
Automated Detection of Refactorings in Evolving
Components

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave.
Urbana, IL 61801, USA

{dig,comertog,marinov,johnson}@cs.uiuc.edu

Abstract. One of the costs of reusing software components is updating appli-
cations to use the new version of the components. Updating an application can
be error-prone, tedious, and disruptive of the development process. Our previous
study showed that more than 80% of the disruptive changes in five different com-
ponents were caused by refactorings. If the refactorings that happened between
two versions of a component could be automatically detected, a refactoring tool
could replay them on applications. We present an algorithm that detects refactor-
ings performed during component evolution. Our algorithm uses a combination
of a fast syntactic analysis to detect refactoring candidates and a more expensive
semantic analysis to refine the results. The experiments on components ranging
from 17 KLOC to 352 KLOC show that our algorithm detects refactorings in
real-world components with accuracy over 85%.

1 Introduction

Part of maintaining a software system is updating it to use the latest version of its com-
ponents. Developers like to reuse software components to quickly build a system, but
reuse makes the system dependent on the components. Ideally, the interface of a com-
ponent never changes. In practice, however, new versions ofcomponents often change
their interfaces and require the developers to change the system to use the new versions
of the components.

An important kind of change in object-oriented software is arefactoring. Refac-
torings [FBB+99] are program transformations that change the structure of a program
but not its behavior. Example refactorings include changing the names of classes and
methods, moving methods and fields from one class to another,and splitting methods
or classes. An automated tool, calledrefactoring engine, can apply the refactorings to
change the source code of a component. However, a refactoring engine can change only
the source code that it has access to. Component developers often do not have access
to the source code of all the applications that reuse the components. Therefore, refac-
torings that component developers perform preserve the behavior of the component but
not of the applications that use the component; in other words, although the change is
a refactoring from the component developers’ point of view,it is not a refactoring from
the application developers’ point of view.

One approach to automate the update of applications when their components change
is to extend the refactoring engine to record refactorings on the component and then to
replay them on the applications. Record-and-replay of refactorings was demonstrated
in CatchUp [HD05] and JBuilder2005 [Bor] and recently incorporated in Eclipse 3.2
Milestone 4 [Ecl]. As component developers refactor their code, the refactoring engine
creates a log of refactorings. The developers ship this log along with the new version of
the component. An application developer can then upgrade the application to the new
version by using the refactoring engine to play back the log of refactorings.

While replay of refactorings shows great promise, it relies on the existence of refac-
toring logs. However, logs are not available for the legacy versions of components. Also,
logs will not be available for all future versions; some developers will not use refactor-
ing engines with recording, and some developers will perform refactorings manually. To
exploit the full potential of replay, it is therefore important to be able to automatically
detect the refactorings used to create a new version of a component.

We propose a novel algorithm that detects a likely sequence of refactorings between
two versions of a component. Previous algorithms [APM04, DDN00, GW05, GZ05,
RD03] assumed closed-world development, where codebases are used only in-house
and changes happen abruptly (e.g., one entity dies in a version and a new refactored
entity starts from the next version). However, in the open-world development, com-
ponents are reused outside the organization, therefore changes do not happen overnight
but follow a long deprecate-replace-remove lifecycle. Obsolete entities will coexist with
their newer counterparts until they are no longer supported. Also, multiple refactorings
can happen to the same entity or related entities. This lifecycle makes it hard to accu-
rately detect refactorings. Our algorithm works fine for both closed- and open-world
paradigms.

We aim for our algorithm to help the developer infer a log of refactorings for replay.
To be practical, the algorithm needs to detect refactoringswith a high accuracy. On one
hand, if the algorithm adds to a log a change that is not actually a refactoring (false
positive), the developer needs to remove it from the log or the replay could potentially
introduce bugs. On the other hand, if the algorithm does not add to a log an actual
refactoring (false negative), the developer needs to manually find it and add it to the
log. Previous algorithms [APM04,DDN00,GW05,GZ05,RD03] aimed at detection of
refactorings for the purpose of program comprehension. Therefore, they can tolerate
lower accuracy as long as they focus the developer’s attention on the relevant parts of
the software.

Our algorithm combines a fast syntactic analysis to detect refactoring candidates
and a more expensive semantic analysis to refine the results.Our syntactic analysis is
based on Shingles encoding [Bro97], a technique from Information Retrieval. Shingles
are a fast technique to find similar fragments in text files; our algorithm applies shin-
gles to source files. Most refactorings involve repartitioning of the source files, which
results in similar fragments of source text between different versions of a component.
Our semantic analysis is based on thereference graphsthat represent references among
source-level entities, e.g., calls among methods1. This analysis considers the semantic

1 Thesereferencesdo not refer to pointers between objects but to references among the source-
code entities in each version of the component.

EclipseUI 2.1.3 EclipseUI 3.0

doRevertToSaved()

AbstractTextEditor AbstractTextEditor

performRevertOperation
 (WMO, IPM)

performRevert()doRevertToSaved()

Fig. 1. An excerpt from Eclipse versions 2.1 and 3.0 showing two refactorings, rename method
and changed method signature, applied to the same method. The squaresrepresent classes, the
ellipses methods, and arrows are method calls. The method that changessignature also changes
name from performRevertOperation to performRevert.

relationship between candidate entities to determine whether they represent a refactor-
ing.

We have implemented our algorithm as an Eclipse plugin, called RefactoringCrawler,
that detects refactorings in Java components. The ideas in the algorithm can be applied
to other programming languages. RefactoringCrawler currently detects seven types of
refactorings, focusing on rename and move refactorings that we found to be the most
commonly applied in several components [DJ05]. We have evaluated RefactoringCrawler
on three components ranging in size from 17 KLOC to 352 KLOC. The results show
that RefactoringCrawler scales to real-world components,and its accuracy in detecting
refactorings is over 85%.

RefactoringCrawler and our evaluation results are available on the website [Ref].

2 Example

We next illustrate some refactorings that our algorithm detects between two versions of
a component. We use an example from the EclipseUI component of the Eclipse devel-
opment platform. We consider two versions of EclipseUI, from Eclipse versions 2.1.3
and 3.0. Each of these versions of EclipseUI has over 1,000 classes and 10,000 methods
in the public API (of non-internal packages). Our algorithmfirst uses a fast syntactic
analysis to find similar methods, classes, and packages between the two versions of the
component. (Section 4 presents the details of our syntacticanalysis.) For EclipseUI,
our algorithm finds 231,453 pairs of methods with similar bodies, 487 pairs of similar
classes, and 22 pairs of similar packages. (Section 8 presents more details of this case
study.) These similar entities are candidates for refactorings. Our example focuses on
two pairs of similar methods.

Figure 1 shows two pairs of similar methods from the two versions of the
class AbtstractTextEditor from Eclipse 2.1 and 3.0. The syntactic analysis
finds that the methoddoRevertToSaved in version 2.1 is similar to (although
not identical with) the methoddoRevertToSaved in version 3.0, and the method

performRevertOperation is similar to the methodperformRevert. Our algorithm
then uses a semantic analysis to detect the refactorings that were performed on these
pairs. As the result, our algorithm detects that the methodperformRevertOperation

was renamed toperformOperation, and its signature changed from having two ar-
guments in the version 2.1 to no argument in the version 3.0. Our previous manual
inspection [DJ05] of the Eclipse documentation and code indeed found that these two
refactorings, renamed method and changed method signature, were performed.

Our semantic analysis applies a series of detection strategies that find whether can-
didate pairs of similar entities are indeed results of refactorings. The key informa-
tion that the strategies consider is thereferencesbetween the entities in each version.
For methods, the references correspond to call edges. For our example methods, both
performRevertOperation and performRevert have only one call in the entire
EclipseUI: they are both called exactly once fromdoRevertToSaved. Our analysis
represents this information with an edge, labeled with the number of calls, between
these methods. We present how the two strategies for renamedmethods and changed
method signature proceed in our running example.

The strategy that detects renamed methods discards the pairof doRevertToSaved
methods since they have the same name. This strategy, however, investigates further
whetherperformRevert is a renaming ofperformRevertOperation. The strategy
(lazily) finds the calls to these two methods and realizes that they are called (the same
number of times) from the correspondingdoRevertToSaved methods in both ver-
sions. Therefore, methodsperformRevertOperation andperformRevert (i) are
both in classAbtstractTextEditor, (ii) have similar method bodies, (iii) have sim-
ilar incoming call edges, but (iv) differ in the name. The strategy thus concludes that
performRevert is a renaming ofperformRevertOperation.

The strategy that detects changed method signatures also considers all pairs
of similar methods. This strategy discards the pair ofdoRevertToSaved meth-
ods since they have the same signature. This strategy, however, investigates further
performRevertOperation andperformRevert methods, because they represent
the same method but renamed. It is important to point out herethat strategiesshare
detected refactorings: althoughperformRevertOperation and performRevert

seemingly have different names, the RenameMethod strategyhas already found that
these two methods correspond. The ChangedMethodSignaturestrategy then finds that
performRevertOperation andperformOperation (i) have similar method bod-
ies, (ii) “same” name, (iii) similar call edges, but (iv) different signatures. The strategy
thus correctly concludes that a changed method signature refactoring was applied to
performOperation.

3 Algorithm Overview

This section presents a high-level overview of our algorithm for detection of refactor-
ings. Figure 2 shows the pseudo-code of the algorithm. The input are two versions of
a component, and the output is a log of refactorings applied on c1 to producec2. The
algorithm consists of two analyses: a fastsyntactic analysisthat finds candidates for
refactorings and a precisesemantic analysisthat finds the actual refactorings.

Refactorings detectRefactorings(Component c1, c2) {
// syntactic analysis
Graph g1 = parseLightweight(c1);
Graph g2 = parseLightweight(c2);
Shingles s1 = annotateGraphNodesWithShingles(g1);
Shingles s2 = annotateGraphNodesWithShingles(g2);
Pairs pairs = findSimilarEntities(s1, s2);
// semantic analysis
Refactorings rlog = emptyRefactorings();
foreach (DetectionStrategy strategy) {

do {
Refactorings rlog’ = rlog.copy();
foreach (Pair<e1, e2> from pairs relevant to strategy)

if (strategy.isLikelyRefactoring(e1, e2, rlog))
rlog.add(<e1, e2>, strategy);

} while (!rlog’.equals(rlog)); // fixed point
}
return rlog;

}

Fig. 2. Pseudo-code of the conceptual algorithm for detection of refactorings.

Our syntactic analysis starts by parsing the source files of the two versions of the
component into thelightweightASTs, where the parsing stops at the declaration of the
methods and fields in classes. For each component, the parsing produces a graph (more
precisely, a tree to which analysis later adds more edges). Each node of the graphs
represents a source-level entity, namely a package, a class, a method, or a field. Each
node stores a fully qualified name for the entity, and each method node also stores the
fully qualified names of method arguments to distinguish overloaded methods. Nodes
are arranged hierarchically in the tree, based on their fully qualified names: the node
p.n is a child of the nodep.

The heart of our syntactic analysis is the use of theShingles encodingto find similar
pairs of entities (methods, classes, and packages) in the two versions of the component.
Shingles are “fingerprints” for strings with the following property: if a string changes
slightly, then its shingles also change slightly. Therefore, shingles enable detection of
strings with similar fragments much more robustly than the traditional string matching
techniques that are not immune to small perturbations like renamings or small edits.
Section 4 presents the computation of shingles in detail.

The result of our syntactic analysis is a set of pairs of entities that have similar
shingles encodings in the two versions of the component. Each pair consists of an entity
from the first version and an entity of the same kind from the second version; there are
separate pairs for methods, classes, and packages. These pairs of similar entities are
candidates for refactorings.

Our semantic analysis detects from the candidate pairs those where the second entity
is a likely refactoring of the first entity. The analysis applies seven strategies for detect-
ing specific refactorings, such as RenameMethod or ChangeMethodSignature discussed

in section 2. Section 5 presents the strategies in detail. The analysis applies each strat-
egy until it finds all possible refactorings of its type. Eachstrategy considers all pairs
of entities〈e1, e2〉 of the appropriate type, e.g., RenameMethod considers onlypairs
of methods. For each pair, the strategy computes how likely is thate1 was refactored
into e2; if the likelihood is above a user-specified threshold, the strategy adds the pair
to the log of refactorings that the subsequent strategies can use during further analy-
sis. Note that each strategy takes into account already detected refactorings; sharing
detected refactorings among strategies is a key for accurate detection of refactorings
when multiple types of refactorings applied to the same entity (e.g., a method was re-
named and has a different signature) or related entities (e.g., a method was renamed and
also its class was renamed). Our analysis cannot recover thelist of refactorings in the
order they were performed, but it findsone paththat leads to the same result.

4 Syntactic Analysis

To identify possible candidates for refactorings, our algorithm first determines pairs
of similar methods, classes, and packages. Our algorithm uses the Shingles encod-
ing [Bro97] to compute a fingerprint for each method and determines two methods
to be similar if and only if they have similar fingerprints. Unlike the traditional hashing
functions that map even the smallest change in the input to a completely different hash
value, the Shingles algorithm maps small changes in the input to small changes in the
fingerprint encoding.

4.1 Computing Shingles for Methods

The Shingles algorithm takes as input a sequence of tokens and computes a multiset
of integers called shingles. The tokens represent the method body or the Javadoc com-
ments for the method (as interface methods and abstract methods have no body). The to-
kens do not include method name and signature because refactorings affect these parts.
The algorithm takes two parameters, the length of the sliding window,W , and the max-
imum size of the resulting multiset,S. Given a sequence of tokens, the algorithm uses
the sliding window to find all subsequences of lengthW , computes the shingle for each
subsequence, and selects theS minimum shingles for the resulting multiset. Instead of
selectingS shingles which have minimum values, the algorithm could useany other
heuristic that deterministically selectsS values from a larger set. Our implementation
uses the Rabin’s hash function [Rab81] to compute the shingles.

If the method is short and has fewer thanS shingles, then the multiset contains all
shingles. This is the case with many setters and getters and some constructors and other
initializers. The parameterS acts as the upper bound for the space needed to represent
shingles: a larger value ofS makes calculations more expensive, and a smaller value
makes it harder to distinguish strings. Our implementationsets the number of shingles
proportional to the length of the method body/comments.

Figure 3 shows the result of calculating the shingles for twomethod bodies with
W = 2 andS = 10. The differences in the bodies and the shingle values are in grey
boxes. Notice that the small changes in the tokens produce only small changes in the
shingle representation, enabling the algorithm to find the similarities between methods.

void doRevertToSaved() {
IDocumentProvider p= getDocumentProvider();
if (p == null)
 return;
performRevertOperation(createRevertOperation(),
 getProgressMonitor());
}

void doRevertToSaved() {
IDocumentProvider p= getDocumentProvider();
if (p == null)
 return;
performRevert();
}

Shingles: { -1942396283, -1672190785,
-12148775115, -56733233372, 208215292,
1307570125, 1431157461,
190471951, 969607679 }

Shingles: {-1942396283, 1672190785,
-1214877515, -5673233372, 208215292,
1307570125, 1431157461, 577482186 }

Fig. 3.Shingles encoding for two versions ofAbstractTextEditor.doRevertToSaved
between Eclipse 2.1 and 3.0. Notice that small changes (gray boxes) inthe input strings produce
small changes in the Shingles encoding.

4.2 Computing Shingles for Classes and Packages

The shingles for methods are used to compute shingles for classes and packages. The
shingles for a class are the minimumSclass values of the union of the shingles of
the methods in that class. Analogously, the shingles for a package are the minimum
Spackage values of the union of the shingles of the classes in that package. This way,
the algorithm efficiently computes shingles values and avoids recalculations.

4.3 Finding Candidates

Our analysis uses the shingles to find candidates for refactorings. Each candidate is
a pair of similar entities from the two versions of the component. This analysis is an
effective way of eliminating a large number of pairs of entities, so that the expensive
operation of computing the reference graphs is only done fora small subset of all possi-
ble pairs. More specifically, letM1 andM2 be the multisets of shingles for two methods,
classes, or packages. Our analysis computes similarity between these two multisets. Let
|M1 ∩ M2| be the cardinality of the intersection ofM1 andM2. To compare similarity
for different pairs, the algorithmnormalizesthe similarity to be between 0 and 1. More
precisely, the algorithm computes the similarity as theaverageof similarity from M1

to M2 and similarity fromM2 to M1 to address the cases whenM1 is similar toM2 but
M2 is not similar toM1 :

|M1∩M2|
|M1|

+ |M2∩M1|
|M2|

2
.

If this similarity value is above the user-specified threshold, the pair is deemed similar
and passed to the semantic analysis.

5 Semantic Analysis

We present the semantic analysis that our algorithm uses to detect refactorings. Re-
call from Figure 2 that the algorithm applies each detectionstrategy until it reaches a
fixed point and that all strategies share the same log of detected refactorings,rlog.
This sharing is crucial for successful detection of refactorings when multiple types of
refactorings happened to the same entity (e.g., a method wasrenamed and has a dif-
ferent signature) or related entities (e.g., a method was renamed and also its class was
renamed). We first describe how the strategies use the sharedlog of refactorings. We
then describereferencesthat several strategies use to compute the likelihood of refac-
toring. We also define the multiplicity of references and thesimilarity that our algorithm
computes between references. We finally presents details ofeach strategy. Due to the
sharing of the log, our algorithm imposes an order on the types of refactorings it detects
first. Specifically, the algorithm applies the strategies inthe following order:

1. RenamePackage (RP)
2. RenameClass (RC)
3. RenameMethod (RM)
4. PullUpMethod (PUM)
5. PushDownMethod (PDM)
6. MoveMethod (MM)
7. ChangeMethodSignature (CMS)

5.1 Shared Log

The strategies compare whether an entity in one graph corresponds to an entity in
another graphwith respect to the already detected refactorings, in particular with re-
naming refactorings. Suppose that the refactorings logrlog already contains several
renamings that map fully qualified names from versionc1 to versionc2. These renam-
ings map package names to package names, class names to classnames, or method
names to method names. We define a renaming functionρ that maps a fully qualified
namefqn from c1 with respect to the renamings inrlog:

ρ(fqn, rlog) = if (definedrlog(fqn)) thenrlog(fqn)

elseρ(pre(fqn), rlog) + "." + suf(fqn)

ρ("", rlog) = "",

where suf and pre are functions that take a fully qualified name and return its simple
name (suffix) and the entire name but the simple name (prefix), respectively. The func-
tion ρ recursively checks whether a renaming of some part of the fully qualified name
is already inrlog.

5.2 References

The strategies compute the likelihood of refactoring basedon referencesamong the
source-code entities in each of the two versions of the component. In each graph that

represents a version of the component, our algorithm (lazily) adds an edge from a node
n′ to a noden if the source entity represented byn′ has a reference to a source entity
represented byn. (The graph also contains the edges from the parse tree.) We define
references for each kind of nodes/entities in the followingway:

– There is a reference from a node/methodm′ to a node/methodm iff m′ callsm.
Effectively, references between methods correspond to theedges in call graphs.

– There is a reference from a noden′ to a node/classC iff:
• n′ is a method that has (i) an argument or return of typeC, or (ii) an instantia-

tion of classC, or (iii) a local variable of classC.
• n′ is a class that (i) has a field whose type isC or (ii) is a subclass ofC.

– There is a reference from a noden′ to a node/packagep iff n′ is a class that imports
some class from the packagep.

There can be several references from one entity to another. For example, one method
can have several calls to another method or one class can haveseveral fields whose type
is another class. Our algorithm assigns to each edge amultiplicity that is the number
of references. For example, if a methodm′ has two calls to a methodm, then the edge
from the noden′ that representsm′ to the noden that representsm has multiplicity two.
Conceptually, we consider that there is an edge between any two nodes, potentially with
multiplicity zero. We writeµ(n′, n) for the multiplicity from the noden′ to the noden.

5.3 Similarity of References

Our algorithm uses a metric to determine the similarity of references to entities in the
two versions of the component, with respect to a given log of refactorings. We write
n ∈ g for a noden that belongs to a graphg. Consider two nodesn1 ∈ g1 andn2 ∈ g2.
We define the similarity of their incoming edges as follows. We first define thedirected
similarity between two nodes with respect to the refactorings. We then take the overall
similarity betweenn1 andn2 as the average of directed similarities betweenn1 andn2

and betweenn2 andn1. The average of directed similarities helps to compute a fair
grade whenn1 is similar ton2 butn2 is not similar ton1.

We define the directed similarity between two nodesn andn′ as the overlap of
multiplicities of theircorrespondingincoming edges. More precisely, for each incom-
ing edge from a nodeni to n, the directed similarity finds a noden′

i = ρ(ni, rlog)
that corresponds toni (with respect to refactorings) and then computes the overlap of
multiplicities between the edges fromni to n and fromn′

i to n′. The number of over-
lapping incoming edges is divided by the total number of incoming edges. The formula
for directed similarity is:

δ(n, n′, rlog) =

∑
ni

min(µ(ni, n), µ(ρ(ni, rlog), n
′))

∑
ni

µ(ni, n)

The overall similarity is the average of directed similarities:

σ(n1, n2, rlog) =
δ(n1, n2, rlog) + δ(n2, n1, rlog

−1)

2

When computing the directed similarity betweenn2 andn1, the algorithm needs
to take into account the inverse of renaming log, denoted byrlog−1. Namely, starting
from a nodeni in g2, the analysis searches for a nodeni′ in g1 such that the renaming
of ni′ (with respect torlog) is ni, or equivalently,ρ(ni, rlog

−1) = ni′ .
We describe informally an equivalent definition of directedsimilarity based on the

view of graphs with multiplicities as multigraphs that can have several edges between
two same nodes. The set of edges between two nodes can be viewed as a multiset, and
finding the overlap corresponds to finding the intersection of one multiset of edges with
the other multiset of edges (for nodes corresponding with respect to the refactorings).
In this view, similarity between edges in the graph is conceptually analogous to the
similarity of multisets of shingles.

5.4 Detection Strategies

We next precisely describe all detection strategies for refactorings. Each strategy checks
appropriate pairs of entities and has access to the graphsg1 andg2 and therlog of
refactorings. (See the call toisLikelyRefactoring in Figure 2.) Figure 4 shows
the seven strategies currently implemented in RefactoringCrawler. For each pair, the
strategy first performs a fast syntactic check that determines whether the pair is relevant
for the refactoring and then performs a semantic check that determines the likelihood of
the refactoring. The semantic checks compare the similarity of references to the user-
specified threshold valueT .

RenamePackage (RP), RenameClass (RC), and RenameMethod (RM) strategies are
similar. The first syntactic check requires the entity fromg2 not to be ing1; otherwise,
the entity is not new. The second check requires the two entities to have the same name
prefix, modulo the renamings inrlog; otherwise, the refactoring is a potential move but
not a rename. The third check requires the two entities to have different simple names.

PullUpMethod (PUM) and PushDownMethod (PDM) are the opposite of each other.
Figure 5 illustrates a PUM that pulls up the declaration of a method from a subclass into
the superclass such that the method can be reused by other subclasses. Figure 6 illus-
trates a PDM that pushes down the declaration of a method froma superclass into a
subclass that uses the method because the method is no longerreused by other sub-
classes. In general, the PUM and PDM can be between several classes related by in-
heritance, not just between the immediate subclass and superclass; therefore, PUM and
PDM check that the original class is adescendantand anancestor, respectively, of the
target class. These inheritance checks are done on the graphg2.

MoveMethod (MM) has the second syntactic check that requires the parent classes
of the two methods to be different. Without this check, MM would incorrectly classify
all methods of a renamed class as moved methods. The second semantic check requires
that the declaration classes of the methods not be related byinheritance; otherwise, the
refactorings would be incorrectly classified as MM as opposed to a PUM/PDM. The
third check requires that all references to the target classbe removed in the second
version and that all calls to methods from the initial class be replaced with sending a
message to an instance of the initial class. We illustrate this check on the sample code
in Figure 7. In the first version, methodC1.m1 calls a methodC1.xyz of the same class
C1 and also calls a methodC2.m2. After m1 is moved to the classC2, m1 can call any

Refactoring Syntactic Checks Semantic Checks

RP(p1, p2) p2 6∈ g1 σ(p1, p2,rlog) ≥ T
ρ(pre(p1),rlog) = pre(p2)

suf(p1) 6= suf(p2)

RC(C1, C2) C2 6∈ g1 σ(C1, C2,rlog) ≥ T
ρ(pre(C1),rlog) = pre(C2)

suf(C1) 6= suf(C2)

RM(m1, m2) m2 6∈ g1 σ(m1, m2,rlog) ≥ T
ρ(pre(m1),rlog) = pre(m2)

suf(m1) 6= suf(m2)

PUM(m1, m2) m2 6∈ g1 σ(m1, m2,rlog) ≥ T
ρ(pre(m1),rlog) 6= pre(m2) ρ(pre(m1),rlog) descendant-of pre(m2)

suf(m1) = suf(m2)

PDM(m1, m2) m2 6∈ g1 σ(m1, m2,rlog) ≥ T
ρ(pre(m1),rlog) 6= pre(m2) ρ(pre(m1),rlog) ancestor-of pre(m2)

suf(m1) = suf(m2)

MM(m1, m2) m2 6∈ g1 σ(m1, m2,rlog) ≥ T
ρ(pre(m1),rlog) 6= pre(m2) ¬ρ(pre(m1),rlog) anc.-or-desc. pre(m2)

suf(m1) = suf(m2) references-properly-updated
CMS(m1, m2) ρ(fqn(m1),rlog) = fqn(m2) σ(m1, m2,rlog) ≥ T

signature(m1) 6= signature(m2)

Fig. 4. Syntactic and semantic checks performed by different detection strategies for refac-
torings: RP=RenamePackage, RC=RenameClass, RM=RenameMethod, PUM=PullUpMethod,
PDM=PushDownMethod, MM=MoveMethod, and CMS=ChangeMethodSignature.

method inC2 directly (e.g.,m2), but any calls to methods residing inC1 need to be
executed through an instance ofC1.

ChangeMethodSignature (CMS) looks for methods that have the same fully qual-
ified name (modulo renamings) but different signatures. Thesignature of the method
can change by gaining/loosing arguments, by changing the type of the arguments, by
changing the order of the arguments, or by changing the return type.

6 Discussion of the Algorithm

The example from Section 2 illustrates some of the challenges in automatic detection
of refactorings that happened in reusable components. We next explicitly discuss three
main challenges and present how our algorithm addresses them.

The first challenge is the size of the code to be analyzed. An expensive semantic
analysis—for example finding similar subgraphs in call graphs (more generally, in the
entire reference graphs)—might detect refactorings but does not scale up to the size of
real-world components with tens of thousands of entities, including methods, classes,
and packages. A cheap syntactic analysis, in contrast, might find many similar entities
but is fallible to renamings. Also, an analysis that would not take into account the se-
mantics of entity relationships would produce a large number of false positives. Our
algorithm uses a hybrid of syntactic and semantic analyses:a fast syntactic analysis

Class1

Class2

+m1()

+m2()

Class2

+m1()

Class1

+m2()

Version 1 Version 2

Fig. 5. PullUpMethod: methodm2 is pulled up from the subclassC2 into the superclassC1.

Class1

+m2()

Class2

+m1()

Class1

Class2

+m1()

+m2()

Version 1 Version 2

Fig. 6.PushDown: methodm2 is pushed down from the superclassC1 into the subclassC2.

creates pairs of candidate entities that are suspected of refactoring, and a more precise
semantic analysis on these candidates detects whether theyare indeed refactorings.

The second challenge is the noise introduced by preserving backward compatibility
in the components. Consider for example the following change in the Struts framework
from version 1.1 to version 1.2.4: the methodperform in the classController was
renamed toexecute, butperform still exists in the later version. However,perform
is deprecated, all the internal references to it were replaced with references toexecute,
and the users are warned to useexecute instead ofperform. Since it is not feasible
to perform an expensive analysis on all possible pairs of entities across two versions of
a component, any detection algorithm has to consider only a subset of pairs. Some pre-
vious algorithms [APM04, DDN00, GZ05] consider only the outdated entities that die
in one version and then search for refactored counterparts that are created in the next
version. The assumption that entities change in this fashion indeed holds in the closed-
world development (where the only users of components are the component develop-
ers) but does not hold in the open-world development where outdated entities coexist
with their refactored counterparts. For example, the previous algorithms cannot detect
thatperform was renamed toexecute sinceperform still exists in the subsequent
version. Our algorithm detects thatperform in the first version andexecute in the

Version 1

Class C1 {
 public void m1(C2 c2) {

 xyz();
 c2.m2();

 }

 public void xyz() { }
}

Class C2 {
 public void m2() {}
}

Version 2

Class C1 {
 public void xyz() { }
}

Class C2 {
 public void m1(C1 c1) {

 c1.xyz();
 m2();

 }

 public void m2() {....}
}

Fig. 7.Methodm1moves from classC1 in one version to classC2 in the next version. The method
body changes to reflect that the local methods (e.g.,m2) are called directly, while methods from
the previous class (e.g.,xyz) are called indirectly through an instance ofC1.

second version have the same shingles and their call sites are the same, and therefore
our algorithm correctly classifies the change as a method rename.

The third challenge is multiple refactorings happening to the same entity or related
entities. The example from Section 2, for instance, shows two refactorings, rename
method and change method signature, applied to the same method. An example of
refactorings happening to related entities is renaming a method along with renaming
the method’s class. Figure 8 illustrates this scenario. Across the two versions of a com-
ponent, classC1 was renamed toC1REN, and one of its methods,m2, was renamed to
m2REN. During component evolution, regardless of whether the class or method rename
was executed first, the end result is the same. In Figure 8, theupper part shows the case
when the class rename was executed first, and the lower part shows the case when the
method rename was executed first.

Our algorithm addresses the third challenge by imposing an order on the detection
strategies and sharing the information about detected refactorings among the detection
strategies. Any algorithm that detects refactorings conceptually reconstructs the log of
refactorings and thus not only the start and the end state of acomponent but also the
intermediate states. Our algorithm detects the two refactorings in Figure 8 by following
the upper path. When detecting a class rename, the algorithm takes into account only the
shingles for class methods and not the method names. Therefore, our algorithm detects
classC1REN as a rename of classC1 although one of its methods was renamed. This
information is fed back into the loop; it conceptually reconstructs the state 2a, and the
analysis continues. The subsequent analysis for the renamemethod checks whether the
new-name method belongs to the same class as the old-name method; since the previous
detection discovered thatC1 is equivalent modulo rename withC1REN, m2REN can be
detected as a rename ofm2.

The order in which an algorithm detects the two refactoringsmatters. We described
how our algorithm detects a class rename followed by a methodrename. Consider, in

RenameClass RenameMethod

RenameMethod RenameClass

C1

C1REN

C1

C1REN

m1 m2

m1 m2

m1

m1 m2REN

m2REN

Fig. 8. Refactorings affect related entities class C1 and method m2. The class rename happens
before the method rename in the upper path, the reverse happens in the bottom path. Both paths
end up with the same result.

contrast, what would happen to an algorithm that attempts tofollow the bottom path.
When analyzing what happened between the methodsm2 andm2REN, the algorithm
would need the intermediate state 2b (wherem2REN belongs toC1) to detect thatm2
was renamed tom2REN. However, that state is not given, and in the end statem2REN

belongs toC1REN, so the algorithm would mistakenly conclude thatm2REN was moved
to another class (C1REN). The subsequent analysis of what happened between classes
C1 andC1REN would presumably find that they are a rename and would then need to
backtrack to correct the previously misqualified move method as a rename method.
For this reason, our algorithm imposes an order on the detection strategies and runs
detection of renamings top-down, from packages to classes to methods.

To achieve a high level of accuracy, our algorithm uses a fixed-point computation in
addition to the ordering of detection strategies. The algorithm runs each strategy repeat-
edly until it finds no new refactorings. This loop is necessary because entities are inter-
twined with other entities, and a strategy cannot detect a refactoring in one entity until
it detects a refactoring in the dependent entities. For instance, consider this example
change that happened in the Struts framework between the versions 1.1 and 1.2.4: in the
classActionController, the methodperformwas renamed toexecute. The imple-
mentation ofperform in ActionController is a utility class that merely delegates
to different subclasses ofAction by sending them aperform message. For 11 of these
Action classes, their callers consist mostly of theActionController.perform.
Therefore, unless a tool detects first thatperform was renamed toexecute, it can-
not detect correctly the similarity of the incoming call edges for the other 11 methods.
After the first run of the RenameMethod detection, our RefactoringCrawler tool misses

the 11 other method renames. However, the feedback loop addsthe information about
the rename ofperform, and the second run of the RenameMethod detection correctly
finds another 11 renamed methods.

Even though we only analyze seven types of refactorings, conceptually similar com-
bination of syntactic and semantic analysis can detect manyother types of refactorings.
A lot of the refactorings published by Fowler et al. [FBB+99] can be detected in this
way, including extract/inline method, extract/inline package, extract/inline class or in-
terface, move class to different package, collapse class hierarchy into a single class,
replace record with data class, replace anonymous with nested class, replace type con-
ditional code with polymorphism, as well as some higher-level refactorings to design
patterns [GHJV95] including create Factory methods, form Template Method, replace
type code with State/Strategy.

The largest extension to the current algorithm is required by ‘replace type condi-
tional code with polymorphism’. This refactoring replacesa switch statement whose
branches type-check the exact type of an object (e.g., usinginstanceofin Java) with
a call to a polymorphic method that is dynamically dispatched at run time to the right
class. All the code in each branch statement is moved to the class whose type was
checked in that branch. To detect this refactoring, the syntactic analysis should not only
detect similar methods, but also similar statements and expressions within method bod-
ies. This requires that shingles are computed for individual statements and expressions,
which is overhead to the current implementation, but offersa finer level of granularity.
Upon detection of similar statements in a switch branch and in a class method, the se-
mantic analysis needs to check whether the class has the sametype as the one checked
in the branch and whether the switch is replaced in the secondversion with a call to the
polymorphic method.

7 Implementation

We have implemented our algorithm for detecting refactorings in RefactoringCrawler,
a plugin for the Eclipse development environment. The user loads the two versions of
the component to be compared as projects inside the Eclipse workspace and selects
the two projects for which RefactoringCrawler detects refactorings. To experiment with
the accuracy and performance of the analysis, the user can set the values for different
parameters, such as the size of the sliding window for the Shingles encoding (Section
4); the number of shingles to represent the digital fingerprint of methods, classes and
package; and the thresholds used in computing the similarity of shingles encoding or
the reference graphs. RefactoringCrawler provides a set ofdefault parameter values that
should work fine for most Java components.

RefactoringCrawler provides an efficient implementation of the algorithm shown in
Figure 2. The syntactic analysis starts by parsing the source files of the two versions
of the component and creates a graph representation mirroring thelightweightASTs.
We call it lightweight because the parsing stops at the declaration of the methods and
fields in classes. RefactoringCrawler then annotates each method and field node with
shingles values corresponding to the source code behind each node (e.g. method body
or field initializers). From the leaves’ shingles values, RefactoringCrawler annotates

(bottom-up) with shingles values all the nodes corresponding to classes and packages.
Since each node contains the fully qualified name of the source code entity, it is easy to
navigate back and forth between the actual source code and the graph representation.

During the semantic analysis, RefactoringCrawler uses Eclipse’s search engine to
find the references among source code entities. The search engine operates on the source
code, not on the graph. The search engine does a type analysisto identify the class
of a reference when two methods in unrelated classes have thesame name. Finding
the references is an expensive computation, so RefactoringCrawler lazily runs this and
caches the intermediate results by adding edges between thegraph nodes that refer each
other.

RefactoringCrawler performs the analysis and returns backthe results inside an
Eclipse view. RefactoringCrawler presents only the refactorings that happened to the
public API level of the component since only these can affectthe component users.
RefactoringCrawler groups the results in categories corresponding to each refactoring
strategy. Double clicking on any leaf Java element opens an editor having selected the
declaration of that particular Java element. RefactoringCrawler also allows the user to
export the results into an XML format compatible with the format that CatchUp [HD05]
uses to load a log of refactorings. A similar XML format is used for the Eclipse 3.2
Milestone 4. Additionally, the XML format allows the developer to further analyze and
edit the log, removing false positives or adding missed refactorings.

The reader can see screenshots and is encouraged to downloadthe tool from the
website [Ref].

8 Evaluation

We evaluate RefactoringCrawler on three real-world components. To measure the accu-
racy of RefactoringCrawler, we need to know the refactorings that were applied in the
components. Therefore, we chose the components from our previous study [DJ05] that
analyzed the API changes in software evolution and found refactorings to be respon-
sible for more than 80% of the changes. The previous study considered components
with good release notes describing the API changes. Starting from the release notes,
we manually discovered the refactorings applied in these components. These manually
discovered refactorings helped us to measure the accuracy of the refactoring logs that
RefactoringCrawler reports. In general, it is easier to detect the false positives (refac-
torings that RefactoringCrawler erroneously reports) by comparing the reported refac-
torings against the source code than it is to detect the falsenegatives (refactorings that
RefactoringCrawler misses). To determine false negatives, we compare the manually
found refactorings against the refactorings reported by RefactoringCrawler. Addition-
ally, RefactoringCrawler found a few refactorings that were not documented in the re-
lease notes. Our previous study and the evaluation of RefactoringCrawler allowed us to
build a repository of refactorings that happened between the two versions of the three
components. The case study along with the tool and the detected refactorings can be
found online [Ref].

For each component, we need to choose two versions. The previous study [DJ05]
chose two major releases that span large architectural changes because such releases

are likely to have lots of changes and to have the changes documented. We use the
same versions to evaluate RefactoringCrawler. Note, however, that these versions can
present hard cases for RefactoringCrawler because they arefar apart and can have large
changes. RefactoringCrawler still achieves practical accuracy for these versions. We
believe that RefactoringCrawler could achieve even higheraccuracy on closer versions
with less changes.

8.1 Case Study Components

Table 1 shows the size of the case study components. ReleaseNotes give the size (in
pages) of the documents that the component developers provided to describe the API
changes. We next describe the components and the versions that we analyze [DJ05].

Size PackagesClassesMethodsReleaseNotes
KLOC [Pages]

Eclipse.UI 2.1.3 222 105 1151 10285 -
Eclipse.UI 3.0 352 192 1735 15894 8

Struts 1.1 114 88 460 5916 -
Struts 1.2.4 97 78 469 6044 16

JHotDraw 5.2 17 19 160 1458 -
JHotDraw 5.3 27 19 195 2038 3

Table 1.Size of the studied components.

Eclipse Platform [eclipse.org] provides many APIs and many different smaller frame-
works. The key framework in Eclipse is a plug-in based framework that can be used to
develop and integrate software tools. This framework is often used to develop Integrated
Development Environments (IDEs). We focus on the UI subcomponent (Eclipse.UI)
that contains 13 plug-ins.

We chose two major releases of Eclipse, 2.1 (March 2003) and 3.0 (June 2004).
Eclipse 3.0 came with some major themes that affected the APIs. Theresponsiveness
theme ensured that more operations run in the background without blocking the user.
New APIs allow long-running operations like builds and searches to be performed
in the background while the user continues to work. Another major theme in 3.0 is
rich-client platforms. Eclipse was designed as a universal IDE. However many compo-
nents of Eclipse are not particularly specific to IDEs and canbe reused in other rich-
client applications (e.g., plug-ins, help system, update manager, window-based GUIs).
This architectural theme involved factoring out IDE-specific elements. APIs heavily af-
fected by this change are those that made use of the filesystemresources. For instance
IWorkbenchPage is an interface used to open an editor for a file input. All methods
that were resource specific (those that dealt with opening editors over files) were re-
moved from the interface. A client who opens an editor for a file should convert it first
to a generic editor input. Now the interface can be used by both non-IDE clients (e.g.,
an electronic mail client that edits the message body) as well as IDE clients.

Struts [struts.apache.org] is an open source framework for building Java web appli-
cations. The framework is a variation of the Model-View-Controller (MVC) design
paradigm. Struts provides its own Controller component andintegrates with other tech-
nologies to provide the Model and the View. For the Model, Struts can interact with
standard data access technologies, like JDBC and EJB, and many third-party packages.
For the View, Struts works with many presentation systems.

We chose two major releases of Struts, 1.1 (June 2003) and 1.2.4 (September 2004).
All the API changes reveal consolidation work that was done in between the two re-
leases. The developers eliminated duplicated code and removed unmaintained or buggy
code.

JHotDraw [jhotdraw.org] is a two-dimensional graphics framework for structured
drawing editors. In contrast to the Swing graphics library,JHotDraw defines a basic
skeleton for a GUI-based editor with tools in a tool palette,different views, user-defined
graphical figures, and support for saving, loading, and printing drawings. The frame-
work has been used to create many different editors.

We chose two major releases of JHotDraw, 5.2 (February 2001)and 5.3 (January
2002). The purpose of 5.3 release was to clean up the APIs and fix bugs.

8.2 Measuring the Recall and Precision

To measure the accuracy of RefactoringCrawler, we use precision and recall, two stan-
dard metrics from the Information Retrieval field.Precisionis the ratio of the number
of relevant refactorings found by the tool to the total number of irrelevant and relevant
refactorings found by the tool. It is expressed as the percentage:

PRECISION = GoodResults/(GoodResults + FalsePositives)

Recall is the ratio of the number of relevant refactorings found by the tool (good re-
sults) to the total number of actual refactorings in the component. It is expressed as the
percentage:

RECALL = GoodResults/(GoodResults + FalseNegatives)

Ideally, precision and recall should be 100%. If that was thecase, the reported refac-
torings could be fed directly into a tool that replays them toautomatically upgrade
component-based applications. However, due to the challenges mentioned in Section 6,
it is hard to have 100% precision and recall.

Table 2 shows how many instances of each refactoring were found for the three
components. These results use the default values for the parameters in Refactor-
ingCrawler [Ref]. For each refactoring type, we show in a triple how many good results
RefactoringCrawler found, how many false positives RefactoringCrawler found, and
how many false negatives (according to the release notes [DJ05]) RefactoringCrawler
found. For each component, we compute precision and recall that take into account the
refactorings of all kinds.

We further analyzed why RefactoringCrawler missed a few refactorings. In
Struts, for instance, methodRequestUtils.computeParameters is moved to

RM RC RP MM PUM PDM CMS PrecisionRecall

EclipseUI 2.1.3 - 3.0 2,1,0 0,0,00,0,0 8,2,4 11,0,00,0,0 6,0,0 90% 86%
Struts 1.2.1 - 1.2.4 20,0,11,0,10,0,020,0,7 1,0,0 0,0,0 24,0,1 100% 86%
JHotDraw 5.2 - 5.3 5,0,0 0,0,00,0,0 0,0,0 0,0,0 0,0,0 19,0,0 100% 100%

Table 2.Triples of (GoodResults, FalsePositives, FalseNegatives) for RenameMethod(RM), Re-
nameClass(RC), RenamePackage(RP), MoveMethod(MM), PullUpMethod(PUM), PushDown-
Method(PDM), ChangeMethodSignature(CMS)

TagUtils.computeParameters, and methodRequestUtils.pageURL is
moved toTagUtils.pageURL. There are numerous calls to these methods from
a test class. However, it appears that the test code was not refactored, and therefore it
still calls the old method (that is deprecated), which results in quite different call sites
for the old and the refactored method.

8.3 Performance

The results in Table 2 were obtained when RefactoringCrawler ran on a Fujitsu lap-
top with a 1.73GHz Pentium 4M CPU and 1.25GB of RAM. It took 16 min 38 sec for
detecting the refactorings in EclipseUI, 4 min and 55 sec forStruts, and 37 sec for JHot-
Draw. Figure 9 shows how the running time for JHotDraw varieswith the change of the
method similarity threshold values used in the syntactic analysis. For low threshold val-
ues, the number of candidate pairs passed to the semantic analysis is large, resulting in
longer analysis time. For high threshold values, fewer candidate pairs pass into the se-
mantic analysis, resulting in lower running times. For JHotDraw, a .1 method similarity
threshold passes 1842 method candidates to the RenameMethod’s semantic analysis, a
.5 threshold value passes 88 candidates, while a .9 threshold passes only 4 candidates.

The more important question, however, is how precision and recall vary with the
change of the similarity threshold values. Very low threshold values produce a larger
number of candidates to be analyzed, which results in a larger number of false positives,
but increases the chance that all the relevant refactoringsare found among the results.
Very high threshold values imply that only those candidatesthat have almost perfect
body resemblance are taken into account, which reduces the number of false positives
but can miss some refactorings. We have found that thresholdvalues between 0.5 and
0.7 result in practical precision and recall.

8.4 Strengths and Limitations

We next discuss the strengths and the limitations of our approach to detecting refactor-
ings. We also propose new extensions to overcome the limitations.

Strengths

– High precision and recall.Our evaluation on the three components shows that both
precision and recall of RefactoringCrawler are over 85%. Since RefactoringCrawler

Fig. 9. Running time for JHotDraw decreases exponentially with higher threshold values used in
the syntactic analysis.

combines both syntactic and semantic analysis, it can process a realistic size of
software with practical accuracy. Compared to other approaches [APM04,DDN00,
GW05, GZ05, RD03] that use only syntactic analysis and produce large number
of false positives, our tool requires little human intervention to validate the refac-
torings. RefactoringCrawler can significantly reduce the burden necessary to find
refactoring logs that a replay tool uses to automatically upgrade component-based
applications.

– Robust.Our tool is able to detect refactorings in the presence of noise introduced
because of maintaining backwards compatibility, the noiseof multiple refactorings,
and the noise of renamings. Renamings create huge problems for other approaches
but do not impede our tool. Since our tool identifies code entities (methods, classes,
packages) based on their body resemblance and not on their names, our tool can
successfully track the same entity across different versions, even when its name
changes. For previous approaches, a rename is equivalent with an entity disappear-
ing and a brand new entity appearing in the subsequent version. Another problem
for previous approaches is the application of multiple refactorings to the same en-
tity. Our tool takes this into account by sharing the log of refactorings between
the detection strategies and repeating each strategy untilit reaches a fixed point.
Lastly, our tool detects refactorings in an open-world development where, due to
backwards compatibility, obsolete entities coexist with their refactored counterparts
until the former are removed. We can detect refactorings in such an environment
because most of refactorings involve repartitioning the source code. This results in
parts of the code from a release being spread in different places in the next release.
Our algorithm starts by detecting the similarities betweentwo versions.

– Scalable.Running expensive semantic analysis (like identifying similar subgraphs
in the entire reference graph) on large codebases comprising of tens of thousands of
nodes (methods, classes, packages) is very expensive. To avoid this, we run first an
inexpensive syntactic analysis that reduces the whole input domain to a relatively

small number of candidates to be analyzed semantically. It took RefactoringCrawler
16 min 38 sec to analyze for the org.eclipse.ui subcomponent(352 KLOC) of the
Eclipse Platform.

Limitations

– Poor support for interfaces and fields.Since our approach tracks the identity
of methods, classes, and packages based on their textual bodies and not on their
names, it does not fit for those entities that lack a body. Bothclass fields and in-
terface methods do not contain any body other than their declaration name. After
the syntactic analysis, only entities that have a body resemblance are passed to the
semantic analysis. Therefore, refactorings that happenedto fields or interface meth-
ods cannot be detected. This was the case in org.eclipse.ui where between versions
2.1.3 and 3.0 many static fields were moved to other classes and many interface
methods were moved to abstract classes. To counteract the lack of textual bodies
for fields or interface methods, we treated their associatedjavadoc comments as
their text bodies. This seems to work for some cases, but not all.

– Requires experimentation.As with any approach based on heuristics, coming up
with the right values for the detection algorithms might take a few trials. Selecting
threshold values too high reduces the false positives toward zero but can miss some
refactorings as only those candidates that have perfect resemblance are selected.
Selecting too low threshold values produces a large number of false positives but
increases the chances that all relevant refactorings are found among the results.
The default threshold values for RefactoringCrawler are between 0.5 and 0.7 (for
various similarity parameters) [Ref]. When default values do not produce adequate
results, users could start from high threshold values and reduce them until the num-
ber of false positive becomes too large.

9 Related Work

We provide an overview of related work on refactoring, automated detection of refac-
torings, and the use of Shingles encoding.

9.1 Refactoring

Programmers have been cleaning up their code for decades, but the termrefactoring
was coined much later [OJ90]. Opdyke [Opd92] wrote the first catalog of refactor-
ings, while Roberts and Brant [RBJ97,Rob99] were the first toimplement a refactoring
engine. The refactoring field gained much popularity with the catalog of refactorings
written by Fowler et al. [FBB+99]. Soon after this, IDEs began to incorporate refac-
toring engines. Tokuda and Batory [TB01] describe how largearchitectural changes in
two frameworks can be achieved as a sequence of small refactorings. They estimate that
automated refactorings are 10 times quicker to perform thanmanual ones.

More recent research on refactoring focuses on the analysesfor automating power-
ful refactorings. Tip et al. [TKB03] use type constraints tosupport an analysis for refac-
torings that introduce type generalization. Donovan et al.[DKTE04] use a pointer anal-
ysis and a set-constraint-based analysis to support refactorings that replace the instan-
tiation of raw classes with generic classes. Dincklage and Diwan [vDD04] use various
heuristics to convert from non-generic classes to generic classes. Balaban et al. [BTF05]
propose refactorings that automatically replace obsoletelibrary classes with their newer
counterparts. Component developers have to provide mappings between legacy classes
and their replacements, and an analysis based on type constraints determines where the
replacement can be done. Thomas [Tho05] points out that refactorings in the compo-
nents result into integration problems and advocates the need for languages that would
allow developers to specify refactorings to create customizable refactorings.

9.2 Detection of refactorings

Researchers have already developed some tool support for detecting and classifying
structural evolution, mostly spawned from the reengineering community. Detection
of class splitting and merging was the main target of the current tools. Demeyer et
al. [DDN00] use a set of object-oriented change metrics and heuristics to detect refac-
torings that will serve as markers for the reverse engineer.Antonio et al. [APM04] use
a technique inspired from the Information Retrieval to detect discontinuities in classes
(e.g., a class was replaced with another one, a class was split into two, or two classes
merge into one). Based on Vector Space cosine similarity, they compare the class identi-
fiers found in two subsequent releases. Therefore, if a class, sayResolver, was present
in versionn but disappears in versionn + 1 and a new classSimpleResolver ap-
pears in versionn + 1, they conclude that a class replacement happened. Godfrey and
Zou [GZ05] are the closest to the way how we envision detecting structural changes.
They implemented a tool that can detect some refactorings like renaming, move method,
split, and merge for procedural code. Whereas we start from shingles analysis, they em-
ploy origin analysis along with a more expensive analysis oncall graphs to detect and
classify these changes. Rysselberghe and Demeyer [RD03] use a clone finding tool
(Duploc) to detect methods that were moved across the classes. Gorg and Weisger-
ber [GW05] analyze subsequent versions of a component in configuration management
repositories to detect refactorings.

Existing work on automatic detection of refactorings addresses some of the needs
of reverse engineers who must understand at a high level how and why components
evolved. For this reason, most of the current work focuses ondetecting merging and
splitting of classes. However, in order to automatically migrate component-based ap-
plications we need to know the changes to the API. Our work complements existing
work because we must look also for lower level refactorings that affect the signatures
of methods. We also address the limitations of existing workwith respect to renamings
and noise introduced by multiple refactorings on the same entity or the noise introduced
by the deprecate-replace-remove cycle in the open-world components.

9.3 Shingles encoding

Clone detection based on Shingles encoding is a research interest in other fields like
internet content management and file storage. Ramaswamy et al. [RILD04] worked
on automatic detection of duplicated fragments in dynamically generated web pages.
Dynamic web pages cannot be cached, but performance can be improved by caching
fragments of web pages. They used Shingles encoding to detect fragments of web pages
that did not change. Manber [Man93] and Kulkarni et al. [KDLT04] employ shingles-
based algorithms to detect redundancy in the file system. They propose more efficient
storage after eliminating redundancy. Li et al. [LLMZ04] use shingles to detect clones
of text in the source code of operating systems. They furtheranalyze the clones to detect
bugs due to negligent copy and paste.

10 Conclusions

Syntactic analyses are too unreliable, and semantic analyses are too slow. Combining
syntactic and semantic analyses can give good results. By combining Shingles encoding
with traditional semantic analyses, and by iterating the analyses until a fixed point was
discovered, we could detect over 85% of the refactorings while producing less than 10%
false positives.

The algorithm would work on any two versions of a system. It does not assume that
the later version was produced by any particular tool. If a new version is produced by a
refactoring tool that records the refactorings that are made, then the log of refactorings
will be 100% accurate. Nevertheless, there may not be the discipline or the opportunity
to use a refactoring tool, and it is good to know that refactorings can be detected nearly
as accurately without it.

There are several applications of automated detection of refactorings. First, a log
of refactorings helps in the automated migration of component-based applications. As
our previous study [DJ05] shows, more than 80% of the API changes that break com-
patibility with existing applications are refactorings. Atool like Eclipse can replay the
log of refactorings. The replay is done at the application site where both the component
and the application reside in the same workspace. In this case, the refactoring engine
finds and correctly updates all the references to the refactored entities, thus migrating
the application to the new API of the component.

Second, a log of refactorings can improve how current configuration management
systems deal with renaming. A tool like CVS looses all the change history for a source
file whose main class gets renamed, since this appears as if the old source file was
removed and a source file with a new name was added. A log of refactorings can help
the configuration management system to correlate the old files/folders with the new
files/folders when the main class or package was renamed.

Third, a log of refactoring can help a developer understand how an object-oriented
system has evolved from one version to another. For example,an explicit list of re-
namings tells how the semantics of the refactored entity changed, while a list of moved
methods tells how the class responsibilities shifted.

The tool and the evaluation results are available online [Ref].

11 Acknowledgments

We would like to thank Zheng Shao and Jiawei Han who suggestedthe use of shin-
gles for detecting similar methods. Adam Kiezun, Russ Ruffer, Filip Van Rysselberghe,
Danny Soroker, anonymous reviewers, and members of the SAG group at UIUC pro-
vided valuable feedback on the drafts of this paper. This work is partially funded
through an Eclipse Innovation Grant for which we are very grateful to IBM.

References

[APM04] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic approach
to identify class evolution discontinuities. InIWPSE’04: Proceedings of International
Workshop on Principles of Software Evolution, pages 31–40, 2004.

[Bor] What’s new in Borland Jbuilder 2005. http://www.borland.com/resources/en/pdf/
white papers/jb2005whatsnew.pdf.

[Bro97] Andrei Broder. On the resemblance and containment of documents. InSEQUENCES
’97: Proceedings of Compression and Complexity of Sequences, pages 21–29, 1997.

[BTF05] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class library
migration. InOOPSLA ’05: Proceedings of Object-oriented programming, systems,
languages, and applications, pages 265–279, New York, NY, USA, 2005. ACM Press.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via
change metrics. InOOPSLA’00: Proceedings of Object oriented programming, sys-
tems, languages, and applications, pages 166–177, 2000.

[DJ05] Danny Dig and Ralph Johnson. The role of refactorings in api evolution. InICSM’05:
Proceedings of International Conference on Software Maintenance, pages 389–398,
Washington, DC, USA, 2005. IEEE Computer Society.

[DKTE04] Alan Donovan, Adam Kiezun, Matthew S. Tschantz, and Michael D. Ernst. Convert-
ing Java programs to use generic libraries. InOOPSLA ’04: Proceedings of Object-
oriented programming, systems, languages, and applications, volume 39, pages 15–
34, New York, NY, USA, October 2004. ACM Press.

[Ecl] Eclipse Foundation. http://eclipse.org.
[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-

toring: Improving the Design of Existing Code. Adison-Wesley, 1999.
[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[GW05] Carsten Gorg and Peter Weisgerber. Detecting and visualizing refactorings from soft-

ware archives. InIWPC’05: Proceedings of the 13th International Workshop on Pro-
gram Comprehension, pages 205–214, Washington, DC, USA, 2005. IEEE Computer
Society.

[GZ05] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and split-
ting of source code entities.IEEE Transactions on Software Engineering, 31(2):166–
181, 2005.

[HD05] Johannes Henkel and Amer Diwan. CatchUp!: Capturing and replaying refactorings
to support API evolution. InICSE’05: Proceedings of International Conference on
Software Engineering, pages 274–283, 2005.

[KDLT04] Purushottam Kulkarni, Fred Douglis, Jason D. LaVoie, and John M. Tracey. Re-
dundancy elimination within large collections of files. InUSENIX Annual Technical
Conference, General Track, pages 59–72, 2004.

[LLMZ04] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: A tool for
finding copy-paste and related bugs in operating system code. InOSDI’04: Proceed-
ings of the Sixth Symposium on Operating System Design and Implementation, pages
289–302, 2004.

[Man93] Udi Manber. Finding similar files in a large file system. TechnicalReport 93-33,
University of Arizona, 1993.

[OJ90] Bill Opdyke and Ralph Johnson. Refactoring: An aid in designingapplication frame-
works and evolving object-oriented systems. InSOOPPA’90: Proceedings of Sympo-
sium on Object-Oriented Programming Emphasizing Practical Applications, 1990.

[Opd92] Bill Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[Rab81] Michael O. Rabin. Fingerprinting by random polynomials. Technical Report 15-81,
Harvard University, 1981.

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.
TAPOS, 3(4):253–263, 1997.

[RD03] Filip Van Rysselberghe and Serge Demeyer. Reconstruction ofsuccessful software
evolution using clone detection. InIWPSE’03: Proceedings of 6th International Work-
shop on Principles of Software Evolution, pages 126–130, 2003.

[Ref] RefactoringCrawler’s web page:. https://netfiles.uiuc.edu/dig/RefactoringCrawler .
[RILD04] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and FredDouglis. Automatic de-

tection of fragments in dynamically generated web pages. InWWW ’04: Proceedings
of the 13th international conference on World Wide Web, pages 443–454, New York,
NY, USA, 2004. ACM Press.

[Rob99] Don Roberts.Practical Analysis for Refactoring. PhD thesis, University of Illinois at
Urbana-Champaign, 1999.

[TB01] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.
Automated Software Engineering, 8(1):89–120, January 2001.

[Tho05] Dave Thomas. Refactoring as meta programming?Journal of Object Technology,
4(1):7–11, January-February 2005.

[TKB03] Frank Tip, Adam Kiezun, and Dirk Bauemer. Refactoring forgeneralization using
type constraints. InOOPSLA ’03: Proceedings of Object-oriented programing, sys-
tems, languages, and applications, volume 38, pages 13–26, New York, NY, USA,
November 2003. ACM Press.

[vDD04] Daniel von Dincklage and Amer Diwan. Converting Java classes to use generics. In
OOPSLA ’04: Proceedings of Object-oriented programming, systems,languages, and
applications, pages 1–14. ACM Press, 2004.

