across the sla&wmg and Weisger-
ber [GWO05] analyze subsequent versions of a component ingroafion management
repositories to detect refactorings.

Existing work on automatic detection of refactorings addes some of the needs
of reverse engineers who must understand at a high level hownvély components
evolved. For this reason, most of the current work focusedetacting merging and
splitting of classes. However, in order to automaticall\grate component-based ap-
plications we need to know the changes to the API. Our workptements existing
work because we must look also for lower level refactorirga affect the signatures
of methods. We also address the limitations of existing watk respect to renamings
and noise introduced by multiple refactorings on the santigyen the noise introduced
by the deprecate-replace-remove cycle in the open-wortpboments.



9.3 Shingles encoding

Clone detection based on Shingles encoding is a reseamteshtin other fields like
internet content management and file storage. Ramaswamly [&llaD04] worked
on automatic detection of duplicated fragments in dynaltyigeenerated web pages.
Dynamic web pages cannot be cached, but performance canpoevied by caching
fragments of web pages. They used Shingles encoding totdetgments of web pages
that did not change. Manber [Man93] and Kulkarni et al. [KD4T employ shingles-
based algorithms to detect redundancy in the file systeny prapose more efficient
storage after eliminating redundancy. Li et al. [LLMZ04kushingles to detect clones
of text in the source code of operating systems. They fughalyze the clones to detect
bugs due to negligent copy and paste.

10 Conclusions

Syntactic analyses are too unreliable, and semantic a&sbre too slow. Combining
syntactic and semantic analyses can give good results.mpioing Shingles encoding
with traditional semantic analyses, and by iterating thedyses until a fixed point was
discovered, we could detect over 85% of the refactoringsengnoducing less than 10%
false positives.

The algorithm would work on any two versions of a system. Bglnot assume that
the later version was produced by any particular tool. Ifw wersion is produced by a
refactoring tool that records the refactorings that areemtitbn the log of refactorings
will be 100% accurate. Nevertheless, there may not be tlogptiise or the opportunity
to use a refactoring tool, and it is good to know that refaotys can be detected nearly
as accurately without it.

There are several applications of automated detectionfattarings. First, a log
of refactorings helps in the automated migration of compoased applications. As
our previous study [DJO5] shows, more than 80% of the API gharthat break com-
patibility with existing applications are refactoringstdol like Eclipse can replay the
log of refactorings. The replay is done at the applicatiomwhere both the component
and the application reside in the same workspace. In this, ¢hs refactoring engine
finds and correctly updates all the references to the rafedtentities, thus migrating
the application to the new API of the component.

Second, a log of refactorings can improve how current corditipn management
systems deal with renaming. A tool like CVS looses all thengjgahistory for a source
file whose main class gets renamed, since this appears as didhsource file was
removed and a source file with a new name was added. A log aftoefags can help
the configuration management system to correlate the olfélders with the new
files/folders when the main class or package was renamed.

Third, a log of refactoring can help a developer understawd &n object-oriented
system has evolved from one version to another. For exaraplexplicit list of re-
namings tells how the semantics of the refactored entitpgéd, while a list of moved
methods tells how the class responsibilities shifted.

The tool and the evaluation results are available onlind][Re
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